Radiometry I: Illumination

cs348b Matt Pharr

Administrivia

- Extra copies of Irt book
- Bug fix for assignment I polynomial.h file

Onward To The Physical Description of Light

- Four key quantities
 - Power
 - Radiant intensity
 - Irradiance
 - Radiance
- Radiometry and photometry

Radiometry

- The measurement of electromagnetic radiation
 - Radiation: propagation of energy through space
 - We will ignore polarization, quantum mechanics
- Frequency distribution of radiation gives color

Spectral Distribution of Energy

- Radiometric quantities are usually wavelength-dependent
 - (Usually not included in equations, for simplicity)

$$Q_{\lambda} = dQ/d\lambda$$

Blackbody Radiator

FIGURE 21F

Blackbody radiation curves plotted to scale. Ordinates give the energy in calories per square centimeter per second in a wavelength interval $d\lambda$ of 1 Å. For numerical values, see "Smithsonian Physical Tables," 8th ed., p. 314.

Most energy outside of the visible range

Sunlight

Fig. 1(1.2.1). NASA standard data of spectral irradiance $(W \cdot m^{-2} \cdot \mu m^{-1})$ for the solar disk measured outside the atmosphere (solid dots) and at the earth's surface at air mass 2 (open circles). Data points are those given in Table 1(1.2.1). Neighboring data points have been connected by straight lines for illustrative purposes only.

Fluorescent Light

Spikes make accurate representation difficult

cs348b

Lemon Skin

cs348b

Spectral Representations

- Arbitrarily complex spectral distributions represented with basis functions
- Classic efficiency vs accuracy trade-off
 - Polynomials, Gaussians, delta functions, step functions, ...
 - RGB is a poor / ill-defined choice!

Radiant Energy and Power

- Energy (Q)
 - Joules
 - Time usually not important in graphics
 - (Film exposure, sunburn)
- Power (Φ)
 - Watts
 - Energy per unit time $\Phi = dQ/dt$
 - Spectrum gives wavelength distribution of power

$$\Phi_{\lambda} = d\Phi/d\lambda$$

Light Sources

- Spectral emission distribution
- Angular emission distribution
- Spatial emission distribution

Intensity

$$I = d\Phi/d\omega \quad \text{Watts/steradian}$$

$$\Phi = \int_{\Omega} I(\omega)d\omega$$
Isotropic point source:
$$\Phi = 4\pi I$$

cs348b

Measuring Angles

- Plane angle (radians)
 - Length of arc subtended by object divided by radius $\theta = s/r$
- Solid angle (steredians)
 - Area of sphere subtended by object divided by radius squared
 - Examples...

Differential Solid Angles

cs348b

Goniometric Diagrams

Irradiance

- How much light is arriving at a point on a surface?
 - Power per unit area

$$E = d\Phi/dA$$
$$\Phi = \int_{A} E(x)dA$$

Lambert's Cosine Law

Incident irradiance varies according to the cosine of the incident angle

$E = E_0 \cos \theta$

Inverse Square Falloff Law

- Irradiance decreases with square of the distance from a point source
- Look at projected solid angles...

Radiance

- Area and solid angle density of flux
 - Think area lights, not point lights: intensity per unit area, or irradiance per unit angle
- Unlike irradiance, flux, includes directional distribution

$$L = \frac{d\Phi}{d\omega dA\cos\theta}$$

Key Properties of Radiance

- Invariant along rays
 - Carry radiance along rays in ray-tracer
- Response of sensor is proportional to incident radiance
 - Image is a 2D set of rays
- Fundamental quantity that characterizes light in environment
 - Other quantities can be derived from it

Exercises

- Total flux from Lambertian disk source?
- Total flux from cone spotlight
- Total flux from disk with cone angular distribution
- Irradiance from disk directly above surface

Photometry

- Quantities in terms of effect on standard human observer (photopic conditions)
- Luminous efficiency curve

Photometry vs Radiometry

- Radiometry: physical measurement of electromagnetic energy
- Photometry: perceptually-based measurement
- But we don't want to waste our time on radiation outside the visible range
 - So judiciously apply photometric computations to help prioritize...

Photometric vs. Radiometric Quantities

- Luminous flux / radiant flux
- Luminous intensity / radiant intensity
- Illuminance / irradiance
- Luminance / radiance