Speeding up your game

e The scene graph

e Culling techniques

e |evel-of-detail rendering (LODs)
e Collision detection

e Resources and pointers

(adapted by Marc Levoy from a lecture by Tomas Moller,
using material from Real-Time Rendering)




The scene graph

e DAG - directed acyclic graph

— Simply an n-ary tree without loops
e leaves contains geometry —

U VRN

e each node holds a N <G

- bounding volume (BV) 0

— pointers to children
— possibly a transform internal node =

e examples of BVs: spheres, boxes

e the BV in a node encloses all the
geometry of the nodes in its subtree




Scene graph example




Using transforms for instancing...

e put transform in internal node(s)

1

Move up Move right, D

Rotate 45°

\ /
v i}




...or hierarchical animations

No hierarchy: A B C
one transform

Xform

Leg

Hierarchy:3 transforms
Xform 1

Hip /

Xform




Types of culling

e backface culling

e hierarchical view-frustum culling
e portal culling

e detail culling

e occlusion culling




Backface culling

e often implemented for you in the API
e OpenGL: glCullFace (GL BACK) ;

e requires consistently oriented polygons

front back
screen space eye space




@)
lm
=

&)

=

-
e

/)

-

- -
(T

S
Q

>
—

qv)
Im
i e

O

- -

©

-
lm
L
—’




Variants

® OcCtree
e BSP tree

— axis-aligned
— polygon-aligned (like Fuchs’s algorithm)

e if a splitting plane is outside the frustum,
one of its two subtrees can be culled




Portal culling

e plan view of architectural environment
e circles are objects to be rendered




Simple algorithm (Luebke and Georges ‘95)

e create graph of environment (e.g. building)
— nodes represent cells (e.g. rooms)
— edges represent portals between cells (doors)

e for each frame:
-V cell containing viewer, P screen bbox

— * render V’s contents, culling to frustum through P
-V a neighbor of V (through a portal)

— project portal onto screen, intersect bbox with P

e if empty intersection, then V is invisible from viewer, return
e if non-empty, P intersection, recursively call *




Example

Images courtesy of David P. Luebke and Chris Georges

typical speedups: 2x - 100x




Variants

e stop recursion when cell is too far away
e stop recursion when out of time
e compute potentially visible set (PVS)

— viewpoint-independent pre-process

— which objects in V2 might be visible from V17
— only meaningful if V1 and V2 are not adjacent
— easy to be conservative; hard to be optimal




Detail culling

Images courtesy of ABB Robotics Products, created by UIf Assarsson

79 -

detail culling OFF detail culling ON

e cull object if projected BV occupies less than N pixels
e not much visible difference here, but 1x - 4x faster
e especially useful when moving




Estimating projected area

d (normalized view direction)

(eye) v

(near plane) n

e distance in directiondis d ¢ (c-v)
e projected radius pisroughly (nr)/(d *(c-v))
e projected area is p?




Occlusion culling

e main idea: objects that
lie completely “behind”
another set of objects
can be culled

e "portal culling” is a
special case of
occlusion culling




Sample occlusion culling algorithm

e draw scene from front to back
e maintain an “occlusion horizon” (yellow)




Sample occlusion culling algorithm

e to process tetrahedron
(which is behind grey objects):
— find axis-aligned box of projection
— compare against occlusion horizon

culled




Sample occlusion culling algorithm

e when an object is partially visible:
— add its bounding box to the occlusion horizon




Hierarchical Z-buffer algorithm
(Greene, Kass, and Miller 1993)

e octree in object space
+

multiresolution Z-buffer in screen space

e used in both NVIDIA and ATI chips




Object-space octree
(shown using quadtree)

Ao

Images from Ned Greene




Object-space octree
(shown using quadtree)




Object-space octree
(shown using quadtree)




Object-space octree
(shown using quadtree)




Object-space octree
(shown using quadtree)




Object-space octree
(shown using quadtree)




Object-space octree
(shown using guadtree




Hierarchical Z-buffer

e reduce cost of Z-testing
large polygons

e maintain low-res versions
of Z-Buffer




Level-of-detail rendering

e use different levels of detail at different
distances from the viewer




Level-of-detail rendering

e not much visual difference, but a lot faster

e use area of projection of BV to select
appropriate LOD




Collision detection

e cannot test every pair of triangles: O(n?)
e use BVs because these are cheap to test
e better: use a hierarchical scene graph




Testing for collision between
two scene graphs

e start with the roots of the two scene graphs

e testing for collision between the bounding
volumes of two internal nodes

— if no overlap, then exit

— if overlap, then descend into the children of the internal
node with largest volume

e an internal node against a triangle
— descend into the internal node

e a triangle against a triangle
— test for interpenetration




Triangle - triangle collision test

e compute the line of intersection between
the supporting planes of the two triangles

e compute the intersection interval
between this line and the two triangles
— gives two intervals

e if the two intervals overlap,
then the two triangles interpenetrate!




Simpler collision detection

e only shoot rays to find collisions, i.e.,
approximate an object with a set of rays

e cheaper, but less accurate




Can you compute the time of a
collision?

A AYAYAY

e move ball, test for hit, move ball, test for
hit... can get “quantum effects”!

® in some cases it's possible to find closed-
form expression: t =s /v




Resources and pointers

e Real Time Rendering (the book)

— http://www.realtimerendering.com

e Journal of Graphics Tools
— http://www.acm.org/jgt/




