
Cornposting, Part 2: Practice 

JamesF.Blhn t this year’s Siggraph, Chris Wedge told the story A of an audience member who once asked him about 
Cld@W7IlQ “image cornposting.” I like this comment on the value 
Institute of of our industry even better than the “anti-aliening” I 
Technology used in Part 1 of this discussion. 

Well, anyway. Enough of this levity. This time I want 
to discuss the practice of image composting and in par- 
ticular the Porter-Duff “over” operator. Last time we 
derived the operator for compositing a foreground pixel 
F “over” a background pixel B as , 

B(l-Fa)+F 

where each pixel is a vector with four components: red, 
green, blue, and alpha (the coverage or opacity 
amount), and standard vector algebra applies. 

I’ve found it most useful to provide “over” as an in- 
place operator; you have an image stored in a frame 
buffer and want to lay another image on top of it. In 
other words, the result of “F over B” replaces B. 

c notation 
In translating this vector notation to C, I’ll write the 

components of a pixel using class member notation: 
(F.r, F.g, F.b, F . a). Code to implement the 
compositing operation is then 

t = 1 - F.a; 
B.r = B.r*t + F-r; 
B.g = B.g*t f F.g; 
B.b = B.b*t + F.b; 
B.a = B.a*t + F-a; 

For most rendering operations this is the only access 
method to the frame buffer that you will need. 

In what follows I’m going to complex@ this a bit, 
so let me make life a bit easier and define an abbrevi- 
ation. Since I will always treat the red, green, and blue 
components in the same way, I’ll just give a single 
statement for color components, using the generic 
class member . c . Any such statement actually expands 
into three statements. I will sometimes do different 
arithmetic for the . a member, so I’ll keep it separate. 
Using this abbreviation scheme, the above code looks 
like 

t = 1 - F.a; 
B.c = B.c*t •t F.c; 
B.a = B.a*t + F.a; 
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Short cuts 
In “Compositing, Part 1,” I talked about some short- 

cuts to avoid unnecessary arithmetic whenever F . a 
and/or B . a are zero or one. The result is the code 

if (F.a==O) 
B.c += F.c; 

else if (F.a==l) { 
B.c = F.c; 
B.a = I;} 

else { 
t = 1-F.a; 
B.c = B.c*t+F.c; 
if (B.a!=l){ 

if(B.a==O) B.a = F.a; 
else B.a = B.a*t+F.a;}} 

Now this is, of course, more complicated than simply 
doing the arithmetic straightforwardly as in the first 
code fragment. It might seem barely worthwhile, but in 
Part 1 I showed that the various cases tested are actu- 
ally pretty common. They occur, for example, when 
you overlay or render an opaque object into the frame 
buffer. When this happens, you have F . a==1 almost 
everywhere in the object except at the antialiased 
edges. With the special-case testing, you can simply 
store those pixels with no arithmetic at all. In this col- 
umn, I describe even better reasons why this econo- 
mization is worthwhile. 

Pixel representations 
So far I haven’t said anything about how to repre- 

sent the numerical quantities in a pixel. Well, here’s 
where we get real. I will represent the red, green, blue, 
and alpha components of a pixel in three ways. 

Floating point 
This is the easiest method and the one that most 

complex rendering algorithms generate. You don’t have 
to worry about overflow or underflow except in 
extreme cases. Arithmetic with floating-point numbers 
is slow-but at least they take up lots of memory! 

ldbit scaled integers (short int) 
Here, we scale the floating-point value by the quan- 

tity 16,384 and round to the nearest integer. Thus the 
16-bit value 0 represents the floating-point value 0.0, 
and the 16-bit value 16,384 represents the floating- 
point value 1 .O. (I described this system in my column, 



“Dirty Pixels,” IEEE CG&A, July 1989). Note that this 
choice of scale factor does not use all the possible pre- 
cision of a 16-bit number; only about a quarter of the 
possible 16-bit values cover the range from 0.0 to 1.0. 
I chose this range so that the scale factor is a power of 
2 (good for divisions, see below) and so that there is 
an explicit representation of the number 1.0. Using this 
scheme, the possible 16-bit integer values actually rep- 
resent the floating-point quantities from -2.0 to 
+ 1.9999. Giving the pixels this “head room” avoids 
overflow and underflow problems when doing filter- 
ing with negative lobed filters (see “Return of the 
Jaggy,” IEEE CG&A, March 1989). 

8-bitbytes (unsigned char) 
These are the values that we actually store in the 

frame buffer and that the refresh hardware uses to dis- 
play the image. Typical display hardware does not 
translate these values directly into intensity, however. 
Instead, the displayed brightness, D, is a power of the 
byte value, I: 

D  = (1/255.)r 

with ytypically being around 2 or 2.2. For this reason, 
you must calculate the inverse of this power function 
when you convert a desired intensity to a byte value. (I 
also described this process in “Dirty Pixels.“) 

In addition to being needed for hardware display, 8- 
bit bytes are what you typically store if you save an 
image in a file (although not all image manipulation 
programs expect the pixels to be gamma corrected). 

The alpha component of the pixel, however, doesn’t 
need to be gamma corrected. For this component I scale 
the desired alpha by 255 and round to the nearest inte- 
ger. This uses the whole range of byte values. The byte 
value 0 represents 0.0 and the byte value 255 repre- 
sents 1.0. 

Conversions 
One of the reasons to look for economizations in the 

cornpositing calculations is that conversion between 
these forms is not free (timewise). If we can skip a con- 
version because we detect that its result is going to be 
multiplied by zero, we win even more than if we only 
avoid the multiplication. 

Let me just quickly list the conversions necessary. 
Following the conventions in “Dirty Pixels,” I will use 
the variable D to represent a floating point value, J to 
represent a 16-bit integer, and I to represent an 8-bit 
byte value. 

float to 16-bit 
J = int(D*16384. +.5); 

16-bit to float 
D = J/16384.; 

f/oat to 8-bit 
The arithmetic is different for the color components 

and the alpha component because the color component 
is gamma corrected. 

1.c int(pow(D.c,l./gamma)*255.+.5); 
1.a = int( D.a *255.+.5); 

Strictly speaking, the type coercion should be 
(unsigned char ),but tint) works and fits the 

statement onto one line. 

8-bit to f/oat 
D.c = pow(I.c/255.,gamma); 
D.a = I.a/255.; 

8-bit to ldbit 
We define the result of this conversion by convert- 

ing 8-bit to float and then float to 16-bit. In practice 
this is too slow, since you must calculate a power. But, 
since there are only 256 possible 8-bit patterns, you 
can precalculate all the possible values and do conver- 
sion by table lookup. I will define a routine for such a 
conversion: 

J.c = cvl6cCI.c); 

The alpha value, on the other hand, is not gamma 
corrected, so we can convert it by direct scaling: 

J.a = (I.a*16384 + 127)/255; 

Again, it is usually faster to put this into a table. I 
will define a routine for this: 

J.a = cvl6aCI.a); 

7 6-bit to 8-bit 
Again, we define the desired result by converting 16- 

bit to float and then float to 8-bit. In “Dirty Pixels” I 
described how to do this relatively quickly by using a 
simplified binary search through a table. I’ll hide this in 
the function: 

1.c = cv8cCJ.c); 

Since the alpha component is encoded linearly here 
too, we can convert directly: 

1.a = (J.a*255 + 8192)/16384; 

and define the function to do this: 

1.a = cv8a(J.a); 

Unassociated float to associated 76-bit 
On some occasions, we will be given an unassociat- 

ed floating point pixel to process (one whose color com- 
ponents haven’t been multiplied by alpha). As a happy 
bonus, we can combine the association operation (mul- 
tiplying color by alpha) with the scaling to 16-bit inte- 
gers. We first get the 16-bit value for alpha, then use 
that to scale the color components: 

J.a = int(16384.*D.a + .5); 
J.c = int(J.a*D.c + .5); 
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But this does have a potential round-off problem since 
we are multiplying D. c by an approximate version 
of D . a instead of the exact amount. For example, start- 
ingwith (D.c,D.a)=(.5, .2) wehaveJ.a=3277. 
Converting J . c the hard but correct way gives us 

J.c=int(.5*.2*16384.+.5) =int(1638.9) 
=1638 

Converting J . c our quicker way gives us 

J.c = int(3277*.5 + .5) = 1639 

This might be close enough if you are really worried 
about speed, but maybe the bonus isn’t so happy after 
all. This just shows us that we have to be careful about 
compounding the results of rounding operations (cue 
the foreshadowing music). 

Pixel arithmetic 
In a nutshell, I do all pixel arithmetic in 16-bit form; 

floating-point arithmetic is too slow and 8-bit repre- 
sentations are not linear. Some rendering programs 
generate results in floating point, but I convert the 
numbers to 16-bit as soon as possible. 16-bit arithmetic 
is plenty accurate for image compositing and filtering. 
If you need more accuracy, say for Gouraud interpola- 
tion across a polygon, you can easily tack 16 bits of 
zeros on the right to convert it to a 32-bit fraction. 

Now let’s review how to do arithmetic with 16-bit 
scaled integers. Happily, addition and subtraction are 
the same as normal addition. Only multiplication is 
tricky. Since each factor has a built-in scale factor, the 
result winds up scaled twice. We must divide out the 
extra scale factor and round the result to get 

(Jl*J2 +8192)/16384 

Here’s where our choice of scale factor pays off. The 
product of the two 16-bit numbers is a 32-bit number, 
and you can do the division by simply shifting this 32- 
bit result right by 14 bits. 

At leastyou could ifcompilers were built correctly. 
Unfortunately, I have yet to see a compiler that real- 

izes that the product of two 16-bit numbers is a 32-bit 
number. The hardware knows it. We know it. But the 
four different compilers I looked at take this perfectly 
natural function and make it into something dirty: They 
do the multiply and throw away the high-order 16 bits. 
To circumvent this you have to convert the two 16-bit 
numbers to two 32-bit numbers and do a 32-bit multi- 
ply (often calling a subroutine), giving a 64-bit result. 
Then, since the compiler throws away the top 32 bits 
of that resultant product, you’re in business. 

I mean, I’m not one to spend inordinate amounts of 
time shaving bits, but it hurts me to see this. I have been 
forced to code the scaled 16-bit multiplication opera- 
tion in inline assembly language. I’ve currently put it 
into a subroutine, but apparently I need to put it in a C 
macro to get real inline code. (Generally speaking, C 
macros have been obsoleted by the C++ concept of 
inline functions. However, in the real world, it seems 

that inline functions cannot contain assembly language 
instructions.) The routine does a simple 16-bit multiply, 
adds the rounding bias, and shifts the result down. TO 
emphasize what’s going on, I’ll explicitly call the rou- 
tine M  instead of overloading the multiplication opera- 
tor in what follows. 

J = M(Jl,J2); 

One other thing to note about M: It also works prop- 
erly if one of the arguments is an 8-bit linearly scaled 
value (padded on the left with zeros), producing an 8- 
bit result. Why? The first parameter is really a fraction 
whose “actual” value is J 1 / 16 3 8 4. M  then effectively 
multiplies the other parameter (however it may be 
scaled) by this fraction. 

What we want 
My “over” operation supports two services: overlay- 

ing 16-bit pixels into the frame buffer, and overlaying 
8-bit pixels into the frame buffer. The frame buffer itself 
is always 8-bit pixels. To provide some orthogonality 
of functionality, the “over” routines operate on arrays 
of pixel values (typically a scan line’s worth). Reading 
and writing to the actual frame buffer is done else- 
where. I won’t explicitly show the array loop below, 
but it’s there. It’s always best to make your subroutines 
process data in big globs to minimize the overhead of 
subroutine calls. 

Things that cost time 
In the code at the beginning of this article many 

seemingly simple operations contained, hidden within 
them, a lot of conversions between types. Let’s review 
them, roughly in order of nastiness. 

cv8c(J) binary search in table 
cv8a(J) multiply, 14 bit shift 
cvlGc(1) table lookup 
cvl6a(I) table lookup 

In the code below I’ll explicitly call these conversion 
routines to make it easier to see where time goes. 
Assignments happen between like types, so no hidden 
conversions are performed. Also, I’ll use the variable 
names B J and F J to hold the 16-bit form of the pixels, 
and BI and FI to hold the 8-bit form. Reference to sim- 
ply B or F means the floating-point version. 

li-bit over 8-bit 
This is the workhorse routine. Generally, the results 

of any rendering or image-processing calculation are in 
1Bbit form. Here is the raw code (with no special case 
testing) to composite the pixel FJ over the pixel BI: 

BJ.c = cvlGc(B1.c); 
BJ.c = M(BJ.c,16384-FJ.a) + FJ.c; 
B1.c = cv8clBJ.c); 

BJ.a = cvl6a(BI.a); 
BJ.a = M(BJ.a,16384-FJ.a) + FJ.a; 
B1.a = cv8a(BJ.a); 
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Alpha calculation 
Let’s first see how we can improve on the calculation 

of B . a. The formula is 

B.a = B.a(l-F.a) + F.a 

The two main special cases 

if (F.a==O) {/* B.a unchanged*/ } 
else if (F.a==l) B.a=l; 

are taken care of in the general shortcut scheme at the 
beginning of this article. For more general values of 
F . a we actually have to do some work. 

We can avoid a conversion by recalling that our M 
routine can multiply a 16-bit fractional number by an 
8-bit number. 

BI.a =M(BI.a,16384-FJ.a) + cv8a(FJ.a); 

The only problem with this is that it gets the wrong 
answer much of the time; it’s sometimes off by one. The 
correct answer is defined by converting both BI . a and 
FJ . a to float, doing the calculation, then converting 
that floating result to 8-bit. In fact, the brute-force cal- 
culation that we are trying to improve on often gets the 
wrong answer too. The basic reason is that both 
schemes contain the sum of two or more rounded cal- 
culations (either explicitly or hidden inside the M rou- 
tine). If each term of the sum was, say, 2.4, then 
rounding first and summing would give 4. Summing 
and then rounding would give 5. 

To get the right answer, and incidentally make the 
code faster, we can rewrite the mathematical defini- 
tionofB.aas 

B.a = B.a + F.a*(l-B.a! 

We turn this into code again by using the fact that 
the M routine can multiply the 8-bit version of ( l- 
B . a ) by the fractional value represented by F . a: 

B1.a += M(FJ.a,255-B1.a); 

This formulation only rounds once, and I’ve verified 
that it always gets the “right” answer as defined above. 
Faster and more correct-who could ask for anything 
more? 

Now, to get the fastest calculation of the new BI . a 
we include some tests for trivial case values of B . a. 
The most likely case is B . a= 1; the next most likely case 
isB.a=O. 

if(B1.a != 255) { 
if(B1.a ==O) 

B1.a = M(FJ.a,255); 
else 

BI.a+= M(FJ.a,255-B1.a);) 

This is how we will calculate BI . a in both the 16-bit 
and 8-bit routines below. 

Superluminous pixels 
There is another issue to discuss that relates to asso- 

ciated pixels with alpha=O. In an associated pixel, the 
color components have been multiplied by alpha. 
Therefore, if alpha=O, all the color components should 
be 0. When cornpositing such a pixel over a back- 
ground, you should be able to skip pixels with F . a= = 0. 
The very first special case test can then read 

if (F.a==O) {} 

There are two situations where this can cause prob- 
lems. The first is the possible use of special pixel values 
for unusual lighting effects. For example an associat- 
ed pixel with values (.2, .2, .2,0) has effectively some 
light but no “coverage.” Applying it to a background 
pixel just adds something to the color components 
without changing the background pixel’s coverage. This 
can be useful, but I haven’t had occasion to use it. I will 
therefore, for illustration purposes in this code, not 
expect superluminous pixels. For the nonce, I’m going 
to assume that if F . a==O, then all other elements of F 
are zero. 

The second problem will only hit us when we over- 
lay 8-bit pixels into the frame buffer, so I’ll talk about 
it later. 

Final 16-bit code 
Note that in the following code I’ve also tossed in a 

test to skip some arithmetic if the color of B is black 
(another common occurrence): 

if(FJ.a==O) 
{} // leave B unchanged 

else if (FJ.a==16384) { 
B1.c = cv8c(FJ.c); 
B1.a = 255;} 

else { 
if (BI.c==O) 

BJ.c = FJ.c; 
else { 

BJ.c = cvlGc(B1.c); 
BJ.c = M(BJ.c,16384-FJ.a)+FJ.c;} 

B1.c = cv8c(BJ.c); 
BI . a (calculated as above)} 

8-bit over 8-bit 
We need this second routine when cornpositing a 

stored image over the 8-bit frame buffer. It calculates 
FI over BI. The naive approach is to convert all 8-bit 
quantities to 16-bit, do the arithmetic, then convert 16- 
bit to 8-bit. Here it is, with no special case testing, but 
using the improved calculation of BI . a: 

FJ.c = cvlGc(F1.c); 
FJ.a = cvl6a(FI.a); 
BJ.c = cvl6c(BI.c); 
BJ.c = M(16384-FJ.a,BJ.c) + FJ.c; 
B1.c = cv8c(BJ.c); 
BI.a+= M(FJ.a,255-B1.a); 

This cries out for special-case testing. 
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Alpha calculation 
Since we have the two alphas encoded linearly into 

8 bits, we could do the arithmetic directly. Since they 
are scaled by 255, the formula 

B.a = B.a*(l-F.a) + F.a; 

translates into 

BI.a=(BI.a*(255-FI.a)+127)/255 +FI.a; 

We have to divide by 255. Ick. We are actually bet- 
ter off converting the FI . a to 16-bit form (it’s only a 
table lookup), then using the same code as in the 16- 
bit algorithm. 

Superluminous pixels and round off error 
Here’s where we have to face the “other” problem 

that occurs with F . a= = 0. It comes from the fact that, 
for 8-bit pixels, color components are gamma correct- 
ed but the alpha components are not. Thus if you con- 
vert the very dim, very transparent 16-bit pixel (1, 1, 1, 
16) to 8-bit values you get (2,2,2,0). The alpha com- 
ponent has rounded to zero even though the color com- 
ponents haven’t. 

In this situation we cannot simply ignore pixels with 
F _ a= = 0. Consider the following scenario: 

1. Clear the frame buffer to black: 
BI=(0,0,0,255). 

2.OverlayFJ=(1,1,1,16) giving 
BJ=(1,1,1,16384) 

3.Convertto8bits:BI=(2,2,2,255). 

We want this result to match the scenario 

1. Clear the frame buffer to transparent: 
BI=(O,O,O,O). 

2.OverlayFJ=(1,1,1.16) givingJ=(1,1,1,16). 
3.Convertto8bits:BI=(2,2,2,0). 
4. Store this in a file. 
5.Cleartheframebuffertoblack:BI=(0,0,0,255) 
6. Overlay the file pixel: FI = ( 2 ,2 ,2 , 0 ) 

If we then use the code 

if (F.a==O) B.c += F.c 

(with appropriate conversions) we will get the desired 
result: 

BI = (2,2,2,255) 

Final 8-bit code 
We won’t give up completely on skipping transpar- 

ent foreground pixels. The first test in the code below 
is a test of all 32 bits of FI being zero. This handles 
overlaying an image with substantial transparent 
regions. You can often do this test in one instruction 
by leaning on the compiler a little. 

In fact, I actually scan the F array to see if any pixels 
at all are nontransparent. This allows me to skip whole 

scan lines of transparent foreground image without 
even reading the frame buffer. I won’t show this part 
explicitly. 

Anyway, the code: 

if (FI==O) skip this mess; 
if (FI.a==O){ 

FJ.c = cvlGc(F1.c); 
BJ.c = cvlGc(B1.c); 
B1.c = cv8c(FJ.c+BJ.c);} 

else if(FI.a==255){ 
B1.c = F1.c; 
B1.a = 255;) 

else{ 
FJ.c = cvl6c(FI.c); 
FJ.a = cvl6aCFI.a); 
BJ.c = cvl6c(BI.c); 
BJ.c = FJ.c + M(16384-FJ.a,BJ.c); 
B1.c = cv8CBJ.c); 
B I . a ( calculated as above ) 

Note that if a pixel of the foreground image is opaque 
(that is, if F . a== 1) no conversion or arithmetic of any 
kind is necessary. 

Another 8-bit possibility 
Suppose we had encoded the rgb values linearly into 

8-bit bytes in the same way that we did alpha. We could 
write the overlaying code to operate directly on 8-bit 
numbers and wouldn’t need to convert up and down 
to the 16-bit representation. Wouldn’t that be a lot 
faster? Well, not nearly as much as you might think. 
When scaling to 8 bits we must use the factor 255. We 
don’t have the bits to waste to make the factor a power 
of 2 as we did with 16-bit scaling. Therefore, we would 
have to divide by 255 after multiplying two scaled-by- 
255 byte values together. The overhead for this starts 
getting comparable to what we currently incur with 
gamma-corrected bytes. 

Summary 
Wow. Life sure can get complicated. I still have a nag- 

ging feeling that all this special-case testing might not 
be worth it. But no, all the cases I added to the code 
were motivated by actual profiling runs showing that 
time was being wasted in these routines. And consid- 
er the situations that fall into the special cases: opaque 
regions of foreground, transparent regions of fore- 
ground, opaque backgrounds, and black backgrounds. 
These are all pretty common situations. 

This is all part of the craft of programming-trading 
off special-case speed with complex code against gen- 
eral-case slowness with simple code. Actually, in this 
situation, we have the best of both worlds. There is 
just one general-purpose routine for each data type to 
learn. The special cases are automatically detected 
internally, so you don’t have to worry about a speed 
penalty. We get the generality of being able to over- 
lay translucent objects onto transparent backgrounds 
with virtually no overhead if you don’t happen to be 
using that generality. 

What could be finer? n 
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