Monte Carlo III: Solving The Rendering Equation

cs348b
Matt Pharr

Local vs. Global Illumination

cs348b
Matt Pharr, Spring 2003

Overview

- Path tracing
- Partitioning the rendering equation
- MC estimates of path contributions
- Efficiency: path re-use, termination
- Bidirectional path tracing
- More robust sampling of path space
- Multiple importance sampling
- Biased methods
- Light ray tracing / splatting
- Photon mapping

Partitioning the Rendering Equation

$$
\begin{gathered}
L(x, \omega)=L_{e}(x, \omega)+\int_{\Omega} f\left(\omega_{i} \rightarrow \omega\right) L\left(x, \omega_{i}\right) d \omega_{i} \\
=L_{e}(x, \omega)+\int f_{1}\left(\omega_{i} \rightarrow \omega\right) L_{1}\left(x, \omega_{i}\right) \\
+\int f_{2}\left(\omega_{i} \rightarrow \omega\right) L_{1}\left(x, \omega_{i}\right)+\int f_{1}\left(\omega_{i} \rightarrow \omega\right) L_{2}\left(x, \omega_{i}\right) \\
+\int f_{2}\left(\omega_{i} \rightarrow \omega\right) L_{2}\left(x, \omega_{i}\right) \\
f=f_{1}+f_{2}, L=L_{1}+L_{2}
\end{gathered}
$$

Why Partition?

- Take advantage of known structure
- Direct vs. indirect light
- Specular vs. diffuse BRDF
- Can apply different solution techniques to different terms

Path Tracing (Kajiya)

- Based on natural recursive expansion of rendering equation

$$
\begin{aligned}
& L=L_{e}+\int f L_{i} \longrightarrow L=L_{e}+S L \\
& L=L_{e}+S\left(L_{e}+S\left(L_{e}+S(\ldots\right.\right. \\
& L=L_{e}+S L_{e}+S S L_{e}+S S S L_{e}+\ldots
\end{aligned}
$$

Path Tracing (Kajiya)

- Partition the integrand
- Separate BRDF into specular/non-specular
- Separate incoming light into direct/indirect
- No branching of path; one shadow ray, one BRDF ray
- Be careful to not double count illumination
- Discrete PDF over lights
- Re-use prefix of path vertices for path with one more vertex
- Correlation vs. efficiency

Path Tracing

- I vs 36 paths per pixel

cs348b
Matt Pharr, Spring 2003

The Rendering Equation as a Sum over Paths

- Better formulation for thinking about light transport

$$
\begin{aligned}
& L(x, \omega)=L_{e}(x, \omega)+\sum_{i} \int f_{i}\left(x, x_{1}, \ldots, x_{i}\right) d A\left(x_{1}\right) d A\left(x_{2}\right) \ldots \\
& f_{i}\left(x, x_{1}, \ldots, x_{i}\right)= \\
& \quad L_{e}\left(x_{i} \rightarrow x_{i-1}\right) G\left(x_{i}, x_{i-1}\right) f\left(x_{i} \rightarrow x_{i-1} \rightarrow x_{i-2}\right) \cdots \\
& \quad G\left(x_{1}, x_{1}\right) f\left(x_{3} \rightarrow x_{2} \rightarrow x_{1}\right) G\left(x_{1}, x\right) W_{e}\left(x_{1} \rightarrow x\right)
\end{aligned}
$$

Implications

- Don't need to follow paths forward from camera
- Great flexibility in sampling path vertices; doesn't even need to be done sequentially
- Can have much lower variance than path tracing

Sampling Path Vertices

- Can uniformly sample over area on surfaces
- Importance sampling based on important surfaces
- More commonly, incremental path sampling - Importance sample BRDF at each step
- Solid angle to area density conversion

$$
p_{A}(x)=p_{\Omega}(\omega) \frac{|\cos \theta|}{r^{2}}
$$

Bidirectional Path Tracing

- Handle tricky lighting situations with both types of paths
- Generate path from eye, path from light
- Connect vertices with shadow rays
- Multiple importance sampling to compute each path's contribution

Path Pyramid

Matt Pharr, Spring 2003

Bidirectional Path Tracing

Bidirectional
Path Tracing
Path Tracing
Veach \& Guibas
cs348b
Matt Pharr, Spring 2003

Tracing Paths from Lights

Matt Pharr, Spring 2003

Tracing Paths from Lights

Steve Collins, I 995
Matt Pharr, Spring 2003

Basic Photon Mapping

- Trace paths from lights
- Store samples in kd-tree
- Fast lookup of nearest photons
- Lookup nearby samples when shading, estimate illumination with density estimate
- Key idea: particle histories give approximation of scene radiance distribution

Photon Map-Based Reflection

$$
\begin{aligned}
& L(x, w)=\int_{\Omega} f\left(\omega_{i} \rightarrow \omega\right) L_{i}\left(x, \omega_{i}\right) \cos \theta_{i} d \omega_{i}= \\
& \int_{\Omega} f\left(\omega_{i} \rightarrow \omega\right) \frac{d \Phi\left(x, \omega_{i}\right)}{d A d \omega_{i}} d \omega_{i} \approx \sum^{N} f(\omega[i] \rightarrow \omega) \frac{\Delta \Phi(x, \omega[i])}{\pi r^{2}}
\end{aligned}
$$

Photon Mapping

- 50k photons

Photon Mapping

- 100k photons

Photon Mapping

- 200k photons

Photon Mapping

- 500k photons

Photon Mapping

- 500k, use 125 vs use 500

cs348b
Matt Pharr, Spring 2003

Photon Mapping

- 500k, use 500 vs use 1000

cs348b
Matt Pharr, Spring 2003

Improved Photon Mapping

- Partitioning
- BRDF into diffuse + specular
- Illumination into direct, indirect, and caustic
- Each term can be estimated two ways:
- Accurately: Unbiased MC
- Efficiently: Photon map lookup

Photon Mapping

- Biased method: using photons from nearby points to estimate illumination introduces error
- Consistent: error tends to decrease as number of photons increases

