

Towards Real-Time Photorealistic Rendering: Challenges and Solutions

Andreas Schilling, Universität Tübingen, WSI/GRIS1

ABSTRACT

A growing number of real-time applications need graphics with
photorealistic quality, especially in the field of training (virtual
operation, driving and flightsimulation), but also in the areas of
design or ergonomic research. We take a closer look at main
deficiencies of today's real time graphics hardware and present
solutions for several of the identified problems in the areas of
antialiasing and texture-, bump- and reflection mapping. In the
second part of the paper, a new method for antialiasing bump
maps is explained in more detail.
CR Categories and Subject Desscriptors: I.3.1 [Computer
Graphics]: Hardware Architecture – Graphics Processors, Raster
Display Devices; I.3.3 [Computer Graphics]: Picture/Image
generation.
Additional Key Words and Phrases: antialiasing, bump mapping,
environment mapping, anisotropic filtering.

1. INTRODUCTION
Using elaborate software techniques, it is possible to render
images that resemble photographs. These techniques are
commonly applied in the movie industry, but unfortunately, they
are not feasible for hardware implementation. A recently rendered
movie took a week of rendering for 3.5 minutes of the movie on
the PIXAR RenderFarm.
Nevertheless, high quality is needed in several application areas as,
e.g., ergonomics research, accident research or training.
But even expensive high-end graphics hardware suffers from some
important deficiencies.
These deficiencies provide the graphics hardware researcher with
interesting challenges for the next few years.

2. MAIN DEFICIENCIES OF REAL TIME
GRAPHICS - CHALLENGES FOR
GRAPHICS HARDWARE DESIGN.

The following sections identify some of the challenges for
computer graphics hardware and point towards solutions.

Complexity
With today's technology, it is easy to create scenes with hundreds
of millions of triangles. Using 3D-scanning, even more complex
scenes can be captured.
One answer to the problem of complexity is, of course, speed.
Replacing off-chip data-transfer by on-chip-transfer will provide
us with speedups of orders of magnitude within the next few
years [9]. But even such speedups will not suffice for the growing
demands. Methods to reduce the number of triangles that have to
be rendered will therefore become more and more important:
Simplification and Visibility Culling. Texture mapping and image-
based rendering are already state of the art and will be treated in an
own section. Mesh simplification and multiresolution modeling
[7][8]are however performed in software and are both well suited
to general-purpose architectures. Together with visibility culling,
these software techniques are an important part of Silicon
Graphics new OpenGL++ or Optimizer package. Visibility
culling, especially occlusion culling is up to now also performed in
software, but some of the algorithms could probably well be
supported with suitable hardware.

Texture Filtering
Texture Mapping is a common means to improve the appearance
of computer generated images. It allows to reduce the number of
rendered polygons significantly, especially in combination with
mesh simplification techniques. Special techniques, like the
imposters proposed by Schaufler et.al. [10] allow to exploit frame
coherency using texture mapping. Hardware support for texture
mapping can be found even on cheap graphics boards for the PC.
It is, however, astonishing that from low-end to high-end systems,
the hardware supports only isotropic filtering with mip -maps.
Isotropic filtering leads to very blurry images, if the viewing angle
is small. We have proposed footprint-assembly, as a simple
method to perform anisotropic filtering that requires only minimal
modifications to the mip-mapping hardware [11]. For a
comparison of the results see Fig. 1 and Fig. 2. New, completely
image based rendering techniques [5] can be supported by slightly

1Auf der Morgenstelle 10/C9, 72076 Tübingen, Germany,
 e-mail: schilling@uni-tuebingen.de

modified texture mapping hardware. Further research in this area is
needed.

Fig. 1: A puzzle for kids: can you read the secret writing in the
upper right corner? The puzzle can be solved by looking in a flat
angle on the writing..

Fig. 2: Top: solving the puzzle with standard mip-mapping, as
applied in cheap but also in very expensive systems. Bottom:
solving the puzzle with footprint-assembly

Surface appearance
An other challenge is the appearance of surfaces. Often, it is a
single surface that makes it easy to tell a computer generated image
from a photograph. This is true even for ray-traced images, that

can often be recognized by perfect reflecting surfaces. For real-
time graphics, a way out is bump-mapping, in combination with
environment mapping. Hardware support for bump-mapping is
state of the art , and will soon appear in the PC-graphics arena.
Unfortunately, antialiasing of bump maps is still a serious
problem, as will be shown in the following sections. In the case of
environment mapping, the problem is even more important, as the
sampling rate on the environment map can change by orders of
magnitudes within the same object due to changes of the curvature
of the object. But this makes the problem also more difficult to
solve. Traditionally, the filtering, which often is performed with
mip-maps, has to be adjusted manually to get the desired effect. If
no anisotropic antialiasing is possible, artifacts are unavoidable. A
simple example is the environment mapping on a cylinder, which
has a curvature only in one direction. In this direction we get a
very low sampling rate, which requires massive filtering. In the
other direction, parallel to the axis of the cylinder, the sampling
rate is higher and less filtering would be required.
If environment mapping is combined with bump mapping, even
more realistic images are possible. On the other hand, the
antialiasing is becoming more difficult, as a bumpy surface reflects
incoming rays into a larger sector of space, which corresponds to a
larger area of the environment map. We have developed a solution
that takes into account the curvature and the dispersion by the
bump map and is simple enough to realize it in hardware [12]. In
the second part of this paper, our solution for the antialiasing of
bump maps is presented in more detail.

3. ANTIALIASING OF BUMP MAPS
As mentioned, bump-maps, like texture maps or any other maps
consisting of discretely stored data have to be properly filtered, if
they are being resampled in the process of rendering an image. If,
however, bump maps are filtered in the traditional way, the
bumps are lost in the filtering process and the result is a smooth
surface. We introduce a bump map pyramid, that contains and
preserves isotropic or anisotropic roughness information in all
resolution levels.

4. PROBLEM
The antialiasing of bump maps is similarly important as the
antialiasing of textures in general (Fig. 3). However, filtering bump
maps in the common way doesn’t lead to the desired result, but
instead results in a smoothened surface. The lower the resolution
gets, the more we have to filter, the larger are the bumps that
disappear (Fig. 4). So filtering bump maps means to remove the
bumps. In reality however, a bumpy surface can be told from a
smooth surface, even if it is viewed from a larger distance, where
the individual bumps are not discernible anymore (Fig. 5). What
can be seen in this case, is the bumpiness or roughness of the
surface. The problem is, that filtering removes not only the
individual bumps, but also the bumpiness.
Bump maps can be represented as height- or offset-maps [4]. We
prefer a representation that uses a two-dimensional vector field of
offset vectors to be added to the normal vector, which is described

below. But regardless of how a bump map is represented, filtering
or averaging always leads to the mentioned effects.

Fig. 3: Antialiasing of bump maps is necessary; otherwise we get
rays reflected into random directions or random Phong
illumination values.

Fig. 4: Filtering the bump map removes bumps and produces a
smooth surface

Fig. 5: The roughness of a surface causes rays from more than
only one direction to be reflected into one pixel. These rays form a
reflection cone or a conical reflection body

5. RELATED WORK
Becker and Max [1] address the problem of rendering bump
mapped surfaces in multiple resolutions. They switch between
unfiltered bump maps and a BRDF (bi-directional reflection
distribution function). In order to avoid inconsistencies between
the two models, they use different redistribution functions for
each viewing angle to modify the standard bump mapping. For a
smooth transition, they blend between the results of the two
algorithms. The use of the BRDF is the correct solution for
rendering bumps that are too small to be discernible at a given
resolution; however, the method is very expensive. In addition, it
works only for bump maps containing only a narrow range of
frequencies. Only in this case, a single transition point between
bump mapping and using a BRDF can be determined. Therefore,
bump maps containing a broader range of bump frequencies have
to be broken up into multiple maps, each limited to a narrow
frequency range.

In his cone-tracing paper [5], Kirk uses cones instead of simple
rays for the purpose of antialiasing. He even mentions the
application for bump mapping, although he does not account for
the roughness but only for the curvature of the surface (difference
between normal vectors at the cone centerline intersection and the
cone edge). In this paper, we use reflection bodies that could be
regarded as a generalization of Kirk's cones to understand and
describe the antialiasing of bump-maps.

6. A NEW SOLUTION
If we want to preserve the important surface properties, in
addition to the bump map we have to introduce and use a new
type of maps: the roughness map. It stores the variance of the
normal directions from the area that contributes to one sample in
the filtered version of the bump map. Consider for example a lake,
seen from some distance. Even if there are waves, the surface of
the water within one pixels region can be represented by only one
normal vector, if standard bump mapping is used. If this pixel
region is large enough, this average normal vector will always point
straight up. So we will get the same reflections of the sun (or any
environment) as in a perfect mirror, regardless of the presence or
absence of small waves. If we store, however, the roughness of the
surface, we can account for the waves and get a better
approximation of the lake than a perfect mirror would be. We
could use the roughness as a measure for the exponent in the
Blinn-Phong model[3]. A better way will be described in [12],
where environment maps are used and the roughness serves as a
parameter for the anisotropic antialiasing of the environment map.

Fig. 6: Representation of bump map with offset vectors.

In this paper, we will first show a practical representation of
bump maps, then introduce an anisotropic measure for the
roughness, and then show, how resolution pyramids can be
calculated and practically stored. We offer a cheap, isotropic and a
more expensive anisotropic version for the bump -roughness
pyramid. Examples will illustrate the different methods.

7. THE REPRESENTATION OF BUMP
MAPS.

Bump mapping, even without antialiasing or environment
mapping is not commonly used in real-time systems due to its
heavy demands on the computing resources. This is partly,
because the traditional approach to bump mapping [4] includes
the calculation of the derivatives of the bump function.

Bump mapping with Precalculated
Derivatives
A possible solution that avoids the calculation of the derivatives
of the bump function is to store precalculated derivatives [11][2].
Besides saving the calculation, this has the advantage, that the
scaling of bump maps is as simple as the scaling of rgb-textures. If
traditional bump maps are scaled with an unknown factor, it is
impossible to calculate the derivatives any more. The most
difficult problem that remains to be solved is to find an
appropriate local coordinate system for each sample point, which
consists of the normal vector of the surface in this point and the
two tangential directions, for which the derivatives of the bump
function have to be calculated (we have the same problem with the
traditional representation of the bump maps). Once this
coordinate system has been established, the calculation of the new
normal vector is performed by adding the offset vector specified
by the precalculated derivatives in the local coordinate system to
the surface normal.

The Local Coordinate System
In theory, we are free to choose a suitable local coordinate system
for the perturbation of the normals by the bump maps. Of course,
the data stored in the bump maps is dependent of the chosen
coordinate system. Unfortunately, a local coordinate system that

ideally fits all needs for bump mapping doesn’t exist. But two
conditions should at least be met:

• the directions of the axes should be a continuous function of

the location.
• the system should allow to map a bump map on any surface

of an object (with any orientation), without having to
recalculate the whole bump map. (This means for example,
that a bump map describing the letters of the alphabet could
be used to carve words into a surface regardless of orientation
or location of the writing)

In addition, it would be nice, if
• the coordinate system would be orthogonal (which is not

necessarily the case for the projection of the u and v axes on
the surface; this is, by the way, a problem with standard
bump mapping).

For the description of some possible solutions, we will use a
notation similar to that of Blinn [4]:

The points of the original patch are given by p =














x
y
z

, the

partial derivatives are given by
∂
∂

p
p

u

x
y
z

u

u

u

u

= =
















 and pv ,

the surface normal is thus n p p= ×u v . The sufficiently small

displacement function f (with partial derivatives f u and f v)

defines a new surface: ′ = +p p n
n

f .

The new normal vector in this notation is

′ = + × + ×n n n
n

p p n
n

f fu v v u .

1. The „natural“ system (perpendicular to u-lines,
v-lines, n)

We define s
n
n

pu v= × and s p n
nv v u= × . We get:

n p p s s= × = ×u v u v and

′ = + +n n s sf fu u v v

The bump map stores fu and f v . This is classical bump

mapping with possibly non-orthogonal u-v coordinate system and

arbitrary pu and pv . Accordant to the notion of f as

displacement function, the „height“ of the bumps is constant and
does not scale with their size in the other dimensions if the map is
scaled. If the u-v mapping is continuous and „well behaved“, the

first requirement is also fulfilled and it is possible to interpolate
su and sv linearly across triangles (with perspective correction).

An example for a mapping that makes problems is a sphere, if
spherical coordinates are used for u and v; at the pole, one
coordinate is not unique. If su and sv are interpolated, the

lengths of su and sv should be interpolated separately from the

vectors themselves. As the perspective division doesn’t change
the directions of the vectors but only the lengths, only the lengths
need to be corrected; the correction of the direction is performed
automatically by choosing appropriately sized vectors at the
vertices. The direct interpolation of two vectors with different
lengths would cause the vector to change directions faster close to
the end with the shorter vector.

2. The natural system with normalized unit
vectors
As pointed out in Blinn’s original bump mapping paper [4], we
could also want the bump mapping to be scale invariant. For this,
the perturbation vector has to scale at the same rate as n ,
independent of scales in p (or su and sv). This can lead to

geometrically „impossible“ normals, if the object is scaled with
different scales in u and v directions, which should therefore be
excluded. The best choice for the coordinate system is the same as
the previous one, but with normalized lengths of su and sv ; thus

the interpolation of the lengths can be saved. Again, perspective
division is not needed, as it cancels out in the normalization
process.

3. An orthonormal system with main direction m
An interesting alternative for the local coordinate system is an
orthogonal system, that is derived from the normal vector n and
a main direction m . The unit vectors e1 and e 2 are

perpendicular to n . With the help of m they are defined such,
that e 2 is perpendicular to m and e1 is in the plane of n and

m [11]. The main direction m can be e.g. one of pu or pv (in

this case interpolated as above), but it can also be a constant
vector for a whole object. A good example is the mapping onto a
sphere like e.g. the earth with spherical coordinates. The direction
of the axis of the earth would serve as m and we would get e 1

pointing always in east-west direction, and e 2 in south north

direction. An important advantage of a constant main direction
m is that besides the normal vector, no other vector needs to be
interpolated across triangles. In addition, the coordinate system
can be calculated in hardware in the rasterizer/shader and needs not
to be calculated at all vertices by a setup process.
The calculation of the local coordinate system n , e1 , e 2 from

the interpolated normal vector n I and the main direction m is

performed using the following formula (Fig. 7):

n n
n

= I

I

,
nm
nme

×
×=1 , e n e2 1= × .

In this way, we get two tangential vectors:
• e 2 in the plane defined by n and m , and

• e1 perpendicular to that plane.

If the vectors need not be normalized, we multiply the three

vectors by n I for simpler calculation and get:

n n nI I= , II n
nm
nm

ne
×
×

=1 , e n n e2 1I I= × .

Fig. 7: The construction of the local coordinate system for the
bump map using a main direction m.

8. THE ROUGHNESS INFORMATION
We have now defined, how the bump maps can be represented
with precalculated derivatives or perturbation vectors in a suitable
local coordinate system. The next question is, how to represent
the roughness information, i.e. the bumps that are too small to be
represented in the current bump map level, but nevertheless are
important for the visual appearance of the surface. This roughness
information determines ultimately the size and shape of the
reflection bodies (Fig. 5), into which the small, pixel-wide viewing
beams are reflected by the rough surface. A complete description
of the roughness would consist of the complete distribution of
perturbation vectors within the considered area. The only
difference between the roughness information and the complete
detailed bump map is, that the location, where a certain
perturbation vector applies, can be omitted. But the complete
distribution of perturbation vectors is still much too much
information to store and to use. A common way out is to assume a
certain form of the distribution, which allows to represent the
distribution with only a few parameters. A one-dimensional
example for such parameters are average and variance in the case of
a normal distribution. The counterpart of the variance in the 2D
case is the two-dimensional covariance matrix K , which
describes the distribution in the form of an ellipse:

() ()x x K x x− − =−T 1 1 . On this ellipse, the probability

density is constant; the distance of a point x on the ellipse to the
average vector x represents the standard deviation in the

direction ()x x− of this point. Of course, the assumption of a

normal distribution is not valid in the general case, but the

representation of the roughness with covariance matrices of the
perturbation vectors gives us the possibility to represent the
normal vector distribution with an elliptical cone, that is
characterized by three parameters (plus two for the average
direction). This representation is appropriate for most practical
normal vector distributions and enables us to model anisotropic
reflection effects and produce realistic images of corrugated sheet
iron, brushed metal, small scrapes on a glossy surface, waves on a
lake and so on.

The calculation of the covariance matrix
The covariance matrix is calculated from the derivatives fu and

f v in the following way:

K =
− − −

− − −

















= 









= =

= =

∑ ∑
∑ ∑

1
2

0 0

0

2

0

n

f f f f f f

f f f f f f

a b
b c

u i u
i n

u i u v i v
i n

u i u v i v
i n

v i v
i n

() ()()

()() ()

,
..

, ,
..

, ,
..

,
..

This matrix describes an ellipse, shown in Fig. 8 (the one in the

middle of the figure). The ellipse ()f f
f
fu v

u

v

K − 





 =1 1

contains about 63% of the perturbation vectors, if their
distribution is a two-dimensional normal distribution. If, however,

the perturbation vectors ()f fu v are equally distributed in a

rectangle with edge lengths a and b , the ellipse has the main

axes 2 3a and 2 3b . We can account for that effect by

introducing a correction factor, which we will mention.
We have now the parameters of an ellipse, that describes the
distribution of the perturbation vectors and by this the
distribution of the normal vectors.

Fig. 8: The viewing rays contributing to a pixel form a beam. This
beam is reflected by a bumpy surface into the reflected viewing
beam. The shape of the reflected viewing beam is approximated
using the distribution of normal vectors in the reflecting area by an
elliptical cone. And yes: it could be argued that the normal vectors
that end in the drawn ellipse, should be drawn starting from one
origin, not from the surface location, they belong to. The same
applies for the reflected beam.

This information can be used in a subsequent step to shade the
pixel correctly. Depending on the used shading methods, there
exist different possibilities to use the roughness ellipse: In a ray
tracer, the ellipse can be used to perform antialiasing by
supersampling. A second possibility is to modify the Blinn-Phong
shading so that is uses the roughness information (see Appendix
A). Of course, it makes no sense to make huge efforts calculating
the bump map and then spoil the quality of the result by applying
a simple shading model. A method, that leads to a balanced
system with high image quality, is to use the roughness
information for the anisotropic antialiasing of environment maps
[12].

The roughness pyramid

Fig. 9: Bump- and roughness pyramid

Fig. 9 shows, how the surface information is stored in two
resolution pyramids, the bump pyramid and the roughness
pyramid. The bump pyramid is a standard mip map, its lower
resolution levels are calculated by downfiltering the higher
resolution levels. In the roughness pyramid, however, the lower
resolution levels contain not only the roughness information of the
higher resolution roughness levels, but also the roughness
information coming from the next level in the bump pyramid, i.e.
the roughness information representing those bumps, that are
omitted from the bump map in the current bump map level.
This contribution is represented with a covariance matrix,
calculated as shown above. It has to be added to the downfiltered
covariance matrix from the roughness map. As a result we get the
recursive rule for the calculation of the roughness covariance
matrix in level l (with a 2x2-boxfilter for creating the mip-map):

K K=
− − −

− − −

































−
=

= =

= =

∑
∑ ∑

∑ ∑
1
4 1

0 3

2

0 3 0 3

0 3

2

0 3

l n
n

u n u
n

u n u v n v
n

u n u v n v
n

v n v
n

f f f f f f

f f f f f f,
. .

,
..

, ,
. .

, ,
..

,
..

() ()()

()() ()

This formula is equivalent to the calculation of the covariance
matrix for all f u and fv values in the highest resolution level for

the whole area covered by the respective texel in level l.
It is, however, not convenient, to store the covariance matrices
themselves in the roughness map. This has two reasons:
• the covariance matrix contains the squares of the standard

deviations; to get uniform accuracy over the whole range of
standard deviations a value proportional to the standard
deviations has to be stored.

• if the roughness information is used for the antialiasing of
environment maps, not the covariance matrix K is needed,

but a matrix D with DD KT = .

We get a favorable representation, if we choose

D =








d d
d

1 2

30

and store the three numbers d1 , d2 and d3 , where d1 and d3

can be chosen to be nonnegative.

If K =








a b
b c

, we get:

d a b
c1

2

= − ,

d
b
c2 = , and

d c3 = .

Isotropic roughness representation
A more compact roughness representation can be achieved, if we
restrict ourselves to isotropic roughness information. Instead of
three numbers, we only store one number: the standard deviation
of the perturbation vector in the direction of the largest variance.
We get this number by diagonalizing the covariance matrix

K R R=








 −λ

λ
1
2

2
2

10
0

.

The value to be stored in the roughness map is λ1 with

λ λ1 2 0, ≥ and λ λ1 2> . Thus we get a conservative

approximation of the variance of the normal vectors within the
considered region of the bump map. For the shading, one choice is
again to use λ1 in a simpler version of the modified Blinn-Phong

model (Appendix A). Another possibility is to use λ1 for the

determination of the mipmap level when using environment maps
with standard mipmapping, as standard mipmapping allows no
anisotropic antialiasing anyway.

9. EXAMPLE IMAGES
The images shown on this page use the anisotropic roughness
pyramid, introduced in this paper in conjunction with
environment mapping.

Fig 10: Moon over rectangle; waves are bump mapped;
antialiasing with roughness pyramids.Background same as
environment map.

Fig. 11: Same as Fig 10; no antialiasing

Fig. 12: Reflection of zebras, geometry: flat, bump map derived
from Fig. 14; background: color ramp; environment map: Fig.
15; antialiasing with roughness pyramids.

Fig. 13: Same as Fig. 12; no antialiasing

As shown, roughness maps and roughness resolution pyramids are
a way to properly antialias bump maps. After mapping color
(texture maps) and bumps (bump maps), a new quality of surface
properties can now be mapped to objects. Without roughness
maps it is quite difficult to render real-looking images of a large
class of objects with reasonable effort. Examples are small
scratches on glossy surfaces or brushed surfaces but also every
kind of bump mapped surface viewed from some distance. The
expensive alternative to process such objects would be massive
supersampling.

10. PROSPECTS
Fortunately, there are still enough unsolved problems that wait for
simple solutions - simple enough to realize them in hardware.
Some important problems, like shadows, have even been left out
completely in the above treatise. This is good news for the
researches and developers of graphics hardware.

APPENDIX A: MODIFIED BLINN-PHONG
MODEL
In this appendix, we are describing a modification to the Blinn-
Phong shading model, that makes use of the roughness information
stored in the roughness maps. We are using the Blinn-Phong model
(luminance proportional to the dot product of surface normal
n and halfway vector h) as opposed to the original Phong

model (luminance proportional to the dot product of the reflected
light source ray r and the viewing ray v). Often the two shading
models are regarded as more or less equivalent or at least as having
equivalent physical relevance. This is not the case; the Blinn-
Phong model is an approximation of a micro-facet model, where
the probability to see a facet with normal vector n hmicro = (for

such facets we get reflection of the light source into the eye) is

proportional to ()n hT m
. This is much closer to a physical

model than the original Phong model, where the angle between the

reflected light ray and the eye vector serves as a measure for the
probability to see the reflected light source. This makes no
physical sense. In the literature, if a difference between the two
methods is recognized, they are compared most often by
comparing the form of a highlight on a sphere. For a human
observer, the correct form of a highlight on a sphere is difficult to
judge. If, however, the form of the highlight on a planar surface
would be used, the difference would be obvious (see Fig. 16).

Fig. 16: Phong shading vs. Blinn-Phong shading (outline of PB-
highlight plotted with Maple).

The modification of the algorithm consists of using a modified

value for the dot product n hT = cos()α before the

exponentiation depending on the direction of n h− . If n h−
points into the direction of greater variance of n , the angle is
reduced, if the variance of n in this direction is smaller, it is
increased. If d is the projection of n h− into the e1 - e2 -

plane, we can modify cos()′α instead of cos()α (see Fig 17

for the geometry used) with:

cos (')
cos ()

/ cos ()
2

2

4 2 2
α

α

α
=

+d Dd
,

where cos ()2 21α = − d .

Fig. 14

Fig. 15

We get α α'< , if the variance of n in the regarded direction is
larger than 1, otherwise we get α α'≥ . If only isotropic

roughness information characterized by λ1 is used, the formula

can be simplified to:

cos (')
cos ()

cos () cos ()
2 1

2 2

2
1

2 21
α

λ α
α λ α

=
− +

The size and the decay of the highlight towards its border can still
be controlled with the exponent m . However, as the roughness is
contained in D (or λ1 resp.), it is possible to use a constant

exponent m . The size of the highlight is then controlled entirely
by the roughness. Another possiblity is to use a fixed function

f (cos ())2 α with the desired behavior concerning the decay of

the highlight towards its border to calculate the final brightness.

Fig 17: Modification of α with the help of D

ACKNOWLEDGEMENTS
I very much appreciated working together with Günter Knittel.
Footprint-Assembly would not exist without him. I also want to
thank Axel Schildan, who coded the algorithms. He used Ralf
Sonntag's and Jens Hahn's RadioLab System. Thanks also to
Wolfgang Straßer and my other colleagues at WSI/GRIS and
especially to Reinhard Klein for fruitful discussions.

REFERENCES
[1] Becker, B.G., Max, N.L., Smooth Transitions between Bump

Rendering Algorithms, Proceedings of SIGGRAPH '93,
Computer Graphics 27, Annual Conference Series, pp. 183-
190.

[2] Benrnebroek, K., Ernst, I., Rüsseler, H., Wittig, O., Design
Principles of Hardware-based Phong Shading and Bump
Mapping, in Proceedings of the 11th Eurographics Workshop
on Graphics Hardware, Poitiers Aug. 1996.

[3] Blinn, J., Models of Light Reflection for Computer
Synthesized Pictures, SIGGRAPH 77, pp 192-198.

[4] Blinn, J., Simulation of Wrinkled Surfaces, SIGGRAPH 78,
pp 286-292.

[5] Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F. The
lumigraph. In Computer Graphics Proceedings, Annual

Conference Series, 1996 (ACM SIGGRAPH '96
Proceedings), pp. 43-54, 1996.

[6] Kirk, D.B., The Simulation of Natural Features Using Cone
Tracing, The Visual Computer, vol. 3, no. 2, (August 1987),
pp. 63-71.

[7] Klein, R. Linear approximation of trimmed surfaces. In R.R.
Martin, editor, The Mathematics Of Surfaces VI, 1994.

[8] Klein, R., Krämer, J. Building multiresolution models for fast
interactive visualization, Proc. SCCG97, Bratislava, June 5-8,
1997.

[9] Knittel, G., Schilling, A., Straßer, W. GRAMMY: High
Performance Graphics Using Graphics Memories. In High
Performance Computing for Graphics and Visualisation, M.
Chen (ed.), London 1995, Springer.

[10] Schaufler, G., Sturzlinger, W. A three-dimensional image
cache for virtual reality. Computer Graphics Forum,
15(3):C227-C235, C471-C472, September 1996.

[11] Schilling, A., Knittel, G., Straßer, W., Texram: A Smart
Memory for Texturing, Computer Graphics & Applications,
May 1996, pp. 32-41.

[12] Schilling, A. Antialiasing of Environment Maps. In
preparation.

