Light and reflection CS 178, Spring 2010

Marc Levoy

Computer Science Department
Stanford University

Outline

- measures of light
- radiometry versus photometry
- radiant intensity of a point light
- radiance leaving an area light
- radiance arriving on a surface
- irradiance on a surface
- reflection of light
- diffuse
- specular
- goniometric diagrams
- Fresnel equations and other effects

Radiometry versus photometry

- radiometry is the study of light w/o considering humans
- spectroradiometer - power as a function of wavelength
- radiometer - total power, integrating over all wavelengths
- measurements include
- radiant intensity, radiance, irradiance
- photometry is the study of light as seen by humans
- spectrophotometer - power we see as a function of wavelength
- photometer, a.k.a. photographic light meter
- measurements include
- luminous intensity, luminance, illuminance

Relationship to tristimulus theory

- the response of the human visual system to a spectrum is

$$
(\rho, \gamma, \beta)=\left(\int_{400 n m}^{700 n m} L_{e}(\lambda) \rho(\lambda) d \lambda, \int_{400 n m}^{700 n m} L_{e}(\lambda) \gamma(\lambda) d \lambda, \int_{400 n m}^{700 n m} L_{e}(\lambda) \beta(\lambda) d \lambda\right)
$$

luminance
radiance

- the total response can be expressed as

$$
L=\rho+\gamma+\beta=\int_{400 n m}^{700 n m} L_{e}(\lambda) V(\lambda) d \lambda
$$

S is actually much lower than M or L

- one could also express luminance as

$$
L(\lambda)=L_{e}(\lambda) V(\lambda)
$$

* where

$$
V(\lambda)=\rho(\lambda)+\gamma(\lambda)+\beta(\lambda)
$$

- $\sqrt[s]{m}$
(Stone)

Radiant intensity of a point light

+ power given off by the light per unit solid angle

$$
I=\frac{P}{\Omega} \quad\left(\frac{\text { watts }}{\text { steradian }}\right)
$$

"Point" light source
Solid angle ω
(Reinhard)

- i.e. the energy per unit time per unit solid angle
- 1 watt $=1$ joule $/$ second

Steradian as a measure of solid angle

-1 steradian (sr) is the solid angle such that the area subtended by that solid angle on the surface of a sphere is equal to the sphere's radius ${ }^{2}$

- area of a sphere is $4 \pi r^{2}$, so $1 \mathrm{sr}=r^{2} / 4 \pi r^{2}$ $\approx 1 / 12$ of the sphere's surface
+ examples

- circular aperture 65° in subtended diameter

- square aperture 57° on a side
- a circle 12.7^{\prime} in diameter cast by a streetlight 10^{\prime} high

Radiant intensity of a point light

+ power given off by the light per unit solid angle

$$
I=\frac{P}{\Omega} \quad\left(\frac{\text { watts }}{\text { steradian }}\right)
$$

+ example

- 100 W light bulb gives off 100 watts over the sphere $\div 4 \pi \mathrm{sr}$ in a sphere $=8$ watts within a 12.7^{\prime} circle 10^{\prime} feet from the bulb

Radiant intensity of a point light

+ power given off by the light per unit solid angle

$$
I=\frac{P}{\Omega} \quad\left(\frac{\text { watts }}{\text { steradian }}\right)
$$

- related photometric concept is luminous intensity (measured in candelas)
- 1 candela = 1 lumen / sr
+ examples

If the light bulb were 100% efficient li.e. no energy wasted as heat outside the visible spectrum), it would give off 683 lumens per watt. The ratio between 100 watts and 683 lumens represents the luminous efficiency of the human visual system across the visual spectrum.

- a standard Bouguer candle gives off 1 candela
- a 100W light bulb with a luminous efficiency of 2.6% (the other 97.4% we don't see) gives off 17.6 lumens per watt $\times 100 \mathrm{~W} \div 4 \pi$ sr in the sphere $=140$ candelas

Photography by candlelight

(digital-photography-school.com)

- need SLR-sized pixels, fast lens, tripod, patient subject - moderate shutter speed ($1 / 15 \mathrm{sec}$) and ISO (400)

Radiance leaving an area light

- power given off by the light per unit solid angle per unit area, viewed at a declination of θ relative to straight-on

$$
L=\frac{P}{\Omega A \cos \theta} \quad\left(\frac{\text { watts }}{\text { steradian } \mathrm{m}^{2}}\right)
$$

Radiance leaving an area light

- power given off by the light per unit solid angle per unit area, viewed at a declination of θ relative to straight-on

$$
L=\frac{P}{\Omega A \cos \theta} \quad\left(\frac{\text { watts }}{\text { steradian } \mathrm{m}^{2}}\right)
$$

- related photometric concept is luminance (measured in nits) (yup, nits!)
- 1 nit $=1$ candela $/ \mathrm{m}^{2}=1$ lumen $/ \mathrm{sr} \mathrm{m}^{2}$
- example
- viewed perpendicularly, a computer display gives off 50-300 candelas per meter ${ }^{2}$ of the display surface, about the same as a 100W light bulb but spread out

Radiance arriving on a surface

- power arriving on a surface per unit solid angle per unit area, illuminated from a declination of θ

$$
L=\frac{P}{\Omega A \cos \theta} \quad\left(\frac{\text { watts }}{\text { steradian } \mathrm{m}^{2}}\right)
$$

Radiance arriving on a surface

- power arriving on a surface per unit solid angle per unit area, illuminated from a declination of θ

$$
L=\frac{P}{\Omega A \cos \theta} \quad\left(\frac{\text { watts }}{\text { steradian } \mathrm{m}^{2}}\right)
$$

- examples (most are from Minneert)

> There is a proof missing here that the luminance leaving each point on the surface of the moon (per unit solid angle per unit area on the moon, at least for points that perpendicularly face the earth) is the same as the luminance arrive on each point of the earth (per unit solid angle per unit area on the earth, at least for points that perpendicularly face the moon). If you're interested in this proof that luminance lor radiance) is preserved during the transport of light, take CS 348B!

- luminance arriving on a surface from a full (overhead) sun is 160,000 candelas $/ \mathrm{cm}^{2} \quad\left(160,000\right.$ lumens $/ \mathrm{sr} \mathrm{cm}^{2}$)
- luminance reflected by a diffuse white surface illuminated by the sun is $1.6 \mathrm{~cd} / \mathrm{cm}^{2}$
- reflected by a black surface is $0.04 \mathrm{~cd} / \mathrm{cm}^{2}$
- arriving from a full overhead moon is $0.3 \mathrm{~cd} / \mathrm{cm}^{2}$
- luminance arriving from a white cloud (fully lit by the sun) is $10 \times$ luminance of the blue sky, a difference of $3.3 \mathrm{f} / \mathrm{stops}$

Luminance from sun \rightarrow reflection from surface (contents of whiteboard)

I may have muffed this derivation in class. Here it is worked out more completely, and with slightly more accurate numbers.

+ Q. Why is the sun 160,000 candelas $/ \mathrm{cm}^{2}$ but its reflection by a diffuse white surface is only $1.6 \mathrm{~cd} / \mathrm{cm}^{2}$?
- A. the sun doesn't occupy the entire sky, but diffuse reflection does.
- luminance arrives from the sun through 0.001% of the celestial hemisphere (0.00006 sr), hence the amount arriving is $160,000 \mathrm{~cd} / \mathrm{cm}^{2}=$ lumens $/ \mathrm{sr} \mathrm{cm}^{2} \times 0.00006 \mathrm{sr}=10$ lumens $/ \mathrm{cm}^{2}$
- if we assume a diffuse white surface reflects all the light itreceives, then it reflects these 10 lumens $/ \mathrm{cm}^{2}$ into 100% of hemisphere (2π sr), hence the surface's outgoing luminance is 10 lumens $/ \mathrm{cm}^{2} \div 2 \pi \mathrm{sr}=1.6$ lumens $/ \mathrm{sr} \mathrm{cm}^{2}$ or $1.6 \mathrm{~cd} / \mathrm{cm}^{2}$

Irradiance on a surface

+ power accumulating on a surface per unit area, considering light arriving from all directions

$$
E=\frac{P}{A} \quad\left(\frac{\text { watts }}{\mathrm{m}^{2}}\right)
$$

(Reinhard)

Irradiance on

+ power accumulating on a surface per unit area, considering light arriving from all directions

$$
E=\frac{P}{A} \quad\left(\frac{\text { watts }}{\mathrm{m}^{2}}\right)
$$

Q. How far from a book should I hold a candle to make it match the illumination of the moon?

- related photometric unit is illuminance (measured in lux)
- 1 lux = 1 lumen $/ \mathrm{m}^{2}$
- British unit is footcandle $=1$ candela held 1 foot from surface (1 footcandle $=10.764$ lux)
- example
- illuminance from a bright star = illuminance from a candle 900 meters away $=1 / 810,000$ lux
- illuminance from the full moon $=1 / 4$ lux

How dark are outdoor shadows?

+ luminance arriving on a surface from a full (overhead) sun is $300,000 \times$ luminance arriving from the blue sky (from Minneart), but the sun occupies only a small fraction of the sky
+ illuminance on a sunny day $=80 \%$ from the sun $+20 \%$ from blue sky, so shadows are $1 / 5$ as bright as lit areas ($2.3 \mathrm{f} /$ stops)
(Marc Levoy)

We didn't derive this in class, but let's try it now. From slide \#13 we know that the luminance we get from the sun is 160,000 lumens $/ \mathrm{sr}$ cm^{2}. If the blue sky is $1 / 300,000$ as luminous, then we get 160,000 / $300,000: 1=0.53$ lumens $/ \mathrm{sr}^{2} \mathrm{~cm}^{2}$ from blue sky $\times 2 \pi \mathrm{sr}$ for the full hemisphere $=3.3$ lumens $/ \mathrm{cm}^{2}$. Comparing this to the 10 lumens $/ \mathrm{cm}^{2}$ we computed on slide \#1 3 for the sun, we get $10 / 3.3=3: 1$. Minneart's book says 80% from sun versus 20% from sky, which is $4: 1$. There's some discrepancy, but wére in the ball park. The answer probably depends on latitude and other factors.

How dark are outdoor shadows?

- luminance arriving on a surface from a full (overhead) sun is $300,000 \times$ luminance arriving from the blue sky, but the sun occupies only a small fraction of the sky
- illuminance on a sunny day $=80 \%$ from the sun $+20 \%$ from blue sky, so shadows are $1 / 5$ as bright as lit areas ($2.3 \mathrm{f} /$ stops)
(Marc Levoy)

JPEG file

Recap

+ to convert radiometric measures of light into photometric measures, multiply the spectral power distribution as measured by a spectroradiometer wavelength-by-wavelength by the human luminous efficiency curve $\mathrm{V}(\lambda)$
- useful measures of light are the radiant or luminous intensity emitted by a point source (power per solid angle), the radiance or luminance emitted by (or arriving at) an area source (power per solid angle per unit area), and the irradiance or illuminance accumulating on a surface (power per unit area)
- bright objects (like the sun) may be more luminous (measured in lumens $/ \mathrm{sr} \mathrm{cm}^{2}$) than darker objects (like the blue sky), but typically cover a smaller fraction of the incoming hemisphere
- outdoor shadows are $1 / 5$ as bright as lit areas ($2.3 \mathrm{f} /$ stops)
Questions?

Outline

- measures of light
- radiometry versus photometry
- radiant intensity of a point light
- radiance leaving an area light
- radiance arriving on a surface
- irradiance on a surface
\rightarrow reflection of light
- diffuse
- specular
- goniometric diagrams
- Fresnel equations and other effects

Reflection from diffuse surfaces

Johann Lambert (1728-1777)
two viewpoints, same illumination

- rough surfaces reflect light uniformly in all directions
- appearance is independent of viewing direction
- if perfectly so, surface is called ideal diffuse ("Lambertian")

Albedo

- fraction of light reflected from a diffuse surface
- usually refers to an average across the visible spectrum
- examples
- clouds
- fresh snow
- old snow 40\%
- grass 30\%
- soil 15%
- rivers
- ocean
80%
80%
40%
30%
15%
7\%
3\%
equality explains
"whiteout" in blizzards
not including mirror reflections of the sun

Reflection from shiny surfaces

(Dorsey)
two viewpoints, same illumination (i.e. fixed to object)

- rough surfaces are composed of flat microfacets ("asperities" according to Bouguer)
- the amount of variance in the orientation of the facets determines whether the surface is diffuse or specular
- diffuse reflections look the same regardless of viewing direction
- specular reflections move when the light or observer moves

Microfacet distributions (contents of whiteboard)

- if the facets are randomly oriented, and the variation in their orientation is large, then the surface appears diffuse
- if most of the facets are aligned with the surface, then it appears specular (a.k.a. shiny), with its specular bighlight centered around the mirror reflection direction (angle of reflection $=$ angle of incidence)
- if the surface is polished until no facets exist, then it is a mirror, and the angle of reflection = angle of incidence

Mirror reflections

(Joseph Alward)

(ectc.org.uk)

- the focus distance of objects seen in mirrors is more than the distance from you to the mirror?

Mirror reflections

Diego Velázquez, Venus at her Mirror, 1647

Q. Who is Venus looking at in the mirror?

Goniometric diagram

- depiction of reflectance (fraction of light reflected) as a function of one of the relevant angles or directions
- shown here is reflectance as a function of viewing direction, for a fixed incoming direction of light

Goniometric diagrams in flatland (contents of whiteboard)

- the incoming light is the long black vector at right in both drawings
- for the given incoming light direction, the fraction of light reflected in each viewing direction is given by the lengths of the small arrows
+ in the shiny case, there is a diffuse component, whose reflectance is equal across all viewing directions, and a specular component, which is strongest in the mirror direction; the total reflectance, hence the final goniometric diagram, is the sum of these two components, i.e. the thick outer envelope

What unusual material property does this goniometric diagram depict?

- A. retroreflectivity
* the maria of the moon is retroreflective and gray
- a diffuse sphere, lit from the camera's viewpoint, falls off as $\cos \theta$ or $\sqrt{1}-x^{2}$
a full moon is roughly lit from the camera's viewpoint

I didn't explain this in class, but irradiance drops as $\cos (\theta)$, where θ is the angle between the illumination and the normal to the receiving surface, i.e. irradiance $E(\theta)=L_{i} \cos$ (θ) where L_{i} is the incident radiance from the flash, and $\theta(x)=\operatorname{sqr}\left(1-x^{2}\right)$, if x goes from 0 to 1 from the cnter to the edge of the ping pong ball. Then reflected radiance $L_{r}=k L_{i}$ regardless of θ for a Lambertian surface. If you want to learn more about doing these
so is a flash photograph

What about this goniometric diagram?

- A. dusty scatterer
$+\quad$ appears brighter as
the viewer moves to
$+\quad$ appears brighter as
the viewer moves to grazing angles

And this goniometric diagram?

日's denote declination; ϕ 's denote azimuth

- A. anisotropic reflection
- highlight not radially symmetric around mirror direction
- highlight may depend on light direction ϕ_{i} and viewer direction ϕ_{0} (like the horse), or only on the difference $\phi_{i}-\phi_{o}$ between them (pot and Xmas tree ornament)
- produced by grooved or directionally textured materials

(horsemanmagazine.com)
© Marc Levoy

BRDFs and BSSRDFs

(wikipedia)

(http://graphics.stanford.edu/ ~smr/brdf/bv/)

- Bidirectional Reflectance Distribution Function (BRDF, 4D function)

$$
f_{r}\left(\theta_{i}, \phi_{i}, \theta_{r}, \phi_{r}\right) \quad\left(\frac{1}{s r}\right)
$$

- Bidirectional Surface Scattering Reflectance Distribution Function (BSSRDF, 8D function)

$$
\rho\left(x_{i}, y_{i}, \theta_{i}, \phi_{i} x_{r}, y_{r}, \theta_{r}, \phi_{r}\right) \quad\left(\frac{1}{s r}\right)
$$

BRDFs versus BSSRDFs

BRDF

BSSRDF

- subsurface scattering is critical to the appearance of human skin
- cosmetics hide blemishes, but they also prevent subsurface scattering

Devices for measuring BRDFs

Stanford Spherical Gantry

Fresnel equations

- a model of reflectance derived from physical optics (light as waves), not geometrical optics (light as rays)
(wikipedia)
$R_{s}=\left[\frac{\sin \left(\theta_{t}-\theta_{i}\right)}{\sin \left(\theta_{t}+\theta_{i}\right)}\right]^{2}=\left(\frac{n_{1} \cos \theta_{i}-n_{2} \cos \theta_{t}}{n_{1} \cos \theta_{i}+n_{2} \cos \theta_{t}}\right)^{2}=\left[\frac{n_{1} \cos \theta_{i}-n_{2} \sqrt{1-\left(\frac{n_{1}}{n_{2}} \sin \theta_{i}\right)^{2}}}{n_{1} \cos \theta_{i}+n_{2} \sqrt{1-\left(\frac{n_{1}}{n_{2}} \sin \theta_{i}\right)^{2}}}\right]^{2}$

$$
R_{p}=\left[\frac{\tan \left(\theta_{t}-\theta_{i}\right)}{\tan \left(\theta_{t}+\theta_{i}\right)}\right]^{2}=\left(\frac{n_{1} \cos \theta_{t}-n_{2} \cos \theta_{i}}{n_{1} \cos \theta_{t}+n_{2} \cos \theta_{i}}\right)^{2}=\left[\frac{n_{1} \sqrt{1-\left(\frac{n_{1}}{n_{2}} \sin \theta_{i}\right)^{2}}-n_{2} \cos \theta_{i}}{n_{1} \sqrt{1-\left(\frac{n_{1}}{n_{2}} \sin \theta_{i}\right)^{2}}+n_{2} \cos \theta_{i}}\right]^{2}
$$

Augustin-Jean Fresnel (1788-1827)

- effects
- conductors (metals) - specular highlight is color of metal
- non-conductors (dielectrics) - specular highlight is color of light
- specular highlight becomes color of light at grazing angles
- even diffuse surfaces become specular at grazing angles

Recap

- rough surfaces (called Diffuse) have microfacets of widely varying orientation, causing them to reflect light equally in all directions
- shiny surfaces (called opecular) have microfacets with less variation in orientation, causing them to reflect light preferentially in the mirror direction, which changes with viewing direction
- goniometric diagrams give reflectance as a function of viewing direction for a given lighting direction; for a shiny surface, total reflectance for a viewing direction is the sum of a diffuse component and a specular component
- some materials are retroreflective or scattering or anisotropic
- the $4 \mathrm{D} B R D F$ characterizes reflectance as a function of incoming and outgoing direction; the 8D BSSRDF adds incoming and outgoing surface position, permitting characterization of subsurface scattering
- the Fresnel equations model additional effects, for example the reflectance from metals is the color of the metal, not the color of the light source

Fresnel Lens

- same refractive power (focal length) as a much thicker lens
+ good for focusing light, but not for making images

(wikipedia)

The geometry of a Fresnel lens (contents of whiteboard)

+ each Fresnel segment (A) is parallel to that part of the original lens (B) which is at the same ray height (distance from the optical axis (C)), but it's closer to the planar surface (D), making the lens physically thinner, hence lighter and cheaper

Tyler Westcott, Pigeon Point Lighthouse in light fog, photographed during the annual relighting of its historical 1KW lantern, 2008 (Nikon D40, 30 seconds, ISO 200, not Photoshopped)

Parting puzzle

- Q. These vials represent progressive stages of pounding chunks of green glass into a fine powder; why are they getting whiter?

Slide credits

+ Stone, M., A Field Guide to Digital Color, A.K. Peters, 2003.
* Dorsey, J., Rushmeier, H., Sillion, F., Digital Modeling of Material Appearance, Elsevier, 2008.
- Reinhard et al., High Dynamic Range Imaging, Elsevier, 2006.
+ Minnaert, M.G.J., Light and Color in the Outdoors, Springer-Verlag, 1993.

