
CS348a: Computer Graphics Handout # 4
Mathematical Foundations
Stanford University Tuesday, 12 January 1999

Homework #1: Point coordinates and line coefficients; affine and projective geometry;
transformations and quaternions [65 points]

Due Date: Tuesday, 26 January 1999

Homework policies

CS348a is a highly technical course, so doing the homework is the only way to acquire a
working knowledge of the material presented. We encourage you strongly to start working
on the homework problems right away—the problems below, as well as those to follow,
have considerable technical depth and you are unlikely to be able to solve them if you wait
until the evening before the due date.

Collaboration in solving the problems is encouraged in this class—you have a lot to
learn from your fellow students. However, in order to make grading the homeworks a
meaningful way to measure your effort and your understanding of the material, we must
put some restrictions:

• On theoretical (mathematical) problems, you may work together on finding solu-
tions, but each of you must then write up your favorite solutions independently.
Please list the names of your collaborators on your homework.

• On programming problems, groups of up to three students can work together as a
team, handing in a single body of code and documentation as their team effort.

It is very important in this course that every homework be turned in on time. We
recognize that occasionally there are circumstances beyond your control that prevent an
assignment from being completed on time. You will be allowed two classes of grace during
the quarter. This means that you can either hand in two assignments each late by one
class, or one assignment late by two classes. Any further assignments handed in late will
be penalized by 20% for each class that they are late, unless special arrangements have
been made previously with the instructor or the TA.

Problem 1. [15 points]

Consider the parabola Y = X2 in the plane. As the real number t varies, the point
B(t) := (1; t, t2) traces out that parabola. Assuming that p and q are distinct real
numbers, find the homogeneous coefficients of the chord `pq, the line that joins the point
B(p) to the point B(q). By letting p and q both approach a common value t, find the
homogeneous coefficients of the tangent line `tt to the parabola B at the point B(t).
Find the (non-homogeneous) coordinates of the velocity vector B′(t), and verify that
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the tangent line `tt contains both the point B(t) and the vector B′(t). Find the (non-
homogeneous) coordinates of the point Bpq where the tangent lines `pp and `qq intersect.
Show that, as long as p and q are distinct, the point Bpq never lies on the line `pq.

In a similar way, consider the twisted cubic curve in 3-space traced out by the varying
point C(t) := (1; t, t2, t3). Assuming that p, q, and r are distinct, find the homogeneous
coefficients of the plane πpqr that passes through the points C(p), C(q), and C(r). By
letting p, q, and r all approach t, find the homogeneous coefficients of the osculating plane
πttt, the plane that most nearly contains the curve C in the neighborhood of the point
C(t). Find the coordinates of the velocity vector C ′(t) and of the acceleration vector
C ′′(t), and verify that the osculating plane πttt contains the three sites C(t), C ′(t), and
C ′′(t). Find the coordinates of the point Cpqr where the three osculating planes πppp, πqqq,
and πrrr intersect. Show that, in contrast to the quadratic case, the point Cpqr always
lies on the plane πpqr.

Problem 2. [15 points]

Let M be the affine map from the plane to the plane whose matrix is 1 0 0
0 a b
0 c d

 ;

so M takes the origin to the origin, but is otherwise arbitrary. If ξ := (0; x, y) is any
vector, the ratio

‖M(ξ)‖
‖ξ‖

of the length of M(ξ) to the length of ξ is the factor by which the affine map M multiplies
lengths in the direction ξ. Find formulas, in terms of a, b, c, and d, for the maximum
and minimum values of this ratio.

For example, Figure 1 shows what happens when the shearing map S with matrix 1 0 0
0 1 1
0 0 1


is applied to the unit circle in the plane. The unit circle becomes an ellipse whose
semi-major and semi-minor axes have lengths OA = (

√
5 + 1)/2 and OB = (

√
5− 1)/2.

You may find it helpful to express the vector ξ in polar coordinates, say as ξ =
(0; r cos θ, r sin θ), and to recall the trigonometric identities sin 2θ = 2 sin θ cos θ and
cos 2θ = cos2 θ − sin2 θ. You may also want to check your answer by verifying that
the product of the maximum and minimum length ratios is |ad− bc|, the factor by which
M multiplies (unsigned) areas.
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Figure 1: A shearing of the unit circle.

Problem 3. [10 points]

Let U and V be (one-sided) projective planes. Find the matrix of the projective map
F :U → V that takes four points to four points as follows:

F ([1; 0, 0]) = [1; 1, 0]

F ([0; 0, 1]) = [1;−1, 0]

F ([1; 1, 1]) = [1; 0, 1]

F ([4; 2, 1]) = [5; 3, 4] .

Recall that the function B: R→ U defined by B(t) := [1; t, t2] is a parameterization
of the parabola Y = X2 in the plane U . If we transform the parabola B by the projective
map F , what curve results? That is, give the implicit equation for the curve traced out
in the plane V by the composed function t 7→ F (B(t)).

To what line in V does the projective map F take the line at infinity in U? Give
its homogeneous coefficients. What line in U is taken by F to the line at infinity in V ?
Again, give its homogeneous coefficients.

Problem 4. [10 points]

Consider the region R of the two-sided projective plane defined by the conjunction of the
following three linear inequalities:

x ≥ 0

y ≥ 0

x+ y ≥ w.

The region R is a triangle in the two-sided plane. What are the vertices of R? Draw
a simple illustration showing what points of the top range and what points of the bottom
range lie in R.
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Check that the points A := [1; 1, 1.5] and B := [−1; 2, 1.5] lie in R. Draw these points
in your diagram.

The line segment AB connecting A to B is the locus of all points of the from [λA+µB],
for λ and µ positive. Prove that all such points lie in R, and draw a picture of the segment
AB in your diagram. Does this segment intersect the line at infinity? If so, at what point?

Problem 5. [15 points]

Let p := (1 + I)/
√

2 and q := (1 + J)/
√

2 denote the unit-norm quaternions used in the
example in the reader. Recall that the rotation M(p) is a 90-degree rotation about the
X axis, while M(q) is a 90-degree rotation about the Y axis. In the reader, we composed
the two rotations M(p) and M(q). Here, we instead investigate the rotation that lies
halfway between M(p) and M(q).

The quaternion that lies halfway between p and q is simply

p+ q

2
=

1√
2

+
I

2
√

2
+

J

2
√

2
.

Calculate the norm |(p+ q)/2| of that quaternion, and note that it is not 1. Find a
quaternion r that is a scalar multiple of (p + q)/2 and that has unit norm, |r| = 1, and
calculate the rotation matrix M(r). Around what axis does M(r) rotate, and through
what angle (say, to the nearest tenth of a degree)?

Find a globe and a piece of string. Say that Leo’s Bistro is located at 45 degrees
north latitude and 0 degrees longitude, near Bordeaux in France, and that Ravi’s Bar
and Grill is located at 45 degrees north latitude and 90 degrees west longitude, in the
middle of Wisconsin. To the nearest degree, what is the latitude of an airplane that is
halfway along a great-circle course from Leo’s to Ravi’s?

Briefly explain the connection between the two halves of this problem. In particular,
which quaternions correspond to which points on the globe?


