
Cornposting, Part 2: Practice

JamesF.Blhn t this year’s Siggraph, Chris Wedge told the story A of an audience member who once asked him about
Cld@W7IlQ “image cornposting.” I like this comment on the value
Institute of of our industry even better than the “anti-aliening” I
Technology used in Part 1 of this discussion.

Well, anyway. Enough of this levity. This time I want
to discuss the practice of image composting and in par-
ticular the Porter-Duff “over” operator. Last time we
derived the operator for compositing a foreground pixel
F “over” a background pixel B as ,

B(l-Fa)+F

where each pixel is a vector with four components: red,
green, blue, and alpha (the coverage or opacity
amount), and standard vector algebra applies.

I’ve found it most useful to provide “over” as an in-
place operator; you have an image stored in a frame
buffer and want to lay another image on top of it. In
other words, the result of “F over B” replaces B.

c notation
In translating this vector notation to C, I’ll write the

components of a pixel using class member notation:
(F.r, F.g, F.b, F . a). Code to implement the
compositing operation is then

t = 1 - F.a;
B.r = B.r*t + F-r;
B.g = B.g*t f F.g;
B.b = B.b*t + F.b;
B.a = B.a*t + F-a;

For most rendering operations this is the only access
method to the frame buffer that you will need.

In what follows I’m going to complex@ this a bit,
so let me make life a bit easier and define an abbrevi-
ation. Since I will always treat the red, green, and blue
components in the same way, I’ll just give a single
statement for color components, using the generic
class member . c . Any such statement actually expands
into three statements. I will sometimes do different
arithmetic for the . a member, so I’ll keep it separate.
Using this abbreviation scheme, the above code looks
like

t = 1 - F.a;
B.c = B.c*t •t F.c;
B.a = B.a*t + F.a;

78 November 1994

Short cuts
In “Compositing, Part 1,” I talked about some short-

cuts to avoid unnecessary arithmetic whenever F . a
and/or B . a are zero or one. The result is the code

if (F.a==O)
B.c += F.c;

else if (F.a==l) {
B.c = F.c;
B.a = I;}

else {
t = 1-F.a;
B.c = B.c*t+F.c;
if (B.a!=l){

if(B.a==O) B.a = F.a;
else B.a = B.a*t+F.a;}}

Now this is, of course, more complicated than simply
doing the arithmetic straightforwardly as in the first
code fragment. It might seem barely worthwhile, but in
Part 1 I showed that the various cases tested are actu-
ally pretty common. They occur, for example, when
you overlay or render an opaque object into the frame
buffer. When this happens, you have F . a==1 almost
everywhere in the object except at the antialiased
edges. With the special-case testing, you can simply
store those pixels with no arithmetic at all. In this col-
umn, I describe even better reasons why this econo-
mization is worthwhile.

Pixel representations
So far I haven’t said anything about how to repre-

sent the numerical quantities in a pixel. Well, here’s
where we get real. I will represent the red, green, blue,
and alpha components of a pixel in three ways.

Floating point
This is the easiest method and the one that most

complex rendering algorithms generate. You don’t have
to worry about overflow or underflow except in
extreme cases. Arithmetic with floating-point numbers
is slow-but at least they take up lots of memory!

ldbit scaled integers (short int)
Here, we scale the floating-point value by the quan-

tity 16,384 and round to the nearest integer. Thus the
16-bit value 0 represents the floating-point value 0.0,
and the 16-bit value 16,384 represents the floating-
point value 1 .O. (I described this system in my column,

“Dirty Pixels,” IEEE CG&A, July 1989). Note that this
choice of scale factor does not use all the possible pre-
cision of a 16-bit number; only about a quarter of the
possible 16-bit values cover the range from 0.0 to 1.0.
I chose this range so that the scale factor is a power of
2 (good for divisions, see below) and so that there is
an explicit representation of the number 1.0. Using this
scheme, the possible 16-bit integer values actually rep-
resent the floating-point quantities from -2.0 to
+ 1.9999. Giving the pixels this “head room” avoids
overflow and underflow problems when doing filter-
ing with negative lobed filters (see “Return of the
Jaggy,” IEEE CG&A, March 1989).

8-bitbytes (unsigned char)
These are the values that we actually store in the

frame buffer and that the refresh hardware uses to dis-
play the image. Typical display hardware does not
translate these values directly into intensity, however.
Instead, the displayed brightness, D, is a power of the
byte value, I:

D = (1/255.)r

with ytypically being around 2 or 2.2. For this reason,
you must calculate the inverse of this power function
when you convert a desired intensity to a byte value. (I
also described this process in “Dirty Pixels.“)

In addition to being needed for hardware display, 8-
bit bytes are what you typically store if you save an
image in a file (although not all image manipulation
programs expect the pixels to be gamma corrected).

The alpha component of the pixel, however, doesn’t
need to be gamma corrected. For this component I scale
the desired alpha by 255 and round to the nearest inte-
ger. This uses the whole range of byte values. The byte
value 0 represents 0.0 and the byte value 255 repre-
sents 1.0.

Conversions
One of the reasons to look for economizations in the

cornpositing calculations is that conversion between
these forms is not free (timewise). If we can skip a con-
version because we detect that its result is going to be
multiplied by zero, we win even more than if we only
avoid the multiplication.

Let me just quickly list the conversions necessary.
Following the conventions in “Dirty Pixels,” I will use
the variable D to represent a floating point value, J to
represent a 16-bit integer, and I to represent an 8-bit
byte value.

float to 16-bit
J = int(D*16384. +.5);

16-bit to float
D = J/16384.;

f/oat to 8-bit
The arithmetic is different for the color components

and the alpha component because the color component
is gamma corrected.

1.c int(pow(D.c,l./gamma)*255.+.5);
1.a = int(D.a *255.+.5);

Strictly speaking, the type coercion should be
(unsigned char),but tint) works and fits the

statement onto one line.

8-bit to f/oat
D.c = pow(I.c/255.,gamma);
D.a = I.a/255.;

8-bit to ldbit
We define the result of this conversion by convert-

ing 8-bit to float and then float to 16-bit. In practice
this is too slow, since you must calculate a power. But,
since there are only 256 possible 8-bit patterns, you
can precalculate all the possible values and do conver-
sion by table lookup. I will define a routine for such a
conversion:

J.c = cvl6cCI.c);

The alpha value, on the other hand, is not gamma
corrected, so we can convert it by direct scaling:

J.a = (I.a*16384 + 127)/255;

Again, it is usually faster to put this into a table. I
will define a routine for this:

J.a = cvl6aCI.a);

7 6-bit to 8-bit
Again, we define the desired result by converting 16-

bit to float and then float to 8-bit. In “Dirty Pixels” I
described how to do this relatively quickly by using a
simplified binary search through a table. I’ll hide this in
the function:

1.c = cv8cCJ.c);

Since the alpha component is encoded linearly here
too, we can convert directly:

1.a = (J.a*255 + 8192)/16384;

and define the function to do this:

1.a = cv8a(J.a);

Unassociated float to associated 76-bit
On some occasions, we will be given an unassociat-

ed floating point pixel to process (one whose color com-
ponents haven’t been multiplied by alpha). As a happy
bonus, we can combine the association operation (mul-
tiplying color by alpha) with the scaling to 16-bit inte-
gers. We first get the 16-bit value for alpha, then use
that to scale the color components:

J.a = int(16384.*D.a + .5);
J.c = int(J.a*D.c + .5);

IEEE Computer Graphics and Applications 79

a0 November 1994

But this does have a potential round-off problem since
we are multiplying D. c by an approximate version
of D . a instead of the exact amount. For example, start-
ingwith (D.c,D.a)=(.5, .2) wehaveJ.a=3277.
Converting J . c the hard but correct way gives us

J.c=int(.5*.2*16384.+.5) =int(1638.9)
=1638

Converting J . c our quicker way gives us

J.c = int(3277*.5 + .5) = 1639

This might be close enough if you are really worried
about speed, but maybe the bonus isn’t so happy after
all. This just shows us that we have to be careful about
compounding the results of rounding operations (cue
the foreshadowing music).

Pixel arithmetic
In a nutshell, I do all pixel arithmetic in 16-bit form;

floating-point arithmetic is too slow and 8-bit repre-
sentations are not linear. Some rendering programs
generate results in floating point, but I convert the
numbers to 16-bit as soon as possible. 16-bit arithmetic
is plenty accurate for image compositing and filtering.
If you need more accuracy, say for Gouraud interpola-
tion across a polygon, you can easily tack 16 bits of
zeros on the right to convert it to a 32-bit fraction.

Now let’s review how to do arithmetic with 16-bit
scaled integers. Happily, addition and subtraction are
the same as normal addition. Only multiplication is
tricky. Since each factor has a built-in scale factor, the
result winds up scaled twice. We must divide out the
extra scale factor and round the result to get

(Jl*J2 +8192)/16384

Here’s where our choice of scale factor pays off. The
product of the two 16-bit numbers is a 32-bit number,
and you can do the division by simply shifting this 32-
bit result right by 14 bits.

At leastyou could ifcompilers were built correctly.
Unfortunately, I have yet to see a compiler that real-

izes that the product of two 16-bit numbers is a 32-bit
number. The hardware knows it. We know it. But the
four different compilers I looked at take this perfectly
natural function and make it into something dirty: They
do the multiply and throw away the high-order 16 bits.
To circumvent this you have to convert the two 16-bit
numbers to two 32-bit numbers and do a 32-bit multi-
ply (often calling a subroutine), giving a 64-bit result.
Then, since the compiler throws away the top 32 bits
of that resultant product, you’re in business.

I mean, I’m not one to spend inordinate amounts of
time shaving bits, but it hurts me to see this. I have been
forced to code the scaled 16-bit multiplication opera-
tion in inline assembly language. I’ve currently put it
into a subroutine, but apparently I need to put it in a C
macro to get real inline code. (Generally speaking, C
macros have been obsoleted by the C++ concept of
inline functions. However, in the real world, it seems

that inline functions cannot contain assembly language
instructions.) The routine does a simple 16-bit multiply,
adds the rounding bias, and shifts the result down. TO
emphasize what’s going on, I’ll explicitly call the rou-
tine M instead of overloading the multiplication opera-
tor in what follows.

J = M(Jl,J2);

One other thing to note about M: It also works prop-
erly if one of the arguments is an 8-bit linearly scaled
value (padded on the left with zeros), producing an 8-
bit result. Why? The first parameter is really a fraction
whose “actual” value is J 1 / 16 3 8 4. M then effectively
multiplies the other parameter (however it may be
scaled) by this fraction.

What we want
My “over” operation supports two services: overlay-

ing 16-bit pixels into the frame buffer, and overlaying
8-bit pixels into the frame buffer. The frame buffer itself
is always 8-bit pixels. To provide some orthogonality
of functionality, the “over” routines operate on arrays
of pixel values (typically a scan line’s worth). Reading
and writing to the actual frame buffer is done else-
where. I won’t explicitly show the array loop below,
but it’s there. It’s always best to make your subroutines
process data in big globs to minimize the overhead of
subroutine calls.

Things that cost time
In the code at the beginning of this article many

seemingly simple operations contained, hidden within
them, a lot of conversions between types. Let’s review
them, roughly in order of nastiness.

cv8c(J) binary search in table
cv8a(J) multiply, 14 bit shift
cvlGc(1) table lookup
cvl6a(I) table lookup

In the code below I’ll explicitly call these conversion
routines to make it easier to see where time goes.
Assignments happen between like types, so no hidden
conversions are performed. Also, I’ll use the variable
names B J and F J to hold the 16-bit form of the pixels,
and BI and FI to hold the 8-bit form. Reference to sim-
ply B or F means the floating-point version.

li-bit over 8-bit
This is the workhorse routine. Generally, the results

of any rendering or image-processing calculation are in
1Bbit form. Here is the raw code (with no special case
testing) to composite the pixel FJ over the pixel BI:

BJ.c = cvlGc(B1.c);
BJ.c = M(BJ.c,16384-FJ.a) + FJ.c;
B1.c = cv8clBJ.c);

BJ.a = cvl6a(BI.a);
BJ.a = M(BJ.a,16384-FJ.a) + FJ.a;
B1.a = cv8a(BJ.a);

Ii

Alpha calculation
Let’s first see how we can improve on the calculation

of B . a. The formula is

B.a = B.a(l-F.a) + F.a

The two main special cases

if (F.a==O) {/* B.a unchanged*/ }
else if (F.a==l) B.a=l;

are taken care of in the general shortcut scheme at the
beginning of this article. For more general values of
F . a we actually have to do some work.

We can avoid a conversion by recalling that our M
routine can multiply a 16-bit fractional number by an
8-bit number.

BI.a =M(BI.a,16384-FJ.a) + cv8a(FJ.a);

The only problem with this is that it gets the wrong
answer much of the time; it’s sometimes off by one. The
correct answer is defined by converting both BI . a and
FJ . a to float, doing the calculation, then converting
that floating result to 8-bit. In fact, the brute-force cal-
culation that we are trying to improve on often gets the
wrong answer too. The basic reason is that both
schemes contain the sum of two or more rounded cal-
culations (either explicitly or hidden inside the M rou-
tine). If each term of the sum was, say, 2.4, then
rounding first and summing would give 4. Summing
and then rounding would give 5.

To get the right answer, and incidentally make the
code faster, we can rewrite the mathematical defini-
tionofB.aas

B.a = B.a + F.a*(l-B.a!

We turn this into code again by using the fact that
the M routine can multiply the 8-bit version of (l-
B . a) by the fractional value represented by F . a:

B1.a += M(FJ.a,255-B1.a);

This formulation only rounds once, and I’ve verified
that it always gets the “right” answer as defined above.
Faster and more correct-who could ask for anything
more?

Now, to get the fastest calculation of the new BI . a
we include some tests for trivial case values of B . a.
The most likely case is B . a= 1; the next most likely case
isB.a=O.

if(B1.a != 255) {
if(B1.a ==O)

B1.a = M(FJ.a,255);
else

BI.a+= M(FJ.a,255-B1.a);)

This is how we will calculate BI . a in both the 16-bit
and 8-bit routines below.

Superluminous pixels
There is another issue to discuss that relates to asso-

ciated pixels with alpha=O. In an associated pixel, the
color components have been multiplied by alpha.
Therefore, if alpha=O, all the color components should
be 0. When cornpositing such a pixel over a back-
ground, you should be able to skip pixels with F . a= = 0.
The very first special case test can then read

if (F.a==O) {}

There are two situations where this can cause prob-
lems. The first is the possible use of special pixel values
for unusual lighting effects. For example an associat-
ed pixel with values (.2, .2, .2,0) has effectively some
light but no “coverage.” Applying it to a background
pixel just adds something to the color components
without changing the background pixel’s coverage. This
can be useful, but I haven’t had occasion to use it. I will
therefore, for illustration purposes in this code, not
expect superluminous pixels. For the nonce, I’m going
to assume that if F . a==O, then all other elements of F
are zero.

The second problem will only hit us when we over-
lay 8-bit pixels into the frame buffer, so I’ll talk about
it later.

Final 16-bit code
Note that in the following code I’ve also tossed in a

test to skip some arithmetic if the color of B is black
(another common occurrence):

if(FJ.a==O)
{} // leave B unchanged

else if (FJ.a==16384) {
B1.c = cv8c(FJ.c);
B1.a = 255;}

else {
if (BI.c==O)

BJ.c = FJ.c;
else {

BJ.c = cvlGc(B1.c);
BJ.c = M(BJ.c,16384-FJ.a)+FJ.c;}

B1.c = cv8c(BJ.c);
BI . a (calculated as above)}

8-bit over 8-bit
We need this second routine when cornpositing a

stored image over the 8-bit frame buffer. It calculates
FI over BI. The naive approach is to convert all 8-bit
quantities to 16-bit, do the arithmetic, then convert 16-
bit to 8-bit. Here it is, with no special case testing, but
using the improved calculation of BI . a:

FJ.c = cvlGc(F1.c);
FJ.a = cvl6a(FI.a);
BJ.c = cvl6c(BI.c);
BJ.c = M(16384-FJ.a,BJ.c) + FJ.c;
B1.c = cv8c(BJ.c);
BI.a+= M(FJ.a,255-B1.a);

This cries out for special-case testing.

IEEE Computer Graphics and Applications 81

Alpha calculation
Since we have the two alphas encoded linearly into

8 bits, we could do the arithmetic directly. Since they
are scaled by 255, the formula

B.a = B.a*(l-F.a) + F.a;

translates into

BI.a=(BI.a*(255-FI.a)+127)/255 +FI.a;

We have to divide by 255. Ick. We are actually bet-
ter off converting the FI . a to 16-bit form (it’s only a
table lookup), then using the same code as in the 16-
bit algorithm.

Superluminous pixels and round off error
Here’s where we have to face the “other” problem

that occurs with F . a= = 0. It comes from the fact that,
for 8-bit pixels, color components are gamma correct-
ed but the alpha components are not. Thus if you con-
vert the very dim, very transparent 16-bit pixel (1, 1, 1,
16) to 8-bit values you get (2,2,2,0). The alpha com-
ponent has rounded to zero even though the color com-
ponents haven’t.

In this situation we cannot simply ignore pixels with
F _ a= = 0. Consider the following scenario:

1. Clear the frame buffer to black:
BI=(0,0,0,255).

2.OverlayFJ=(1,1,1,16) giving
BJ=(1,1,1,16384)

3.Convertto8bits:BI=(2,2,2,255).

We want this result to match the scenario

1. Clear the frame buffer to transparent:
BI=(O,O,O,O).

2.OverlayFJ=(1,1,1.16) givingJ=(1,1,1,16).
3.Convertto8bits:BI=(2,2,2,0).
4. Store this in a file.
5.Cleartheframebuffertoblack:BI=(0,0,0,255)
6. Overlay the file pixel: FI = (2 ,2 ,2 , 0)

If we then use the code

if (F.a==O) B.c += F.c

(with appropriate conversions) we will get the desired
result:

BI = (2,2,2,255)

Final 8-bit code
We won’t give up completely on skipping transpar-

ent foreground pixels. The first test in the code below
is a test of all 32 bits of FI being zero. This handles
overlaying an image with substantial transparent
regions. You can often do this test in one instruction
by leaning on the compiler a little.

In fact, I actually scan the F array to see if any pixels
at all are nontransparent. This allows me to skip whole

scan lines of transparent foreground image without
even reading the frame buffer. I won’t show this part
explicitly.

Anyway, the code:

if (FI==O) skip this mess;
if (FI.a==O){

FJ.c = cvlGc(F1.c);
BJ.c = cvlGc(B1.c);
B1.c = cv8c(FJ.c+BJ.c);}

else if(FI.a==255){
B1.c = F1.c;
B1.a = 255;)

else{
FJ.c = cvl6c(FI.c);
FJ.a = cvl6aCFI.a);
BJ.c = cvl6c(BI.c);
BJ.c = FJ.c + M(16384-FJ.a,BJ.c);
B1.c = cv8CBJ.c);
B I . a (calculated as above)

Note that if a pixel of the foreground image is opaque
(that is, if F . a== 1) no conversion or arithmetic of any
kind is necessary.

Another 8-bit possibility
Suppose we had encoded the rgb values linearly into

8-bit bytes in the same way that we did alpha. We could
write the overlaying code to operate directly on 8-bit
numbers and wouldn’t need to convert up and down
to the 16-bit representation. Wouldn’t that be a lot
faster? Well, not nearly as much as you might think.
When scaling to 8 bits we must use the factor 255. We
don’t have the bits to waste to make the factor a power
of 2 as we did with 16-bit scaling. Therefore, we would
have to divide by 255 after multiplying two scaled-by-
255 byte values together. The overhead for this starts
getting comparable to what we currently incur with
gamma-corrected bytes.

Summary
Wow. Life sure can get complicated. I still have a nag-

ging feeling that all this special-case testing might not
be worth it. But no, all the cases I added to the code
were motivated by actual profiling runs showing that
time was being wasted in these routines. And consid-
er the situations that fall into the special cases: opaque
regions of foreground, transparent regions of fore-
ground, opaque backgrounds, and black backgrounds.
These are all pretty common situations.

This is all part of the craft of programming-trading
off special-case speed with complex code against gen-
eral-case slowness with simple code. Actually, in this
situation, we have the best of both worlds. There is
just one general-purpose routine for each data type to
learn. The special cases are automatically detected
internally, so you don’t have to worry about a speed
penalty. We get the generality of being able to over-
lay translucent objects onto transparent backgrounds
with virtually no overhead if you don’t happen to be
using that generality.

What could be finer? n

82 November 1994

