
 

Towards Real-Time Photorealistic Rendering: Challenges and Solutions 

Andreas Schilling, Universität Tübingen, WSI/GRIS1 

 
 
 
 

ABSTRACT 
 
A growing number of real-time applications need graphics with 
photorealistic quality, especially in the field of training (virtual 
operation, driving and flightsimulation), but also in the areas of 
design or ergonomic research. We take a closer look at main 
deficiencies of today's real time graphics hardware and present 
solutions for several of the identified problems in the areas of 
antialiasing and texture-, bump- and reflection mapping. In the 
second part of the paper, a new method for antialiasing bump 
maps is explained in more detail. 
CR Categories and Subject Desscriptors: I.3.1 [Computer 
Graphics]: Hardware Architecture – Graphics Processors, Raster 
Display Devices; I.3.3 [Computer Graphics]: Picture/Image 
generation. 
Additional Key Words and Phrases: antialiasing, bump mapping, 
environment mapping, anisotropic filtering. 

1. INTRODUCTION 
Using elaborate software techniques, it is possible to render 
images that resemble photographs. These techniques are 
commonly applied in the movie industry, but unfortunately, they 
are not feasible for hardware implementation. A recently rendered 
movie took a week of rendering for 3.5 minutes of the movie on 
the PIXAR RenderFarm. 
Nevertheless, high quality is needed in several application areas as, 
e.g., ergonomics research, accident research or training. 
But even expensive high-end graphics hardware suffers from some 
important deficiencies. 
These deficiencies provide the graphics hardware researcher with 
interesting challenges for the next few years. 
 

2. MAIN DEFICIENCIES OF REAL TIME 
GRAPHICS - CHALLENGES FOR 
GRAPHICS HARDWARE DESIGN. 

 
The following sections identify some of the challenges for 
computer graphics hardware and point towards solutions.  

Complexity 
With today's technology, it is easy to create scenes with hundreds 
of millions of triangles. Using 3D-scanning, even more complex 
scenes can be captured. 
One answer to the problem of complexity is, of course, speed. 
Replacing off-chip data-transfer by on-chip-transfer will provide 
us with speedups of orders of magnitude within the next few 
years [9]. But even such speedups will not suffice for the growing 
demands. Methods to reduce the number of triangles that have to 
be rendered will therefore become more and more important: 
Simplification and Visibility Culling. Texture mapping and image-
based rendering are already state of the art and will be treated in an 
own section. Mesh simplification and multiresolution modeling 
[7][8]are however performed in software and are both well suited 
to general-purpose architectures. Together with visibility culling, 
these software techniques are an important part of Silicon 
Graphics new OpenGL++ or Optimizer package. Visibility 
culling, especially occlusion culling is up to now also performed in 
software, but some of the algorithms could probably well be 
supported with suitable hardware. 

Texture Filtering 
Texture Mapping is a common means to improve the appearance 
of computer generated images. It allows to reduce the number of 
rendered polygons significantly, especially in combination with 
mesh simplification techniques. Special techniques, like the 
imposters proposed by Schaufler et.al. [10] allow to exploit frame 
coherency using texture mapping. Hardware support for texture 
mapping can be found even on cheap graphics boards for the PC. 
It is, however, astonishing that from low-end to high-end systems, 
the hardware supports only isotropic filtering with mip -maps. 
Isotropic filtering leads to very blurry images, if the viewing angle 
is small. We have proposed footprint-assembly, as a simple 
method to perform anisotropic filtering that requires only minimal 
modifications to the mip-mapping hardware [11]. For a 
comparison of the results see Fig. 1 and Fig. 2. New, completely 
image based rendering techniques [5] can be supported by slightly 
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modified texture mapping hardware. Further research in this area is 
needed. 
 

Fig. 1: A puzzle for kids: can you read the secret writing in the 
upper right corner? The puzzle can be solved by looking in a flat 
angle on the writing.. 

Fig. 2: Top: solving the puzzle with standard mip-mapping, as 
applied in cheap but also in very expensive systems. Bottom: 
solving the puzzle with footprint-assembly 

Surface appearance 
An other challenge is the appearance of surfaces. Often, it is a 
single surface that makes it easy to tell a computer generated image 
from a photograph. This is true even for ray-traced images, that 

can often be recognized by perfect reflecting surfaces. For real-
time graphics, a way out is bump-mapping, in combination with 
environment mapping.  Hardware support for bump-mapping is 
state of  the art , and will soon appear in the PC-graphics arena. 
Unfortunately, antialiasing of bump maps is still a serious 
problem, as will be shown in the following sections. In the case of 
environment mapping, the problem is even more important, as the 
sampling rate on the environment map can change by orders of 
magnitudes within the same object due to changes of the curvature 
of the object. But this makes the problem also more difficult to 
solve. Traditionally, the filtering, which often is performed with 
mip-maps, has to be adjusted manually to get the desired effect. If 
no anisotropic antialiasing is possible, artifacts are unavoidable. A 
simple example is the environment mapping on a cylinder, which 
has a curvature only in one direction. In this direction we get a 
very low sampling rate, which requires massive filtering. In the 
other direction, parallel to the axis of the cylinder, the sampling 
rate is higher and less filtering would be required. 
If environment mapping is combined with bump mapping, even 
more realistic images are possible. On the other hand, the 
antialiasing is becoming more difficult, as a bumpy surface reflects 
incoming rays into a larger sector of space, which corresponds to a 
larger area of the environment map. We have developed a solution 
that takes into account the curvature and the dispersion by the 
bump map and is simple enough to realize it in hardware [12]. In 
the second part of this paper, our solution for the antialiasing of 
bump maps is presented in more detail. 
 
3. ANTIALIASING OF BUMP MAPS 
As mentioned, bump-maps, like texture maps or any other maps 
consisting of discretely stored data have to be properly filtered, if 
they are being resampled in the process of rendering an image. If, 
however, bump maps are filtered in the traditional way, the 
bumps are lost in the filtering process and the result is a smooth 
surface. We introduce a bump map pyramid, that contains and 
preserves isotropic or anisotropic roughness information in all 
resolution levels. 

4. PROBLEM 
The antialiasing of bump maps is similarly important as the 
antialiasing of textures in general (Fig. 3). However, filtering bump 
maps in the common way doesn’t lead to the desired result, but 
instead results in a smoothened surface. The lower the resolution 
gets, the more we have to filter, the larger are the bumps that 
disappear (Fig.  4). So filtering bump maps means to remove the 
bumps. In reality however, a bumpy surface can be told from a 
smooth surface, even if it is viewed from a larger distance, where 
the individual bumps are not discernible anymore (Fig.  5). What 
can be seen in this case, is the bumpiness or roughness of the 
surface. The problem is, that filtering removes not only the 
individual bumps, but also the bumpiness.  
Bump maps can be represented as height- or offset-maps [4]. We 
prefer a representation that uses a two-dimensional vector field of 
offset vectors to be added to the normal vector, which is described 



 

below. But regardless of how a bump map is represented, filtering 
or averaging always leads to the mentioned effects. 
 

 

Fig. 3: Antialiasing of  bump maps is necessary; otherwise we get 
rays reflected into random directions or random Phong 
illumination values. 

 

Fig. 4: Filtering the bump map removes bumps and produces a 
smooth surface 

 

 

Fig. 5: The roughness of a surface causes rays from more than 
only one direction to be reflected into  one pixel. These rays form a 
reflection cone or a conical reflection body 

5. RELATED WORK 
Becker and Max [1] address the problem of rendering bump 
mapped surfaces in multiple resolutions. They switch between 
unfiltered bump maps and a BRDF (bi-directional reflection 
distribution function). In order to avoid inconsistencies between 
the two models, they use different redistribution functions for 
each viewing angle to modify the standard bump mapping.  For a 
smooth transition, they blend between the results of the two 
algorithms. The use of the BRDF is the correct solution for 
rendering bumps that are too small to be discernible at a given 
resolution; however, the method is  very expensive. In addition, it 
works only for bump maps containing only a narrow range of 
frequencies. Only in this case, a single transition point between 
bump mapping and using a BRDF can be determined. Therefore, 
bump maps containing a broader range of bump frequencies have 
to be broken up into multiple maps, each limited to a narrow 
frequency range. 
 
In his cone-tracing paper [5], Kirk uses cones instead of simple 
rays for the purpose of antialiasing. He even mentions the 
application for bump mapping, although he does not account for 
the roughness but only for the curvature of the surface (difference 
between normal vectors at the cone centerline intersection and the 
cone edge). In this paper, we use reflection bodies that could be 
regarded as a generalization of Kirk's cones to understand and 
describe the antialiasing of bump-maps. 

6. A NEW SOLUTION  
If we want to preserve the important  surface properties, in 
addition to the bump map we have to introduce and use a new 
type of  maps: the roughness map. It stores the variance of the 
normal directions from the area that contributes to one sample in 
the filtered version of the bump map. Consider for example a lake, 
seen from some distance. Even if there are waves, the surface of 
the water within one pixels region can be represented by only one 
normal vector, if standard bump mapping is used. If this pixel 
region is large enough, this average normal vector will always point 
straight up. So we will get the same reflections of the sun (or any 
environment) as in a perfect mirror, regardless of the presence or 
absence of small waves. If we store, however, the roughness of the 
surface, we can account for the waves and get a better 
approximation of the lake than a perfect mirror would be. We 
could use the roughness as a measure for the exponent in the 
Blinn-Phong model[3]. A better way will be described in [12], 
where environment maps are used and the roughness serves as a 
parameter for the anisotropic antialiasing of the environment map. 



 

 

Fig. 6: Representation of bump map with offset vectors. 

In this paper, we will first show a practical representation of 
bump maps, then introduce an anisotropic measure for the 
roughness, and then show, how resolution pyramids can be 
calculated and practically stored. We offer a cheap, isotropic and a 
more expensive anisotropic version for the bump -roughness 
pyramid. Examples will illustrate the different methods. 

7. THE REPRESENTATION OF BUMP 
MAPS. 

Bump mapping, even without antialiasing or environment 
mapping is not commonly used in real-time systems due to its 
heavy demands on the computing resources. This is partly, 
because the traditional approach to bump mapping  [4] includes 
the calculation of the derivatives of the bump function. 

Bump mapping with Precalculated 
Derivatives 
A possible solution that avoids the calculation of the derivatives 
of the bump function is to store precalculated derivatives [11][2]. 
Besides saving the calculation, this has the advantage, that the 
scaling of bump maps is as simple as the scaling of rgb-textures. If 
traditional bump maps are scaled with an unknown factor, it is 
impossible to calculate the derivatives any more. The most 
difficult problem that remains to be solved is to find an 
appropriate local coordinate system for each sample point, which 
consists of the normal vector of the surface in this point and the 
two tangential directions, for which the derivatives of the bump 
function have to be calculated (we have the same problem with the 
traditional representation of the bump maps). Once this 
coordinate system has been established, the calculation of the new 
normal vector is performed by adding the offset vector specified 
by the precalculated derivatives in the local coordinate system to 
the surface normal. 

The Local Coordinate System 
In theory, we are free to choose a suitable local coordinate system 
for the perturbation of the normals by the bump maps. Of course, 
the data stored in the bump maps is dependent of the chosen 
coordinate system. Unfortunately, a local coordinate system that 

ideally fits all needs for bump mapping doesn’t exist. But two 
conditions should at least be met: 
 
• the  directions of the axes should be a continuous function of 

the location. 
• the system should allow to map a bump map on any surface 

of an object (with any orientation), without having to 
recalculate the whole bump map. (This means for example, 
that a bump map describing the letters of the alphabet could 
be used to carve words into a surface regardless of orientation 
or location of the writing) 

 
In addition, it would be nice, if 
• the coordinate system would be orthogonal (which is not 

necessarily the case for the projection of the u and v axes on 
the surface; this is, by the way, a problem with standard 
bump mapping). 

 
For the description of some possible solutions, we will use a 
notation similar to that of Blinn [4]: 
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the surface normal is thus n p p= ×u v . The sufficiently small 

displacement function f  (with partial derivatives f u  and f v ) 

defines a new surface: ′ = +p p n
n

f . 

The new normal vector in this notation is 

′ = + × + ×n n n
n

p p n
n

f fu v v u . 

 

1. The „natural“ system (perpendicular to u-lines, 
v-lines, n) 

We define s
n
n

pu v= ×  and s p n
nv v u= × . We get: 

n p p s s= × = ×u v u v  and 

′ = + +n n s sf fu u v v  

The bump map stores fu  and f v . This is classical bump 

mapping with possibly non-orthogonal u-v coordinate system and 

arbitrary pu  and pv . Accordant to the notion of f  as 

displacement function, the „height“ of the bumps is constant and 
does not scale with their size in the other dimensions if the map is 
scaled. If the u-v mapping is continuous and „well behaved“, the 



 

first requirement is also fulfilled and it is possible to interpolate 
su  and sv  linearly across triangles (with perspective correction). 

An example for a mapping that makes problems is a sphere, if 
spherical coordinates are used for u and v; at the pole, one 
coordinate is not unique. If su  and sv  are interpolated, the 

lengths of su  and sv  should be interpolated separately from the 

vectors themselves. As the perspective division doesn’t change 
the directions of the vectors but only the lengths, only the lengths 
need to be corrected; the correction of the direction is performed 
automatically by choosing appropriately sized vectors at the 
vertices. The direct interpolation of two vectors with different 
lengths would cause the vector to change directions faster close to 
the end with the shorter vector. 

2. The natural system with normalized unit 
vectors 
As pointed out in Blinn’s original bump mapping paper [4], we 
could also want the  bump mapping to be scale invariant. For this, 
the perturbation vector has to scale at the same rate as n , 
independent of scales in p  (or su  and sv ). This can lead to 

geometrically „impossible“  normals, if the object is scaled with 
different scales in u and v directions, which should therefore be 
excluded. The best choice for the coordinate system is the same as 
the previous one, but with normalized lengths of su  and sv ; thus 

the interpolation of the lengths can be saved. Again, perspective 
division is not needed, as it cancels out in the normalization 
process. 

3. An orthonormal system with main direction m  
An interesting alternative for the local coordinate system is an 
orthogonal system, that is derived from the normal vector n  and 
a main direction m . The unit vectors e1  and e 2  are 

perpendicular to n . With the help of m  they are defined such, 
that e 2  is perpendicular to m  and e1  is in the plane of n  and 

m [11]. The main direction m  can be e.g. one of pu  or pv  (in 

this case interpolated as above), but it can also be a constant 
vector for a whole object. A good example is the mapping onto a 
sphere like e.g. the earth with spherical coordinates. The direction 
of the axis of the earth would serve as m  and we would get e 1  

pointing always in east-west direction, and e 2  in south north 

direction. An important advantage of a constant main direction 
m  is that besides the normal vector, no other vector needs to be 
interpolated across triangles. In addition, the coordinate system 
can be calculated in hardware in the rasterizer/shader and needs not 
to be calculated at all vertices by a setup process. 
The calculation  of the local coordinate system n , e1 , e 2  from 

the interpolated normal vector n I  and the main direction m  is 

performed using the following formula (Fig. 7): 

n n
n

= I

I

, 
nm
nme

×
×=1 , e n e2 1= × . 

In this way, we get two tangential vectors:  
• e 2  in the plane defined by  n  and m , and 

•  e1  perpendicular to that plane. 

If the vectors need not be normalized, we multiply the three 

vectors by n I  for simpler calculation and get: 

n n nI I= , II n
nm
nm

ne
×
×

=1 , e n n e2 1I I= × . 

 

Fig. 7: The construction of the local coordinate system for the 
bump map using a main direction m. 

8. THE ROUGHNESS INFORMATION 
We have now defined, how the bump maps can be represented 
with precalculated derivatives or perturbation vectors in a suitable 
local coordinate system. The next question is, how to represent 
the roughness information, i.e. the bumps that are too small to be 
represented in the current bump map level, but nevertheless are 
important for the visual appearance of the surface. This roughness 
information determines ultimately the size and shape of the 
reflection bodies (Fig.  5), into which the small, pixel-wide viewing 
beams are reflected by the rough surface. A complete description 
of the roughness would consist of the complete distribution of 
perturbation vectors within the considered area. The only 
difference between the roughness information and the complete 
detailed bump map is, that the location, where a certain 
perturbation vector applies, can be omitted. But the complete 
distribution of perturbation vectors is still much too much 
information to store and to use. A common way out is to assume a 
certain form of the distribution, which allows to represent the 
distribution with only a few parameters. A one-dimensional 
example for such parameters are average and variance in the case of 
a normal distribution. The counterpart of the variance in the 2D 
case is the two-dimensional covariance matrix K , which 
describes the distribution in the form of an ellipse: 

( ) ( )x x K x x− − =−T 1 1 . On this ellipse, the probability 

density is constant; the distance of a point x  on the ellipse to the 
average vector x  represents the standard deviation in the 

direction ( )x x− of this point. Of course, the assumption of a 

normal distribution is not valid in the general case, but the 



 

representation of the roughness with covariance matrices of the 
perturbation vectors gives us the possibility to represent the 
normal vector distribution with an elliptical cone, that is 
characterized by three parameters (plus two for the average 
direction). This representation is appropriate for most practical 
normal vector distributions and enables us to model anisotropic 
reflection effects and produce realistic images of corrugated sheet 
iron, brushed metal, small scrapes on a glossy surface, waves on a 
lake and so on.  
 

The calculation of the covariance matrix 
The covariance matrix is calculated from the derivatives fu  and 

f v  in the following way: 
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This matrix describes an ellipse, shown in Fig. 8 (the one in the 

middle of the figure). The ellipse  ( )f f
f
fu v

u

v

K − 





 =1 1  

contains about 63% of the perturbation vectors, if their 
distribution is a two-dimensional normal distribution. If, however, 

the perturbation vectors ( )f fu v  are equally distributed in a 

rectangle with edge lengths a  and b , the ellipse has the main 

axes 2 3a  and 2 3b . We can account for that effect by 

introducing a correction factor, which we will mention. 
We have now the parameters of an ellipse, that describes the 
distribution of the perturbation vectors and by this the 
distribution of the normal vectors. 

 

Fig. 8: The viewing rays contributing to a pixel form a beam. This 
beam is reflected by a bumpy surface into the reflected viewing 
beam. The shape of the reflected viewing beam is approximated 
using the distribution of normal vectors in the reflecting area by an 
elliptical cone. And yes: it could be argued that the normal vectors 
that end in the drawn ellipse, should be drawn starting from one 
origin, not from the surface location, they belong to. The same 
applies for the reflected beam. 

This information can be used in a subsequent step to shade the 
pixel correctly. Depending on the used shading methods, there 
exist different possibilities to use the roughness ellipse: In a ray 
tracer, the ellipse can be used to perform antialiasing by 
supersampling. A second possibility is to modify the Blinn-Phong 
shading so that is uses the roughness information (see Appendix 
A). Of course, it makes no sense to make huge efforts calculating 
the bump map and then spoil the quality of the result by applying 
a simple shading model. A  method, that leads to a balanced 
system with high image quality, is to use the roughness 
information for the anisotropic antialiasing of environment maps 
[12]. 

The roughness pyramid 
 

 

Fig. 9: Bump- and roughness pyramid 

Fig. 9 shows, how the surface information is stored in two 
resolution pyramids, the bump pyramid and the roughness 
pyramid. The bump pyramid is a standard mip map, its lower 
resolution levels are calculated by downfiltering the higher 
resolution levels. In the roughness pyramid, however, the lower 
resolution levels contain not only the roughness information of the 
higher resolution roughness levels, but also the roughness 
information coming from the next level in the bump pyramid, i.e. 
the roughness information representing those bumps, that are 
omitted from the bump map in the current bump map level. 
This contribution is represented with a covariance matrix, 
calculated as shown above. It has to be added to the downfiltered 
covariance matrix from the roughness map. As a result we get the 
recursive rule for the calculation of the roughness covariance 
matrix in level l (with a 2x2-boxfilter for creating the mip-map): 
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This formula is equivalent to the calculation of the covariance 
matrix for all f u  and fv  values in the highest resolution level for 

the whole area covered by the respective texel in level l.  
It is, however, not convenient, to store the covariance matrices 
themselves in the roughness map. This has two reasons: 
• the covariance matrix contains the squares of the standard 

deviations; to get uniform accuracy over the whole range of 
standard deviations a value proportional to the standard 
deviations has to be stored. 

• if the roughness information is used for the antialiasing of 
environment maps, not the covariance matrix K  is needed, 

but a matrix D  with DD KT = . 



 

  
We get a favorable representation, if we choose 
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and store the three numbers d1 , d2  and d3 , where d1  and d3  

can be chosen to be nonnegative. 

If K =
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Isotropic roughness representation 
A more compact roughness representation can be achieved, if we 
restrict ourselves to isotropic roughness information. Instead of  
three numbers, we only store one number: the standard deviation 
of the perturbation vector in the direction of the largest variance. 
We get this number by diagonalizing the covariance matrix 

K R R=








 −λ

λ
1
2

2
2

10
0

. 

The value to be stored in the roughness map is λ1 with 

λ λ1 2 0, ≥  and λ λ1 2> . Thus we get a conservative 

approximation of the variance of the normal vectors within the 
considered region of the bump map. For the shading, one choice is 
again to use λ1   in a simpler version of the modified Blinn-Phong 

model (Appendix A). Another possibility is to use λ1   for the 

determination of the mipmap level when using environment maps 
with standard mipmapping, as standard mipmapping allows no 
anisotropic antialiasing anyway. 

9. EXAMPLE IMAGES 
The images shown  on this page use the anisotropic roughness 
pyramid, introduced in this paper in conjunction with 
environment mapping. 

 
 
 

 
 

Fig 10: Moon over rectangle; waves are bump mapped; 
antialiasing with roughness pyramids.Background same as 
environment map. 

 
 

Fig. 11: Same as Fig 10; no antialiasing 

 
 

Fig. 12: Reflection of zebras, geometry: flat, bump map derived 
from Fig. 14; background: color ramp; environment map: Fig. 
15; antialiasing with roughness pyramids. 



 

 
 
 
 
 

 
 
Fig. 13: Same as Fig. 12; no antialiasing 



 

 
 
As shown, roughness maps and roughness resolution pyramids are 
a way to properly antialias bump maps. After mapping color 
(texture maps) and bumps (bump maps), a new quality of surface 
properties can now be mapped to objects. Without roughness 
maps it is quite difficult to render real-looking images of a large 
class of objects with reasonable effort. Examples are small 
scratches on glossy surfaces or brushed surfaces but also every 
kind of bump mapped surface viewed from some distance. The 
expensive alternative to process such objects would be massive 
supersampling.  
 

10. PROSPECTS 
Fortunately, there are still enough unsolved problems that wait for 
simple solutions - simple enough to realize them in hardware.  
Some important problems, like shadows, have even been left out 
completely in the above treatise. This is good news for the 
researches and developers of graphics hardware. 

APPENDIX A: MODIFIED BLINN-PHONG 
MODEL 
In this appendix, we are describing a modification to the Blinn-
Phong shading model, that makes use of the roughness information 
stored in the roughness maps. We are using the Blinn-Phong model 
(luminance proportional to the dot product of  surface normal 
n and halfway vector h ) as opposed to the original Phong 

model (luminance proportional to the dot product of the reflected 
light source ray r  and the viewing ray v ). Often the two shading 
models are regarded as more or less equivalent or at least as having 
equivalent physical relevance. This is not the case; the Blinn-
Phong model is an approximation of a micro-facet model, where 
the probability to see a facet with normal vector n hmicro = (for 

such facets we get reflection of the light source into the eye) is 

proportional to ( )n hT m
. This is much closer to a physical 

model than the original Phong model, where the angle between the 

reflected light ray and the eye vector serves as a measure for the 
probability to see the reflected light source. This makes no 
physical sense. In the literature, if a difference between the two 
methods is recognized, they are compared most often by 
comparing the form of a highlight on a sphere. For a human 
observer, the correct form of a highlight on a sphere is difficult to 
judge. If, however, the form of the highlight on a planar surface 
would be used, the difference would be obvious (see Fig. 16). 
 

 

Fig. 16: Phong shading vs. Blinn-Phong shading (outline of PB-
highlight plotted with Maple). 

 
The modification of the algorithm consists of using a modified 

value for the dot product n hT = cos( )α before the 

exponentiation depending on the direction of n h− . If n h−  
points into the direction of greater variance of n , the angle is 
reduced, if the variance of n  in this direction is smaller, it is 
increased. If d  is the projection of n h− into the e1 - e2 -

plane, we can modify cos( )′α  instead of cos( )α  (see Fig 17 

for the geometry used) with: 
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2

2

4 2 2
α

α

α
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+d Dd
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where cos ( )2 21α = − d . 
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We get α α'< , if the variance of n  in the regarded direction is 
larger than 1, otherwise we get α α'≥ . If only isotropic 

roughness information characterized by λ1  is used, the formula 

can be simplified to: 

cos ( ')
cos ( )

cos ( ) cos ( )
2 1

2 2

2
1

2 21
α

λ α
α λ α

=
− +

 

The size and the decay of the highlight towards its border can still 
be controlled with the exponent m . However, as the roughness is 
contained in D  (or λ1  resp.), it is possible to use a constant 

exponent m . The size of the highlight is then controlled entirely 
by the roughness. Another possiblity is to use a fixed function 

f (cos ( ))2 α  with the desired behavior concerning the decay of 

the highlight towards its border to calculate the final brightness. 
 

 

Fig 17: Modification of α with the help of  D 

ACKNOWLEDGEMENTS 
I very much appreciated working together with Günter Knittel. 
Footprint-Assembly would not exist without him. I also want to 
thank Axel Schildan, who coded the algorithms. He used Ralf 
Sonntag's and Jens Hahn's RadioLab System. Thanks also to 
Wolfgang Straßer and my other colleagues at WSI/GRIS and 
especially to Reinhard Klein for fruitful discussions. 

REFERENCES 
[1] Becker, B.G., Max, N.L., Smooth Transitions between Bump 

Rendering Algorithms, Proceedings of SIGGRAPH '93, 
Computer Graphics 27, Annual Conference Series, pp. 183-
190.  

[2] Benrnebroek, K., Ernst, I., Rüsseler, H., Wittig, O., Design 
Principles of Hardware-based Phong Shading and Bump 
Mapping, in Proceedings of the 11th Eurographics Workshop 
on Graphics Hardware, Poitiers Aug. 1996. 

[3] Blinn, J., Models of Light Reflection for Computer 
Synthesized Pictures, SIGGRAPH 77, pp 192-198. 

[4] Blinn, J., Simulation of Wrinkled Surfaces, SIGGRAPH 78, 
pp 286-292. 

[5] Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F. The 
lumigraph. In Computer Graphics Proceedings, Annual 

Conference Series, 1996  (ACM SIGGRAPH '96 
Proceedings), pp. 43-54, 1996. 

[6] Kirk, D.B., The Simulation of Natural Features Using Cone 
Tracing, The Visual Computer, vol. 3, no. 2, (August 1987), 
pp. 63-71. 

[7] Klein, R. Linear approximation of trimmed surfaces. In R.R. 
Martin, editor, The Mathematics Of Surfaces VI, 1994. 

[8] Klein, R., Krämer, J. Building multiresolution models for fast 
interactive visualization, Proc. SCCG97, Bratislava, June 5-8, 
1997. 

[9] Knittel, G., Schilling, A., Straßer, W. GRAMMY: High 
Performance Graphics Using Graphics Memories. In High 
Performance Computing for Graphics and Visualisation, M. 
Chen (ed.), London 1995, Springer. 

[10] Schaufler, G., Sturzlinger, W. A three-dimensional image 
cache for virtual reality. Computer Graphics Forum, 
15(3):C227-C235, C471-C472, September 1996. 

[11] Schilling, A., Knittel, G., Straßer, W., Texram: A Smart 
Memory for Texturing, Computer Graphics & Applications, 
May 1996, pp. 32-41. 

[12] Schilling, A. Antialiasing of Environment Maps. In 
preparation. 

 


