Light field photography

CS 178, Spring 2009

Marc Levoy Computer Science Department Stanford University

"Light field photography using a handheld plenoptic camera"

Ren Ng, Marc Levoy, Mathieu Brédif, Gene Duval, Mark Horowitz and Pat Hanrahan

> (Proc. SIGGRAPH 2005 and TR 2005-02)

Conventional versus plenoptic camera

Conventional versus plenoptic camera

Prototype camera

Contax medium format camera

Adaptive Optics microlens array

Kodak 16-megapixel sensor

125µ square-sided microlenses

 $4000 \times 4000 \text{ pixels} \div 292 \times 292 \text{ lenses} = 14 \times 14 \text{ pixels per lens}$

Typical image captured by camera (shown here at low res)

Digital refocusing

• refocusing = summing windows extracted from several microlenses

Refocusing portraits

Extending the depth of field

conventional photograph, main lens at f/4

conventional photograph, main lens at f/22

light field, main lens at f/4, after all-focus algorithm [Agarwala 2004]

Macrophotography

Digitally moving the observer

• moving the observer = moving the window we extract from the microlenses

Example of moving the observer

© 2008 Marc Levoy

Example of moving the observer

© 2008 Marc Levoy

Example of moving the observer

Moving backward and forward

Moving backward and forward

© 2008 Marc Levoy

Moving backward and forward

Implications / commercialization (see refocusimaging.com)

- cuts the unwanted link between exposure (due to the aperture) and depth of field
- trades off (excess) spatial resolution for ability to refocus and adjust the perspective
- sensor pixels should be made even smaller, subject to the diffraction limit
 36mm × 24mm ÷ 2.5µ pixels = 266 Mpix
 20K × 13K pixels
 4000 × 2666 pixels × 20 × 20 rays per pixel

 2000×1500 pixels $\times 3 \times 3$ rays per pixel = 27 Mpix