## Color I:

## trichromatic theory

 CS 178, Spring 2013Marc Levoy
Computer Science Department Stanford University

## Outline

+ spectral power distributions
- color response in animals and humans
+ 3D colorspace of the human visual system
- and color filter arrays in cameras
- reproducing colors using three primaries
- including computer screens
- additive versus subtractive color mixing
+ cylindrical color systems used by artists (and Photoshop)
+ chromaticity diagrams
- color temperature and white balancing
- standardized color spaces and gamut mapping


## Newton's Experimentum Crucis


(Robin)

- sunlight can be divided into colors using a prism
- these colors cannot be further divided using a 2 nd prism
+ experiment performed 1665, drawing made in 1672


## Newton's Experimentum Crucis

(Robin)


- alternatively, the divided colors can be recombined using a lens and 2 nd prism into a new beam that has exactly the same properties as the original


## The visible light spectrum



- wavelengths between 400 nm and $700 \mathrm{~nm}(0.4 \mu-0.7 \mu)$
- exactly the colors in a rainbow


## The visible light spectrum



+ wavelengths between 400 nm and $700 \mathrm{~nm}(0.4 \mu-0.7 \mu)$
+ exactly the colors in a rainbow


## The visible light spectrum



* wavelengths between 400 nm and $700 \mathrm{~nm}(0.4 \mu-0.7 \mu)$
+ exactly the colors in a rainbow


## Spectral power distribution (SPD)






- units of power are watts (joules per second)
- shown here are spectra of common illumination sources
- plots above are relative amounts (\%) of each wavelength


## Interaction of light with matter


by an object

reflectance

stimulus that enters your eye

- illumination is multiplied wavelength-by-wavelength by reflectance of object at that wavelength
- cause is absorption by the material
- so the spectrum you see depends on the illumination
- transmittance operates the same way


## Example



## Examples of reflectance spectra



- two reflectance spectra that match (i.e. are metamers) under one illuminant may not match under another
- clothes that match in the store may not match outdoors


## Questions?

- two different spectra may appear alike to us
- white petal and white flower (above left)
- these are called metamers
+ Newton observed this, but could not explain it


## Outline

- spectral power distributions
acolor response in animals and humans
+ 3D colorspace of the human visual system
- and color filter arrays in cameras
- reproducing colors using three primaries
- additive versus subtractive color mixing
- cylindrical color systems used by artists (and Photoshop)
- chromaticity diagrams
- color temperature and white balancing
- standardized color spaces and gamut mapping


## Monochromats

## (contents of whiteboard)



1. organisms having only one kind of retinal receptor cannot distinguish changes in intensity from changes in wavelength, hence they have no color discrimination

- for example a unit amount of $\lambda_{1}$ versus $\lambda_{2}$ above
- or a unit amount of $\lambda_{1}$ versus half as much of $\lambda_{3}$ (assuming the sensitivity to $\lambda_{3}$ is twice the response to $\lambda_{1}$ )
- example: horseshoe crab


## Dichromats

## (contents of whiteboard)



2


3

2. this organism can discrimate a response in the range of wavelengths covered by A versus by B, but cannot discriminate within those ranges
3. this organism has color discrimination over the range of wavelengths shown

- for each wavelength within this range, the ratio of responses of receptors A and B is unique; hence the organism can identify which wavelength (e.g. $\lambda_{1}$ or $\lambda_{2}$ ) it's looking at

4. this organism has a larger range of color vision

- example: dog, horse


## Trichromats

## (contents of whiteboard)


5. humans can discrimate wavelengths from 400 nm to 700 nm

- we can also discriminate mixtures of wavelengths that dichromats cannot; this will become clearer later
* at the retinal level, our response to light is linear
a. if the response to a unit stimulus at $\lambda_{1}$ of is $\left(\rho_{1}, \gamma_{1}, \beta_{1}\right)$, and to a unit stimulus at $\lambda_{2}$ is $\left(\rho_{2}, \gamma_{2}, \beta_{2}\right)$, then the response to a superposition of stimuli $\lambda_{1}$ and $\lambda_{2}$ is $\left(\rho_{1}+\rho_{2}, \gamma_{1}+\gamma_{2}, \beta_{1}+\beta_{2}\right)$
b. the response to $n$ units of a stimulus at $\lambda_{1}$ is ( $n \rho_{1}, n \gamma_{1}, n \beta_{1}$ )
c. a system that obeys superposition (a) and scaling (b) is linear


## Human response to an arbitrary stimulus

spectrum of stimulus arriving in one small area on retina

$$
x
$$

spectral sensitivity of each type of cone (L,M,S)

$$
=
$$

multiply wavelength-bywavelength to get response spectra




* output is three numbers $(\rho, \gamma, \beta)$ per area on retina


## Human response to an arbitrary stimulus

+ stated algebraically, given a stimulus spectrum $L_{e}(\lambda)$, the human response to it ( $\rho, \gamma, \beta$ ) are the integrals over all visible wavelengths of our responses

$$
\begin{aligned}
& L_{e}(\lambda) \rho(\lambda), \\
& L_{e}(\lambda) \gamma(\lambda), \\
& L_{e}(\lambda) \beta(\lambda)
\end{aligned}
$$

to each constituent wavelength $\lambda$, i.e.


$$
(\rho, \gamma, \beta)=\left(\int_{400 \text { nm }}^{700 \mathrm{~m} m} L_{e}(\lambda) \rho(\lambda) d \lambda, \int_{400 \mathrm{~nm}}^{700 \mathrm{~mm}} L_{e}(\lambda) \gamma(\lambda) d \lambda, \int_{400 \mathrm{~nm}}^{700 \mathrm{~mm}} L_{e}(\lambda) \beta(\lambda) d \lambda\right)
$$

## Outline

- spectral power distributions
- color response in animals and humans
a -3 D colorspace of the human visual system
- and color filter arrays in cameras
- reproducing colors using three primaries
- additive versus subtractive color mixing
- cylindrical color systems used by artists (and Photoshop)
- chromaticity diagrams
- color temperature and white balancing
- standardized color spaces and gamut mapping


## Human 3D colorspace

+ the three types of cones in our retina (Long, Medium, Short wavelength) define the axes of a three-dimensional space
- our response to any stimulus spectrum can be summarized by three numbers ( $\rho, \gamma, \beta$ ) and plotted as a point in this space
- our responses to all visible single-wavelength spectra (a.k.a. pure wavelengths $\lambda$, i.e. positions along the rainbow), if connected together, form a curve in this space, called the locus of spectral colors; the sequence of ( $\rho, \gamma, \beta$ ) numbers form the tristimulus sensitivity functions $\rho(\lambda), \gamma(\lambda)$, and $\beta(\lambda)$

sensitivity functions
http://graphics.stanford.edu/courses/ cs178/applets/locus.html

spectral locus


## Properties of human 3D colorspace (1 of 2) (contents of whiteboard)



1. our response to any mixture $\left(\sum=1\right)$ of two pure wavelengths falls on a line connecting the responses to each wavelength
2. our response to any mixture ( $\sum=1$ ) of three pure wavelengths falls on a triangle connecting the responses to each wavelength; our response to any mixture or scaling ( $\sum \leq 1$ ) of three pure wavelengths falls in a tetrahedron defined by this triangle and the origin
3. our responses to all possible mixtures or scalings ( $\sum \leq 1$ ) of all visible wavelengths forms an irregular volume called the gamut of perceivable colors, equal to the convex hull of the spectral locus

## Properties of human 3D colorspace (2 of 2) (contents of whiteboard)


4. to a deuteranope - a color-blind person who is missing their mediumwavelength receptor, i.e. their gamma receptor - this diagram is squashed into the rectangle shown above on the rho-beta plane

- as a result, spectra whose $(\rho, \gamma, \beta)$ responses lie along the dotted lines cannot be distinguished; they will appear as the same color, i.e. as metamers
- by a similar argument, many spectra distinguishable to pentachromats (e.g. Mallard ducks) are indistinguishable to trichromats (humans)


## Color blindness



## The advantage of being color blind



- the maze (at left) is recreated (at right) using subtle intensity differences, but overridden by stronger red-green color differences
- only a deuteranope can see the maze at right


## Canon 30D color filters

- you want the camera's R, G, and B color filters to have the same spectral sensitivities as our $L, M$, and $S$ cones
- you don't want objects in the real world to be metamers to one system and not the other
- otherwise, colored patterns the camera sees might be invisible to a person (bad), or patterns you see might be invisible to a camera (also bad)

filter transmissivity

http://graphics.stanford.edu/courses/ cs178/applets/locus.html

spectral locus


## Outline

+ spectral power distributions
+ color response in animals and humans
+ 3D colorspace of the human visual system
- and color filter arrays in cameras
- reproducing colors using three primaries
- additive versus subtractive color mixing
+ cylindrical color systems used by artists (and Photoshop)
+ chromaticity diagrams
- color temperature and white balancing
- standardized color spaces and gamut mapping


## Maxwell's color matching experiment

- Maxwell actually used a slightly different procedure
- see http://www.handprint.com/HP/WCL/color6.html for details
- the procedure below is used in modern versions of the experiment

http://graphics.stanford.edu/courses/ cs178/applets/colormatching.html


## Maxwell's color matching experiment (summary of live demo)





1. given a stimulus wavelength, the amount of each primary required to match it is given by three numbers $(\bar{r}, g, \bar{b})$
2. some stimuli cannot be matched unless first desaturated by adding a primary to it before matching; the amount added is denoted by negative values of $\bar{r}, \bar{g}$, or $b$
3. the sequence of $(\bar{r}, \bar{g}, \bar{b})$ values, some negative, required to match the locus of spectral colors across all $\lambda$, form the trichromatic matching functions $\bar{r}(\lambda), \bar{g}(\lambda)$, and $\bar{b}(\lambda)$ for a particular set of 3 primaries

## Human response to an arbitrary stimulus (contents of whiteboard)

spectrum of stimulus

multiply wavelength-by-wavelength by the matching functions

$$
\bar{r}(\lambda), \bar{g}(\lambda), \text { and } \bar{b}(\lambda)
$$

for a particular set of 3 primaries

$$
\int
$$

then integrate over wavelengths to get the amount of that primary
 required to reproduce that spectrum

## Young-Helmholtz trichromatic theory



James Clerk Maxwell
(c. 1860)

Hermann von Helmholtz
(1821-1894)

+ spectra can be visually matched using mixtures of primary colors; such matches are called metamers
- due to the linearity of human retinal response, given a stimulus spectrum $L_{e}(\lambda)$, the amounts of each primary R, G, B required to match it, for any particular choice of 3 primaries, are the integrals over all visible wavelengths of the amounts $r(\lambda), g(\lambda)$, and $b(\lambda)$ required to match each constituent wavelength $\lambda$, i.e.
$(R, G, B)=\left(\int_{400 n m}^{700 n m} L_{e}(\lambda) \bar{r}(\lambda) d \lambda, \int_{400 n m}^{700 n m} L_{e}(\lambda) \bar{g}(\lambda) d \lambda, \int_{400 n m}^{700 n m} L_{e}(\lambda) \bar{b}(\lambda) d \lambda\right)$


## Young-Helmholtz trichromatic theory



## 3D interpretation of color matching

- our response to varying amounts of a primary forms a vector in $(\rho, \gamma, \beta)$ space, rooted at the origin
+ to provide a normal range of color vision, three primaries are required, and their vectors must not lie on a plane
- our responses to all possible mixtures and scales $\left(\sum \leq 1\right)$ of three primaries form a tetrahedron called the gamut of reproducible colors for these primaries


RGB matching functions

http://graphics.stanford.edu/courses/ cs178/applets/locus.html

gamut of reproducible colors

## 3D interpretation of color matching

- the spectrum of each of the three primaries can be a pure wavelength (1) or a mixture of wavelengths (2)
+ impure primaries have a smaller gamut in ( $\rho, \gamma, \beta$ ) space
+ additional primaries can be added to increase the gamut




## Outline

+ spectral power distributions
+ color response in animals and humans
+ 3D colorspace of the human visual system
- and color filter arrays in cameras
- reproducing colors using three primaries
- additive versus subtractive color mixing
- cylindrical color systems used by artists (and Photoshop)
+ chromaticity diagrams
- color temperature and white balancing
- standardized color spaces and gamut mapping


## Additive versus subtractive mixing

- demo using color guns and filters


## Additive versus subtractive mixing


http://graphics.stanford.edu/courses/cs178/ applets/ColorMixing-narrowCMY.swf

- superimposed colored lights or small adjacent dots combine additively - by adding their spectra wavelength-by-wavelength
- layered dyes or sequenced color filters combine subtractively - by multiplying their transmittance spectra wavelength-by-wavelength


## Additive versus subtractive mixing



## 

http://graphics.stanford.edu/courses/cs178/ applets/colormixing.html

- superimposed colored lights or small adjacent dots combine additively - by adding their spectra wavelength-by-wavelength
- layered dyes or sequenced color filters combine subtractively - by multiplying their transmittance spectra wavelength-by-wavelength


## Additive versus subtractive mixing

- narrow spectra, widely spaced in wavelength, are best for primaries to be combined additively

- wide spectra that overlap are best for primaries to be combined subtractively, but product of all three must be black
- the particular spectra chosen are flexible; additive primaries need not be R,G,B, nor subtractive primaries C,M,Y
- additional primaries may be added to either system, resulting in a larger gamut of reproducible colors; adding black to a subtractive system (called CMYK) ensures a deep black
- note: additive mixing can be interpreted as interpolation between points in rho-gamma-beta space, but subtractive mixing cannot, because the two spectra must be multiplied together, not added


## Color printing



- patches of the 3 subtractive primaries (C,M,Y) overlap partially on the page, making patches of 8 meta-primaries (Wh,C,M,Y,MY,CY,CM,CMY), which combine additively in the eye when viewed from a distance
- $\mathrm{M} \times \mathrm{Y}=\mathrm{R}, \mathrm{C} \times \mathrm{Y}=\mathrm{G}, \mathrm{C} \times \mathrm{M}=\mathrm{B}$
- these effects are modeled by the Neugebauer equations

