
Interactive Manipulation of Rigid Body Simulations

Jovan Popovíc∗ Steven M. Seitz Michael Erdmann Zoran Popović† Andrew Witkin‡

Carnegie Mellon University
†University of Washington
‡Pixar Animation Studios

Abstract

Physical simulation of dynamic objects has become commonplace
in computer graphics because it produces highly realistic anima-
tions. In this paradigm the animator provides few physical param-
eters such as the objects’ initial positions and velocities, and the
simulator automatically generates realistic motions. The resulting
motion, however, is difficult to control because even a small adjust-
ment of the input parameters can drastically affect the subsequent
motion. Furthermore, the animator often wishes to change the end-
result of the motion instead of the initial physical parameters.

We describe a novel interactive technique for intuitive manipula-
tion of rigid multi-body simulations. Using our system, the anima-
tor can select bodies at any time and simply drag them to desired
locations. In response, the system computes the required physical
parameters and simulates the resulting motion. Surface characteris-
tics such as normals and elasticity coefficients can also be automat-
ically adjusted to provide a greater range of feasible motions, if the
animator so desires. Because the entire simulation editing process
runs at interactive speeds, the animator can rapidly design complex
physical animations that would be difficult to achieve with existing
rigid body simulators.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.3.6 [Computer Graphics]:
Methodology and Techniques—Interaction techniques; G.1.7 [Nu-
merical Analysis]: Ordinary Differential Equations—Boundary
value problems

Keywords: Physically Based Animation, Animation with Con-
straints

1 Introduction

Physical simulation programs provide powerful tools for creating
realistic motion in animated shorts and feature films. These meth-
ods enable quick and easy generation of complex physical behav-
iors such as a ball bouncing, window breaking [22], cloth folding
[2], and water flowing [10, 24]. An attractive feature of physical
simulation is that the animation is generated automatically—the an-

∗Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213–3891.http://www.cs.cmu.edu/˜jovan

Figure 1: The animator manipulates the simulation by first fixing
the hat’s landing position on the coatrack with a “nail” constraint.
While the animator rotates the hat at an earlier time to achieve the
desired spin, the constraint maintains the desired landing location.

imator only needs to specify a few physical parameters such as ini-
tial positions and velocities.

Despite the appeal of simulation techniques, their primary draw-
back is lack of intuitive control over the resulting motion. The ani-
mator often wishes to adjust the motion to achieve a desired effect
such as a new end-position or a more pleasing look. However, di-
rectly altering the underlying physical parameters to try to achieve
the desired effect is often cumbersome and nonintuitive. In many
cases, the animator would prefer to edit the animation itself, by di-
rect manipulation of positions and velocities.

We introduce a novel interactive technique for manipulating rigid
body simulations. Throughout the interaction, our system displays
the entire trajectory of all objects in the scene. The animator is
free to manipulate theentiremotion by grabbing and changing the
state of the object (position, velocity, etc.) at any location on its
trajectory. For example, suppose the animator wants to design a
scene in which an actor successfully tosses his hat onto a nearby
coatrack, but instead has an animation of the hat falling to the floor.
In our paradigm, the animator first selects the hat at its landing po-
sition and simply drags it onto the coatrack. There are many ways
in which the hat can land on the coatrack and the current motion
may not have the desired style. The animator can adjust the style
by first fixing the landing position on the coatrack to ensure the de-
sired landing location and then rotating the hat at an earlier time
until the hat motion achieves the desired spin (Figure 1).

This hat example illustrates the use of position constraints to
control rigid body animations. More generally, our system pro-
vides the ability to set arbitrary position, orientation, and velocity
constraints on multiple objects at multiple points in time. Further-
more, we also provide floating time constraints that may be satisfied
at any point in time. For example, an animator can adjust where a
mug hits the ground on its third bounce, without fixing the time
when that bounce occurs.

A key problem in controlling dynamic simulations is obtaining
sufficient degrees of freedom to avoid over-constrained problems.
In our system the animator may add degrees of freedom by vary-
ing physical parameters that specify the internal properties of the
environment, including shapes, masses, surface normals, elastic-
ity coefficients, and moments of inertia. Often the best choice for
these parameters is not at all obvious to the animator but yet can

have a very dramatic effect on the resulting animation. Our sys-
tem automatically adjusts these physical parameters according to
the animator’s desired effect. We have found this capability to be
useful even in under-constrained problems. In particular, motion in
chaotic systems is highly sensitive to small perturbations in the ini-
tial conditions. Adding control variables near desired manipulation
times (i.e. variation of surface normals at the previous collision) im-
proves the conditioning without affecting the perceived realism of
the animation [4]. Furthermore, the additional parameters increase
the range of feasible motions, enhancing the animator’s ability to
create interesting effects.

Interaction is an integral component of our approach. The ani-
mator is able to directly control the motion without manipulating
the underlying physical parameters, and immediately sees the re-
sults of her adjustments. As a result, she can quickly explore the
space of possible motions to achieve the desired behavior. Unlike
previous motion-construction tools [29, 8, 21, 19, 23], our system
does not evaluate the quality of motion with an objective criterion
such as time-optimal motion. Instead, the animator imparts her aes-
thetic or other subjective criteria and interactively guides the system
towards the desired motion.

Internally, our system represents the entire motion of bodies by
the physical parameters that control the simulation (i.e., initial posi-
tions and velocities, surface normal variations and other parameters
included by the animator). As the animator interactively manip-
ulates the motion, the system computes the new physical param-
eters that achieve the desired motion update. This is achieved in
real time using a fast differential update procedure in concert with
a rigid body simulator. Motion discontinuities pose an additional
challenge (e.g. when a point of collision changes to a different facet
on a body’s polyhedral mesh) because the motion changes abruptly.
When this happens, our system performs a local discrete search in
physical parameter space to compute the motion that most closely
complies with the desired adjustments.

The remainder of the paper is divided into six sections. In Sec-
tion 2, we discuss related work. We outline the basic algorithm in
Section 3, and discuss further details in Section 4 and Section 5.
In Section 6, we outline the specifics of our prototype implemen-
tation and report on the experimental results, and in Section 7, we
conclude and describe directions for future work.

2 Related Work

Dynamics and motion of mechanical systems are important to many
fields. Optimal control theory provides the groundwork for maxi-
mizing the performance of evolving dynamic systems [25]. In robot
path planning, kinodynamic planning refers to the problem of com-
puting robot paths that satisfy both dynamic and kinematic con-
straints [9]. In computer graphics, the spacetime constraints tech-
nique for animation of characters computes optimal motion subject
to constraints [29, 8, 21, 19, 23]. Other techniques [3, 6, 16] also
rely on gradient information to compute the motion that satisfies
certain constraints. All of the above techniques solve for the actu-
ating forces which produce a motion. Because of this, they do not
directly apply to our problem of controlling the rigid body simula-
tions because we wish to control passive objects (i.e. objects with-
out any self-propelling forces).

Several researchers have addressed the inverse problem of con-
structing a dynamic rigid body motion given the desired body con-
figurations. Tang et al. [27] formulated this inverse problem as an
optimization task and extended the genetic algorithm technique to
compute solutions for a class of 2-D N-body problems. For a 2-D
billiards simulation, Barzel and colleagues [4] computed successful
shots using a backward search from the desired final locations of
billiard balls. Chenney et al. [7] applied the Markov Chain Monte
Carlo (MCMC) method to construct 3-D motions that achieve de-

sired body configurations. The MCMC technique excels at con-
structing motions for systems with chaotic behavior such as the mo-
tion of pins after collision with a bowling ball. The main drawback
of these approaches is lack of interactivity: these systems may re-
quire several hours to construct a solution. If the animator does not
like the resulting motion, she must adjust the desired body configu-
rations and start again. We argue that interactivity is essential when
aesthetics is a primary concern.

Our interactive technique is related to the method for geometric
modeling described by Witkin et al. [28]. Similar techniques have
also been devised for drawing applications [13], interactive cam-
era control [14] and others. In its treatment of motion discontinu-
ities, our approach most closely resembles that of Harada et al. [17],
which combines continuous and discrete optimization for applica-
tions in architectural design. In this approach, when the imposed
architectural constraints can no longer be enforced with the contin-
uous parameters, the solver performs a local discrete search to find
a new room arrangement in which the constraints are satisfied.

3 Interactive Manipulation

Our algorithm computes the required physical parameters so that
the resulting motion satisfies desired constraints. In this section,
we define some basic concepts and give a top-level description of
our algorithm.

3.1 Simulation Function

Following the Lagrangian approach, we describe mechanical sys-
tems in terms of their generalized coordinates and velocities [26].
A system of one or more rigid bodies is described by ageneralized
statevectorq whose components are the generalized coordinates
and velocities of the bodies in the system. The behavior of a system
is described by a set of ordinary second order differential equations
[26], which we write in vector form as a coupled first order differ-
ential equation,

d

dt
q(t) = F(t,q(t)), (1)

whereF(t,q(t)) is derived from the Newton’s law (e.g. see Equa-
tion 8). As mentioned in Section 1, our technique varies several
physical parameters—in addition to the initial position and velocity
q0—to modify the simulation. We encode all of these parameters
in thecontrol vectoru, and extend the differential equation appro-
priately:

d

dt
q(t) = F(t,q(t),u). (2)

This equation of motion completely describes the system in free
flight (i.e. when there are no collisions): integrating Equation 2
yields

q(t) = q0(u) +

∫ t

t0

F(t,q(t),u) dt. (3)

Collisions can be handled in a number of ways, but for computer
animations the simple Poisson collision model suffices [20]. This
model can represent elastic and inelastic impacts by applying in-
stantaneous impulses to the colliding bodies. The system simulates
the motion during free flight by numerically solving Equation 2.
At collision times additional impulses are applied to the system.
Because the control vectoru includes physical parameters such as
surface normals at collisions and elasticity coefficients, the impulse
I(q−,u) directly depends on the control vectoru. At collisions

the simulator maps the generalized state an instant before the col-
lision q− into the state an instant after the collisionq+ (e.g. see
Equation 10):

q+ = q− + I(q−,u). (4)

More abstractly, given the control vectoru the rigid body simu-
lator computes thesimulation functionS, which specifies the state
of the bodies in the world at every point in time:

q(t) = S(t,u). (5)

In principle, the animator could manipulate the motionq(t) by ad-
justing the control vectoru. However, such a form of control would
be tedious because the relation betweenu andq(t) is complex and
nonintuitive. Instead, we would like to allow the animator to spec-
ify the state of bodiesq(ti) at specific timesti = t0, . . . , tn, and
let the algorithm compute the control vectoru that produces the de-
sired motion. This is a difficult problem [27, 7] for three reasons.
First, the domain of the simulation functionS is high-dimensional:
for a single3-D body, the components of the generalized stateq
are the body’s position, orientation, linear, and angular velocity
(i.e. q ∈ R3 × SO(3) ×R3 ×R3). Second the simulation func-
tion is highly nonlinear. A consequence of the integral nature of
the simulation function is that small changes in the initial condi-
tions can result in drastic modifications of the motion. Third, the
simulation function is not continuous. Each collision event (e.g.,
different vertices of an object colliding with the ground) bifurcates
the simulation function.

We adopt a differential approach for manipulating the simulation
function. The animator adjusts the motion by specifying a differ-
ential change of motionδqi in the generalized stateq(ti) at time
ti. The system responds by reshaping the current motion to com-
ply with the adjustments. Continuing the interactive manipulation,
the animator gradually guides the system toward the desired solu-
tion. To compute a new control vector that reshapes the motion in
compliance with the differential changesδqi, we locally linearize
Equation 5,

δqi =
∂S(ti,u)

∂u
δu. (6)

We combine all animator-specified constraints into a linear system
which we solve forδu by conjugate gradient technique. The dif-
ferential vectorδu describes the direction in which to change the
current control vectoru to obtain the desired motion changeδqi.
The differential update is simply a small step in the computed di-
rection,

u′ = u + ε δu. (7)

Given the new, updated control vectoru′, a rigid body simulator
computes the new motion and displays the result. At this point the
entire process repeats.

3.2 2-D Particle Example

To help provide an intuition for the issues underlying our approach,
we begin with an illustrative example. Suppose that a single 2-D
particle moves under the action of gravity. The generalized state
q ∈ R4 encodes the particle’s positionx ∈ R2 and velocityv ∈
R2. If g is the acceleration of gravity, the equations of motion,

d

dt

(
x(t)
v(t)

)
=

 v(t)(
0
−g

) , (8)

θ0

θf

θ′0

θ′f

h
0

0.5
1

1.5
2

2.5
3

3.5

−1

−0.5

0

0.5
−1

0

1

2

3

4

θ0h

θf

θf
θ′f

Figure 2: The simulation function for the motion of a particle
bounce.

describe the particle’s path in free flight. The solution to this differ-
ential equation yields the simulation function:

S(t,q0) =

(
x(t)
v(t)

)
=

x(0) + v(0)t+

(
0

− 1
2gt

2

)
v(0) +

(
0
−gt

)
 .

(9)

If the particle collides with an immovable obstacle, the Poisson
collision model applies an impulse to change the particle’s velocity.
For frictionless collisions, the impulse acts in the direction of the
surface normaln at the point of collision. The equation,

v+ = v− − 2(n · v−)n, (10)

applies an impulse to instantaneously change the particle’s velocity
before the collisionv− into its velocity after the collisionv+.

Given these analytical expressions for the particle’s motion, we
can plot the space of all possible trajectories for the particle as a
function of the initial conditions and the environment. For concrete-
ness, suppose the particle collides with a single parabolic obstacle.
For notational convenience, we introduce a unit circle around the
obstacle: the particle enters the circle at some angleθ0 with unit
velocity vector directed towards a point at heighth above the tip,
bounces off the obstacle, and exits the circle at another angleθf
(Figure 2). Our objective is to determineθf as a function ofθ0 and
h.

In this example, the simulation functionS : R2 → R maps the
control vectoru = (θ0, h) into the particle’s final, exit positionθf .
Given an initial enteringθ0 and exitingθf state, our gradient-based
interactive technique can smoothly transform this solution to one
which satisfies one or more constraints, for example to achieve a
different exiting stateθ′f . Our technique converges easily because
the simulation function is smooth over the domain of control pa-
rameters (Figure 2).

The general motion of many rigid bodies is much like this sim-
ple particle example. To describe the state of a single 3-D rigid
body, we increase the dimensions of the generalized state, adding
the components of orientation, angular velocity, and extending the
position and linear velocity to 3-D. Two or more rigid bodies are
modeled by adding additional components to the generalized state.
Surface parameters such as normals and elasticity coefficients may
also be added, if desired. Note that the number of rigid objects is
not explicitly represented, we are merely expressing the cumulative
degrees of freedom of the system. Our implementation makes use
of this representation to enable complex multi-object simulations
with the same computation techniques and data structures used to
implement particle simulations.

4 Manipulation without Discontinuities

The algorithm outlined in Section 3 relies on the efficient computa-
tion of the Jacobian matrix∂S(ti,u)/∂u. Computing the Jacobian

matrix with finite differences is expensive because of the need to
perform multiple simulations. In addition, the inaccuracies of the
finite differences approach would be prohibitive for our approach.

Instead we use a specialized automatic differentiation technique.
We decompose the simulation functionS into analytically differ-
entiable functions and numerically compose the Jacobian matrix
using the chain rule. For example, suppose that a single collision
occurs at timetc and the simulation functionS(tf ,u) describes the
body’s state at some time after the collisiontf > tc. We decom-
poseS(tf ,u) into three functions:

Ftc : pre-collision free-flight function, which maps the initial con-
ditions and perhaps additional elements of the control vec-
tor u into the body’s state attc, an instant before collision
(e.g. Equation 9 for 2-D particles);

Ctc : collision function, which applies the impulse and maps the
body’s state an instant before collision into the body’s state at
tc, an instant after collision (e.g. Equation 10 for 2-D parti-
cles);

Ftf : post-collision free-flight function, which maps the body’s
state an instant after the collision into the body’s state attf .

The functional composition expressingS(tf ,u) becomes:1

S(tf ,u) = Ftf (u) ◦ Ctc(u) ◦ Ftc(u). (11)

Although the free-flight motion of the particle in Section 3.2 has
a closed-form and is analytically differentiable, this is generally not
the case for 3-D rigid body motion.2 To compute the derivatives
of ∂Ftc(u)/∂u, we first integrate the equations of motion (Equa-
tion 1) until timetc,

Ftc(u) = q0(u) +

∫ tc(u)

t0

F(t,q,u) dt,

and take the derivative of both sides with respect tou

∂Ftc(u)

∂u
=

∂

∂u

(
q0(u) +

∫ tc(u)

t0

F(t,q,u) dt

)
.

To evaluate this expression we apply the Leibnitz rule [18] to inter-
change the integral and the derivative:3

∂Ftc(u)

∂u
= F(tc(u),q,u)

dtc(u)

du
+

∂q0(u)

∂u
+

∫ tc(u)

t0

∂F(t,q,u)

∂u
dt.

(12)

The simulator computes the value ofF(tc(u), q, u) at the collision.
To compute the collision time derivativedtc(u)/du we define a
smooth collision event functionE(t,q) such that at the collision
time tc(u),

E(tc(u),q) = 0. (13)

For the 2-D particle, for example, the collision event functionE
can be defined as the signed distance function between the particle
and the obstacle.

1The Equation 11 is written in this form for notational convenience.
More precisely, this equation isS(tf ,u) = Ftf (u, Ctc(u,Ftc(u))).

2For the special case of freely rotating 3-D rigid body (no torques), there
is an analytic Poinsot’s solution [26].

3The conditions for applying the Leibnitz rule require thatF is contin-
uous and has a continuous derivative∂F/∂u. These conditions are met
under reasonable assumptions about external forces.

Differentiating Equation 13 and solving for the collision time
derivative we obtain

dtc(u)

du
= − (∂E/∂q) · (∂q/∂u)

∂E/∂t
. (14)

The derivatives on the right-hand side of Equation 14 are computed
analytically, with the exception of∂q/∂u, which is defined by the
integral expression (second and third term in the sum) in Equa-
tion 12. We compute this integral expression by numerically in-
tegrating differential equation

d

dt

∂q(t)

∂u
=
∂F(t,q,u)

∂u
,

until time tc with the initial condition∂q0(u)/∂u.
The computation of∂Ftf (u)/∂u is similar: we apply the Leib-

nitz rule to obtain

∂Ftf (u)

∂u
= −F(tc(u),q,u)

dtc(u)

du
+

∂Ctc(u)

∂u
+

∫ tf

tc(u)

∂F(t,q,u)

∂u
dt

and evaluate the right-hand terms as before.
To compute the derivatives of∂Ctc(u)/∂u we differentiate the

Equation 4:

∂Ctc(u)

∂u
=
∂Ftc(u)

∂u
+
∂I(q−,u)

∂u
.

Once all derivatives of the sub-functions have been computed we
find the simulation function derivatives by applying the chain rule:

∂S(tf ,u)

∂u
=
∂Ftf
∂Ctc

(
∂Ctc
∂Ftc

∂Ftc
∂u

+
∂Ctc
∂u

)
+
∂Ftf
∂u

Although we have shown the derivative computations for the
composition of three phases, an arbitrary number of such phases
can be composed in an analogous manner.

4.1 Differential Update

Having computed the Jacobians, we can formulate the constraint
equations (Equation 6). Givenn such equations, we solve for
the differential vectorδu. Because this system is often under-
constrained (Section 1), we solve the following minimization in-
stead:

min
δu

(
δuTM δu + dT δu

)
(15)

subject to δq1 =
∂S(t1,u)

∂u
δu

...

δqn =
∂S(tn,u)

∂u
δu.

The minimized objective function has a dual purpose: it seeks the
smallest change from the current state of the simulation and the
smallest deviation from the desired values of the simulation param-
eters such as surface normals at the collision. The diagonal matrix
M describes the relative scale between parameters in the control
vectoru. The animator can describe the desired scaling to specify
how the system should change the parameters. For example, the
animator may instruct the system to favor changing the initial posi-
tion rather than the initial velocity of a body. The vectord defines

desired values for physical parameters. For example, if the system
varies the surface normal at a collision we can specify the true ge-
ometric normal as the desired value and the system will attempt to
stay as close as possible—once all constraints are satisfied—to the
true surface normal. Specifically, ifδud is the desired change in
the control vectoru then settingd = −δud and optimizing Equa-
tion 15 will minimize(δu−δud)T (δu−δud). Because the objec-
tive is quadratic and all constraints are linear, we use the Lagrangian
multipliers to reformulate the minimization as a linear system and
solve forδu [12].

Our technique is a form of gradient descent: we continuously
linearize the problem and move in the gradient directionδu. For a
large gradient stepsizeε, the gradient descent method may diverge.
Line minimization is the preferred method for choosing the step-
size in a gradient method, but it requires considerable computation.
In practice, a small fixed stepsize has good convergence properties
while also enabling interactive update rates.

The gradient descent converges only to a local optimum [5]. Lo-
cal convergence is sufficient and effective for our interactive set-
ting: the animator drags a body towards the intended position—
guiding the system out of undesirable local minima—and the sys-
tem quickly reshapes the motion to comply with the change.

4.2 Manipulation Constraints

When the animator specifies the constraints, the system maps these
constraints to the appropriate differential changes of motionδqi.
We distinguish three types of constraints: state constraints, expres-
sion constraints, and floating constraints.

State constraints occur when the animator “nails down” objects
(e.g., fixing position, orientation, linear velocity or angular velocity
to specific values). Suppose that the animator wants the bodyA at
time ti to have the stateq′A, and thatqA is a subset of the gener-
alized state of the whole systemq which describes the state of the
bodyA. We write the desired differential change asq′A − qA(ti).
In this case the nail constraint is enforced at a specific time instant
ti.

Expression constraints are generalizations of the state con-
straints. Any differentiable expression of the generalized stateq
can represent a constraint. For example, the animator can equate the
speed of two bodies with the constraint|v(qA(ti))|− |v(qB(ti))|.

Both state and expression constraints can be specified without
fixing the time of evaluationti. The animator can express a con-
straint at a particular event—say, the fifth collision in the simula-
tion. Time of collisiontc(u) is not fixed and thus the time of the
constraint can “float.” For example, we can reduce the angular ve-
locity ω of bodyA with the constraint−ω(qA(ti)) · ω(qA(ti)).
Subsequent modification of various simulation parameters will
change the time at which the collision occurs, but the floating con-
straint will still be enforced.

5 Manipulation with Discontinuities

When the simulation function is continuous, the interactive manip-
ulation technique described in Section 4 effectively converges to the
desired motion. In general, however, the simulation function con-
tains discontinuities that may cause this technique to diverge. In
this section we describe a method for improving the convergence
for piecewise continuous simulation functions.

The simulation function is discontinuous whenever polygonal
(piecewise linear) meshes are involved in collisions. For example,
suppose we modify the particle example from Section 4 and replace
the smooth, curved obstacle with a piecewise linear polygonal curve
(Figure 3). As long as the particle collides with the same edge, the
simulation function remains continuous. On the other hand, when
the particle collides with a different edge, the surface normal on the

θ0

θf

h
0 0.5 1 1.5 2 2.5 3 3.5

−1

−0.5

0

0.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

θ0
h

θf

Figure 3: Sample particle bounce motions with polygonal obstacle
and the corresponding piecewise smooth simulation function

obstacle changes abruptly and thus the collision impulse applied in
Equation 10 is discontinuous. This abrupt change carries over to
the subsequent particle motion and corresponds to a discontinuity
in the simulation function. We cannot disregard piecewise linear
approximations because the interactive rigid body simulators often
approximate smooth geometric models with polygonal (piecewise
linear) meshes—mostly because meshes facilitate faster and easier
collision detection.

In general, the simulation function is piecewise continuous. A
connected set of control vectors for which the simulation function
is continuous defines a connected component in the control space.
We call these connected componentssmooth componentsbecause
on a smooth component the simulation function is continuously dif-
ferentiable. For example, a set of control vectors for which the par-
ticle collides with the same edge of the obstacle defines a smooth
component (Figure 3). In this example, the four smooth compo-
nents correspond to motions of the particle colliding with each of
the four edges. The figure emphasizes two main problems caused
by discontinuities: the loss of physical feasibility and degradation
of convergence. We describe these problems and our solutions in
the remainder of this section.

5.1 Physical Feasibility

As shown in Figure 3, the polygonal approximation of the obstacle
restricts the physically feasible exit points for the particle. Note that
some values ofθf are unattainable because the surface normal near
the origin is discontinuous: the particle cannot exit at the section of
the circle directly above the origin (θf nearπ/2). This restriction
of feasible results becomes especially evident when the animator
over-constrains the system with many desired body configurations.
Finer polygonal approximations reduce the gaps in the piecewise
smooth function, but overly fine approximations increase the colli-
sion detection time and reduce interactivity.

Our approach to this problem is twofold. First, we introduce ad-
ditional control parameters to vary the surface normals on a polyg-
onal mesh and to simulate a collision with a smooth obstacle. If
the mesh approximates a smooth surface the desired normal can be
computed from a smooth local interpolant or, if available, from the
true smooth surface. The normal can then be adjusted dynamically
by including the normal deviation within the control vectoru. As
Figure 4 illustrates varying surface normals extends the range of
smooth components to increase the physically feasible regions.

Second, we use curvature-dependent polygonal approximations
in our simulations because they keep the facet count low for fast
collision detection and simulation, but also provide good first-order
approximations to the original surface [11]. For discontinuities due
to polygonal approximations of smooth surfaces, the computed dif-
ferential changeδu continues to contain valuable information. Ap-
proximating smooth surfaces with polygonal meshes is well stud-
ied in computer graphics. In general, good approximations allo-
cate many facets to areas of high surface curvature and fewer facets
to near-planar surface regions. For these polygonal meshes, de-
spite the discontinuity in the surface normals, the currently collid-

θ0

θf

h
0 0.5 1 1.5 2 2.5 3 3.5

−1

−0.5
0

0.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

θ0h

θf

Figure 4: Varying surface normals reduces the gaps to increase
physically feasible regions.

ing facet is also a good first-order approximation to the underlying
surface. In this case the differential changeδu continues to be a
good predictor for the differential update because the first-order ap-
proximation is sufficiently accurate for linear Equation 6.

5.2 Convergence

The interactive technique of Section 4 converges to the desired
motion if there exists a path from the initial to the desired con-
trol vector within a single smooth component. With discontinu-
ities, such a path may not exist. The discrete search must guide
the control vector between the appropriate components, piecing to-
gether a path that crosses discontinuities. Especially in higher di-
mensions, this is a daunting task for an interactive system. In gen-
eral, the search must take into account physically feasible regions
and jump to smooth components in possibly distant regions of a
high-dimensional control space. The most important criterion for
selecting smooth components is that they facilitate convergence to
the desired motion. In addition, unless instructed otherwise, the
components should preserve the “style” of the current motion, as
that may be of primary importance. For example, if an animator
desires a successful “off-the-backboard” basketball shot, it is unde-
sirable to jump to a smooth component corresponding to a direct,
“nothing-but-net” motion. Lastly, the discrete search must com-
plete quickly to maintain interactivity. Our solution relies on two
concepts: sampling and interaction.

Sampling In the presence of discontinuities our technique be-
comes more sensitive to the stepsizeε and the directionδu in
the differential update (Equation 7). With a large stepsizeε, the
gradient-descent method may diverge. The approximation errors
in δu also adversely affect convergence. To improve convergence,
we use sampling to find the best values for these parameters. To
find a good stepsizeε we use a form of the successive stepsize re-
duction technique:4 our discrete search chooses an initial stepsize
ε and reduces it a few times to select the motion that most closely
matches the desired result. Convergence results for gradient meth-
ods with non-random errors, such as approximation errors inδu,
exist [5], but there are no standard techniques for improving the
convergence. Recall from Section 5.1 that for discontinuities due to
polygonal approximations, the update vectorδu is a good heuris-
tic for the new samples. Thus, when the simulation is directed off
the edge of the smooth component, our system samples the con-
trol space from the normal distribution centered around the sug-
gested updateδu. Each such sample may produce a point on a new
smooth component. We evaluate how well the corresponding mo-
tions comply with the constraints and jump to the most promising
component. The animator perceives the jump as a minor “pop” in
the resulting motion and typically, following the jump, the contin-
uous manipulation continues. The sampling procedure also causes

4Successive stepsize reduction is not theoretically sound because the im-
provement at each iteration is not enough to guarantee convergence. Never-
theless, it often works in practice [5].

a momentary lag. While the lag could be reduced with a faster im-
plementation, the visual pop is unavoidable in situations where the
underlying motion is discontinuous. If sampling does not produce
any reasonable smooth component, the system remains within the
current smooth component. The animator is thus blocked from ad-
justing the motion in a particular way, but can continue to guide the
system in a different way.

Interaction Of course, to guarantee convergence we would have
to search through the entire control space. Our system does not ad-
dress this more general problem—the high dimension of the control
space makes the search especially difficult. Instead, our technique
relies on the animator to guide the system to a motion that satisfies
given constraints. For example, a body that initially flies over a wall
may have to bounce off the wall and fly in the opposite direction to
accomplish the desired constraint. Our technique will not make
these transformations automatically. For a large class of motion de-
sign tasks, this behavior is desirable and sufficient. The interaction
allows the animator to quickly experiment and guide the system to-
ward the desired collision sequence. For example, to transform the
motion of a basketball during a successful free throw, the anima-
tor may want to bounce the ball off the backboard before it goes
through the hoop. In this case, the animator first guides the ball
into a backboard collision, and then guides it through the hoop. We
emphasize that the single constraint specifying a successful shot
does not uniquely determine the desired collision configurations:
the ball may bounce off the backboard, off the floor or even off the
scoreboard. An automatic system would have to choose the desired
motion (or keep track of a possibly exponential number of motions)
according to some objective criteria. Instead, our system provides
the animator with interactive, direct control over the motion and
allows her to guide the system to the appropriate solution.

6 Implementation and Results

Implementation The implementation of our system is decom-
posed into three parts: (1) a differential control module, (2) a rigid
body dynamics simulator, and (3) a user interface for motion dis-
play and editing. The control of the system is animator-driven. In
response to an edit (a mouse event), the control module recomputes
the control parametersu needed to accomplish the desired motion
adjustments. These parameters are then provided to the physical
simulator, which recomputes the motion and updates the display.

We use the general-purpose rigid body simulator developed by
Baraff [1]. Alternatively, specialized simulators could be used that
provide tighter integration with the differential control module. Our
manipulation tool controls the simulator at two points: (1) it pro-
vides the control vectoru for the simulation and (2) it modifies the
impulses at collisions using the modified surface normals and elas-
ticity coefficients. The simulator, in turn, computes the new motion
and returns the new collision events. The computed motion is used
to update the display and the collisions are used to define a new
expression for the equations of motion (Equation 11).

For example, a single-bounce motion has a decomposition corre-
sponding to Equation 11. A change in the control parameters may
cause another bounce to occur. In this case, the simulator detects the
additional collision. In response, our system automatically updates
the equations of motion by adding an additional collision function
and two more flight phases to expression in Equation 11.

We use the exponential map parameterization of orientations
[15] in the control vectoru, finding that it yields better results than
the normalized quaternions.

Examples This section demonstrates the use of our system to
construct several physically based animations. All of these exam-

ples were created by direct manipulation in real-time, and each re-
quired between two and ten minutes of editing to achieve the de-
sired animation. For each of these examples, Figure 5 shows the
animations before interaction, at an intermediate point, and after
the desired motion is obtained. Each image in the figure displays
the entire simulation by tracing out the trajectories of one or two
points on the moving objects (shown in black). After experiment-
ing with a variety of different interfaces, we have found that this
display minimizes clutter yet provides the animator with a sense of
the cumulative motion that is sufficient for most interaction tasks.
Of course the animator can choose to view the complete motion as
a traditional frame sequence at any time during the interaction.

The objective of the first example is to have two eggs collide in
the air and land successfully into two buckets on the ground (Fig-
ure 5(a)). Creating such a motion by simply adjusting initial posi-
tions and velocities of the objects would be extremely difficult due
to the complexity of the motion and the constraint that the buckets
themselves cannot be moved. In contrast, the desired animation is
easily created from scratch using our interactive manipulation tech-
nique. First, the starting positions of the eggs are fixed, and the
velocities and orientations are assigned arbitrarily. By clicking at
a point on its flight path, the animator then interactively drags the
first egg’s trajectory towards the second egg so that the two objects
collide in the air. Running at roughly 20 frames per second, the
system computes the required changes in the initial orientation and
velocity of botheggs to achieve the desired motion updates. Once
one egg is in the bucket, the animator applies a nail constraint to fix
its ending state and then drags the second egg into the other bucket.

In the second example, the animator’s goal is to drop a plank onto
two supports to form a table. The problem is made more difficult by
requiring the plank to collide with a pyramid object in the air, prior
to landing centered on the supports. This example requires the sys-
tem to solve for the initial plank position, orientation, and velocity
(both linear and angular) in order to achieve the desired configura-
tion after the collision. Like the previous example, this is achieved
by allowing the animator to directly manipulate the plank’s desired
position and orientation while the system interactively computes
the corresponding physical parameters. This manipulation occurs
in two steps: first the animator selects the plank after it collides
with the pyramid, and positions it above the supports. Second, the
plank’s orientation is interactively aligned so that it lands squarely
on the supports (Figure 5(b)).

The third example demonstrates the use of normal and elasticity
parameters to aid editing operations, and the use of floating time
constraints. Suppose the animator wishes to keep a falling mug
from tipping over without changing its initial position, orientation,
or velocity. This is accomplished by adding new control parameters
to control the surface normal and elasticity parameters of the floor
at the points where the mug hits the floor. To keep the mug from
tipping over, the animator first straightens the mug so that it is up-
right at the fourth bounce. The system accommodates this change
by modifying the floor normal at the third bounce. Note that this
change in the normal will typically alter the time at which the fourth
bounce occurs, requiring a floating time constraint (Section 4.2).

Due to its angular velocity, however, the mug still tips over (Fig-
ure 5(c), center). This is prevented by constraining its angular ve-
locity to be zero after the fourth bounce, resulting in a motion where
the mug does not tip over (right). The changes in surface normals
are perceived as changes in the surface texture of the floor.

The final example illustrates the ability to edit the style of an
animation by modifying a previously constructed motion. In this
example, a scissors is thrown into the air and lands on a coatrack
(Figure 5(d)). This initial animation is constructed by starting with
a motion in which the scissors falls on the floor and then interac-
tively dragging it to the coatrack. By selecting and manipulating
the scissors at different points in its trajectory, this motion is trans-

formed into one in which the scissors first bounces off the ground,
performs a somersault in the air, and still successfully lands on the
coatrack. This example demonstrates how progressively more inter-
esting and complex motions may be created from simpler motions
using our interactive editing approach.

7 Conclusion

In this paper, we have described a new interactive technique for
manipulating rigid multi-body simulations. Instead of changing
the simulation parameters directly, we provide an intuitive inter-
face through which the animator can manipulate the position and
velocity of objects directly. Using our system, the animator can
rapidly design difficult physical animations that would be difficult
to achieve with existing rigid body simulators.

For some design tasks, the interactive paradigm is not the most
effective. For example, the animator may be hard pressed to chart
out the sequence of collisions that will leadall billiard balls into
pockets. In general, this is a difficult problem that, in some cases,
may not even have a solution. Other motion-construction tech-
niques [7, 27] address these problems and, in some scenarios, con-
struct appropriate motions after extensive computation. We envi-
sion a hybrid system that integrates a motion-construction tech-
nique with our interactive manipulation tool to improve the effec-
tiveness of the interactive paradigm.

For the Jacobian evaluation (Section 4), our technique assumes
that the collision function is analytically differentiable. This is not
always the case with the rigid body simulator we use in our proto-
type implementation. During a resting (i.e. sustained) contact or for
multiple simultaneous collisions the applied impulses are solutions
to a linear complementarity problem (LCP) [1]. In general, LCP
problems do not have closed-form, analytically differentiable solu-
tions. There are many alternative formulations which may facilitate
analytic differentiation. Further, the interactive manipulation tech-
nique would benefit from a specialized rigid body simulator. For
example, the simulator could simultaneously integrate both body
states and their derivatives.

Lastly, the interactive manipulation is not possible for all rigid
multi-body systems: in some scenarios simulation alone requires
considerable computational time. In these cases the animators will
have to resort to an off-line motion-construction technique.

Acknowledgements

We would like to thank the members of the CMU graphics lab for
helping us shape our ideas. Sebastian Grassia and Paul Heckbert
provided valuable suggestions and insights. We especially thank
David Baraff for kindly providing the rigid body simulator. We also
thank Elly Winner and Ivan Sokić for helping us in the final stages
of our paper submission. The support of the Microsoft Corporation
is gratefully acknowledged.

References

[1] David Baraff. Fast Contact Force Computation for Nonpen-
etrating Rigid Bodies. InComputer Graphics (Proceedings
of SIGGRAPH 94), Annual Conference Series, pages 23–34.
ACM SIGGRAPH, July 1994.

[2] David Baraff and Andrew Witkin. Large Steps in Cloth Sim-
ulation. InComputer Graphics (Proceedings of SIGGRAPH
98), Annual Conference Series, pages 43–54. ACM SIG-
GRAPH, July 1998.

[3] Ronen Barzel and Alan H. Barr. A Modeling System Based
On Dynamic Constraints. InComputer Graphics (Proceed-
ings of SIGGRAPH 87), Annual Conference Series, pages
179–188. ACM SIGGRAPH, August 1988.

[4] Ronen Barzel, John F. Hughes, and Daniel N. Wood. Plau-
sible Motion Simulation for Computer Graphics Animation.
In Computer Animation and Simulation ’96, Proceedings of
the Eurographics Workshop, pages 184–197, Poitiers, France,
September 1996.

[5] Dimitri P. Bertsekas.Nonlinear Programming. Athena Sci-
entific, Belmont, Massachusetts, 1995.

[6] Lynne Shapiro Brotman and Arun N. Netravali. Motion In-
terpolation by Optimal Control. InComputer Graphics (Pro-
ceedings of SIGGRAPH 88), volume 26 ofAnnual Conference
Series, pages 309–315. ACM SIGGRAPH, August 1988.

[7] Stephen Chenney and D. A. Forsyth. Sampling Plausible
Solutions to Multi-body Constraint Problems. InComputer
Graphics (Proceedings of SIGGRAPH 2000), Annual Confer-
ence Series. ACM SIGGRAPH, July 2000.

[8] Michael F. Cohen. Interactive Spacetime Control for Ani-
mation. InComputer Graphics (Proceedings of SIGGRAPH
92), Annual Conference Series, pages 293–302. ACM SIG-
GRAPH, July 1992.

[9] Bruce Donald, Patrick Xavier, John Canny, and John Reif.
Kinodynamic Motion Planning. Journal of the ACM,
40(5):1048–1066, November 1993.

[10] Nick Foster and Dimitri Metaxas. Realistic Animation of Liq-
uids. Graphical Models and Image Processing, 5(58):471–
483, 1996.

[11] Michael Garland and Paul S. Heckbert. Surface Simplifica-
tion Using Quadric Error Metrics. InComputer Graphics
(Proceedings of SIGGRAPH 97), Annual Conference Series,
pages 209–216. ACM SIGGRAPH, August 1997.

[12] Philip E Gill, Walter Murray, and Margaret H. Wright.Prac-
tical Optimization. Academic Press, London, 1989.

[13] Michael Gleicher and Andrew Witkin. Differential Manipu-
lation. InGraphics Interface, pages 61–67, June 1991.

[14] Michael Gleicher and Andrew Witkin. Through-the-Lens
Camera Control. InComputer Graphics (Proceedings of
SIGGRAPH 92), Annual Conference Series, pages 331–340.
ACM SIGGRAPH, July 1992.

[15] F. Sebastian Grassia. Practical Parameterization of Rota-
tion Using the Exponential Map.Journal of Graphics Tools,
3(3):29–48, 1998.

[16] Radek Grzeszczuk, Demetri Terzopoulos, and Geoffrey Hin-
ton. NeuroAnimator: Fast Neural Network Emulation and
Control of Physics-Based Models. InComputer Graphics
(Proceedings of SIGGRAPH 98), Annual Conference Series,
pages 9–20. ACM SIGGRAPH, July 1998.

[17] Mikako Harada, Andrew Witkin, and David Baraff. Inter-
active Physically-Based Manipulation of Discrete/Continuous
Models. InComputer Graphics (Proceedings of SIGGRAPH
95), Annual Conference Series, pages 199–208. ACM SIG-
GRAPH, August 1995.

[18] Wilfred Kaplan. Advanced Calculus. Addison-Wesley Pub-
lishing Company, Reading, Massachusetts, 1984.

[19] Zicheng Liu, Steven J. Gortler, and Michael F. Cohen. Hier-
archical Spacetime Control. InComputer Graphics (Proceed-
ings of SIGGRAPH 94), Annual Conference Series, pages 35–
42. ACM SIGGRAPH, July 1994.

[20] Matthew Moore and Jane Wilhelms. Collision Detection and
Response for Computer Animation. InComputer Graphics
(Proceedings of SIGGRAPH 88), Annual Conference Series,
pages 289–298. ACM SIGGRAPH, August 1988.

[21] J. Thomas Ngo and Joe Marks. Spacetime Constraints Re-
visited. InComputer Graphics (Proceedings of SIGGRAPH
93), Annual Conference Series, pages 343–350. ACM SIG-
GRAPH, August 1993.

[22] James F. O’Brien and Jessica K. Hodgins. Graphical Model-
ing and Animation of Brittle Fracture. InComputer Graphics
(Proceedings of SIGGRAPH 99), Annual Conference Series,
pages 111–120. ACM SIGGRAPH, August 1999.

[23] Zoran Popovíc and Andrew Witkin. Physically Based Motion
Transformation. InComputer Graphics (Proceedings of SIG-
GRAPH 99), Annual Conference Series, pages 11–20. ACM
SIGGRAPH, August 1999.

[24] Jos Stam. Stable Fluids. InComputer Graphics (Proceedings
of SIGGRAPH 99), Annual Conference Series, pages 121–
128. ACM SIGGRAPH, August 1999.

[25] Robert F. Stengel.Optimal Control and Estimation. Dover
Books on Advanced Mathematics, New York, 1994.

[26] Keith R. Symon.Mechanics, Third Edition. Addison-Wesley
Publishing Company, Reading, Massachussetts, 1971.

[27] Diane Tang, J. Thomas Ngo, and Joe Marks. N-Body Space-
time Constraints.Journal of Visualization and Computer An-
imation, 6:143–154, 1995.

[28] Andrew Witkin, Michael Gleicher, and William Welch. Inter-
active Dynamics. InProceedings of the 1990 symposium on
Interactive 3D graphics, pages 11–21, March 1990.

[29] Andrew Witkin and Michael Kass. Spacetime Constraints. In
Computer Graphics (Proceedings of SIGGRAPH 88), Annual
Conference Series, pages 159–168. ACM SIGGRAPH, Au-
gust 1988.

(a)

(b)

(c)

(d)

Figure 5: Physical motions (left) are interactively edited to satisfy desired constraints (right). Intermediate motions during the editing process
are shown at center. (a) An egg is dragged into a bucket after collision with a second egg. The second egg is required to fall into a second
bucket with a nail constraint. (b) A table top is made to land on its legs after collision with a pyramid. (c) A tumbling mug is kept from
tipping over by editing its orientation and angular velocity at the fourth collision with the ground. (d) A bounce and a flip is added to an
animation where a scissors lands on a coatrack. All interaction occurs in real time.

