
cs348b
Matt Pharr

Ray Tracer System 
Design & lrt Overview



cs348b Matt Pharr, Spring 2003

• Design of lrt
• Main interfaces, classes

• Design trade-offs

• General issues in rendering system 
architecture/design

• Foundation for ideas in remaining lectures

Overview



cs348b Matt Pharr, Spring 2003

• Plug-in architecture
• Run-time object loading

• Don’t need to recompile entire system to add 
functionality

• Strict enforcement of OO interfaces

• Carefully-chosen abstractions
• Based on fundamental physical quantities

Key Design Features



cs348b Matt Pharr, Spring 2003

• Parse scene description & create 
representation

• Simulate light transport, render image

• Apply imaging pipeline, write out result

Basic Rendering Process



cs348b Matt Pharr, Spring 2003

• Well-defined interface between user and 
renderer

• Two classic approaches
• Describe what to render (RenderMan)

• Describe how to render it (OpenGL)

• What is more elegant (if you can afford it)
• Curved surfaces basic surface description (not 

triangles)

• Physically-based light models

• Materials

Rendering Interface



cs348b Matt Pharr, Spring 2003

• Hierarchical graphics state is very 
convenient
• Less so if exporting scene from modeling app

• Begin/end state stack model

• RI flattens it for use by the renderer

• Overall task is to create appropriate 
objects

Rendering Interface



cs348b Matt Pharr, Spring 2003

• Instance creation based on name/ParamSet
• RI knows little about specifics of available plugins

• ParamSet encapsulates name/value pairs
• Type declaration

• Value setting/getting

Runtime Instance Creation



cs348b Matt Pharr, Spring 2003

• Point, vector, normal
• Important to differentiate between them

• Ray

• Transform

• Operator overloading to make it easy to 
transcribe equations: 
• v=p1-p2;

• ray(t)

• p1 = transform(p2)

Basic Geometric Classes



cs348b Matt Pharr, Spring 2003

• Spectrum

• Memory allocation
• Cache-aligned allocation

• Memory pools

• Reference counting

• Float2Int

• Random numbers

• Statistics

Other Basic Utility Classes



cs348b Matt Pharr, Spring 2003

• Instances created by rendering interface
• Primitives

• Shapes

• Materials

• Accelerator

• Lights

• Camera

• Sampler

• Integrators

Key Abstract Classes



cs348b Matt Pharr, Spring 2003

• Scene object holds all the objects from RI

• Scene::Render()

Main Rendering Loop

while (more samples) {
get next sample
generate camera ray
compute radiance along ray
update image

}
apply imaging pipeline



cs348b Matt Pharr, Spring 2003

• Drives image sampling
• Jittered, low-discrepancy, dart throwing, ...

• Key task: good anti-aliasing
• More samples: better image

• Sample positioning very important

• Sample encapsulates sample position
• image, time, lens, integration...

• Rendering continues as long as it makes 
more samples

Sampler



cs348b Matt Pharr, Spring 2003

• Encapsulates viewing/imaging properties
• Turns samples into rays

• Projective, orthographic, spherical, ...

• May simulate depth of field

Camera



cs348b Matt Pharr, Spring 2003

• Process kicks off with rays from camera

• Computes radiance along given rays
• Many different levels of accuracy/realism

• Appel: camera rays + shadow rays

• Whitted: camera rays, shadow rays, specular 
reflection rays

• Two stage process
• Geometric: find closest intersection

• Radiometric: compute reflected light

Integrator



cs348b Matt Pharr, Spring 2003

• Represents basic geometry & its material

• Given ray, return Intersection, if any

• May also refine, like Shapes

• GeometricPrimitive
• Shape, Transform to place in scene

• Material

Primitive



cs348b Matt Pharr, Spring 2003

• Quadrics, triangle mesh, subdivision surface

• Refine() key for complex shapes

• DifferentialGeometry represents ray 
intersection
• Point

• Normal

• (u,v)

• Tangents

• ...

Shape



cs348b Matt Pharr, Spring 2003

• Implemented behind Primitive interface
• “Meta-hierarchies”

• Grid, kd-tree
• Implementation made more tricky by refinement 

option, however

Accelerators



cs348b Matt Pharr, Spring 2003

• Spatially-varying surface reflection 
characteristics

• Texture describes variation

• Task is to return BSDF at intersection point
• (”Bidirectional scattering distribution function”)

Materials



cs348b Matt Pharr, Spring 2003

• Reflection at a single point
• Reflected light from integrating incident light 

times reflection function

• Local coordinate system simplifies 
implementation

BSDF



cs348b Matt Pharr, Spring 2003

• Modulate spatially-varying material 
properties
• Texture map

• Procedural texture

• Constant value

• Texture tree representation

• Anti-aliasing and filtering a key 
responsibility

Texture



cs348b Matt Pharr, Spring 2003

• Emission of visible energy into the scene

• Classic graphics lights
• Point, distant, spot, ...

• Area lights

• VisibilityTester closure to defer shadow ray 
tracing

Light



cs348b Matt Pharr, Spring 2003

• Compensate for display limitations

• Floating-point to integer conversion

• Quantization, dithering, gamma correction

• Tone reproduction

Imaging Pipeline


