
 NVIDIA OpenGL Extension Specifications

1

NVIDIA OpenGL
Extension Specifications

NVIDIA Corporation

Mark J. Kilgard, editor
mjk@nvidia.com

May 21, 2001

mailto:mjk@nvidia.com

 NVIDIA OpenGL Extension Specifications

 2

Copyright NVIDIA Corporation, 1999, 2000, 2001.

This document is protected by copyright and contains information
proprietary to NVIDIA Corporation as designated in the document.

Other OpenGL extension specifications can be found at:

http://oss.sgi.com/projects/ogl-sample/registry/

http://oss.sgi.com/projects/ogl-sample/registry/

NVIDIA OpenGL Extension Specifications

 3

Table of Contents

Table of NVIDIA OpenGL Extension Support.............................. 4
ARB_imaging... 6
ARB_multisample... 7
ARB_multitexture... 18
ARB_texture_border_clamp... 19
ARB_texture_compression.. 25
ARB_texture_cube_map... 48
ARB_texture_env_add.. 62
ARB_texture_env_combine.. 65
ARB_texture_env_dot3... 73
ARB_transpose_matrix... 76
EXT_abgr... 81
EXT_bgra... 84
EXT_blend_color.. 86
EXT_blend_minmax... 89
EXT_blend_subtract... 92
EXT_compiled_vertex_array.. 95
EXT_draw_range_elements.. 98
EXT_fog_coord... 101
EXT_packed_pixels... 108
EXT_paletted_texture.. 117
EXT_point_parameters.. 125
EXT_rescale_normal.. 130
EXT_secondary_color... 133
EXT_separate_specular_color... 141
EXT_shared_texture_palette.. 146
EXT_stencil_wrap.. 149
EXT_texture_compression_s3tc.. 151
EXT_texture3D... 159
EXT_texture_cube_map.. 169
EXT_texture_edge_clamp.. 170
EXT_texture_env_add... 173
EXT_texture_env_combine... 176
EXT_texture_env_dot3.. 182
EXT_texture_filter_anisotropic...................................... 185
EXT_texture_lod_bias.. 191
EXT_texture_object.. 196
EXT_vertex_array.. 204
EXT_vertex_weighting.. 216
IBM_texture_mirrored_repeat... 227
NV_blend_square... 230
NV_evaluators... 233
NV_fence.. 249
NV_fog_distance... 258
NV_light_max_exponent... 262
NV_multisample_filter_hint.. 265
NV_packed_depth_stencil... 269
NV_register_combiners... 277
NV_register_combiners2.. 305
NV_texgen_emboss.. 311
NV_texgen_reflection.. 317
NV_texture_compression_vtc.. 320
NV_texture_env_combine4... 325
NV_texture_rectangle.. 330
NV_texture_shader... 343
NV_texture_shader2.. 401
NV_vertex_array_range... 412
NV_vertex_array_range2.. 425
NV_vertex_program... 428
SGIS_generate_mipmap.. 506
SGIS_texture_lod.. 510
SGIX_depth_texture.. 517
SGIX_shadow... 520
WGL_ARB_buffer_region... 524
WGL_ARB_extensions_string... 530
WGL_ARB_pbuffer... 533
WGL_ARB_pixel_format.. 540
WGL_EXT_swap_control.. 553

Table of NVIDIA OpenGL Extension Support NVIDIA OpenGL Extension Specifications

 4

Table of NVIDIA OpenGL Extension Support

Extension
RIVA 128
family

RIVA TNT
family

NV1x
family

NV2x
family Notes

ARB_imaging R10 R10 X
ARB_multisample X
ARB_multitexture X X X
ARB_texture_border_clamp X
ARB_texture_compression X X
ARB_texture_cube_map X X
ARB_texture_env_add X X X
ARB_texture_env_combine X X
ARB_texture_env_dot3 X X
ARB_transpose_matrix X X X
EXT_abgr X X X X
EXT_bgra X X X X 1.2 functionality
EXT_blend_color X X ARB_imaging
EXT_blend_minmax X X ARB_imaging
EXT_blend_subtract X X ARB_imaging
EXT_compiled_vertex_array X X X
EXT_draw_range_elements X X X 1.2 functionality
EXT_fog_coord X X X
EXT_packed_pixels X X X X 1.2 functionality
EXT_paletted_texture X X
EXT_point_parameters X X X X
EXT_rescale_normal X X 1.2 functionality
EXT_secondary_color X X X
EXT_separate_specular_color X X X 1.2 functionality
EXT_shared_texture_palette X X
EXT_stencil_wrap X X X X
EXT_texture_compression_s3tc X X
EXT_texture3D sw sw X 1.2 functionality
EXT_texture_cube_map X X use ARB version
EXT_texture_edge_clamp X X X 1.2 functionality
EXT_texture_env_add X X X see ARB version
EXT_texture_env_dot3 X X see ARB version
EXT_texture_env_combine X X X see ARB version
EXT_texture_filter_anisotropic X X
EXT_texture_lod_bias R10 X X
EXT_texture_object X X X X 1.1 functionality
EXT_vertex_array X X X X 1.1 functionality
EXT_vertex_weighting X X X
KTX_buffer_region X X X X
IBM_texture_mirrored_repeat X X X
NV_blend_square X X X
NV_evaluators R10 R10 X
NV_fence X X
NV_fog_distance X X X
NV_light_max_exponent X X X
NV_multisample_filter_hint X
NV_register_combiners X X
NV_register_combiners2 em X
NV_texgen_emboss X
NV_texgen_reflection X X X X
NV_texture_compression_vtc
NV_texture_env_combine4 X X X
NV_texture_rectangle X X
NV_texture_shader em X
NV_texture_shader2
NV_vertex_array_range X X
NV_vertex_array_range2 R10 R10
NV_vertex_program R10 X
SGIS_generate_mipmap R10 X
SGIS_multitexture X X X use ARB version
SGIS_texture_lod X X 1.2 functionality
SGIX_depth_texture em X
SGIX_shadow em X
WGL_ARB_buffer_region X X X Win32
WGL_ARB_extensions_string X X X Win32
WGL_ARB_pixel_format R10 R10 X X Win32
WGL_ARB_pbuffer R10 R10 X Win32
WGL_EXT_extensions_string X X X Win32
WGL_EXT_swap_control X X X Win32
WIN_swap_hint X X X X Win32

NVIDIA OpenGL Extension Specifications Table of NVIDIA OpenGL Extension Support

 5

Key for table entries:

X = supported

sw = supported by software rasterization (expect poor performance)

em = like sw, but only supported when “NV20 emulate” mode is enabled using
Release 10

R10 = introduced in the Release 10 OpenGL driver (not supported by earlier
drivers)

Warning: The extension support columns are based on the latest & greatest
NVIDIA driver release (unless otherwise noted). Check your GL_EXTENSIONS string
with glGetString at run-time to determine the specific supported extensions for
a particular driver version.

ARB_imaging NVIDIA OpenGL Extension Specifications

 6

Name

ARB_imaging

Name Strings

GL_ARB_imaging

NOTE: This extension does not have its own specification document, since
it has been included in the OpenGL 1.2.1 Specification (downloadable
from www.opengl.org). Please refer to the 1.2.1 Specification for
more information.

NVIDIA OpenGL Extension Specifications ARB_multisample

 7

Name

ARB_multisample

Name Strings

GL_ARB_multisample
GLX_ARB_multisample
WGL_ARB_multisample

Status

Approved by ARB on 12/8/1999.
GLX protocol must still be defined.

Version

Last Modified Date: December 15, 1999
Author Revision: 0.5

Based on: SGIS_Multisample Specification
Date: 1994/11/22 Revision: 1.14

Number

ARB Extension #5

Dependencies

WGL_EXT_extensions_string is required.
WGL_EXT_pixel_format is required.

Overview

This extension provides a mechanism to antialias all GL primitives:
points, lines, polygons, bitmaps, and images. The technique is to
sample all primitives multiple times at each pixel. The color
sample values are resolved to a single, displayable color each time
a pixel is updated, so the antialiasing appears to be automatic at
the application level. Because each sample includes depth and
stencil information, the depth and stencil functions perform
equivalently to the single-sample mode.

An additional buffer, called the multisample buffer, is added to
the framebuffer. Pixel sample values, including color, depth, and
stencil values, are stored in this buffer. When the framebuffer
includes a multisample buffer, it does not also include separate
depth or stencil buffers, even if the multisample buffer does not
store depth or stencil values. Color buffers (left/right, front/
back, and aux) do coexist with the multisample buffer, however.

Multisample antialiasing is most valuable for rendering polygons,
because it requires no sorting for hidden surface elimination, and
it correctly handles adjacent polygons, object silhouettes, and
even intersecting polygons. If only points or lines are being
rendered, the "smooth" antialiasing mechanism provided by the base
GL may result in a higher quality image. This extension is

ARB_multisample NVIDIA OpenGL Extension Specifications

 8

designed to allow multisample and smooth antialiasing techniques
to be alternated during the rendering of a single scene.

IP Status

TBD

Issues

1. Multiple passes have been taken out. Is this acceptable?

RESOLUTION: Yes. This can be added back with an additional
extension if needed.

2. Would SampleAlphaARB be a better name for the function
SampleMaskARB? If so, the name SAMPLE_MASK_ARB should also be
changed to SAMPLE_ALPHA_ARB.

RESOLUTION: Names containing "mask" were changed to use
"coverage" instead.

3. Should the SampleCoverageARB function be changed to allow
blending between more than two objects?

RESOLUTION: Not addressed by this extension. An additional
extension has been proposed that allows a coverage range for
each object. The coverage range is a min and max value that
can be used to blend multiple objects at different level-of-
detail fading. The SampleCoverageARB function will layer on
this new extension.

New Procedures and Functions

void SampleCoverageARB(clampf value,
boolean invert);

New Tokens

Accepted by the <attribList> parameter of glXChooseVisual, and by
the <attrib> parameter of glXGetConfig:

GLX_SAMPLE_BUFFERS_ARB 100000
GLX_SAMPLES_ARB 100001

Accepted by the <piAttributes> parameter of
wglGetPixelFormatAttribivEXT, wglGetPixelFormatAttribfvEXT, and
the <piAttribIList> and <pfAttribIList> of wglChoosePixelFormatEXT:

WGL_SAMPLE_BUFFERS_ARB 0x2041
WGL_SAMPLES_ARB 0x2042

NVIDIA OpenGL Extension Specifications ARB_multisample

 9

Accepted by the <cap> parameter of Enable, Disable, and IsEnabled,
and by the <pname> parameter of GetBooleanv, GetIntegerv,
GetFloatv, and GetDoublev:

MULTISAMPLE_ARB 0x809D
SAMPLE_ALPHA_TO_COVERAGE_ARB 0x809E
SAMPLE_ALPHA_TO_ONE_ARB 0x809F
SAMPLE_COVERAGE_ARB 0x80A0

Accepted by the <mask> parameter of PushAttrib:

MULTISAMPLE_BIT_ARB 0x20000000

Accepted by the <pname> parameter of GetBooleanv, GetDoublev,
GetIntegerv, and GetFloatv:

SAMPLE_BUFFERS_ARB 0x80A8
SAMPLES_ARB 0x80A9
SAMPLE_COVERAGE_VALUE_ARB 0x80AA
SAMPLE_COVERAGE_INVERT_ARB 0x80AB

Additions to Chapter 2 of the 1.2.1 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the 1.2.1 Specification (Rasterization)

If SAMPLE_BUFFERS_ARB is a value of one, the rasterization of all
GL primitives is changed, and is referred to as multisample
rasterization. Otherwise, primitive rasterization operates as it is
described in the GL specification, and is referred to as single-
sample rasterization. The value of SAMPLE_BUFFERS_ARB is an
implementation dependent constant, and is queried by calling
GetIntegerv with <pname> set to SAMPLE_BUFFERS_ARB. This value is
the same as GLX_SAMPLE_BUFFERS_ARB or WGL_SAMPLE_BUFFERS_ARB for
the visual or pixel format associated with the context.

During multisample rendering the contents of a pixel fragment are
changed in two ways. First, each fragment includes a coverage
value with SAMPLES_ARB bits. The value of SAMPLES_ARB is an
implementation-dependent constant, and is queried by calling
GetIntegerv with <pname> set to SAMPLES_ARB. Second, each fragment
includes SAMPLES_ARB depth values, instead of the single depth
value that is maintained in single-sample rendering mode. Each
pixel fragment thus consists of integer x and y grid coordinates,
a color, SAMPLES_ARB depth values, texture coordinates, and a
coverage value with a maximum of SAMPLES_ARB bits.

The behavior of multisample rasterization is a function of
MULTISAMPLE_ARB, which is enabled and disabled by calling Enable or
Disable, with <cap> set to MULTISAMPLE_ARB. Its value is queried
using IsEnabled, with <cap> set to MULTISAMPLE_ARB.

If MULTISAMPLE_ARB is disabled, multisample rasterization of all
primitives is equivalent to single-sample rasterization, except
that the fragment coverage value is set to full coverage. The
depth values may all be set to the single value that would have

ARB_multisample NVIDIA OpenGL Extension Specifications

 10

been assigned by single-sample rasterization, or they may be
assigned as described below for multisample rasterization.

If MULTISAMPLE_ARB is enabled, multisample rasterization of all
primitives differs substantially from single-sample rasterization.
It is understood that each pixel in the framebuffer has SAMPLES_ARB
locations associated with it. These locations are exact positions,
rather than regions or areas, and each is referred to as a sample
point. The sample points associated with a pixel may be located
inside or outside of the unit square that is considered to bound
the pixel. Furthermore, the relative locations of sample points
may be identical for each pixel in the framebuffer, or they may
differ.

If the sample locations differ per pixel, they should be aligned to
window, not screen, boundaries. Otherwise rendering results will
be window-position specific. The invariance requirement described
in section 3.1 is relaxed for all enabled multisample rendering,
because the sample locations may be a function of pixel location.

It is not possible to query the actual sample locations of a pixel.

Point Multisample Rasterization
[Insert before section 3.3.1]

If MULTISAMPLE_ARB is enabled, and SAMPLE_BUFFERS_ARB is a value of
one, then points are rasterized using the following algorithm,
regardless of whether point antialiasing (POINT_SMOOTH) is enabled
or disabled. Point rasterization produces a fragment for each
framebuffer pixel with one or more sample points that intersect the
region lying within the circle having diameter equal to the current
point width and centered at the point's (Xw,Yw). Coverage bits
that correspond to sample points that intersect the circular region
are 1, other coverage bits are 0. All depth values of the fragment
are assigned the depth value of the point being rasterized. Other
data associated with each fragment are the data associated with the
point being rasterized.

Point size range and number of gradations are equivalent to those
supported for antialiased points.

Line Multisample Rasterization
[Insert before section 3.4.3]

If MULTISAMPLE_ARB is enabled, and SAMPLE_BUFFERS_ARB is a value of
one, then lines are rasterized using the following algorithm,
regardless of whether line antialiasing (LINE_SMOOTH) is enabled
or disabled. Line rasterization produces a fragment for each
framebuffer pixel with one or more sample points that intersect the
rectangular region that is described in the Antialiasing section of
3.4.2 (Other Line Segment Features). If line stippling is enabled,
the rectangular region is subdivided into adjacent unit-length
rectangles, with some rectangles eliminated according to the
procedure given under Line Stipple, where "fragment" is replaced
by "rectangle".

NVIDIA OpenGL Extension Specifications ARB_multisample

 11

Coverage bits that correspond to sample points that intersect a
retained rectangle are 1, other coverage bits are 0. Each depth
value is produced by substituting the corresponding sample location
into equation 3.1, then using the result to evaluate equation 3.3.
The data associated with each fragment are otherwise computed by
evaluating equation 3.1 at the fragment center, then substituting
into equation 3.2.

Line width range and number of gradations are equivalent to those
supported for antialiased lines.

Polygon Multisample Rasterization
[Insert before section 3.5.6]

If MULTISAMPLE_ARB is enabled, and SAMPLE_BUFFERS_ARB is a value of
one, then polygons are rasterized using the following algorithm,
regardless of whether polygon antialiasing (POLYGON_SMOOTH) is
enabled or disabled. Polygon rasterization produces a fragment for
each framebuffer pixel with one or more sample points that satisfy
the point sampling criteria described in section 3.5.1, including
the special treatment for sample points that lie on a polygon
boundary edge. If a polygon is culled, based on its orientation
and the CullFace mode, then no fragments are produced during
rasterization. Fragments are culled by the polygon stipple just as
they are for aliased and antialiased polygons.

Coverage bits that correspond to sample points that satisfy the
point sampling criteria are 1, other coverage bits are 0. Each
depth value is produced by substituting the corresponding sample
location into the barycentric equations described in section 3.5.1,
using the approximation to equation 3.4 that omits w components.
The data associated with each fragment are otherwise computed by
barycentric evaluation using the fragment's center point.

The rasterization described above applies only to the FILL state of
PolygonMode. For POINT and LINE, the rasterizations described in
the Point Multisample Rasterization and the Line Multisample
Rasterization sections apply.

Pixel Rectangle Multisample Rasterization
[Insert before section 3.6.5]

If MULTISAMPLE_ARB is enabled, and SAMPLE_BUFFERS_ARB is a value of
one, then pixel rectangles are rasterized using the following
algorithm. Let (Xrp,Yrp) be the current raster position. (If the
current raster position is invalid, then DrawPixels is ignored.)
If a particular group (index or components) is the nth in a row and
belongs to the mth row, consider the region in window coordinates
bounded by the rectangle with corners

(Xrp + Zx*n, Yrp + Zy*m)

and

(Xrp + Zx*(n+1), Yrp + Zy*(m+1))

where Zx and Zy are the pixel zoom factors specified by PixelZoom,

ARB_multisample NVIDIA OpenGL Extension Specifications

 12

and may each be either positive or negative. A fragment
representing group n,m is produced for each framebuffer pixel with
one or more sample points that lie inside, or on the bottom or
left boundary, of this rectangle. Each fragment so produced takes
its associated data from the group and from the current raster
position, in a manner consistent with the discussion in the
Conversion to Fragments subsection of section 3.6.4 of the GL
specification. All depth sample values are assigned the same
value, taken either from the group (if it is a depth component
group) or from the current raster position (if it is not).

A single pixel rectangle will generate multiple, perhaps very many
fragments for the same framebuffer pixel, depending on the pixel
zoom factors.

Bitmap Multisample Rasterization
[Insert at the end section 3.7]

If MULTISAMPLE_ARB is enabled, and SAMPLE_BUFFERS_ARB is a value of
one, then bitmaps are rasterized using the following algorithm. If
the current raster position is invalid, the bitmap is ignored.
Otherwise, a screen-aligned array of pixel-size rectangles is
constructed, with its lower-left corner at (Xrp,Yrp), and its upper
right corner at (Xrp+w,Yrp+h), where w and h are the width and
height of the bitmap. Rectangles in this array are eliminated if
the corresponding bit in the bitmap is zero, and are retained
otherwise. Bitmap rasterization produces a fragment for each
framebuffer pixel with one or more sample points either inside or
on the bottom or left edge of a retained rectangle.

Coverage bits that correspond to sample points either inside or on
the bottom or left edge of a retained rectangle are 1, other
coverage bits are 0. The associated data for each fragment are
those associated with the current raster position. Once the
fragments have been produced, the current raster position is
updated exactly as it is in the single-sample rasterization case.

Additions to Chapter 4 of the 1.2.1 Specification (Per-Fragment
Operations and the Frame Buffer)

Multisample Fragment Operations
[Insert after section 4.1.2]

This step modifies fragment alpha and coverage values based on the
values of SAMPLE_ALPHA_TO_COVERAGE_ARB, SAMPLE_ALPHA_TO_ONE_ARB,
SAMPLE_COVERAGE_ARB, SAMPLE_COVERAGE_VALUE_ARB, and
SAMPLE_COVERAGE_INVERT_ARB. No changes to the fragment alpha or
coverage values are made at this step if MULTISAMPLE_ARB is
disabled, or if SAMPLE_BUFFERS_ARB is not a value of one.

SAMPLE_ALPHA_TO_COVERAGE_ARB, SAMPLE_ALPHA_TO_ONE_ARB, and
SAMPLE_COVERAGE_ARB are enabled and disabled by calling Enable and
Disable with <cap> specified as one of the three token values. All
three values are queried by calling IsEnabled, with <cap> set to
the desired token value. If SAMPLE_ALPHA_TO_COVERAGE_ARB is
enabled, the fragment alpha value is used to generate a temporary
coverage value, which is then ANDed with the fragment coverage

NVIDIA OpenGL Extension Specifications ARB_multisample

 13

value. Otherwise the fragment coverage value is unchanged at
this point.

This specification does not require a specific algorithm for
converting an alpha value to a temporary coverage value. It is
intended that the number of 1's in the temporary coverage be
proportional to the alpha value, with all 1's corresponding to the
maximum alpha value, and all 0's corresponding to an alpha value
of 0. It is also intended that the algorithm be pseudo-random in
nature, to avoid image artifacts due to regular coverage sample
locations. The algorithm can and probably should be different
at different pixel locations. If it does differ, it should be
defined relative to window, not screen, coordinates, so that
rendering results are invariant with respect to window position.

Next, if SAMPLE_ALPHA_TO_ONE_ARB is enabled, fragment alpha is
replaced by the maximum representable alpha value. Otherwise,
fragment alpha value is not changed.

Finally, if SAMPLE_COVERAGE_ARB is enabled, the fragment coverage
is ANDed with another temporary coverage. This temporary coverage
is generated in the same manner as the one described above, but as
a function of the value of SAMPLE_COVERAGE_VALUE_ARB. The function
need not be identical, but it must have the same properties of
proportionality and invariance. If SAMPLE_COVERAGE_INVERT_ARB is
TRUE, the temporary coverage is inverted (all bit values are
inverted) before it is ANDed with the fragment coverage.

The values of SAMPLE_COVERAGE_VALUE_ARB and
SAMPLE_COVERAGE_INVERT_ARB are specified simultaneously by calling
SampleCoverageARB, with <value> set to the desired coverage value,
and <invert> set to TRUE or FALSE. <value> is clamped to [0,1]
before being stored as SAMPLE_COVERAGE_VALUE_ARB.
SAMPLE_COVERAGE_VALUE_ARB is queried by calling GetFloatv with
<pname> set to SAMPLE_COVERAGE_VALUE_ARB.
SAMPLE_COVERAGE_INVERT_ARB is queried by calling GetBooleanv with
<pname> set to SAMPLE_COVERAGE_INVERT_ARB.

Multisample Fragment Operations
[Insert after section 4.1.8]

If the DrawBuffers mode is NONE, no change is made to any
multisample or color buffer. Otherwise, fragment processing is as
described below.

If MULTISAMPLE_ARB is enabled, and SAMPLE_BUFFERS_ARB is one, the
stencil test, depth test, blending, and dithering operations
are performed for each pixel sample, rather than just once for each
fragment. Failure of the stencil or depth test results in
termination of the processing of that sample, rather than
discarding of the fragment. All operations are performed on the
color, depth, and stencil values stored in the multisample buffer
(to be described in a following section). The contents of the
color buffers are not modified at this point.

Stencil, depth, blending, and dithering operations are performed
for a pixel sample only if that sample's fragment coverage bit is

ARB_multisample NVIDIA OpenGL Extension Specifications

 14

a value of 1. If the corresponding coverage bit is 0, no
operations are performed for that sample. Depth operations use
the fragment depth value that is specific for each sample. The
single fragment color value is used for all sample operations,
however, as is the current stencil value.

If MULTISAMPLE_ARB is disabled, and SAMPLE_BUFFERS_ARB is one, the
fragment may be treated exactly as described above, with
optimization possible because the fragment coverage must be set
to full coverage. Further optimization is allowed, however. An
implementation may choose to identify a centermost sample, and to
perform stencil and depth tests on only that sample. Regardless
of the outcome of the stencil test, all multisample buffer stencil
sample values are set to the appropriate new stencil value. If
the depth test passes, all multisample buffer depth sample values
are set to the depth of the fragment's centermost sample's depth
value, and all multisample buffer color sample values are set to
the color value of the incoming fragment. Otherwise, no change is
made to any multisample buffer color or depth value.

After all operations have been completed on the multisample buffer,
the color sample values are combined to produce a single color
value, and that value is written into each color buffer that is
currently enabled, based on the DrawBuffers mode. An
implementation may defer the writing of the color buffer until a
later time, but the state of the framebuffer must behave as if the
color buffer was updated as each fragment was processed. The
method of combination is not specified, though a simple average
computed independently for each color component is recommended.

Fine Control of Multisample Buffer Updates
[Insert at the end of section 4.2.2]

When SAMPLE_BUFFERS_ARB is one, ColorMask, DepthMask, and
StencilMask control the modification of values in the multisample
buffer. The color mask has no effect on modifications to the color
buffers. If the color mask is entirely disabled, the color sample
values must still be combined (as described above) and the result
used to replace the color values of the buffers enabled by
DrawBuffers.

Clearing the Multisample Buffer
[Insert as a subsection for section 4.2.3]

The color samples of the multisample buffer are cleared when one or
more color buffers are cleared, as specified by the Clear mask bit
COLOR_BUFFER_BIT and the DrawBuffers mode. If the DrawBuffers mode
is NONE, the color samples of the multisample buffer cannot be
cleared.

Clear mask bits DEPTH_BUFFER_BIT and STENCIL_BUFFER_BIT indicate
that the depth and stencil samples of the multisample buffer are to
be cleared. If Clear mask bit DEPTH_BUFFER_BIT is specified, and
if the DrawBuffers mode is not NONE, then the multisample depth
buffer samples are cleared. Likewise, if Clear mask bit
STENCIL_BUFFER_BIT is specified, and if the DrawBuffers mode is
not NONE, then the multisample stencil buffer is cleared.

NVIDIA OpenGL Extension Specifications ARB_multisample

 15

Reading Pixels
[These changes are made to the text in section 4.3.2, following the
subheading Obtaining Pixels from the Framebuffer.]

Follow the sentence "If there is no depth buffer, the error
INVALID_OPERATION occurs." with: If there is a multisample buffer
(SAMPLE_BUFFERS_ARB is 1) then values are obtained from the depth
samples in this buffer. It is recommended that the depth value
of the centermost sample be used, though implementations may choose
any function of the depth sample values at each pixel.

Follow the sentence "if there is no stencil buffer, the error
INVALID_OPERATION occurs." with: If there is a multisample buffer,
then values are obtained from the stencil samples in this buffer.
It is recommended that the stencil value of the centermost sample
be used, though implementations may choose any function of the
stencil sample values at each pixel.

[This extension makes no change to the way that color values are
obtained from the framebuffer.]

Additions to Chapter 5 of the 1.2.1 Specification (Special Functions)

None

Additions to Chapter 6 of the 1.2 Specification (State and State
Requests)

An additional group of state variables, MULTISAMPLE_BIT_ARB, is
defined by this extension. When PushAttrib is called with bit
MULTISAMPLE_BIT_ARB set, the multisample group of state variables
is pushed onto the attribute stack. When PopAttrib is called,
these state variables are restored to their previous values if
they were pushed. Some multisample state is included in the
ENABLE_BIT group as well. In order to avoid incompatibility with
GL implementations that do not support SGIS_multisample,
ALL_ATTRIB_BITS does not include MULTISAMPLE_BIT_ARB.

Additions to the GLX Specification

The parameter GLX_SAMPLE_BUFFERS_ARB is added to glXGetConfig.
When queried, by calling glXGetConfig with <attrib> set to
GLX_SAMPLE_BUFFERS_ARB, it returns the number of multisample
buffers included in the visual. For a normal visual, the return
value is zero. A return value of one indicates that a single
multisample buffer is available. The number of samples per pixel
is queried by calling glXGetConfig with <attrib> set to
GLX_SAMPLES_ARB. It is understood that the number of color, depth,
and stencil bits per sample in the multisample buffer are as
specified by the GLX_*_SIZE parameters. It is also understood that
there are no single-sample depth or stencil buffers associated with
this visual -- the only depth and stencil buffers are those in the
multisample buffer. GLX_SAMPLES_ARB is zero if
GLX_SAMPLE_BUFFERS_ARB is zero.

ARB_multisample NVIDIA OpenGL Extension Specifications

 16

glXChooseVisual accepts GLX_SAMPLE_BUFFERS_ARB in <attribList>,
followed by the minimum number of multisample buffers that can be
accepted. Visuals with the smallest number of multisample buffers
that meets or exceeds the specified minimum number are preferred.
Currently operation with more than one multisample buffer is
undefined, so the returned value will be either zero or one.

glXChooseVisual accepts GLX_SAMPLES_ARB in <attribList>, followed
by the minimum number of samples that can be accepted in the
multisample buffer. Visuals with the smallest number of samples
that meets or exceeds the specified minimum number are preferred.

If the color samples in the multisample buffer store fewer bits
than are stored in the color buffers, this fact will not be
reported accurately. Presumably a compression scheme is being
employed, and is expected to maintain an aggregate resolution
equal to that of the color buffers.

GLX Protocol

TBD

Additions to the WGL Specification

The parameter WGL_SAMPLE_BUFFERS_ARB is added to
wglGetPixelFormatAttrib*v. When queried, by calling
wglGetPixelFormatAttrib*v with <piAttributes> set to
WGL_SAMPLE_BUFFERS_ARB, it returns the number of multisample
buffers included in the pixel format. For a normal pixel format,
the return value is zero. A return value of one indicates that a
single multisample buffer is available. The number of samples per
pixel is queried by calling wglGetPixelFormatAttrib*v with
<piAttributes> set to WGL_SAMPLES_ARB. It is understood that the
number of color, depth, and stencil bits per sample in the
multisample buffer are as specified by the WGL_*_SIZE parameters.
It is also understood that there are no single-sample depth or
stencil buffers associated with this visual -- the only depth and
stencil buffers are those in the multisample buffer.
WGL_SAMPLES_ARB is zero if WGL_SAMPLE_BUFFERS_ARB is zero.

wglChoosePixelFormatEXT accepts WGL_SAMPLE_BUFFERS_ARB in
<piAttribIList> and <pfAttribIList> with the corresponding value
set to the minimum number of multisample buffers that can be
accepted. Pixel formats with the smallest number of multisample
buffers that meets or exceeds the specified minimum number are
preferred. Currently operation with more than one multisample
buffer is undefined, so the returned value will be either zero or
one.

If the color samples in the multisample buffer store fewer bits
than are stored in the color buffers, this fact will not be
reported accurately. Presumably a compression scheme is being
employed, and is expected to maintain an aggregate resolution
equal to that of the color buffers.

NVIDIA OpenGL Extension Specifications ARB_multisample

 17

Errors

INVALID_OPERATION is generated if SampleCoverageARB is called
between the execution of Begin and the execution of the
corresponding End.

New State

Get Value Get Command Type Initial Value Attribute
--------- ----------- ---- ------------- ---------
MULTISAMPLE_ARB IsEnabled B TRUE multisample/enable
SAMPLE_ALPHA_TO_COVERAGE_ARB IsEnabled B FALSE multisample/enable
SAMPLE_ALPHA_TO_ONE_ARB IsEnabled B FALSE multisample/enable
SAMPLE_COVERAGE_ARB IsEnabled B FALSE multisample/enable
SAMPLE_COVERAGE_VALUE_ARB GetFloatv R+ 1 multisample
SAMPLE_COVERAGE_INVERT_ARB GetBooleanv B FALSE multisample

New Implementation Dependent State

Get Value Get Command Type Minimum Value
--------- ----------- ---- -------------
SAMPLE_BUFFERS_ARB GetIntegerv Z+ 0
SAMPLES_ARB GetIntegerv Z+ 0

Conformance Testing

TBD

Revision History

09/20/1999 0.1
- First ARB draft based on the original SGI draft.

10/1/1999 0.2
- Added query for the number of passes.

11/8/1999 0.3
- Fixed numerous typos reported by E&S.

12/7/1999 0.4
- Removed the multiple pass feature.
- Resolved the working group issues at the ARB meeting.
- Added language that stated that SAMPLE_BUFFERS_ARB is the

same value as either GLX_SAMPLE_BUFFERS_ARB or
WGL_SAMPLE_BUFFERS_ARB.

12/15/1999 0.5
- Added back in the statement about ALL_ATTRIB_BITS not

including MULTISAMPLE_BIT_ARB.

ARB_multitexture NVIDIA OpenGL Extension Specifications

 18

Name Strings

ARB_multitexture

Name Strings

GL_ARB_multitexture

Status

Complete. Approved by ARB on 9/15/1998

NOTE: This extension no longer has its own specification document, since
it has been included in the OpenGL 1.2.1 Specification (downloadable
from www.opengl.org). Please refer to the 1.2.1 Specification for
more information.

NVIDIA OpenGL Extension Specifications ARB_texture_border_clamp

 19

Name

ARB_texture_border_clamp

Name Strings

GL_ARB_texture_border_clamp

Status

DRAFT VERSION ONLY -- FOR OPENGL ARB CONSIDERATION AT 6/2000 MEETING

Version

0.3, 2 June 2000 (Alternate Formulation)

Number

!!! To be assigned when added to registry

Dependencies

OpenGL 1.0 is required.

This extension is written against the OpenGL 1.2.1 Specification.

This extension is based on and intended to replace
GL_SGIS_texture_border_clamp.

Overview

The base OpenGL provides clamping such that the texture coordinates are
limited to exactly the range [0,1]. When a texture coordinate is clamped
using this algorithm, the texture sampling filter straddles the edge of
the texture image, taking 1/2 its sample values from within the texture
image, and the other 1/2 from the texture border. It is sometimes
desirable for a texture to be clamped to the border color, rather than to
an average of the border and edge colors.

This extension defines an additional texture clamping algorithm.
CLAMP_TO_BORDER_ARB clamps out-of-bounds texture accesses at all mipmap
levels and LINEAR filters return only the color of the
border texels.

IP Status

No known IP issues.

Issues

(1) This specification could be written to clamp the s, t, and r values to
-1/2^N, 1+1/2^N in the manner similar to the formulation of CLAMP_TO_EDGE
in the OpenGL 1.2.1 specification. Such a formulation does not work
properly in the presence of cubic and anisotropic filters. While
specifications for such filters could correct this problem, should this
specification take care of it instead?

ARB_texture_border_clamp NVIDIA OpenGL Extension Specifications

 20

UNRESOLVED: Yes. This specification formulates texture filtering in a
manner consistent with other filters. In addition, the formulation of
texture clamping for CLAMP_TO_EDGE and CLAMP_TO_BORDER in the
SGIS_texture_border_clamp extensions are not very straightforward.

New Procedures and Functions

None.

New Tokens

Accepted by the <param> parameter of TexParameteri and TexParameterf, and
by the <params> parameter of TexParameteriv and TexParameterfv, when their
<pname> parameter is TEXTURE_WRAP_S, TEXTURE_WRAP_T, or TEXTURE_WRAP_R:

CLAMP_TO_BORDER_ARB 0x812D

Additions to Chapter 2 of the OpenGL 1.2.1 Specification (OpenGL Operation)

None.

Additions to Chapter 3 of the OpenGL 1.2.1 Specification (Rasterization)

Modify Table 3.17, p. 124, editing only the following lines:

Name Type Legal Values
============== ======= ====================
TEXTURE_WRAP_S integer CLAMP, CLAMP_TO_EDGE, REPEAT,

CLAMP_TO_BORDER_ARB
TEXTURE_WRAP_T integer CLAMP, CLAMP_TO_EDGE, REPEAT,

CLAMP_TO_BORDER_ARB
TEXTURE_WRAP_R integer CLAMP, CLAMP_TO_EDGE, REPEAT,

CLAMP_TO_BORDER_ARB

Delete Sections 3.8.4 (Texture Wrap Modes), 3.8.5 (Texture Minification),
and 3.8.6 (Texture Magnification). Replace with a single section (3.8.4,
Texture Filtering).

Begin with single-paragraph introduction copied from first paragraph of
old Section 3.8.5 (p.125)

Add minor subsection of new Section 3.8.4, Coordinate Clamping

If TEXTURE_WRAP_S, TEXTURE_WRAP_T, or TEXTURE_WRAP_R is CLAMP, the GL
clamps the s, t, or r coordinates, respectively to the range [0,1].
Otherwise, the s, t, or r coordinates are unmodified.

Add minor subsection of new Section 3.8.4, Scale Factor and Level of
Detail

Copy text from the beginning with the corresponding subsection of old
Section 3.8.5 (p. 125) through the end of the first paragraph on p. 127,
removing the first paragraph from page 126 ("If lambda(x,y) is less
than...").

The GL selects a texture filter using the computed value of lambda. The

NVIDIA OpenGL Extension Specifications ARB_texture_border_clamp

 21

GL always selects the magnification filter (given by the value of
TEXTURE_MAG_FILTER) if lambda is less than zero. It also selects the
magnification filter if lambda is less than 0.5, the magnification filter
is LINEAR, and the minification filter (given by the value of
TEXTURE_MIN_FILTER) is NEAREST_MIPMAP_NEAREST or NEAREST_MIPMAP_LINEAR.
This is done to ensure that a minified texture does not appear "sharper"
than a magnified texture. Otherwise, the GL selects the minification
filter.

Add minor subsection of new Section 3.8.4, Mipmapping

Copy text from the beginning of the corresponding subsection of the old
Section 3.8.5 (p. 129) through the end of the second paragraph on p. 130
(ending with "if either value is negative"). Replace references to
TEXTURE_MIN_FILTER with "the texture filter").

The mipmap is used in conjunction with the level of detail to approximate
the application of an appropriately filtered texture to a fragment. The
GL uses the texture filter to generate filtered results from one or
multiple mipmap arrays. If multiple mipmap arrays are used, the filtered
results for each mipmap array are combined to yield a final filtered
texture value.

If the texture filter is NEAREST or LINEAR, the GL uses the mipmap array
specified by TEXTURE_BASE_LEVEL.

If the texture filter is NEAREST_MIPMAP_NEAREST, or LINEAR_MIPMAP_NEAREST,
the GL uses the level d mipmap array, where

d = ceil(b + lambda + 1/2) - 1,

and d is clamped to the range [TEXTURE_BASE_LEVEL, q].

If the texture filter is NEAREST_MIPMAP_LINEAR, or LINEAR_MIPMAP_LINEAR,
the GL uses the level d1 and d2 mipmap arrays, where

d1 = floor(b + lambda),
d2 = d1 + 1,

and d1 and d2 are both clamped to the range [TEXTURE_BASE_LEVEL, q]. When
combining the filtered results from the two mipmap arrays, the GL uses the
weights w1 and w2, where

w1 = 1 - (lambda - floor(lambda)), and
w2 = 1 - w1.

Add minor subsection of new Section 3.8.4, Sample Generation

For each mipmap array used to produce a final texture value, the GL
generates one or multiple samples. Each sample consists of a set of
coordinates and a weight used to combine the samples. As in the
computation of lambda, the GL scales the fragment's (s,t,r) texture
coordinates to produce a (u,v,w) coordinate, where

ARB_texture_border_clamp NVIDIA OpenGL Extension Specifications

 22

u = s * width_t,
v = t * height_t,
w = r * depth_t,

where width_t, height_t, and depth_t are the width, height, and depth of
the mipmap array, excluding any texture borders.

When the texture filter is NEAREST, NEAREST_MIPMAP_NEAREST, or
NEAREST_MIPMAP_LINEAR, a single sample is generated. Let

i = floor(u),
j = floor(v), and
k = floor(w).

The coordinates of the sample are (i) for a one-dimensional texture, (i,j)
for a two-dimensional texture, and (i,j,k) for a three-dimensional
texture. The weight for the single sample is always 1.0.

When the texture filter is LINEAR, LINEAR_MIPMAP_NEAREST, or
LINEAR_MIPMAP_LINEAR, multiple samples are generated. Let

i0 = floor(u - 1/2),
i1 = i0 + 1,
j0 = floor(v - 1/2),
j1 = j0 + 1,
k0 = floor(w - 1/2), and
k1 = k0 + 1.

For a one-dimensional texture, the GL generates two samples with
coordinates (i0) and (i1). For a two-dimensional texture, the GL
generates four samples with coordinates (i0,j0), (i1,j0), (i0,j1), and
(i1,j1). For a three-dimensional texture, the GL generates eight samples
with coordinates (i0,j0,k0), (i1,j0,k0), (i0,j1,k0), (i1,j1,k0),
(i0,j0,k1), (i1,j0,k1), (i0,j1,k1), and (i1,j1,k1).

To generate sample weights, let

wi0 = 1 - ((u - 1/2) - i0),
wi1 = 1 - wi0,
wj0 = 1 - ((v - 1/2) - j0),
wj1 = 1 - wj0,
wk0 = 1 - ((w - 1/2) - k0), and
wk1 = 1 - wk0.

For a one-dimensional texture, the weights of the two samples are wi0 and
wi1, respectively. For a two-dimensional texture, the weights of the four
samples are wi0*wj0, wi1*wj0, wi0*wj1, and wi1*wj1, respectively. For a
three-dimensional texture, the weights of the eight samples are
wi0*wj0*wk0, wi1*wj0*wk0, wi0*wj1*wk0, wi1*wj1*wk0, wi0*wj0*wk1,
wi1*wj0*wk1, wi0*wj1*wk1, and wi1*wj1*wk1, respectively.

Add minor subsection of new Section 3.8.4, Sample Coordinate Processing

For each sample, the sample coordinates may fall outside the extents of
the mipmap array, and may need be modified according to the texture wrap
modes. The texture wrap modes are used to generate new coordinates (i'),

NVIDIA OpenGL Extension Specifications ARB_texture_border_clamp

 23

(i',j'), or (i',j',k'), where

i' = { i mod width_t, TEXTURE_WRAP_S is REPEAT,
{ 0, TEXTURE_WRAP_S is CLAMP_TO_EDGE, i<0,
{ width_t - 1, TEXTURE_WRAP_S is CLAMP_TO_EDGE, i>=width_t,
{ i, otherwise.

j' = { j mod height_t, TEXTURE_WRAP_T is REPEAT,
{ 0, TEXTURE_WRAP_T is CLAMP_TO_EDGE, j<0,
{ height_t - 1, TEXTURE_WRAP_T is CLAMP_TO_EDGE, j>=height_t,
{ j, otherwise.

k' = { k mod depth_t, TEXTURE_WRAP_R is REPEAT,
{ 0, TEXTURE_WRAP_R is CLAMP_TO_EDGE, k<0,
{ depth_t - 1, TEXTURE_WRAP_R is CLAMP_TO_EDGE, k>=depth_t,
{ k, otherwise.

Out-of-range samples in CLAMP and CLAMP_TO_BORDER modes will require
clamping, but are not modified here. They are accounted for in the sample
lookup section below.

Add minor subsection of new Section 3.8.4, Sample Lookup

For each sample, a texture sample color, tau_sample, is generated by using
the texel at location (i'), (i',j'), or (i',j',k') in the corresponding
mipmap array. If the sample coordinate falls outside the range of texels
in the mipmap array, the border color given by the current value of the
TEXTURE_BORDER_COLOR is used instead. A sample coordinate is outside the
range of texels in a mipmap if i'<-b_s, i'>width_t+b_s, j'<-b_s,
j'>height_t+b_s, k'<-b_s, or k'>depth_t+b_s), where b_s is the value of
TEXTURE_BORDER for the mipmap. If the texture border color is used, the
RGBA values of the TEXTURE_BORDER_COLOR are interpreted to match the
texture's internal format in a manner consistent with table 3.15.

Add minor subsection of new Section 3.8.4, Sample Filtering

The texture sample colors for each mipmap array are filtered to generate a
single texture mipmap color, tau_mipmap, given by

tau_mipmap = SUM (tau_sample * w_sample).
samples

Each component of the texture is summed separately over all the samples,
using the weights and texture sample colors of each sample.

If multiple mipmaps are used, the tau_mipmap values are filtered to yield
a final texture color, tau, given by

tau = SUM (tau_mipmap * w_mipmap).
mipmaps

Again, each component of the texture is summed separately over all the
mipmap arrays, using the weights and texture mipmap colors of each mipmap
array.

ARB_texture_border_clamp NVIDIA OpenGL Extension Specifications

 24

If a single mipmap is used, the final texture color is given by the single
tau_mipmap value.

Additions to Chapter 4 of the OpenGL 1.2.1 Specification (Per-Fragment
Operations and the Frame Buffer)

None.

Additions to Chapter 5 of the OpenGL 1.2.1 Specification (Special Functions)

None.

Additions to Chapter 6 of the OpenGL 1.2.1 Specification (State and
State Requests)

None.

Additions to Appendix A of the OpenGL 1.2.1 Specification (Invariance)

None.

Additions to the AGL/GLX/WGL Specifications

None.

GLX Protocol

None.

Errors

None.

New State

Only the type information changes for these parameters.

(table 6.13, p. 203)
Initial

Get Value Type Get Command Value Description Sec. Attribute
-------------- ------- --------------- ------- ------------ ---- ---------
TEXTURE_WRAP_S 3+ x Z4 GetTexParameter REPEAT Texture wrap 3.8 texture
TEXTURE_WRAP_T 3+ x Z4 GetTexParameter REPEAT Texture wrap 3.8 texture
TEXTURE_WRAP_R 3+ x Z4 GetTexParameter REPEAT Texture wrap 3.8 texture

Revision History

0.3, 06/02/2000 prbrown1: Rewrote texture filtering sections to
interact properly with higher-order filters
and also to be more easily understood.

0.2, 05/23/2000 prbrown1: Removed dependency on SGIS_texture_filter4
per ARB guidelines.

0.1, 05/02/2000 prbrown1: Initial revision -- mostly stolen from
GL_SGIS_texture_border_clamp.

NVIDIA OpenGL Extension Specifications ARB_texture_compression

 25

Name

ARB_texture_compression

Name Strings

GL_ARB_texture_compression

Status

FINAL VERSION -- APPROVED BY OPENGL ARB, 3/16/2000.

Version

Final 1.03, 23 May 2000 (supersedes Final 1.0, 24 March 2000 -
contains a few minor fixes documented in
the Revision History below).

Number

ARB Extension #12

Dependencies

OpenGL 1.1 is required.

This extension is written against the OpenGL 1.2.1 Specification.

This extension is written against the GLX Extensions for OpenGL
Specification (Version 1.3).

Depends on GL_ARB_texture_cube_map, as cube maps may be stored in
compressed form.

Overview

Compressing texture images can reduce texture memory utilization and
improve performance when rendering textured primitives. This extension
allows OpenGL applications to use compressed texture images by providing:

(1) A framework upon which extensions providing specific compressed
image formats can be built.

(2) A set of generic compressed internal formats that allow
applications to specify that texture images should be stored in
compressed form without needing to code for specific compression
formats.

An application can define compressed texture images by providing a texture
image stored in a specific compressed image format. This extension does
not define any specific compressed image formats, but it does provide the
mechanisms necessary to enable other extensions that do.

An application can also define compressed texture images by providing an
uncompressed texture image but specifying a compressed internal format.
In this case, the GL will automatically compress the texture image using
the appropriate image format. Compressed internal formats can either be

ARB_texture_compression NVIDIA OpenGL Extension Specifications

 26

specific (as above) or generic. Generic compressed internal formats are
not actual image formats, but are instead mapped into one of the specific
compressed formats provided by the GL (or to an uncompressed base internal
format if no appropriate compressed format is available). Generic
compressed internal formats allow applications to use texture compression
without needing to code to any particular compression algorithm. Generic
compressed formats allow the use of texture compression across a wide
range of platforms with differing compression algorithms and also allow
future GL implementations to substitute improved compression methods
transparently.

Compressed texture images can be obtained from the GL in uncompressed form
by calling GetTexImage and in compressed form by calling
GetCompressedTexImageARB. Queried compressed images can be saved and
later reused by calling CompressedTexImage[123]DARB. Pre-compressed
texture images do not need to be processed by the GL and should
significantly improve texture loading performance relative to uncompressed
images.

This extension does not define specific compressed image formats (e.g.,
S3TC, FXT1), nor does it provide means to encode or decode such images.
To support images in a specific compressed format, a hardware vendor
would:

(1) Provide a new extension defininig specific compressed
<internalformat> and <format> tokens for TexImage[123]D,
TexSubImage[123]D, CopyTexImage[12]D, CompressedTexImage[123]DARB,
CompressedTexSubImage[123]DARB, and GetCompressedTexImageARB calls.

(2) Specify the encoding of compressed images of that specific format.

(3) Specify a method for deriving the size of compressed images of that
specific format, using the <internalformat>, <width>, <height>,
<depth> parameters, and (if necessary) the compressed image itself.

IP Status

No known intellectual property issues on this general extension.

Specific compression algorithms used to implement this extension (and any
other specific texture compression extensions) may be protected and
require licensing agreements.

Issues

(1) Should we define additional internal formats that strongly tie an
underlying compression algorithm to the format?

RESOLVED: Not here. Explicit compressed formats will be provided by
other extensions built on top of this one.

(2) Should we provide additional compression state that gives more control
on the level/quality of compression? If so, how?

RESOLVED: Yes, as a hint. Could have also been implemented as a [0.0,
1.0] floating-point TexParameter "quality" state variable (such as the
JPEG quality scale found in many apps). This control will affect only

NVIDIA OpenGL Extension Specifications ARB_texture_compression

 27

the speed (and quality) with which a driver compresses incoming images,
but will not affect the compressed image format selected by the driver.

As the spec is currently formulated, the requirement that quality
control not affect compression format selection could have been relaxed
by loosening the invariance requirements (so that the quality control
can affect the choice of internal format). The risk was the potential
for subtle mipmap consistency issues if the hint changes.

(3) Most current compression algorithms handle primarily RGB and RGBA
images. Does it make sense having generic compressed formats for alpha,
intensity, luminance, and luminance-alpha?

RESOLVED: Yes. It is conceivable that some or all of these formats may
be compressed. Implementations not having compression algorithms for
these formats can simply choose not to compress and use the appropriate
base internal format instead.

(4) Full GetTexImage support requires that the renderer decompress the
whole image. Should this extra implementation burden be imposed on the
renderer?

RESOLVED: Yes, returning the uncompressed image is a useful feature for
evaluating the quality of the compressed image. A decompression engine
may also be required for a number of other areas, including software
rasterization.

(5) Full TexSubImage support may require that the renderer decompress
portions of the image (or perhaps the whole image), do a merge, and then
recompress. Even if this were done, portions of the image outside the
"modified" area may also be modified due to lossy compression. Should this
extra implementation burden be imposed on the renderer?

RESOLVED: No. To avoid the complications involved with modifying a
compressed texture image, only the lower-left corner may be modified by
TexSubImage. In addition, after calling TexSubImage, the "unmodified"
portion of the image is left undefined. An INVALID_OPERATION error
results from any other TexSubImage calls.

This behavior allows for the use of compressed images whose dimensions
are not powers of two, which TexImage will not accept. The recommended
sequence of calls for defining such images is to first call TexImage
with a NULL <data> pointer and the image size parameters padded out to
the next power of two, and then call CompressedTexSubImageARB or
TexSubImage with <xoffset>, <yoffset>, and <zoffset> parameters of zero
and the compressed data pointed to by <data>. This behavior also allows
TexSubImage to be used as a light-weight replacement of TexImage, where
only the image contents are modified.

Certain compressed formats may allow a wider variety of edits -- their
specifications will document the restrictions under which these edits
are permitted. it is impossible to document such restrictions for
unknown generic formats. It is desirable to keep the behavior of
generic formats and the specific formats they map to as consistent as
possible.

ARB_texture_compression NVIDIA OpenGL Extension Specifications

 28

(6) What do the return values of the component sizes (RED_BITS,
GREEN_BITS, ...) give for compressed textures? Compressed proxy textures?

RESOLVED: Some behavior has to be defined. For both normal and proxy
textures, we return the bit depths of an uncompressed sized image that
would most closely match the quality of the compression algorithm for an
"average" texture image. Since compressed image quality is highly data
dependent, the actual compressed image quality may be better or worse
than the renderer's best guess at the best matching sized internal
format. To implement this feature in a driver, it is expected that an
error analysis would be done on a set of representative images, and the
resultant "equivalent bit depths" would be hardwired constants.

(7) What should GetTexLevelParameter with TEXTURE_COMPRESSED_
IMAGE_SIZE_ARB return for existing uncompressed formats? For proxy
textures?

RESOLVED: For both, an INVALID_OPERATION error results. The actual
image to be compressed is not available for proxies, so actually
compressing the specified image is not an option.

For uncompressed internal formats, we could return the actual amount of
memory taken by the texture image. Such a mechanism might be useful as
a metric of "how much space does this texture image take". It's not
particularly useful for an application based texture management scheme,
since there is no information available indicating the amount of
available memory. In addition, because of implementation-dependent
hardware constraints, the amount of texture memory consumed by a texture
object is not necessarily equal to the sum of the memory consumed by
each of its mipmaps. The OpenGL ARB decided against adopting this
behavior when this specification was approved.

(8) What about texture borders?

RESOLVED: Not a problem for generic compressed formats since a base
internal format can be used if borders are not supported in the
compressed image format. Borders may pose problems for specific
compression extensions, and compressed textures with borders might well
be disallowed by those extensions.

(9) Should certain pixel operations be disallowed for compressed texture
internal formats (e.g., PixelStorage, PixelTransfer)? What about byte
swapping?

RESOLVED: For uncompressed source images, all pixel storage and pixel
transfer modes will be applied prior to compression. For compressed
source images, all pixel storage and transfer modes will be ignored.
The encoding of compressed images should be specified as a byte stream
that matches the disk file format defined for the corresponding image
type.

(10) Should functionality be provided to allow applications to save
compressed images to disk and reuse them in subsequent runs without
programming to specific formats? If so, how?

RESOLVED: Yes. This can be done without knowledge of specific
compression formats in the following manner:

NVIDIA OpenGL Extension Specifications ARB_texture_compression

 29

* Call TexImage with an uncompressed image and a generic compressed
internal format. The texture image will be compressed by the GL, if
possible.

* Call GetTexLevelParameteriv with a <value> of TEXTURE_COMPRESSED_ARB
to determine if the GL was able to store the image in compressed
form.

* Call GetTexLevelParameteriv with a <value> of
TEXTURE_INTERNAL_FORMAT to determine the specific compressed image
format in which the image is stored.

* Call GetTexLevelParameteriv with a <value> of
TEXTURE_COMPRESSED_IMAGE_SIZE_ARB to determine the size (in ubytes)
of the compressed image that will be returned by the GL. Allocate a
buffer of at least this size.

* Call GetCompressedTexImageARB. The GL will write the compressed
texture image into the allocated buffer.

* Save the returned compressed image to disk, along with the
associated width, height, depth, border parameters and the returned
values of TEXTURE_COMPRESSED_IMAGE_SIZE_ARB and
TEXTURE_INTERNAL_FORMAT.

* Load the compressed image and its parameters, and call
CompressedTexImage_[123]DARB to use the compressed image. The value
of TEXTURE_INTERNAL_FORMAT should be used as <internalFormat> and
the value of TEXTURE_COMPRESSED_IMAGE_SIZE_ARB should be used as
<imageSize>.

The saved images will be valid as long as they are used on a device
supporting the returned <internalFormat> parameter. If the saved images
are used on a device that does not support the compressed internal
format, an INVALID_ENUM error would be generated by the call to
CompressedTexImage_[123]D because of the unknown format.

Note also that to reliably determine if the GL will compress an image
without actually compressing it, an application need only define a proxy
texture image and query TEXTURE_COMPRESSED_ARB as above.

(11) Without knowing of the compressed image format, there is no
convenient way for the client-side GLX library or tracing tools to
ascertain the size of a compressed texture image when sending a
TexImage1D, TexImage2D, or TexImage3D packet or interpret pixel storage
modes. To complicate matters further, it is possible to create both
indirect (that might not understand an image format) and direct rendering
contexts (that might understand an image format) on the same renderer.
How should this be solved?

RESOLVED: A separate set of CompressedTexImage and
CompressedTexSubImage calls has been created that allows libraries to
pass compressed images along to the renderer without needing to
understand their specific image formats or how to interpret pixel
storage modes.

ARB_texture_compression NVIDIA OpenGL Extension Specifications

 30

(12) Are the CompressedTexImage[123]DARB entry points really needed?

RESOLVED: Yes. To robustly support images of unknown format, specific
compressed entry points are required. While the extension does not
support images in a completely unspecified format (early drafts did),
having a separate call means that GLX and tools such as GLS (stream
encoder) do not need intimate knowledge of every compressed image
format. Having separate calls also cleanly solves the problem where
pixel storage and pixel transfer operations apply if and only if the
source image is uncompressed.

(13) Is variable-ratio compression supported?

RESOLVED: Yes. Fixed-ratio compression is currently the predominant
texture compression format, but this spec should not preclude the use of
other compression schemes.

(14) Should the <imageSize> parameter be validated on CompressedTexImage
calls?

RESOLVED: Yes. Enforcement overhead is generally trivial. Without
enforcement, an application could specify incorrect image sizes but
notice them only when run on an indirect renderer, causing portability
problems. There is also a reliability issue with respect to the GLX
environment -- if the compressed image size provided by the user is less
than the required image size, the GLX server may run off the end of the
image and access invalid memory. A size check may thus be desirable to
prevent server crashes (even though that could be considered an
"undefined" result).

While enforcing correct <imageSize> parameters is trivial for current
compressed internal formats, it might not be reasonable on others
(particular variable-ratio compression formats). For such formats, this
restriction should be overridden in the spec defining the formats. The
<imageSize> check was made mandatory only in the final draft approved at
the March 2000 OpenGL ARB meeting.

(15) Should TexImage calls fall back to uncompressed image formats when
<internalformat> is a specific compressed format but its use in
combination with other parameter values passed is not supported by the
renderer?

RESOLVED: Yes. Advantages: Works in exactly the same way as generic
formats, meaning no extra code/error checking. Inherent limitations of
TexImage on specific formats should be documented in their specs and
observed by their users. One simple query can detect fallback cases.
Disadvantages: Silent fallback to a format not requested by the user.

(16) Should the texture format invariance requirements disallow scanning
of the image data to select a compression method? What about for a base
(uncompressed) internal format?

RESOLVED: The primary issue is mipmap consistency. The 1.2.1 spec
defines a set of mipmaps as consistent if all are specified using the
same internal format. However, it doesn't require that all mipmaps are
allocated using the same format -- the renderer is responsible for
ensuring mipmap consistency if it selects different formats for

NVIDIA OpenGL Extension Specifications ARB_texture_compression

 31

different images. There is no reason to disallow scanning for base
internal formats; the renderer is responsible for doing the right thing.

The selection of a specific compressed internal format is different. It
must be independent of the the image data because the GL treats the
texture image as though it were specified using the specific compressed
internal format chosen by the renderer.

(17) Should functionality be provided to enumerate the specific compressed
formats supported by the renderer? If so, how and what will it accomplish?

RESOLVED: Yes. A glGet* query is added to return the number of
compressed internal formats supported by the renderer and the
<internalformat> tokens for each. These tokens can subsequently be used
as <internalformat> parameters for normal TexImage calls and the new
CompressedTexImage calls.

Providing an internal format enumeration allows applications to weigh
the suitability of the various compression methods provided to it by the
renderer without needing specific knowledge of the formats.
Applications can query the component sizes (see issue 6) to determine
the base format and approximate precision. Applications can directly
evaluate image compression quality by having the renderer generate
compressed texture images (using the returned <internalformat> values)
and return them in uncompressed form using GetTexImage. Applications
should also be aware that the use of the internal formats returned by
this query is subject to the restrictions imposed by the specification
defining them. The use of proxy textures allows the application to
determine if a specific set of TexImage parameters is supported for a
given internal format.

The renderer should enumerate all supported compression formats EXCEPT
those that operate fundamentally differently from a normal uncompressed
format. For example, the DirectX DXT1 compression format is
fundamentally an RGB format, but it has a "transparent" encoding where
the red, green, and blue component values are forced to zero, regardless
of their original (uncompressed) values. Since such formats may have
caveats that must be understood before being used, they should not be
enumerated by this query.

This allows for forward compatibility -- an application can exploit
compression techniques provided by future renderers.

(18) Should the separate GetCompressedTexImageARB function exist, or is
GetTexImage with special <format> and/or <type> parameters
sufficient?

RESOLVED: Provide a separate GetCompressedTexImageARB function. The
primary rationale is for GLX indirect rendering. The client GetTexImage
would require information to determine if an image is uncompressed (and
should be decoded using pixel storage state) or compressed (pixel
storage ignored). In addition, if the image is compressed, the actual
image size would be required, but the only image size that could be
inferred from the GLX protocol is padded out to a multiple of four
bytes. A separate call is the cleanest solution to both issues.

ARB_texture_compression NVIDIA OpenGL Extension Specifications

 32

New Procedures and Functions

void CompressedTexImage3DARB(enum target, int level,
enum internalformat, sizei width,
sizei height, sizei depth,
int border, sizei imageSize,
const void *data);

void CompressedTexImage2DARB(enum target, int level,
enum internalformat, sizei width,
sizei height, int border,
sizei imageSize, const void *data);

void CompressedTexImage1DARB(enum target, int level,
enum internalformat, sizei width,
int border, sizei imageSize,
const void *data);

void CompressedTexSubImage3DARB(enum target, int level,
int xoffset, int yoffset,
int zoffset, sizei width,
sizei height, sizei depth,
enum format, sizei imageSize,
const void *data);

void CompressedTexSubImage2DARB(enum target, int level,
int xoffset, int yoffset,
sizei width, sizei height,
enum format, sizei imageSize,
const void *data);

void CompressedTexSubImage1DARB(enum target, int level,
int xoffset, sizei width,
enum format, sizei imageSize,
const void *data);

void GetCompressedTexImageARB(enum target, int lod,
void *img);

New Tokens

Accepted by the <internalformat> parameter of TexImage1D, TexImage2D,
TexImage3D, CopyTexImage1D, and CopyTexImage2D:

COMPRESSED_ALPHA_ARB 0x84E9
COMPRESSED_LUMINANCE_ARB 0x84EA
COMPRESSED_LUMINANCE_ALPHA_ARB 0x84EB
COMPRESSED_INTENSITY_ARB 0x84EC
COMPRESSED_RGB_ARB 0x84ED
COMPRESSED_RGBA_ARB 0x84EE

Accepted by the <target> parameter of Hint and the <value> parameter of
GetIntegerv, GetBooleanv, GetFloatv, and GetDoublev:

TEXTURE_COMPRESSION_HINT_ARB 0x84EF

Accepted by the <value> parameter of GetTexLevelParameter:

TEXTURE_COMPRESSED_IMAGE_SIZE_ARB 0x86A0
TEXTURE_COMPRESSED_ARB 0x86A1

NVIDIA OpenGL Extension Specifications ARB_texture_compression

 33

Accepted by the <value> parameter of GetIntegerv, GetBooleanv, GetFloatv,
and GetDoublev:

NUM_COMPRESSED_TEXTURE_FORMATS_ARB 0x86A2
COMPRESSED_TEXTURE_FORMATS_ARB 0x86A3

Additions to Chapter 2 of the OpenGL 1.2.1 Specification (OpenGL Operation)

None.

Additions to Chapter 3 of the OpenGL 1.2.1 Specification (Rasterization)

Modify Section 3.8.1, Texture Image Specification (p.113)

(p.113, modify 3rd paragraph) <internalformat> may be specified as one of
the six base internal format symbolic constants listed in table 3.15, as
one of the sized internal format symbolic constants listed in table 3.16,
as one of the specific compressed internal format symbolic constants
listed in table 3.16.1, or as one of the six generic compressed internal
format symbolic constants listed in table 3.16.2.

(p.113, add after 3rd paragraph)

The ARB_texture_compression specification provides no specific compressed
internal formats but does provide a mechanism to obtain the enums for such
formats provided by other specifications. If the ARB_texture_compression
extension is supported, the number of specific compressed internal format
symbolic constants supported by the renderer can be obtained by querying
the value of NUM_COMPRESSED_TEXTURE_FORMATS_ARB. The set of specific
compressed internal format symbolic constants supported by the renderer
can be obtained by querying the value of COMPRESSED_TEXTURE_FORMATS_ARB.
The only symbolic constants returned by this query are those suitable for
general-purpose usage. The renderer will not enumerate formats with
restrictions that need to be specifically understood prior to use.

Generic compressed internal formats are never used directly as the
internal formats of texture images. If <internalformat> is one of the six
generic compressed internal formats, its value is replaced by the symbolic
constant for a specific compressed internal format of the GL's choosing
with the same base internal format. If no specific compressed format is
available, <internalformat> is instead replaced by the corresponding base
internal format. If <internalformat> is given as or mapped to a specific
compressed internal format, but the GL can not support images compressed
in the chosen internal format for any reason (e.g., the compression format
might not support 3D textures or borders), <internalformat> is replaced by
the corresponding base internal format and the texture image will not be
compressed by the GL.

(p.113, modify 4th paragraph) ... If a compressed internal format is
specified, the mapping of the R, G, B, and A values to texture components
is equivalent to the mapping of the corresponding base internal format's
components, as specified in table 3.15. The specified image is compressed
using a (possibly lossy) compression algorithm chosen by the GL.

(p.113, 5th paragraph) A GL implementation may vary its allocation of
internal component resolution or compressed internal format based on any
TexImage3D, TexImage2D, or TexImage1D (see below) parameter (except

ARB_texture_compression NVIDIA OpenGL Extension Specifications

 34

<target>, but the allocation and chosen compressed image format must not
be a function of any other state and cannot be changed once they are
established. In addition, the choice of a compressed image format may not
be affected by the <data> parameter. Allocations must be invariant; the
same allocation and compressed image format must be chosen each time a
texture image is specified with the same parameter values. These
allocation rules also apply to proxy textures, which are described in
section 3.8.7.

Add Table 3.16.1: Specific Compressed Internal Formats

Compressed Internal Format Base Internal Format
========================== ====================
none provided here -- defined by dependent extensions

Add Table 3.16.2: Generic Compressed Internal Formats

Generic Compressed Internal
Format Base Internal Format
========================== ====================
COMPRESSED_ALPHA_ARB ALPHA
COMPRESSED_LUMINANCE_ARB LUMINANCE
COMPRESSED_LUMINANCE_ALPHA_ARB LUMINANCE_ALPHA
COMPRESSED_INTENSITY_ARB INTENSITY
COMPRESSED_RGB_ARB RGB
COMPRESSED_RGBA_ARB RGBA

Modify Section 3.8.2, Alternate Image Specification

(add to end of TexSubImage discussion, p.123)

Texture images with compressed internal formats may be stored in such a
way that it is not possible to edit an image with subimage commands
without having to decompress and recompress the texture image being
edited. Even if the image were edited in this manner, it may not be
possible to preserve the contents of some of the texels outside the region
being modified. To avoid these complications, the GL does not support
arbitrary edits to texture images with compressed internal formats.
Calling TexSubImage3D, CopyTexSubImage3D, TexSubImage2D,
CopyTexSubImage2D, TexSubImage1D, or CopyTexSubImage1D will result in an
INVALID_OPERATION error if <xoffset>, <yoffset>, or <zoffset> is not equal
to -b_s (border). In addition, the contents of any texel outside the
region modified by such a call are undefined. These restrictions may be
relaxed for specific compressed internal formats whose images are easily
edited.

(add new subsection at end of section, p.123)

Compressed Texture Images

Texture images may also be specified or modified using image data already
stored in a known compressed image format. The ARB_texture_compression
extension defines no such formats, but provides the mechanisms for other
extensions that do.

NVIDIA OpenGL Extension Specifications ARB_texture_compression

 35

The commands

void CompressedTexImage1DARB(enum target, int level,
enum internalformat, sizei width,
int border, sizei imageSize,
const void *data);

void CompressedTexImage2DARB(enum target, int level,
enum internalformat, sizei width,
sizei height, int border,
sizei imageSize, const void *data);

void CompressedTexImage3DARB(enum target, int level,
enum internalformat, sizei width,
sizei height, sizei depth,
int border, sizei imageSize,
const void *data);

define one-, two-, and three-dimensional texture images, respectively,
with incoming data stored in a specific compressed image format. The
<target>, <level>, <internalformat>, <width>, <height>, <depth>, and
<border> parameters have the same meaning as in TexImage1D, TexImage2D,
and TexImage3D. <data> points to compressed image data stored in the
compressed image format corresponding to <internalformat>. Since this
extension provides no specific image formats, using any of the six generic
compressed internal formats as <internalformat> will result in an
INVALID_ENUM error.

For all other compressed internal formats, the compressed image will be
decoded according to the specification defining the <internalformat>
token. Compressed texture images are treated as an array of <imageSize>
ubytes beginning at address <data>. All pixel storage and pixel transfer
modes are ignored when decoding a compressed texture image. If the
<imageSize> parameter is not consistent with the format, dimensions, and
contents of the compressed image, an INVALID_VALUE error results. If the
compressed image is not encoded according to the defined image format, the
results of the call are undefined.

Specific compressed internal formats may impose format-specific
restrictions on the use of the compressed image specification calls or
parameters. For example, the compressed image format might be supported
only for 2D textures or may not allow non-zero <border> values. Any such
restrictions will be documented in the specification defining the
compressed internal format; violating these restrictions will result in an
INVALID_OPERATION error.

Any restrictions imposed by specific compressed internal formats will be
invariant, meaning that if the GL accepts and stores a texture image in
compressed form, providing the same image to CompressedTexImage1DARB,
CompressedTexImage2DARB, CompressedTexImage3DARB will not result in an
INVALID_OPERATION error if the following restrictions are satisfied:

* <data> points to a compressed texture image returned by
GetCompressedTexImageARB (Section 6.1.4).

* <target>, <level>, and <internalformat> match the <target>, <level>
and <format> parameters provided to the GetCompressedTexImageARB call
returning <data>.

ARB_texture_compression NVIDIA OpenGL Extension Specifications

 36

* <width>, <height>, <depth>, <border>, <internalformat>, and
<imageSize> match the values of TEXTURE_WIDTH, TEXTURE_HEIGHT,
TEXTURE_DEPTH, TEXTURE_BORDER, TEXTURE_INTERNAL_FORMAT, and
TEXTURE_COMPRESSED_IMAGE_SIZE_ARB for image level <level> in effect at
the time of the GetCompressedTexImageARB call returning <data>.

This guarantee applies not just to images returned by
GetCompressedTexImageARB, but also to any other properly encoded
compressed texture image of the same size and format.

The commands

void CompressedTexSubImage1DARB(enum target, int level,
int xoffset, sizei width,
enum format, sizei imageSize,
const void *data);

void CompressedTexSubImage2DARB(enum target, int level,
int xoffset, int yoffset,
sizei width, sizei height,
enum format, sizei imageSize,
const void *data);

void CompressedTexSubImage3DARB(enum target, int level,
int xoffset, int yoffset,
int zoffset, sizei width,
sizei height, sizei depth,
enum format, sizei imageSize,
const void *data);

respecify only a rectangular region of an existing texture array, with
incoming data stored in a known compressed image format. The <target>,
<level>, <xoffset>, <yoffset>, <zoffset>, <width>, <height>, and <depth>
parameters have the same meaning as in TexSubImage1D, TexSubImage2D, and
TexSubImage3D. <data> points to compressed image data stored in the
compressed image format corresponding to <format>. Since this extension
provides no specific image formats, using any of these six generic
compressed internal formats as <format> will result in an INVALID_ENUM
error.

The image pointed to by <data> and the <imageSize> parameter are
interpreted as though they were provided to CompressedTexImage1DARB,
CompressedTexImage2DARB, and CompressedTexImage3DARB. These commands do
not provide for image format conversion, so an INVALID_OPERATION error
results if <format> does not match the internal format of the texture
image being modified. If the <imageSize> parameter is not consistent with
the format, dimensions, and contents of the compressed image (too little
or too much data), an INVALID_VALUE error results.

As with CompressedTexImage calls, compressed internal formats may have
additional restrictions on the use of the compressed image specification
calls or parameters. Any such restrictions will be documented in the
specification defining the compressed internal format; violating these
restrictions will result in an INVALID_OPERATION error.

Any restrictions imposed by specific compressed internal formats will be
invariant, meaning that if the GL accepts and stores a texture image in

NVIDIA OpenGL Extension Specifications ARB_texture_compression

 37

compressed form, providing the same image to CompressedTexSubImage1DARB,
CompressedTexSubImage2DARB, CompressedTexSubImage3DARB will not result in
an INVALID_OPERATION error if the following restrictions are satisfied:

* <data> points to a compressed texture image returned by
GetCompressedTexImageARB (Section 6.1.4).

* <target>, <level>, and <format> match the <target>, <level> and
<format> parameters provided to the GetCompressedTexImageARB call
returning <data>.

* <width>, <height>, <depth>, <format>, and <imageSize> match the values
of TEXTURE_WIDTH, TEXTURE_HEIGHT, TEXTURE_DEPTH,
TEXTURE_INTERNAL_FORMAT, and TEXTURE_COMPRESSED_IMAGE_SIZE_ARB for
image level <level> in effect at the time of the
GetCompressedTexImageARB call returning <data>.

* <width>, <height>, <depth>, <format> match the values of
TEXTURE_WIDTH, TEXTURE_HEIGHT, TEXTURE_DEPTH, and
TEXTURE_INTERNAL_FORMAT currently in effect for image level <level>.

* <xoffset>, <yoffset>, and <zoffset> are all "-", where is the
value of TEXTURE_BORDER currently in effect for image level <level>.

This guarantee applies not just to images returned by
GetCompressedTexImageARB, but also to any other properly encoded
compressed texture image of the same size.

Calling CompressedTexSubImage3D, CompressedTexSubImage2D, or
CompressedTexSubImage1D will result in an INVALID_OPERATION error if
<xoffset>, <yoffset>, or <zoffset> is not equal to -b_s (border), or if
<width>, <height>, and <depth> do not match the values of TEXTURE_WIDTH,
TEXTURE_HEIGHT, or TEXTURE_DEPTH, respectively. The contents of any texel
outside the region modified by the call are undefined. These restrictions
may be relaxed for specific compressed internal formats whose images are
easily edited.

Additions to Chapter 4 of the OpenGL 1.2.1 Specification (Per-Fragment
Operations and the Frame Buffer)

None.

Additions to Chapter 5 of the OpenGL 1.2.1 Specification (Special Functions)

Modify Section 5.6, Hints (p.180)

(p.180, modify first paragraph)

...; FOG_HINT, indicating whether fog calculations are done per pixel or
per vertex; and TEXTURE_COMPRESSION_HINT_ARB, indicating the desired
quality and performance of compressing texture images.

For the texture compression hint, a <hint> of FASTEST indicates that
texture images should be compressed as quickly as possible, while NICEST
indicates that the texture images be compressed with as little image
degradation as possible. FASTEST should be used for one-time texture
compression, and NICEST should be used if the compression results are to

ARB_texture_compression NVIDIA OpenGL Extension Specifications

 38

be retrieved by GetCompressedTexImageARB (Section 6.1.4) for reuse.

Additions to Chapter 6 of the OpenGL 1.2.1 Specification (State and
State Requests)

Modify Section 6.1.3, Enumerated Queries (p.183)

(p.183, modify next-to-last paragraph)

For texture images with uncompressed internal formats, queries of
TEXTURE_RED_SIZE, TEXTURE_GREEN_SIZE, TEXTURE_BLUE_SIZE,
TEXTURE_ALPHA_SIZE, TEXTURE_LUMINANCE_SIZE, and TEXTURE_INTENSITY_SIZE
return the actual resolutions of the stored image array components, not
the resolutions specified when the image array was defined. For texture
images with a compressed internal format, the resolutions returned specify
the component resolution of an uncompressed internal format that produces
an image of roughly the same quality as the compressed image in question.
Since the quality of the implementation's compression algorithm is likely
data-dependent, the returned component sizes should be treated only as
rough approximations. ...

(p.183, add to end of next-to-last paragraph)

TEXTURE_COMPRESSED_IMAGE_SIZE_ARB returns the size (in ubytes) of the
compressed texture image that would be returned by
GetCompressedTexImageARB (Section 6.1.4). Querying
TEXTURE_COMPRESSED_IMAGE_SIZE_ARB is not allowed on texture images with an
uncompressed internal format or on proxy targets and will result in an
INVALID_OPERATION error if attempted.

Modify Section 6.1.4, Texture Queries (p.184)

(add immediately after the GetTexImage section and before the IsTexture
section)

The command

void GetCompressedTexImageARB(enum target, int lod,
void *img);

is used to obtain texture images stored in compressed form. The
parameters <target>, <lod>, and are interpreted in the same manner
as in GetTexImage. When called, GetCompressedTexImageARB writes
TEXTURE_COMPRESSED_IMAGE_SIZE_ARB ubytes of compressed image data to the
memory pointed to by . The compressed image data is formatted
according to the specification defining INTERNAL_FORMAT. All pixel
storage and pixel transfer modes are ignored when returning a compressed
texture image.

Calling GetCompressedTexImageARB with an <lod> value less than zero or
greater than the maximum allowable causes an INVALID_VALUE error. Calling
GetCompressedTexImageARB with a texture image stored with an uncompressed
internal format causes an INVALID_OPERATION error.

Additions to Appendix A of the OpenGL 1.2.1 Specification (Invariance)

None.

NVIDIA OpenGL Extension Specifications ARB_texture_compression

 39

Additions to the AGL/GLX/WGL Specifications

None.

GLX Protocol

(Add after GetTexImage to Section 2.2.2 of the GLX 1.3 encoding spec,
p.74)

GetCompressedTexImageARB

1 CARD8 opcode (X assigned)
1 160 GLX opcode
2 4 request length
4 GLX_CONTEXT_TAG context tag
4 ENUM target
4 INT32 level

-->

1 1 Reply
1 1 unused
2 CARD16 sequence number
4 n reply length
8 unused
4 INT32 compressed image size (in bytes) --

should be between 4n-3 and 4n
12 unused
4*n LISTofBYTE teximage

Note that n may be zero, indicating that a GL error occurred.

Since pixel storage modes do not apply to compressed texture images,
teximage is simply an array of bytes. The client library will ignore
pixel storage modes and should copy only <compressed image size> bytes,
regardless of the value of <reply length>.

ARB_texture_compression NVIDIA OpenGL Extension Specifications

 40

(Add to end of Section 2.3 of the GLX 1.3 encoding spec, p.147)

CompressedTexImage1DARB

2 32+n+p rendering command length
2 214 rendering command opcode
4 ENUM target
4 INT32 level
4 ENUM internalformat
4 INT32 width
4 unused
4 INT32 border
n LISTofBYTE image
4 INT32 imageSize
p unused, p=pad(n)

If the command is encoded in a glXRenderLarge request, the command
opcode and command length fields are expanded to 4 bytes each.

4 36+n+p rendering command length
4 214 rendering command opcode

CompressedTexImage2DARB

2 32+n+p rendering command length
2 215 rendering command opcode
4 ENUM target
4 INT32 level
4 ENUM internalformat
4 INT32 width
4 INT32 height
4 INT32 border
4 INT32 imageSize
n LISTofBYTE image
p unused, p=pad(n)

If the command is encoded in a glXRenderLarge request, the command
opcode and command length fields are expanded to 4 bytes each.

4 36+n+p rendering command length
4 215 rendering command opcode

NVIDIA OpenGL Extension Specifications ARB_texture_compression

 41

CompressedTexImage3DARB

2 36+n+p rendering command length
2 216 rendering command opcode
4 ENUM target
4 INT32 level
4 INT32 internalformat
4 INT32 width
4 INT32 height
4 INT32 depth
4 INT32 border
4 INT32 imageSize
n LISTofBYTE image
p unused, p=pad(n)

If the command is encoded in a glXRenderLarge request, the command
opcode and command length fields are expanded to 4 bytes each.

4 36+n+p rendering command length
4 216 rendering command opcode

CompressedTexSubImage1DARB

2 36+n+p rendering command length
2 217 rendering command opcode
4 ENUM target
4 INT32 level
4 INT32 xoffset
4 unused
4 INT32 width
4 unused
4 ENUM format
4 INT32 imageSize
n LISTofBYTE image
p unused, p=pad(n)

If the command is encoded in a glXRenderLarge request, the command
opcode and command length fields are expanded to 4 bytes each.

4 40+n+p rendering command length
4 217 rendering command opcode

ARB_texture_compression NVIDIA OpenGL Extension Specifications

 42

CompressedTexSubImage2DARB

2 36+n+p rendering command length
2 218 rendering command opcode
4 ENUM target
4 INT32 level
4 INT32 xoffset
4 INT32 yoffset
4 INT32 width
4 INT32 height
4 ENUM format
4 INT32 imageSize
n LISTofBYTE image
p unused, p=pad(n)

If the command is encoded in a glXRenderLarge request, the command
opcode and command length fields are expanded to 4 bytes each.

4 40+n+p rendering command length
4 218 rendering command opcode

CompressedTexSubImage3DARB

2 44+n+p rendering command length
2 219 rendering command opcode
4 ENUM target
4 INT32 level
4 INT32 xoffset
4 INT32 yoffset
4 INT32 zoffset
4 INT32 width
4 INT32 height
4 INT32 depth
4 ENUM format
4 INT32 imageSize
n LISTofBYTE image
p unused, p=pad(n)

If the command is encoded in a glXRenderLarge request, the command
opcode and command length fields are expanded to 4 bytes each.

4 48+n+p rendering command length
4 219 rendering command opcode

Errors

Errors for compressed TexImage and TexSubImage calls specific to
compression:

INVALID_OPERATION is generated by TexSubImage1D, TexSubImage2D,
TexSubImage3D, CopyTexSubImage1D, CopyTexSubImage2D, or CopyTexSubImage3D
if the internal format of the texture image is compressed and <xoffset>,
<yoffset>, or <zoffset> does not equal -b, where b is value of
TEXTURE_BORDER.

NVIDIA OpenGL Extension Specifications ARB_texture_compression

 43

INVALID_VALUE is generated by CompressedTexSubImage1DARB,
CompressedTexSubImage2DARB, or CompressedTexSubImage3DARB if the entire
texture image is not being edited: if <xoffset>, <yoffset>, or <zoffset>
is greater than -b, <xoffset> + <width> is less than w+b, <yoffset> +
<height> is less than h+b, or <zoffset> + <depth> is less than d+b, where
b is the value of TEXTURE_BORDER, w is the value of TEXTURE_WIDTH, h is
the value of TEXTURE_HEIGHT, and d is the value of TEXTURE_DEPTH.

INVALID_ENUM is generated by CompressedTexImage1DARB,
CompressedTexImage2DARB, or CompressedTexImage3DARB,
CompressedTexSubImage1DARB, CompressedTexSubImage2DARB, or
CompressedTexSubImage3DARB, if <internalformat> is any of the six generic
compressed internal formats (e.g., COMPRESSED_RGBA_ARB)

INVALID_OPERATION is generated by CompressedTexImage1DARB,
CompressedTexImage2DARB, CompressedTexImage3DARB,
CompressedTexSubImage1DARB, CompressedTexSubImage2DARB, or
CompressedTexSubImage3DARB, if any parameter combinations are not
supported by the specific compressed internal format. Such invalid
combinations are documented in the specification defining the internal
format.

INVALID_VALUE is generated by CompressedTexImage1DARB,
CompressedTexImage2DARB, or CompressedTexImage3DARB,
CompressedTexSubImage1DARB, CompressedTexSubImage2DARB, or
CompressedTexSubImage3DARB, if <imageSize> is not consistent with the
format, dimensions, and contents of the specified image. The appropriate
value for the <imageSize> parameter is documented in the specification
defining the compressed internal format.

Undefined results (including abnormal program termination) are generated
by CompressedTexImage1DARB, CompressedTexImage2DARB, or
CompressedTexImage3DARB, CompressedTexSubImage1DARB,
CompressedTexSubImage2DARB, or CompressedTexSubImage3DARB, is not encoded
in a manner consistent with the specification defining the internal
format.

INVALID_OPERATION is generated by CompressedTexSubImage1DARB,
CompressedTexSubImage2DARB, or CompressedTexSubImage3DARB if <format> does
not match the internal format of the texture image being modified.

INVALID_OPERATION is generated by GetTexLevelParameter[if]v if <target> is
PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, or PROXY_TEXTURE_3D and <value> is
TEXTURE_COMPRESSED_IMAGE_SIZE_ARB.

INVALID_OPERATION is generated by GetTexLevelParameter[if]v if the
internal format of the queried texture image is not compressed and <value>
is TEXTURE_COMPRESSED_IMAGE_SIZE_ARB.

INVALID_OPERATION is generated by GetCompressedTexImageARB if the internal
format of the queried texture image is not compressed.

Errors for compressed TexImage and TexSubImage calls not specific to
compression:

ARB_texture_compression NVIDIA OpenGL Extension Specifications

 44

INVALID_ENUM is generated by CompressedTexImage3DARB or
CompressedTexSubImage3DARB if <target> is not TEXTURE_3D.

INVALID_ENUM is generated by CompressedTexImage2DARB or
CompressedTexSubImage2DARB if <target> is not TEXTURE_2D,
TEXTURE_CUBE_MAP_POSITIVE_X_ARB, TEXTURE_CUBE_MAP_NEGATIVE_X_ARB,
TEXTURE_CUBE_MAP_POSITIVE_Y_ARB, TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB,
TEXTURE_CUBE_MAP_POSITIVE_Z_ARB, or TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB.

INVALID_ENUM is generated by CompressedTexImage1DARB or
CompressedTexSubImage1DARB if <target> is not TEXTURE_1D.

INVALID_VALUE is generated by CompressedTexImage1DARB,
CompressedTexImage2DARB, CompressedTexImage3DARB,
CompressedTexSubImage1DARB, CompressedTexSubImage1DARB, or
CompressedTexSubImage3DARB if <level> is negative.

INVALID_VALUE is generated by CompressedTexImage1DARB,
CompressedTexImage2DARB, CompressedTexImage3DARB,
CompressedTexSubImage1DARB, CompressedTexSubImage2DARB, or
CompressedTexSubImage3DARB, if <width>, <height>, or <depth> is negative.

INVALID_VALUE is generated by CompressedTexImage1DARB,
CompressedTexImage2DARB, or CompressedTexImage3DARB if <width>, <height>,
or <depth> can not be represented as 2^k+2 for some integer value k.

INVALID_VALUE is generated by CompressedTexImage1DARB,
CompressedTexImage2DARB, or CompressedTexImage3DARB if <border> is not
zero or one.

INVALID_VALUE is generated by CompressedTexImage1DARB,
CompressedTexImage2DARB, CompressedTexImage3DARB,
CompressedTexSubImage1DARB, CompressedTexSubImage1DARB, or
CompressedTexSubImage3DARB if the call is made between a call to Begin and
the corresponding call to End.

INVALID_VALUE is generated by CompressedTexSubImage1DARB,
CompressedTexSubImage2DARB, or CompressedTexSubImage3DARB if <xoffset>,
<yoffset>, or <zoffset> is less than -b, <xoffset> + <width> is greater
than w+b, <yoffset> + <height> is greater than h+b, or <zoffset> + <depth>
is greater than d+b, where b is the value of TEXTURE_BORDER, w is the
value of TEXTURE_WIDTH, h is the value of TEXTURE_HEIGHT, and d is the
value of TEXTURE_DEPTH.

INVALID_VALUE is generated by GetCompressedTexImageARB if <lod> is
negative or greater than the maximum allowable level.

NVIDIA OpenGL Extension Specifications ARB_texture_compression

 45

New State

(table 6.12, p.202)
Initial

Get Value Type Get Command Value Description Sec. Attribute
--------- ---- ----------- ------- ----------- ---- ---------
TEXTURE_COMPRESSED_IMAGE_SIZE_ARB n x Z+ GetTexLevel- 0 size (in 3.8 -

Parameter ubytes)
of xD compressed
texture image i.

TEXTURE_COMPRESSED_ARB n x B GetTexLevel- FALSE True if xD 3.8 -
Parameter image i has

a compressed
internal format

(table 6.23, p.213)
Initial

Get Value Type Get Command Value Description Sec. Attribute
--------- ---- ----------- ------- ----------- ---- ---------
TEXTURE_COMPRESSION_HINT_ARB Z_3 GetIntegerv DONT_ Texture 5.6 hint

CARE compression
quality hint

(table 6.25, p. 215)
Minimum

Get Value Type Get Command Value Description Sec. Attribute
--------- ---- ----------- ------- ----------- ---- ---------
NUM_COMPRESSED_TEXTURE_FORMATS_ARB Z GetIntegerv 0 Number of 3.8 -

enumerated
compressed
texture
formats

COMPRESSED_TEXTURE_FORMATS_ARB 0* x Z GetIntegerv - Enumerated 3.8 -
compressed
texture
formats

Revision History

1.03, 05/23/00 prbrown1: Removed stray "None." paragraph in modifications
to Chapter 5.

1.02, 05/08/00 prbrown1: Fixed prototype of GetCompressedTexImageARB (no
"const" qualifiers) in "New Procedures and
Functions" section. Changed <internalformat>
parameter of CompressedTexImage functions to be
an "enum" instead of an "int". "int" was carried
over only on TexImage calls as a 1.0 legacy --
the newer CopyTexImage call takes an "enum".

1.01, 04/11/00 prbrown1: Minor bug fixes to the first published version.
Fixed prototypes to match extension spec
standards (no "GL" type prefixes). Fixed a
couple erroneous function names. Added "const"
qualifier to prototypes involving image data not
modified by the GL. Added text to indicate that
compressed formats apply to texture maps
supported by GL_ARB_texture_cube_map.

1.0, 03/24/00 prbrown1: Applied changes approved as part of the extension
at the March 2000 ARB meeting, as follows:

* CompressedTexSubImage: Only allowed if the

ARB_texture_compression NVIDIA OpenGL Extension Specifications

 46

entire image is replaced. Document that this
restriction can be relaxed for specific
compression extensions.

* Renamed TEXTURE_IMAGE_SIZE_ARB to
TEXTURE_COMPRESSED_IMAGE_SIZE_ARB.

* Querying image size on uncompressed images is
now an INVALID_OPERATION error.

* INVALID_VALUE error is generated if <imageSize>
is inconsistent with the image data. This
restriction may be overridden by specific
extensions only if requiring an image size
check is unreasonable.

* Added documentaion of undefined behavior for
CompressedTexImage/SubImage if the image data
is encoded in a manner inconsistent with the
spec defining the compressed image format.

* Fixed issue (16). Text was truncated.
* Modified invariance section. <data> can not

affect the choice of compressed internal
format, but can theoretically affect regular
component resolution.

* Add new function GetCompressedTexImage to deal
with subtle GLX issues.

* GLX protocol for CompressedTexImage/SubImage
and GetCompressedTexImage holds both a padded
image size (for GLX data transfer) and actual
image size (for packing in user buffers).

Minor wording clean-ups.

Added enum and GLX opcode values allocated from
OpenGL Extensions and GLX registries.

0.81, 03/07/00 prbrown1: Fixed error documentation for TexSubImage calls
of arbitrary alignment (did not document that the
internal format had to be compressed). Removed
references to CopyTexImage3D, which doesn't
actually exist.

Per Kurt Akeley suggestions: (1) Renamed
TexImageCompressed to CompressedTexImage to
conform with naming conventions, (2) clarified
that the main feature distinguishing
CompressedTex[Sub]Image calls from normal
Tex[Sub]Image calls is compressed input data, (3)
added query to explicitly determine whether the
internal format of a texture is compressed.

0.8, 02/23/00 prbrown1: Marked previously unresolved issues as resolved
per the ARB working group. Added docs for errors
not specific to compression for the new
CompressedTexImage and CompressedTexSubImage
calls. Added queries to enumerate specific
compressed texture formats.

0.76, 02/16/00 prbrown1: Removed "gl" and "GL_" prefixes.
0.75, 02/07/00 prbrown1: Incorporated feedback from 12/99 ARB meeting

and a number of other revisions.

NVIDIA OpenGL Extension Specifications ARB_texture_compression

 47

0.7, 12/03/99 prbrown1: Incorporated comments from public review of 0.2
document.

0.2, 10/28/99 prbrown1: Renamed to ARB_texture_compression. Significant
functional changes.

0.11, 10/21/99 prbrown1: Edits suggested by 3dfx.
0.1, 10/19/99 prbrown1: Initial revision.

ARB_texture_cube_map NVIDIA OpenGL Extension Specifications

 48

Name

ARB_texture_cube_map

Name Strings

GL_ARB_texture_cube_map

Notice

Copyright OpenGL Architectural Review Board, 1999.

Status

Complete. Approved by ARB on 12/8/1999

Version

Last Modified Date: December 14, 1999

Number

ARB Extension #7

Dependencies

None.

Written based on the wording of the OpenGL 1.2.1 specification but
not dependent on it.

Overview

This extension provides a new texture generation scheme for cube
map textures. Instead of the current texture providing a 1D, 2D,
or 3D lookup into a 1D, 2D, or 3D texture image, the texture is a
set of six 2D images representing the faces of a cube. The (s,t,r)
texture coordinates are treated as a direction vector emanating from
the center of a cube. At texture generation time, the interpolated
per-fragment (s,t,r) selects one cube face 2D image based on the
largest magnitude coordinate (the major axis). A new 2D (s,t) is
calculated by dividing the two other coordinates (the minor axes
values) by the major axis value. Then the new (s,t) is used to
lookup into the selected 2D texture image face of the cube map.

Unlike a standard 1D, 2D, or 3D texture that have just one target,
a cube map texture has six targets, one for each of its six 2D texture
image cube faces. All these targets must be consistent, complete,
and have equal width and height (ie, square dimensions).

This extension also provides two new texture coordinate generation modes
for use in conjunction with cube map texturing. The reflection map
mode generates texture coordinates (s,t,r) matching the vertex's
eye-space reflection vector. The reflection map mode
is useful for environment mapping without the singularity inherent
in sphere mapping. The normal map mode generates texture coordinates
(s,t,r) matching the vertex's transformed eye-space

NVIDIA OpenGL Extension Specifications ARB_texture_cube_map

 49

normal. The normal map mode is useful for sophisticated cube
map texturing-based diffuse lighting models.

The intent of the new texgen functionality is that an application using
cube map texturing can use the new texgen modes to automatically
generate the reflection or normal vectors used to look up into the
cube map texture.

An application note: When using cube mapping with dynamic cube
maps (meaning the cube map texture is re-rendered every frame),
by keeping the cube map's orientation pointing at the eye position,
the texgen-computed reflection or normal vector texture coordinates
can be always properly oriented for the cube map. However if the
cube map is static (meaning that when view changes, the cube map
texture is not updated), the texture matrix must be used to rotate
the texgen-computed reflection or normal vector texture coordinates
to match the orientation of the cube map. The rotation can be
computed based on two vectors: 1) the direction vector from the cube
map center to the eye position (both in world coordinates), and 2)
the cube map orientation in world coordinates. The axis of rotation
is the cross product of these two vectors; the angle of rotation is
the arcsin of the dot product of these two vectors.

Issues

Should we place the normal/reflection vector in the (s,t,r) texture
coordinates or (s,t,q) coordinates?

RESOLUTION: (s,t,r). Even if hardware uses "q" for the third
component, the API should claim to support generation of (s,t,r)
and let the texture matrix (through a concatenation with the
user-supplied texture matrix) move "r" into "q".

Should the texture coordinate generation functionality for cube
mapping be specified as a distinct extension from the actual cube
map texturing functionality?

RESOLUTION: NO. Real applications and real implementations of
cube mapping will tie the texgen and texture generation functionality
together. Applications won't have to query two separate
extensions then.

While applications will almost always want to use the texgen
functionality for automatically generating the reflection or normal
vector as texture coordinates (s,t,r), this extension does permit
an application to manually supply the reflection or normal vector
through glTexCoord3f explicitly.

Note that the NV_texgen_reflection extension does "unbundle"
the texgen functionality from cube maps.

Should you be able to have some texture coordinates computing
REFLECTION_MAP_ARB and others not? Same question with NORMAL_MAP_ARB.

RESOLUTION: YES. This is the way that SPHERE_MAP works. It is
not clear that this would ever be useful though.

ARB_texture_cube_map NVIDIA OpenGL Extension Specifications

 50

Should something special be said about the handling of the q
texture coordinate for this spec?

RESOLUTION: NO. But the following paragraph is useful for
implementors concerned about the handling of q.

The REFLECTION_MAP_ARB and NORMAL_MAP_ARB modes are intended to supply
reflection and normal vectors for cube map texturing hardware.
When these modes are used for cube map texturing, the generated
texture coordinates can be thought of as an reflection vector.
The value of the q texture coordinate then simply scales the
vector but does not change its direction. Because only the vector
direction (not the vector magnitude) matters for cube map texturing,
implementations are free to leave q undefined when any of the s,
t, or r texture coordinates are generated using REFLECTION_MAP_ARB
or NORMAL_MAP_ARB.

How should the cube faces be labeled?

RESOLUTION: Match the render man specification's names of "px"
(positive X), "nx" (negative x), "py", "ny", "pz", and "nz".
There does not actually need to be an "ordering for the faces"
(Direct3D 7.0 does number their cube map faces.) For this
extension, the symbolic target names (TEXTURE_CUBE_MAP_POSITIVE_X_ARB,
etc) is sufficient without requiring any specific ordering.

What coordinate system convention should be used? LHS or RHS?

RESOLUTION: The coordinate system is left-handed if you think
of yourself within the cube. The coordinate system is
right-handed if you think of yourself outside the cube.

This matches the convention of the RenderMan interface. If
you look at Figure 12.8 (page 265) in "The RenderMan Companion",
think of the cube being folded up with the observer inside
the cube. Then the coordinate system convention is
left-handed.

The spec just linearly interpolates the reflection vectors computed
per-vertex across polygons. Is there a problem interpolating
reflection vectors in this way?

Probably. The better approach would be to interpolate the eye
vector and normal vector over the polygon and perform the reflection
vector computation on a per-fragment basis. Not doing so is likely
to lead to artifacts because angular changes in the normal vector
result in twice as large a change in the reflection vector as normal
vector changes. The effect is likely to be reflections that become
glancing reflections too fast over the surface of the polygon.

Note that this is an issue for REFLECTION_MAP_ARB, but not
NORMAL_MAP_ARB.

What happens if an (s,t,q) is passed to cube map generation that
is close to (0,0,0), ie. a degenerate direction vector?

RESOLUTION: Leave undefined what happens in this case (but

NVIDIA OpenGL Extension Specifications ARB_texture_cube_map

 51

may not lead to GL interruption or termination).

Note that a vector close to (0,0,0) may be generated as a
result of the per-fragment interpolation of (s,t,r) between
vertices.

Do we need a distinct proxy texture mechanism for cube map
textures?

RESOLUTION: YES. Cube map textures take up six times the
memory as a conventional 2D image texture so proxy 2D texture
determinations won't be of value for a cube map texture.
Cube maps need their own proxy target.

Should we require the 2D texture image width and height to
be identical (ie, square only)?

RESOLUTION: YES. This limitation is quite a reasonable limitation
and DirectX 7 has the same limitation.

This restriction is enforced by generating an INVALID_VALUE
when calling TexImage2D or CopyTexImage2D with a non-equal
width and height.

Some consideration was given to enforcing the "squarness"
constraint as a texture consistency constraint. This is
confusing however since the squareness is known up-front
at texture image specification time so it seems confusing
to silently report the usage error as a texture consistency
issue.

Texture consistency still says that all the level 0 textures
of all six faces must have the same square size.

If some combination of 1D, 2D, 3D, and cube map texturing is
enabled, which really operates?

RESOLUTION: Cube map texturing. In OpenGL 1.2, 3D takes
priority over 2D takes priority over 1D. Cube mapping should
take priority over all conventional n-dimensional texturing
schemes.

Does anything need to be said about combining cube mapping with
multitexture?

RESOLUTION: NO. Cube mapping should be available on all texture
units. The hardware should fully orthogonal in its handling of
cube map textures.

Does it make sense to support borders for cube map textures.

Actually, it does. It would be nice if the texture border pixels
match the appropriate texels from the edges of the other cube map
faces that they junction with. For this reason, we'll leave the
texture border capability implicitly supported.

ARB_texture_cube_map NVIDIA OpenGL Extension Specifications

 52

How does mipmap level-of-detail selection work for cube map
textures?

The existing spec's language about LOD selection is fine.

Should the implementation dependent value for the maximum
texture size for a cube map be the same as MAX_TEXTURE_SIZE?

RESOLUTION: NO. OpenGL 1.2 has a different MAX_3D_TEXTURE_SIZE
for 3D textures, and cube maps should take six times more space
than a 2D texture map of the same width & height. The implementation
dependent MAX_CUBE_MAP_TEXTURE_SIZE_ARB constant should be used for
cube maps then.

Note that the proxy cube map texture provides a better way to
find out the maximum cube map texture size supported since the
proxy mechanism can take into account the internal format, etc.

In section 3.8.10 when the "largest magnitude coordinate direction"
is choosen, what happens if two or more of the coordinates (rx,ry,rz)
have the identical magnitude?

RESOLUTION: Implementations can define their own rule to choose
the largest magnitude coordinate direction whne two or more of the
coordinates have the identical magnitude. The only restriction is
that the rule must be deterministic and depend only on (rx,ry,rz).

In practice, (s,t,r) is interpolated across polygons so the cases
where |s|==|t|, etc. are pretty arbitary (the equality depends on
interpolation precision). This extension could mandate a particular
rule, but that seems heavy-handed and there is no good reason that
multiple vendors should be forced to implement the same rule.

Should there be limits on the supported border modes for cube maps?

RESOLUTION: NO. The specificiation is written so that cube map
texturing proceeds just like conventional 2D texture mapping once
the face determination is made.

Therefore, all OpenGL texture wrap modes should be supported though
some modes are clearly inappropriate for cube maps. The WRAP mode
is almost certainly incorrect for cube maps. Likewise, the CLAMP
mode without a texture border is almost certainly incorrect for cube
maps. CLAMP when a texture border is present and CLAMP_TO_EDGE are
both reasonably suited for cube maps. Ideally, CLAMP with a texture
border works best if the cube map edges can be replicated in the
approriate texture borders of adjacent cube map faces. In practice,
CLAMP_TO_EDGE works reasonably well in most circumstances.

Perhaps another extension could support a special cube map wrap
mode that automatically wraps individual texel fetches to the
appropriate adjacent cube map face. The benefit from such a mode
is small and the implementation complexity is involved so this wrap
mode should not be required for a basic cube map texture extension.

NVIDIA OpenGL Extension Specifications ARB_texture_cube_map

 53

How is mipmap LOD selection handled for cube map textures?

RESOLUTION: The specification is written so that cube map texturing
proceeds just like conventional 2D texture mapping once the face
determination is made.

Thereforce, the partial differentials in Section 3.8.5 (page
126) should be evaluated for the u and v parameters based on the
post-face determination s and t.

In Section 2.10.3 "Normal Transformation", there are several versions
of the eye-space normal vector to choose from. Which one should
the NORMAL_MAP_ARB texgen mode use?

RESOLUTION: nf. The nf vector is the final normal, post-rescale
normal and post-normalize. In practice, the rescale normal and
normalize operations do not change the direction of the vector
so the choice of which version of transformed normal is used is
not important for cube maps.

New Procedures and Functions

None

New Tokens

Accepted by the <param> parameters of TexGend, TexGenf, and TexGeni
when <pname> parameter is TEXTURE_GEN_MODE:

NORMAL_MAP_ARB 0x8511
REFLECTION_MAP_ARB 0x8512

When the <pname> parameter of TexGendv, TexGenfv, and TexGeniv is
TEXTURE_GEN_MODE, then the array <params> may also contain
NORMAL_MAP_ARB or REFLECTION_MAP_ARB.

Accepted by the <cap> parameter of Enable, Disable, IsEnabled, and
by the <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv,
and GetDoublev, and by the <target> parameter of BindTexture,
GetTexParameterfv, GetTexParameteriv, TexParameterf, TexParameteri,
TexParameterfv, and TexParameteriv:

TEXTURE_CUBE_MAP_ARB 0x8513

Accepted by the <pname> parameter of GetBooleanv, GetIntegerv,
GetFloatv, and GetDoublev:

TEXTURE_BINDING_CUBE_MAP_ARB 0x8514

ARB_texture_cube_map NVIDIA OpenGL Extension Specifications

 54

Accepted by the <target> parameter of GetTexImage,
GetTexLevelParameteriv, GetTexLevelParameterfv, TexImage2D,
CopyTexImage2D, TexSubImage2D, and CopySubTexImage2D:

TEXTURE_CUBE_MAP_POSITIVE_X_ARB 0x8515
TEXTURE_CUBE_MAP_NEGATIVE_X_ARB 0x8516
TEXTURE_CUBE_MAP_POSITIVE_Y_ARB 0x8517
TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB 0x8518
TEXTURE_CUBE_MAP_POSITIVE_Z_ARB 0x8519
TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB 0x851A

Accepted by the <target> parameter of GetTexLevelParameteriv,
GetTexLevelParameterfv, GetTexParameteriv, and TexImage2D:

PROXY_TEXTURE_CUBE_MAP_ARB 0x851B

Accepted by the <pname> parameter of GetBooleanv, GetDoublev,
GetIntegerv, and GetFloatv:

MAX_CUBE_MAP_TEXTURE_SIZE_ARB 0x851C

Additions to Chapter 2 of the 1.2 Specification (OpenGL Operation)

-- Section 2.10.4 "Generating Texture Coordinates"

Change the last sentence in the 1st paragraph (page 37) to:

"If <pname> is TEXTURE_GEN_MODE, then either <params> points to
or <param> is an integer that is one of the symbolic constants
OBJECT_LINEAR, EYE_LINEAR, SPHERE_MAP, REFLECTION_MAP_ARB, or
NORMAL_MAP_ARB."

Add these paragraphs after the 4th paragraph (page 38):

"If TEXTURE_GEN_MODE indicates REFLECTION_MAP_ARB, compute the
reflection vector r as described for the SPHERE_MAP mode. Then the
value assigned to an s coordinate (the first TexGen argument value
is S) is s = rx; the value assigned to a t coordinate is t = ry;
and the value assigned to a r coordinate is r = rz. Calling TexGen
with a <coord> of Q when <pname> indicates REFLECTION_MAP_ARB
generates the error INVALID_ENUM.

If TEXTURE_GEN_MODE indicates NORMAL_MAP_ARB, compute the normal
vector nf as described in section 2.10.3. Then the value assigned
to an s coordinate (the first TexGen argument value is S) is s =
nfx; the value assigned to a t coordinate is t = nfy; and the
value assigned to a r coordinate is r = nfz. (The values nfx, nfy,
and nfz are the components of nf.) Calling TexGen with a <coord>
of Q when <pname> indicates NORMAL_MAP_ARB generates the error
INVALID_ENUM.

The last paragraph's first sentence (page 38) should be changed to:

"The state required for texture coordinate generation comprises a
five-valued integer for each coordinate indicating coordinate
generation mode, ..."

NVIDIA OpenGL Extension Specifications ARB_texture_cube_map

 55

Additions to Chapter 3 of the 1.2 Specification (Rasterization)

-- Section 3.6.5 "Pixel Transfer Operations" under "Convolution"

Change this paragraph (page 103) to say:

... "If CONVOLUTION_2D is enabled, the two-dimensional convolution
filter is applied only to the two-dimensional images passed to
DrawPixels, CopyPixels, ReadPixels, TexImage2D, TexSubImage2D,
CopyTexImage2D, CopyTexSubImage2D, and CopyTexSubImage3D, and
returned by GetTexImage with one of the targets TEXTURE_2D,
TEXTURE_CUBE_MAP_POSITIVE_X_ARB, TEXTURE_CUBE_MAP_NEGATIVE_X_ARB,
TEXTURE_CUBE_MAP_POSITIVE_Y_ARB, TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB,
TEXTURE_CUBE_MAP_POSITIVE_Z_ARB, or TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB."

-- Section 3.8.1 "Texture Image Specification"

Change the second and third to last sentences on page 116 to:

"<target> must be one of TEXTURE_2D for a 2D texture, or one of
TEXTURE_CUBE_MAP_POSITIVE_X_ARB, TEXTURE_CUBE_MAP_NEGATIVE_X_ARB,
TEXTURE_CUBE_MAP_POSITIVE_Y_ARB, TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB,
TEXTURE_CUBE_MAP_POSITIVE_Z_ARB, or TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB
for a cube map texture. Additionally, <target> can be either
PROXY_TEXTURE_2D for a 2D proxy texture or PROXY_TEXTURE_CUBE_MAP_ARB
for a cube map proxy texture as discussed in section 3.8.7."

Add the following paragraphs after the first paragraph on page 117:

"A 2D texture consists of a single 2D texture image. A cube
map texture is a set of six 2D texture images. The six cube map
texture targets form a single cube map texture though each target
names a distinct face of the cube map. The TEXTURE_CUBE_MAP_*_ARB
targets listed above update their appropriate cube map face 2D
texture image. Note that the six cube map 2D image tokens such as
TEXTURE_CUBE_MAP_POSITIVE_X_ARB are used when specifying, updating,
or querying one of a cube map's six 2D image, but when enabling
cube map texturing or binding to a cube map texture object (that is
when the cube map is accessed as a whole as opposed to a particular
2D image), the TEXTURE_CUBE_MAP_ARB target is specified.

When the target parameter to TexImage2D is one of the six cube map
2D image targets, the error INVALID_VALUE is generated if the width
and height parameters are not equal.

If cube map texturing is enabled at the time a primitive is
rasterized and if the set of six targets are not "cube complete",
then it is as if texture mapping were disabled. The targets of
a cube map texture are "cube complete" if the array 0 of all six
targets have identical, positive, and square dimensions, the array
0 of all six targets were specified with the same internalformat,
and the array 0 of all six targets have the same border width."

After the 14th paragraph (page 116) add:

"In a similiar fashion, the maximum allowable width and height
(they must be the same) of a cube map texture must be at least

ARB_texture_cube_map NVIDIA OpenGL Extension Specifications

 56

2^(k-lod)+2bt for image arrays level 0 through k, where k is the
log base 2 of MAX_CUBE_MAP_TEXTURE_SIZE_ARB."

-- Section 3.8.2 "Alternate Texture Image Specification Commands"

Update the second paragraph (page 120) to say:

... "Currently, <target> must be
TEXTURE_2D, TEXTURE_CUBE_MAP_POSITIVE_X_ARB,
TEXTURE_CUBE_MAP_NEGATIVE_X_ARB, TEXTURE_CUBE_MAP_POSITIVE_Y_ARB,
TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB, TEXTURE_CUBE_MAP_POSITIVE_Z_ARB,
or TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB." ...

Add after the second paragraph (page 120), the following:

"When the target parameter to CopyTexImage2D is one of the six cube
map 2D image targets, the error INVALID_VALUE is generated if the
width and height parameters are not equal."

Update the fourth paragraph (page 121) to say:

... "Currently the target arguments of TexSubImage1D and
CopyTexSubImage1D must be TEXTURE_1D, the <target> arguments of
TexSubImage2D and CopyTexSubImage2D must be one of TEXTURE_2D,
TEXTURE_CUBE_MAP_POSITIVE_X_ARB, TEXTURE_CUBE_MAP_NEGATIVE_X_ARB,
TEXTURE_CUBE_MAP_POSITIVE_Y_ARB, TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB,
TEXTURE_CUBE_MAP_POSITIVE_Z_ARB, or TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB,
and the <target> arguments of TexSubImage3D and CopyTexSubImage3D
must be TEXTURE_3D." ...

-- Section 3.8.3 "Texture Parameters"

Change paragraph one (page 124) to say:

... "<target> is the target, either TEXTURE_1D,
TEXTURE_2D, TEXTURE_3D, or TEXTURE_CUBE_MAP_ARB." ...

Add a final paragraph saying:

"Texture parameters for a cube map texture apply to cube map
as a whole; the six distinct 2D texture images use the
texture parameters of the cube map itself.

-- Section 3.8.5 "Texture Minification" under "Mipmapping"

Change the first full paragraph on page 130 to:

... "If texturing is enabled for one-, two-, or three-dimensional
texturing but not cube map texturing (and TEXTURE_MIN_FILTER
is one that requires a mipmap) at the time a primitive is
rasterized and if the set of arrays TEXTURE_BASE_LEVEL through q =
min{p,TEXTURE_MAX_LEVEL} is incomplete, based on the dimensions of
array 0, then it is as if texture mapping were disabled."

NVIDIA OpenGL Extension Specifications ARB_texture_cube_map

 57

Follow the first full paragraph on page 130 with:

"If cube map texturing is enabled and TEXTURE_MIN_FILTER is one that
requires mipmap levels at the time a primitive is rasterized and
if the set of six targets are not "mipmap cube complete", then it
is as if texture mapping were disabled. The targets of a cube map
texture are "mipmap cube complete" if the six cube map targets are
"cube complete" and the set of arrays TEXTURE_BASE_LEVEL through
q are not incomplete (as described above)."

-- Section 3.8.7 "Texture State and Proxy State"

Change the first sentence of the first paragraph (page 131) to say:

"The state necessary for texture can be divided into two categories.
First, there are the nine sets of mipmap arrays (one each for the
one-, two-, and three-dimensional texture targets and six for the
cube map texture targets) and their number." ...

Change the second paragraph (page 132) to say:

"In addition to the one-, two-, three-dimensional, and the six cube
map sets of image arrays, the partially instantiated one-, two-,
and three-dimensional and one cube map sets of proxy image arrays
are maintained." ...

After the third paragraph (page 132) add:

"The cube map proxy arrays are operated on in the same manner
when TexImage2D is executed with the <target> field specified as
PROXY_TEXTURE_CUBE_MAP_ARB with the addition that determining that a
given cube map texture is supported with PROXY_TEXTURE_CUBE_MAP_ARB
indicates that all six of the cube map 2D images are supported.
Likewise, if the specified PROXY_TEXTURE_CUBE_MAP_ARB is not
supported, none of the six cube map 2D images are supported."

Change the second sentence of the fourth paragraph (page 132) to:

"Therefore PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, PROXY_TEXTURE_3D,
and PROXY_TEXTURE_CUBE_MAP_ARB cannot be used as textures, and their
images must never be queried using GetTexImage." ...

-- Section 3.8.8 "Texture Objects"

Change the first sentence of the first paragraph (page 132) to say:

"In addition to the default textures TEXTURE_1D, TEXTURE_2D,
TEXTURE_3D, and TEXTURE_CUBE_MAP_ARB, named one-, two-,
and three-dimensional texture objects and cube map texture objects
can be created and operated on." ...

Change the second paragraph (page 132) to say:

"A texture object is created by binding an unused name to
TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, or TEXTURE_CUBE_MAP_ARB." ...
"If the new texture object is bound to TEXTURE_1D, TEXTURE_2D,

ARB_texture_cube_map NVIDIA OpenGL Extension Specifications

 58

TEXTURE_3D, or TEXTURE_CUBE_MAP_ARB, it remains a one-, two-,
three-dimensional, or cube map texture until it is deleted."

Change the third paragraph (page 133) to say:

"BindTexture may also be used to bind an existing texture object to
either TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, or TEXTURE_CUBE_MAP_ARB."

Change paragraph five (page 133) to say:

"In the initial state, TEXTURE_1D, TEXTURE_2D, TEXTURE_3D,
and TEXTURE_CUBE_MAP have one-dimensional, two-dimensional,
three-dimensional, and cube map state vectors associated
with them respectively." ... "The initial, one-dimensional,
two-dimensional, three-dimensional, and cube map texture is therefore
operated upon, queried, and applied as TEXTURE_1D, TEXTUER_2D,
TEXTURE_3D, and TEXTURE_CUBE_MAP_ARB respectively while 0 is bound
to the corresponding targets."

Change paragraph six (page 133) to say:

... "If a texture that is currently bound to one of the targets
TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, or TEXTURE_CUBE_MAP_ARB is
deleted, it is as though BindTexture has been executed with the
same <target> and <texture> zero." ...

-- Section 3.8.10 "Texture Application"

Replace the beginning sentences of the first paragraph (page 138)
with:

"Texturing is enabled or disabled using the generic Enable
and Disable commands, respectively, with the symbolic constants
TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, or TEXTURE_CUBE_MAP_ARB to enable
the one-dimensional, two-dimensional, three-dimensional, or cube
map texturing respectively. If both two- and one-dimensional
textures are enabled, the two-dimensional texture is used. If the
three-dimensional and either of the two- or one-dimensional textures
is enabled, the three-dimensional texture is used. If the cube map
texture and any of the three-, two-, or one-dimensional textures is
enabled, then cube map texturing is used. If texturing is disabled,
a rasterized fragment is passed on unaltered to the next stage of the
GL (although its texture coordinates may be discarded). Otherwise,
a texture value is found according to the parameter values of the
currently bound texture image of the appropriate dimensionality.

However, when cube map texturing is enabled, the rules are
more complicated. For cube map texturing, the (s,t,r) texture
coordinates are treated as a direction vector (rx,ry,rz) emanating
from the center of a cube. (The q coordinate can be ignored since
it merely scales the vector without affecting the direction.) At
texture application time, the interpolated per-fragment (s,t,r)
selects one of the cube map face's 2D image based on the largest
magnitude coordinate direction (the major axis direction). If two
or more coordinates have the identical magnitude, the implementation
may define the rule to disambiguate this situation. The rule must
be deterministic and depend only on (rx,ry,rz). The target column

NVIDIA OpenGL Extension Specifications ARB_texture_cube_map

 59

in the table below explains how the major axis direction maps to
the 2D image of a particular cube map target.

major axis
direction target sc tc ma
---------- ------------------------------- --- --- ---
+rx TEXTURE_CUBE_MAP_POSITIVE_X_ARB -rz -ry rx
-rx TEXTURE_CUBE_MAP_NEGATIVE_X_ARB +rz -ry rx
+ry TEXTURE_CUBE_MAP_POSITIVE_Y_ARB +rx +rz ry
-ry TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB +rx -rz ry
+rz TEXTURE_CUBE_MAP_POSITIVE_Z_ARB +rx -ry rz
-rz TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB -rx -ry rz

Using the sc, tc, and ma determined by the major axis direction as
specified in the table above, an updated (s,t) is calculated as
follows

s = (sc/|ma| + 1) / 2
t = (tc/|ma| + 1) / 2

This new (s,t) is used to find a texture value in the determined
face's 2D texture image using the rules given in sections 3.8.5
and 3.8.6." ...

Additions to Chapter 4 of the 1.2 Specification (Per-Fragment Operations
and the Frame Buffer)

None

Additions to Chapter 5 of the 1.2 Specification (Special Functions)

-- Section 5.4 "Display Lists"

In the first paragraph (page 179), add PROXY_TEXTURE_CUBE_MAP_ARB
to the list of PROXY_* tokens.

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)

-- Section 6.1.3 "Enumerated Queries"

Change the fourth paragraph (page 183) to say:

"The GetTexParameter parameter <target> may be one of TEXTURE_1D,
TEXTURE_2D, TEXTURE_3D, or TEXTURE_CUBE_MAP_ARB, indicating the
currently bound one-dimensional, two-dimensional, three-dimensional,
or cube map texture object. For GetTexLevelParameter,
<target> may be one of TEXTURE_1D, TEXTURE_2D, TEXTURE_3D,
TEXTURE_CUBE_MAP_POSITIVE_X_ARB, TEXTURE_CUBE_MAP_NEGATIVE_X_ARB,
TEXTURE_CUBE_MAP_POSITIVE_Y_ARB, TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB,
TEXTURE_CUBE_MAP_POSITIVE_Z_ARB, TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB,
PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, PROXY_TEXTURE_3D, or
PROXY_TEXTURE_CUBE_MAP_ARB, indicating the one-dimensional
texture object, two-dimensional texture object, three-dimensional
texture object, or one of the six distinct 2D images making up
the cube map texture object or one-dimensional, two-dimensional,
three-dimensional, or cube map proxy state vector. Note that
TEXTURE_CUBE_MAP_ARB is not a valid <target> parameter for

ARB_texture_cube_map NVIDIA OpenGL Extension Specifications

 60

GetTexLevelParameter because it does not specify a particular cube
map face."

-- Section 6.1.4 "Texture Queries"

Change the first paragraph (page 184) to read:

... "It is somewhat different from the other get commands; <tex>
is a symbolic value indicating which texture (or texture face in the
case of a cube map texture target name) is to be obtained.
TEXTURE_1D indicates a one-dimensional texture, TEXTURE_2D
indicates a two-dimensional texture, TEXTURE_3D indicates a
three-dimensional texture, and TEXTURE_CUBE_MAP_POSITIVE_X_ARB,
TEXTURE_CUBE_MAP_NEGATIVE_X_ARB, TEXTURE_CUBE_MAP_POSITIVE_Y_ARB,
TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB, TEXTURE_CUBE_MAP_POSITIVE_Z_ARB,
and TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB indicate the respective face of
a cube map texture.

Additions to the GLX Specification

None

Errors

INVALID_ENUM is generated when TexGen is called with a <coord> of Q
when <pname> indicates REFLECTION_MAP_ARB or NORMAL_MAP_ARB.

INVALID_VALUE is generated when the target parameter to TexImage2D
or CopyTexImage2D is one of the six cube map 2D image targets and
the width and height parameters are not equal.

New State

(table 6.12, p202) add the following entries:

Get Value Type Get Command Initial Value Description Sec Attribute
--------- ---- ----------- ------------- ----------- ------ --------------
TEXTURE_CUBE_MAP_ARB B IsEnabled False True if cube map 3.8.10 texture/enable

texturing is enabled
TEXTURE_BINDING_CUBE_MAP_ARB Z+ GetIntegerv 0 Texture object 3.8.8 texture

for TEXTURE_CUBE_MAP
TEXTURE_CUBE_MAP_POSITIVE_X_ARB nxI GetTexImage see 3.8 positive x face 3.8 -

cube map texture
image at lod i

TEXTURE_CUBE_MAP_NEGATIVE_X_ARB nxI GetTexImage see 3.8 negative x face 3.8 -
cube map texture
image at lod i

TEXTURE_CUBE_MAP_POSITIVE_Y_ARB nxI GetTexImage see 3.8 positive y face 3.8 -
cube map texture
image at lod i

TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB nxI GetTexImage see 3.8 negative y face 3.8 -
cube map texture
image at lod i

TEXTURE_CUBE_MAP_POSITIVE_Z_ARB nxI GetTexImage see 3.8 positive z face 3.8 -
cube map texture
image at lod i

TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB nxI GetTexImage see 3.8 negative z face 3.8 -
cube map texture
image at lod i

NVIDIA OpenGL Extension Specifications ARB_texture_cube_map

 61

(table 6.14, p204) change the entry for TEXTURE_GEN_MODE to:

Get Value Type Get Command Initial Value Description Sec Attribute
--------- ---- ----------- ------------- ----------- ------ ---------
TEXTURE_GEN_MODE 4xZ5 GetTexGeniv EYE_LINEAR Function used for 2.10.4 texture

texgen (for s,t,r,
and q)

(the type changes from 4xZ3 to 4xZ5)

New Implementation Dependent State

(table 6.24, p214) add the following entry:

Get Value Type Get Command Minimum Value Description Sec Attribute
--------- ---- ----------- ------------- ----------- ------ --------------
MAX_CUBE_MAP_TEXTURE_SIZE_ARB Z+ GetIntegerv 16 Maximum cube map 3.8.1 -

texture image
dimension

Backwards Compatibility

This extension replaces EXT_texture_cube_map. The tokens and
name strings now refer to ARB instead of EXT. Enumerant values
are unchanged.

ARB_texture_env_add NVIDIA OpenGL Extension Specifications

 62

Name

ARB_texture_env_add

Name Strings

GL_ARB_texture_env_add

Notice

Copyright OpenGL Architectural Review Board, 1999.

Status

Complete. Approved by ARB on 12/8/1999

Version

Last Modified Date: June 22, 2000
Author Revision: 0.3

Based on: EXT_texture_env_add
Date: 1999/03/22 Revision: 1.1

Number

ARB Extension #6

Dependencies

None

Overview

New texture environment function ADD is supported with the following
equation:

Cv = min(1, Cf + Ct)

New function may be specified by calling TexEnv with ADD token.

One possible application is to add a specular highlight texture to
a Gouraud-shaded primitive to emulate Phong shading, in a single
pass.

New Procedures and Functions

None

New Tokens

Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv, and
TexEnvfi when the <pname> parameter value is GL_TEXTURE_ENV_MODE

ADD

NVIDIA OpenGL Extension Specifications ARB_texture_env_add

 63

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

None

Additions to Chapter 3 of the GL Specification (Rasterization)

The description of TEXTURE_ENV_MODE in the first paragraph of
section 3.8.9 should be modified as follows:

TEXTURE_ENV_MODE may be set to one of REPLACE, MODULATE, DECAL,
BLEND or ADD;

Table 3.19 is augmented as follows:

Base DECAL BLEND ADD
Internal Format tex func tex func tex func
--------------- ----- ----- ---

ALPHA Rv = Rf
... ... Gv = Gf
... ... Bv = Bf
... ... Av = AfAt

LUMINANCE Rv = min(1, Rf+Lt)
(or 1) Gv = min(1, Gf+Lt)

... ... Bv = min(1, Bf+Lt)

... ... Av = Af

LUMINANCE_ALPHA Rv = min(1, Rf+Lt)
(or 2) Gv = min(1, Gf+Lt)

... ... Bv = min(1, Bf+Lt)

... ... Av = AfAt

INTENSITY Rv = min(1, Rf+It)
... ... Gv = min(1, Gf+It)
... ... Bv = min(1, Bf+It)
... ... Av = min(1, Af+It)

RGB Rv = min(1, Rf+Rt)
(or 3) Gv = min(1, Gf+Gt)

... ... Bv = min(1, Bf+Bt)

... ... Av = Af

RGBA Rv = min(1, Rf+Rt)
(or 4) Gv = min(1, Gf+Gt)

... ... Bv = min(1, Bf+Bt)

... ... Av = AfAt

Table 3.19: Decal, blend and add texture functions.

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

None

ARB_texture_env_add NVIDIA OpenGL Extension Specifications

 64

Additions to Chapter 5 of the GL Specification (Special Functions)

None

Additions to Chapter 6 of the GL Specification (State and State Requests)

None

Additions to the GLX / WGL / AGL Specifications

None

GLX Protocol

None

Errors

None

New State

The Type of TEXTURE_ENV_MODE in Table F.2 should be changed to

1 * xZ5

New Implementation Dependent State

None

Revision History

11/09/1999 0.1
- First ARB draft based on the original EXT draft.

1/13/2000 0.2
- Added justification to the overview
- Updated to describe modifications to 1.2.1 specification
- Added changes to description of TEXTURE_ENV_MODE parameter

to TexEnv{if} and TexEnv{if}v
- Added change to TEXTURE_ENV_MODE type (Z4 -> Z5)

6/22/2000 0.3
- The addition should saturate to 1.

NVIDIA OpenGL Extension Specifications ARB_texture_env_combine

 65

Name

ARB_texture_env_combine

Name Strings

GL_ARB_texture_env_combine

Version

Last modified date: 2001/05/21

Number

ARB Extension #17

Dependencies

This extension is written against the OpenGL 1.2.1 Specification.
OpenGL 1.1 and ARB_multitexture are required for this extension.

Overview

New texture environment function COMBINE_ARB allows programmable
texture combiner operations, including:

REPLACE Arg0
MODULATE Arg0 * Arg1
ADD Arg0 + Arg1
ADD_SIGNED_ARB Arg0 + Arg1 - 0.5
SUBTRACT_ARB Arg0 - Arg1
INTERPOLATE_ARB Arg0 * (Arg2) + Arg1 * (1-Arg2)

where Arg0, Arg1 and Arg2 are derived from

PRIMARY_COLOR_ARB primary color of incoming fragment
TEXTURE texture color of corresponding texture unit
CONSTANT_ARB texture environment constant color
PREVIOUS_ARB result of previous texture environment; on

texture unit 0, this maps to PRIMARY_COLOR_ARB

In addition, the result may be scaled by 1.0, 2.0 or 4.0.

Issues

1. Should the explicit bias be removed in favor of an implcit bias as
part of a ADD_SIGNED_ARB function?

- RESOLVED: Yes. This pre-scale bias is a special case and will
be treated as such.

2. Should the primary color of the incoming fragment be available to
all texture environments? Currently it is only available to the
texture environment of texture unit 0.

- RESOLVED: Yes. PRIMARY_COLOR_ARB has been added as an input
source.

ARB_texture_env_combine NVIDIA OpenGL Extension Specifications

 66

3. Should textures from other texture units be allowed as sources?

- RESOLVED: NO. Even though this adds a lot of flexibility that
folks can use today, there is not enough support amonst the
ARB participants to add it to the base spec.

4. All of the 1.2 modes except BLEND can be expressed in terms of
this extension. Should texture color be allowed as a source for
Arg2, so all of the 1.2 modes can be expressed? If so, should all
color sources be allowed, to maintain orthogonality?

- RESOLVED: Yes. This seems to be a reasonable area to expand
functionality and remain backwards compatible with the EXT
version of the extension.

5. If the texture environment for a given texture unit does not
reference the texture object that is bound to that texture unit,
does a valid texture object need to be bound that unit?

- RESOLVED: Yes. Each texture unit implicitly references the
texture object that is bound to that unit, regardless of the
texture environment function. This may require that
applications bind a dummy texture to the texture unit.

6. Should we allow the secondary color to take part in texture blending?

- RESOLVED: Not in this extension. Secondary color was defined
as a specular part of the lit color and does not have associated
alpha. In order to do this right, the secondary color extension
needs to be fixed first to allow a full featured color and clearly
state the interaction of how it interacts with the color sum stage.

7. How exactly is this ARB extension different from the EXT version?

- RESOLVED:

1) This extension adds the GL_SUBTRACT_ARB mode

2) OPERAND2_RGB_ARB can use SRC_COLOR, ONE_MINUS_SRC_COLOR,
SRC_ALPHA, and ONE_MINUS_SRC_ALPHA instead of just SRC_ALPHA
(NV_texture_env_combine4 already provides this).

3) OPERAND2_ALPHA_ARB can use SRC_ALPHA and ONE_MINUS_SRC_ALPHA
instead of just SRC_ALPHA (NV_texture_env_combine4 already
provides this).

New Procedures and Functions

None

New Tokens

Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
and TexEnviv when the <pname> parameter value is TEXTURE_ENV_MODE

COMBINE_ARB 0x8570

NVIDIA OpenGL Extension Specifications ARB_texture_env_combine

 67

Accepted by the <pname> parameter of TexEnvf, TexEnvi, TexEnvfv,
and TexEnviv when the <target> parameter value is TEXTURE_ENV

COMBINE_RGB_ARB 0x8571
COMBINE_ALPHA_ARB 0x8572
SOURCE0_RGB_ARB 0x8580
SOURCE1_RGB_ARB 0x8581
SOURCE2_RGB_ARB 0x8582
SOURCE0_ALPHA_ARB 0x8588
SOURCE1_ALPHA_ARB 0x8589
SOURCE2_ALPHA_ARB 0x858A
OPERAND0_RGB_ARB 0x8590
OPERAND1_RGB_ARB 0x8591
OPERAND2_RGB_ARB 0x8592
OPERAND0_ALPHA_ARB 0x8598
OPERAND1_ALPHA_ARB 0x8599
OPERAND2_ALPHA_ARB 0x859A
RGB_SCALE_ARB 0x8573
ALPHA_SCALE

Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
and TexEnviv when the <pname> parameter value is COMBINE_RGB_ARB
or COMBINE_ALPHA_ARB

REPLACE
MODULATE
ADD
ADD_SIGNED_ARB 0x8574
INTERPOLATE_ARB 0x8575
SUBTRACT_ARB 0x84E7

Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
and TexEnviv when the <pname> parameter value is SOURCE0_RGB_ARB,
SOURCE1_RGB_ARB, SOURCE2_RGB_ARB, SOURCE0_ALPHA_ARB,
SOURCE1_ALPHA_ARB, or SOURCE2_ALPHA_ARB

TEXTURE
CONSTANT_ARB 0x8576
PRIMARY_COLOR_ARB 0x8577
PREVIOUS_ARB 0x8578

Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
and TexEnviv when the <pname> parameter value is
OPERAND0_RGB_ARB, OPERAND1_RGB_ARB, or OPERAND2_RGB_ARB

SRC_COLOR
ONE_MINUS_SRC_COLOR
SRC_ALPHA
ONE_MINUS_SRC_ALPHA

Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
and TexEnviv when the <pname> parameter value is
OPERAND0_ALPHA_ARB, OPERAND1_ALPHA_ARB, or OPERAND2_ALPHA_ARB

SRC_ALPHA
ONE_MINUS_SRC_ALPHA

ARB_texture_env_combine NVIDIA OpenGL Extension Specifications

 68

Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
and TexEnviv when the <pname> parameter value is RGB_SCALE_ARB or
ALPHA_SCALE

1.0
2.0
4.0

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

None

Additions to Chapter 3 of the GL Specification (Rasterization)

Added to subsection 3.8.9, before the paragraph describing the
state requirements:

If the value of TEXTURE_ENV_MODE is COMBINE_ARB, the form of the
texture function depends on the values of COMBINE_RGB_ARB and
COMBINE_ALPHA_ARB, according to table 3.20. The RGB and ALPHA
results of the texture function are then multiplied by the values
of RGB_SCALE_ARB and ALPHA_SCALE, respectively. The results are
clamped to [0,1].

COMBINE_RGB_ARB Texture Function
------------------ ----------------
REPLACE Arg0
MODULATE Arg0 * Arg1
ADD Arg0 + Arg1
ADD_SIGNED_ARB Arg0 + Arg1 - 0.5
INTERPOLATE_ARB Arg0 * (Arg2) + Arg1 * (1-Arg2)
SUBTRACT_ARB Arg0 - Arg1

COMBINE_ALPHA_ARB Texture Function
------------------ ----------------
REPLACE Arg0
MODULATE Arg0 * Arg1
ADD Arg0 + Arg1
ADD_SIGNED_ARB Arg0 + Arg1 - 0.5
INTERPOLATE_ARB Arg0 * (Arg2) + Arg1 * (1-Arg2)
SUBTRACT_ARB Arg0 - Arg1

Table 3.20: COMBINE_ARB texture functions

The arguments Arg0, Arg1 and Arg2 are determined by the values of
SOURCE<n>_RGB_ARB, SOURCE<n>_ALPHA_ARB, OPERAND<n>_RGB_ARB and
OPERAND<n>_ALPHA_ARB. In the following two tables, Ct and At are
the filtered texture RGB and alpha values; Cc and Ac are the
texture environment RGB and alpha values; Cf and Af are the RGB
and alpha of the primary color of the incoming fragment; and Cp
and Ap are the RGB and alpha values resulting from the previous
texture environment. On texture environment 0, Cp and Ap are
identical to Cf and Af, respectively. The relationship is
described in tables 3.21 and 3.22.

NVIDIA OpenGL Extension Specifications ARB_texture_env_combine

 69

SOURCE<n>_RGB_ARB OPERAND<n>_RGB_ARB Argument
----------------- -------------- --------
TEXTURE SRC_COLOR Ct

ONE_MINUS_SRC_COLOR (1-Ct)
SRC_ALPHA At
ONE_MINUS_SRC_ALPHA (1-At)

CONSTANT_ARB SRC_COLOR Cc
ONE_MINUS_SRC_COLOR (1-Cc)
SRC_ALPHA Ac
ONE_MINUS_SRC_ALPHA (1-Ac)

PRIMARY_COLOR_ARB SRC_COLOR Cf
ONE_MINUS_SRC_COLOR (1-Cf)
SRC_ALPHA Af
ONE_MINUS_SRC_ALPHA (1-Af)

PREVIOUS_ARB SRC_COLOR Cp
ONE_MINUS_SRC_COLOR (1-Cp)
SRC_ALPHA Ap
ONE_MINUS_SRC_ALPHA (1-Ap)

Table 3.21: Arguments for COMBINE_RGB_ARB functions

SOURCE<n>_ALPHA_ARB OPERAND<n>_ALPHA_ARB Argument
----------------- -------------- --------
TEXTURE SRC_ALPHA At

ONE_MINUS_SRC_ALPHA (1-At)
CONSTANT_ARB SRC_ALPHA Ac

ONE_MINUS_SRC_ALPHA (1-Ac)
PRIMARY_COLOR_ARB SRC_ALPHA Af

ONE_MINUS_SRC_ALPHA (1-Af)
PREVIOUS_ARB SRC_ALPHA Ap

ONE_MINUS_SRC_ALPHA (1-Ap)

Table 3.22: Arguments for COMBINE_ALPHA_ARB functions

The mapping of texture components to source components is
summarized in Table 3.23. In the following table, At, Lt, It, Rt,
Gt and Bt are the filtered texel values.

Base Internal Format RGB Values Alpha Value
-------------------- ---------- -----------
ALPHA 0, 0, 0 At
LUMINANCE Lt, Lt, Lt 1
LUMINANCE_ALPHA Lt, Lt, Lt At
INTENSITY It, It, It It
RGB Rt, Gt, Bt 1
RGBA Rt, Gt, Bt At

Table 3.23: Correspondence of texture components to source
components for COMBINE_RGB_ARB and COMBINE_ALPHA_ARB arguments

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

None

ARB_texture_env_combine NVIDIA OpenGL Extension Specifications

 70

Additions to Chapter 5 of the GL Specification (Special Functions)

None

Additions to Chapter 6 of the GL Specification (State and State Requests)

None

Additions to Appendix F of the GL Specification (ARB Extensions)

Inserted after the second paragraph of F.2.12:

If the value of TEXTURE_ENV_MODE is COMBINE_ARB, the texture
function associated with a given texture unit is computed using
the values specified by SOURCE<n>_RGB_ARB, SOURCE<n>_ALPHA_ARB,
OPERAND<n>_RGB_ARB and OPERAND<n>_ALPHA_ARB. If TEXTURE<n>_ARB is
specified as SOURCE<n>_RGB_ARB or SOURCE<n>_ALPHA_ARB, the texture
value from texture unit <n> will be used in computing the texture
function for this texture unit.

Inserted after the third paragraph of F.2.12:

If a texture environment for a given texture unit references a
texture unit that is disabled or does not have a valid texture
object bound to it, then it is as if texture is disabled for the
given texture unit. Every texture unit implicitly references the
texture object that is bound to it, regardless of the texture
function specified by COMBINE_RGB_ARB or COMBINE_ALPHA_ARB.

Additions to the GLX Specification

None

GLX Protocol

None

Errors

INVALID_ENUM is generated if <params> value for COMBINE_RGB_ARB or
COMBINE_ALPHA_ARB is not one of REPLACE, MODULATE, ADD,
ADD_SIGNED_ARB, INTERPOLATE_ARB, or SUBTRACT_ARB

INVALID_ENUM is generated if <params> value for SOURCE0_RGB_ARB,
SOURCE1_RGB_ARB, SOURCE2_RGB_ARB, SOURCE0_ALPHA_ARB,
SOURCE1_ALPHA_ARB or SOURCE2_ALPHA_ARB is not one of TEXTURE,
CONSTANT_ARB, PRIMARY_COLOR_ARB, or PREVIOUS_ARB.

INVALID_ENUM is generated if <params> value for OPERAND0_RGB_ARB,
OPERAND1_RGB_ARB, or OPERAND2_RGB_ARB is not one of SRC_COLOR,
ONE_MINUS_SRC_COLOR, SRC_ALPHA or ONE_MINUS_SRC_ALPHA.

INVALID_ENUM is generated if <params> value for OPERAND0_ALPHA_ARB,
OPERAND1_ALPHA_ARB, or OPERAND2_ALPHA_ARB is not one of SRC_ALPHA
or ONE_MINUS_SRC_ALPHA.

NVIDIA OpenGL Extension Specifications ARB_texture_env_combine

 71

INVALID_VALUE is generated if <params> value for RGB_SCALE_ARB or
ALPHA_SCALE is not one of 1.0, 2.0, or 4.0.

New State

Get Value Get Command Type Initial Value Attribute
--------- ----------- ---- ------------- ---------
COMBINE_RGB_ARB GetTexEnviv n x Z4 MODULATE texture
COMBINE_ALPHA_ARB GetTexEnviv n x Z4 MODULATE texture
SOURCE0_RGB_ARB GetTexEnviv n x Z3 TEXTURE texture
SOURCE1_RGB_ARB GetTexEnviv n x Z3 PREVIOUS_ARB texture
SOURCE2_RGB_ARB GetTexEnviv n x Z3 CONSTANT_ARB texture
SOURCE0_ALPHA_ARB GetTexEnviv n x Z3 TEXTURE texture
SOURCE1_ALPHA_ARB GetTexEnviv n x Z3 PREVIOUS_ARB texture
SOURCE2_ALPHA_ARB GetTexEnviv n x Z3 CONSTANT_ARB texture
OPERAND0_RGB_ARB GetTexEnviv n x Z6 SRC_COLOR texture
OPERAND1_RGB_ARB GetTexEnviv n x Z6 SRC_COLOR texture
OPERAND2_RGB_ARB GetTexEnviv n x Z1 SRC_ALPHA texture
OPERAND0_ALPHA_ARB GetTexEnviv n x Z4 SRC_ALPHA texture
OPERAND1_ALPHA_ARB GetTexEnviv n x Z4 SRC_ALPHA texture
OPERAND2_ALPHA_ARB GetTexEnviv n x Z1 SRC_ALPHA texture
RGB_SCALE_ARB GetTexEnvfv n x R3 1.0 texture
ALPHA_SCALE GetTexEnvfv n x R3 1.0 texture

New Implementation Dependent State

None

Revision History

01/05/21 mjk Added ARB versus EXT differences issue

01/00/02 bpoddar Added original EXT/ARB contributors to the contact
list

00/12/13 bpoddar Added enum value for SUBTRACT_ARB

00/12/06 bpoddar Moved references to Ct<n> and At<n> to
ARB_texture_env_crossbar spec.

00/12/01 bpoddar Removed TEXTURE<n>_ARB since several companies
had problems with this addition in the base spec.

00/11/13 bpoddar Recreated 6/20 spec with language for dealing
with inconsistent textures moved to appendix F.

00/06/20 rhammers Changed behavior when dealing with references
do disabled and inconsistent textures.

00/05/23 rhammers Cleaned up for first draft of ARB version.
Added issue -- TEXTURE with TEXTURE<n>_ARB
Added issue .. "upstream" textures
Listed get functions with description of
enumerants.
Added 1.1 and multitexture to dependencies

ARB_texture_env_combine NVIDIA OpenGL Extension Specifications

 72

00/05/18 rhammers First rev of ARB version of the spec. Based on
EXT_texture_env_combine.
Relaxed restriction on Arg2.
Added support for TEXTURE<n>_ARB.
Added SUBTRACT_ARB combiner function.
do disabled and inconsistent textures.

NVIDIA OpenGL Extension Specifications ARB_texture_env_dot3

 73

Name

ARB_texture_env_dot3

Name Strings

GL_ARB_texture_env_dot3

Contact

Bimal Poddar, Intel, bimal.poddar@intel.com
Dave Gosselin, ATI Technologies, Inc. (gosselin 'at' ati.com)
Dan Ginsburg, ATI Technologies, Inc. (dginsbur 'at' ati.com)

Status

Complete. Approved by ARB on February 16, 2001.

Version

Last modified date: 2001/05/16

Number

ARB Extension #19

Dependencies

This extension is written against the OpenGL 1.2.1 Specification.
OpenGL 1.1, ARB_multitexture and ARB_texture_env_combine are required
for this extension.

Overview

Adds new operation to the texture combiner operations.

DOT3_RGB_ARB Arg0 <dotprod> Arg1
DOT3_RGBA_ARB Arg0 <dotprod> Arg1

where Arg0, Arg1 are specified by <params> parameter of
TexEnvf, TexEnvi, TexEnvfv, and TexEnviv when the <pname>
parameter value is SOURCE0_RGB_ARB and SOURCE1_RGB_ARB.

Issues

1. This extension is an ARB version of EXT_texture_env_dot3 which bears
a copyright by ATI Technologies. Is ATI willing to have the ARB
go ahead and modify their original spec and use it for the
ARB extension.

- RESOLVED: ATI does not have a problem with the copyright issue.

2. The EXT version of the spec does not multiply the output by
RGB_SCALE_ARB and ALPHA_SCALE_ARB. There is no reason to impose this
restriction since it makes the scale operations non-orthogonal.
Should the enum values for the new tokens in this extension should
be the same as the original EXT version?

ARB_texture_env_dot3 NVIDIA OpenGL Extension Specifications

 74

- RESOLVED: No.

3. How exactly is this ARB extension different from the EXT version?

- RESOLVED: Scaling by 2.0 and 4.0 is supported by the ARB version,
but not the EXT version (as noted above). Note that when
DOT3_RGBA_ARB is used, the alpha component result is scaled
based on the RGB scale factor rather than the alpha scale factor
(the COMBINE_ALPHA_ARB function and scale factor are ignored).
The COMBINE_ALPHA_ARB mode is ignored in the EXT version and the
previous alpha is passed through; however, the ARB version abides
by the COMBINE_ALPHA_ARB setting.

New Procedures and Functions

None

New Tokens

Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
and TexEnviv when the <pname> parameter value is COMBINE_RGB_ARB

DOT3_RGB_ARB 0x86AE
DOT3_RGBA_ARB 0x86AF

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

None

Additions to Chapter 3 of the GL Specification (Rasterization)

Added to table 3.20 of the ARB_texture_env_combine spec:

COMBINE_RGB_ARB Texture Function
--------------- ----------------
DOT3_RGB_ARB 4*((Arg0_r - 0.5)*(Arg1_r - 0.5) +

(Arg0_g - 0.5)*(Arg1_g - 0.5) +
(Arg0_b - 0.5)*(Arg1_b - 0.5))

This value is placed into all three
r,g,b components of the output.

DOT3_RGBA_ARB 4*((Arg0_r - 0.5)*(Arg1_r - 0.5) +
(Arg0_g - 0.5)*(Arg1_g - 0.5) +
(Arg0_b - 0.5)*(Arg1_b - 0.5))

This value is placed into all four
r,g,b,a components of the output. Note
that the result generated from
COMBINE_ALPHA_ARB function is ignored.

Additions to Chapter 4 of the OpenGL 1.2 Specification (Per-Fragment Operations
and the Framebuffer)

None

NVIDIA OpenGL Extension Specifications ARB_texture_env_dot3

 75

Additions to Chapter 5 of the GL Specification (Special Functions)

None

Additions to Chapter 6 of the GL Specification (State and State Requests)

None

Additions to the GLX Specification

None

GLX Protocol

None

Errors

INVALID_ENUM is generated if <params> value for COMBINE_RGB_ARB
is not one of REPLACE, MODULATE, ADD, ADD_SIGNED_ARB,
INTERPOLATE_ARB, SUBTRACT_ARB, DOT3_RGB_ARB or DOT3_RGBA_ARB.

New State

None

New Implementation Dependent State

None

Revision History
01/05/16 mjk Dot3 combiner operations not allowed for alpha portion
01/02/02 bpoddar Added original EXT/ARB contributors to the contact

list

00/12/13 bpoddar Added enum values for DOT3_RGB_ARB and DOT3_RGBA_ARB
Added resolution to issue # 1.

00/12/06 bpoddar Fixed typos - EXT -> ARB, RED_SCALE -> RGB_SCALE

00/12/01 bpoddar Created an ARB version of the ARB_texture_env_dot3
by breaking up the proposed ARB_texture_env_combine
spec.

ARB_transpose_matrix NVIDIA OpenGL Extension Specifications

 76

Name

ARB_transpose_matrix

Name Strings

GL_ARB_transpose_matrix

Status

Complete. Approved by ARB on 12/8/1999

Version

Last Modified Date: January 3, 2000
Author Revision: 1.3

Number

ARB Extension #3

Dependencies

This extensions is written against the OpenGL 1.2 Specification.
May be implemented in any version of OpenGL.

Overview

New functions and tokens are added allowing application matrices
stored in row major order rather than column major order to be
transferred to the OpenGL implementation. This allows an application
to use standard C-language 2-dimensional arrays (m[row][col]) and
have the array indices match the expected matrix row and column indexes.
These arrays are referred to as transpose matrices since they are
the transpose of the standard matrices passed to OpenGL.

This extension adds an interface for transfering data to and from the
OpenGL pipeline, it does not change any OpenGL processing or imply any
changes in state representation.

IP Status

No IP is believed to be involved.

Issues

* Why do this?

It's very useful for layered libraries that desire to use two
dimensional C arrays as matrices. It avoids having the layered
library perform the transpose itself before calling OpenGL since
most OpenGL implementations can efficiently perform the transpose
while reading the matrix from client memory.

* Why not add a mode?

It's substantially more confusing and complicated to add a mode.

NVIDIA OpenGL Extension Specifications ARB_transpose_matrix

 77

Simply adding two new entry points saves considerable confusion
and avoids having layered libraries need to query the current mode
in order to send a matrix with the correct memory layout.

* Why not a utility routine in GLU

It costs some performance. It is believed that most OpenGL
implementations can perform the transpose in place with negligble
performance penalty.

* Why use the name transpose?

It's sure a lot less confusing than trying to ascribe unambiguous
meaning to terms like row and column. It could be matrix_transpose
rather than transpose_matrix though.

* Short Transpose to Trans?

New Procedures and Functions

void LoadTransposeMatrix{fd}ARB(T m[16]);
void MultTransposeMatrix{fd}ARB(T m[16]);

New Tokens

Accepted by the <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv,
and GetDoublev

TRANSPOSE_MODELVIEW_MATRIX_ARB 0x84E3
TRANSPOSE_PROJECTION_MATRIX_ARB 0x84E4
TRANSPOSE_TEXTURE_MATRIX_ARB 0x84E5
TRANSPOSE_COLOR_MATRIX_ARB 0x84E6

Additions to Chapter 2 of the 1.2 OpenGL Specification (OpenGL Operation)

Add to Section 2.10.2 Matrices <before LoadIdentity>

LoadTransposeMatrixARB takes a 4x4 matrix stored in row-major order as

ARB_transpose_matrix NVIDIA OpenGL Extension Specifications

 78

Let transpose(m,n) be defined as

n[0] = m[0];
n[1] = m[4];
n[2] = m[8];
n[3] = m[12];
n[4] = m[1];
n[5] = m[5];
n[6] = m[9];
n[7] = m[13];
n[8] = m[2];
n[9] = m[6];
n[10] = m[10];
n[11] = m[14];
n[12] = m[3];
n[13] = m[7];
n[14] = m[11];
n[15] = m[15];

The effect of LoadTransposeMatrixARB(m) is then the same as the effect of
the command sequence

float n[16];
transpose(m,n)
LoadMatrix(n);

The effect of MultTransposeMatrixARB(m) is then the same as the effect of
the command sequence

float n[16];
transpose(m,n);
MultMatrix(n);

Additions to Chapter 3 of the 1.2 OpenGL Specification (Rasterization)

None

Additions to Chapter 4 of the 1.2 OpenGL Specification (Per-Fragment Operations
and the Framebuffer)

None

Additions to Chapter 5 of the 1.2 OpenGL Specification (Special Functions)

None

Additions to Chapter 6 of the 1.2 OpenGL Specification (State and State
Requests)

Matrices are queried and returned in their transposed form by calling
GetBooleanv, GetIntegerv, GetFloatv, and GetDoublev with <pname> set to
TRANSPOSE_MODELVIEW_MATRIX_ARB, TRANSPOSE_PROJECTION_MATRIX_ARB,
TRANSPOSE_TEXTURE_MATRIX_ARB, or TRANSPOSE_COLOR_MATRIX_ARB.
The effect of GetFloatv(TRANSPOSE_MODELVIEW_MATRIX_ARB,m) is then the same
as the effect of the command sequence

NVIDIA OpenGL Extension Specifications ARB_transpose_matrix

 79

float n[16];
GetFloatv(MODELVIEW_MATRIX_ARB,n);
transpose(n,m);

Similar results occur for TRANSPOSE_PROJECTION_MATRIX_ARB,
TRANSPOSE_TEXTURE_MATRIX_ARB, and TRANSPOSE_COLOR_MATRIX_ARB.

Additions to Appendix A of the OpenGL 1.2.1 Specification (Invariance)

None

Additions to the GLX Specification

None

GLX Protocol

LoadTransposeMatrix and MultTransposeMatrix are layered
on top of LoadMatrix and MultMatrix protocol
performing client-side translation. The Get commands
are passed over the wire as part of the generic Get
protocol with no translation required.

Errors

No new errors, but error behavoir is inherited by the commands
that the transpose commands are implemented on top of
(LoadMatrix, MultMatrix, and Get*).

New State

None

TRANSPOSE_*_MATRIX_ARB refer to the same state as their non-transposed
counterparts.

New Implementation Dependent State

None

Revision History

* Revision 1.1 - initial draft (18 Mar 1999)
* Revision 1.2 - changed to use layered specification and ARB affix

(23 Nov 1999)
* Revision 1.3 - Minor tweaks to GLX protocol and Errors. (7 Dec 1999)

Conformance Testing

Load and Multiply the modelview matrix (initialized to identity
each time) using LoadTransposeMatrixfARB and MultTransposeMatrixfARB
with the matrix:

ARB_transpose_matrix NVIDIA OpenGL Extension Specifications

 80

(1 2 3 4)
(5 6 7 8)
(9 10 11 12)
(13 14 15 16)

and get the modelview matrix using TRANSPOSE_MODELVIEW_MATRIX_ARB and
validate that the matrix is correct. Get the matrix using
MODELVIEW_MATRIX and verify that it is the transpose of the above
matrix. Load and Multiply the modelview matrix using LoadMatrixf
and MultMatrixf with the above matrix and verify that the correct
matrix is on the modelview stack using gets of MODELVIEW_MATRIX
and TRANSPOSE_MODELVIEW_MATRIX_ARB.

NVIDIA OpenGL Extension Specifications EXT_abgr

 81

Name

EXT_abgr

Name Strings

GL_EXT_abgr

Version

$Date: 1995/03/31 04:40:18 $ $Revision: 1.10 $

Number

1

Dependencies

None

Overview

EXT_abgr extends the list of host-memory color formats. Specifically,
it provides a reverse-order alternative to image format RGBA. The ABGR
component order matches the cpack Iris GL format on big-endian machines.

New Procedures and Functions

None

New Tokens

Accepted by the <format> parameter of DrawPixels, GetTexImage,
ReadPixels, TexImage1D, and TexImage2D:

ABGR_EXT 0x8000

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

None

Additions to Chapter 3 of the GL Specification (Rasterization)

One entry is added to table 3.5 (DrawPixels and ReadPixels formats).
The new table is:

EXT_abgr NVIDIA OpenGL Extension Specifications

 82

Target
Name Type Elements Buffer
---- ---- -------- ------
COLOR_INDEX Index Color Index Color
STENCIL_INDEX Index Stencil value Stencil
DEPTH_COMPONENT Component Depth value Depth
RED Component R Color
GREEN Component G Color
BLUE Component B Color
ALPHA Component A Color
RGB Component R, G, B Color
RGBA Component R, G, B, A Color
LUMINANCE Component Luminance value Color
LUMINANCE_ALPHA Component Luminance value, A Color
ABGR_EXT Component A, B, G, R Color

Table 3.5: DrawPixels and ReadPixels formats. The third column
gives a description of and the number and order of elements in a
group.

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

The new format is added to the discussion of Obtaining Pixels from the
Framebuffer. It should read " If the <format> is one of RED, GREEN,
BLUE, ALPHA, RGB, RGBA, ABGR_EXT, LUMINANCE, or LUMINANCE_ALPHA, and
the GL is in color index mode, then the color index is obtained."

The new format is added to the discussion of Index Lookup. It should
read "If <format> is one of RED, GREEN, BLUE, ALPHA, RGB, RGBA,
ABGR_EXT, LUMINANCE, or LUMINANCE_ALPHA, then the index is used to
reference 4 tables of color components: PIXEL_MAP_I_TO_R,
PIXEL_MAP_I_TO_G, PIXEL_MAP_I_TO_B, and PIXEL_MAP_I_TO_A."

Additions to Chapter 5 of the GL Specification (Special Functions)

None

Additions to Chapter 6 of the GL Specification (State and State Requests)

None

Additions to the GLX Specification

None

GLX Protocol

One entry is added to tables 1 and 5 in the GLX Protocol Specification:

format encoding
------ --------
GL_ABGR_EXT 0x8000

NVIDIA OpenGL Extension Specifications EXT_abgr

 83

Table A.2 is also extended:

format nelements
------ --------
GL_ABGR_EXT 4

Errors

None

New State

None

New Implementation Dependent State

None

EXT_bgra NVIDIA OpenGL Extension Specifications

 84

Name

EXT_bgra

Name Strings

GL_EXT_bgra

Version

Microsoft revision 1.0, May 19, 1997 (drewb)
$Date: 1997/09/22 23:03:13 $ $Revision: 1.1 $

Number

129

Dependencies

None

Overview

EXT_bgra extends the list of host-memory color formats.
Specifically, it provides formats which match the memory layout of
Windows DIBs so that applications can use the same data in both
Windows API calls and OpenGL pixel API calls.

New Procedures and Functions

None

New Tokens

Accepted by the <format> parameter of DrawPixels, GetTexImage,
ReadPixels, TexImage1D, and TexImage2D:

BGR_EXT 0x80E0
BGRA_EXT 0x80E1

Additions to Chapter 2 of the 1.1 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the 1.1 Specification (Rasterization)

One entry is added to table 3.5 (DrawPixels and ReadPixels formats).
The new table is:

NVIDIA OpenGL Extension Specifications EXT_bgra

 85

Name Type Elements Target Buffer
---- ---- -------- ------
COLOR_INDEX Index Color Index Color
STENCIL_INDEX Index Stencil value Stencil
DEPTH_COMPONENT Component Depth value Depth
RED Component R Color
GREEN Component G Color
BLUE Component B Color
ALPHA Component A Color
RGB Component R, G, B Color
RGBA Component R, G, B, A Color
LUMINANCE Component Luminance value Color
LUMINANCE_ALPHA Component Luminance value,A Color
BGR_EXT Component B, G, R Color
BGRA_EXT Component B, G, R, A Color

Table 3.5: DrawPixels and ReadPixels formats. The third column
gives a description of and the number and order of elements in a
group.

Additions to Chapter 4 of the 1.1 Specification (Per-Fragment Operations
and the Framebuffer)

The new format is added to the discussion of Obtaining Pixels from
the Framebuffer. It should read " If the <format> is one of RED,
GREEN, BLUE, ALPHA, RGB, RGBA, BGR_EXT, BGRA_EXT, LUMINANCE, or
LUMINANCE_ALPHA, and the GL is in color index mode, then the color
index is obtained."

The new format is added to the discussion of Index Lookup. It should
read "If <format> is one of RED, GREEN, BLUE, ALPHA, RGB, RGBA,
BGR_EXT, BGRA_EXT, LUMINANCE, or LUMINANCE_ALPHA, then the index is
used to reference 4 tables of color components: PIXEL_MAP_I_TO_R,
PIXEL_MAP_I_TO_G, PIXEL_MAP_I_TO_B, and PIXEL_MAP_I_TO_A."

Additions to Chapter 5 of the GL Specification (Special Functions)

None

Additions to Chapter 6 of the GL Specification (State and State Requests)

None

Revision History

Original draft, revision 0.9, October 13, 1995 (drewb)
Created
Minor revision, revision 1.0, May 19, 1997 (drewb)
Removed Microsoft Confidential.

EXT_blend_color NVIDIA OpenGL Extension Specifications

 86

Name

EXT_blend_color

Name Strings

GL_EXT_blend_color

Version

$Date: 1995/03/31 04:40:19 $ $Revision: 1.7 $

Number

2

Dependencies

None

Overview

Blending capability is extended by defining a constant color that can
be included in blending equations. A typical usage is blending two
RGB images. Without the constant blend factor, one image must have
an alpha channel with each pixel set to the desired blend factor.

New Procedures and Functions

void BlendColorEXT(clampf red,
clampf green,
clampf blue,
clampf alpha);

New Tokens

Accepted by the <sfactor> and <dfactor> parameters of BlendFunc:

CONSTANT_COLOR_EXT 0x8001
ONE_MINUS_CONSTANT_COLOR_EXT 0x8002
CONSTANT_ALPHA_EXT 0x8003
ONE_MINUS_CONSTANT_ALPHA_EXT 0x8004

Accepted by the <pname> parameter of GetBooleanv, GetIntegerv,
GetFloatv, and GetDoublev:

BLEND_COLOR_EXT 0x8005

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

None

Additions to Chapter 3 of the GL Specification (Rasterization)

None

NVIDIA OpenGL Extension Specifications EXT_blend_color

 87

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

The commands that control blending are now BlendFunc and BlendColorEXT.
A constant color to be used in the blending equation is specified by
BlendColorEXT. The four parameters are clamped to the range [0,1]
before being stored. The default value for the constant blending color
is (0,0,0,0).

The constant color can be used in both the source and destination
blending factors. Four lines are added to table 4.1 and table 4.2:

Value Blend Factors
----- -------------
ZERO (0, 0, 0, 0)
ONE (1, 1, 1, 1)
DST_COLOR (Rd/Kr, Gd/Kg, Bd/Kb, Ad/Ka)
ONE_MINUS_DST_COLOR (1, 1, 1, 1) - (Rd/Kr,Gd/Kg,Bd/Kb,Ad/Ka)
SRC_ALPHA (As, As, As, As) / Ka
ONE_MINUS_SRC_ALPHA (1, 1, 1, 1) - (As, As, As, As) / Ka
DST_ALPHA (Ad, Ad, Ad, Ad) / Ka
ONE_MINUS_DST_ALPHA (1, 1, 1, 1) - (Ad, Ad, Ad, Ad) / Ka
CONSTANT_COLOR_EXT (Rc, Gc, Bc, Ac) NEW
ONE_MINUS_CONSTANT_COLOR_EXT (1, 1, 1, 1) - (Rc, Gc, Bc, Ac) NEW
CONSTANT_ALPHA_EXT (Ac, Ac, Ac, Ac) NEW
ONE_MINUS_CONSTANT_ALPHA_EXT (1, 1, 1, 1) - (Ac, Ac, Ac, Ac) NEW
SRC_ALPHA_SATURATE (f, f, f, 1)

Table 4.1: Values controlling the source blending function and the
source blending values they compute. Ka = 2**m - 1, where m is the
number of bits in the A color component. Kr, Kg, and Kb are similarly
determined by the number of bits in the R, G, and B color components.
f = min(As, 1-Ad) / Ka.

Value Blend Factors
----- -------------
ZERO (0, 0, 0, 0)
ONE (1, 1, 1, 1)
SRC_COLOR (Rs/Kr, Gs/Kg, Bs/Kb, As/Ka)
ONE_MINUS_SRC_COLOR (1, 1, 1, 1) - (Rs/Kr,Gs/Kg,Bs/Kb,As/Ka)
SRC_ALPHA (As, As, As, As) / Ka
ONE_MINUS_SRC_ALPHA (1, 1, 1, 1) - (As, As, As, As) / Ka
DST_ALPHA (Ad, Ad, Ad, Ad) / Ka
ONE_MINUS_DST_ALPHA (1, 1, 1, 1) - (Ad, Ad, Ad, Ad) / Ka
CONSTANT_COLOR_EXT (Rc, Gc, Bc, Ac) NEW
ONE_MINUS_CONSTANT_COLOR_EXT (1, 1, 1, 1) - (Rc, Gc, Bc, Ac) NEW
CONSTANT_ALPHA_EXT (Ac, Ac, Ac, Ac) NEW
ONE_MINUS_CONSTANT_ALPHA_EXT (1, 1, 1, 1) - (Ac, Ac, Ac, Ac) NEW

Table 4.2: Values controlling the destination blending function and
the destination blending values they compute. Ka = 2**m - 1, where
m is the number of bits in the A color component. Kr, Kg, and Kb
are similarly determined by the number of bits in the R, G, and B
color components.

Rc, Gc, Bc, and Ac are the four components of the constant blending
color. These blend factors are not scaled by Kr, Kg, Kb, and Ka,
because they are already in the range [0,1].

EXT_blend_color NVIDIA OpenGL Extension Specifications

 88

Additions to Chapter 5 of the GL Specification (Special Functions)

None

Additions to Chapter 6 of the GL Specification (State and State Requests)

None

Additions to the GLX Specification

None

GLX Protocol

A new GL rendering command is added. The following command is sent to the
server as part of a glXRender request:

BlendColorEXT
2 20 rendering command length
2 4096 rendering command opcode
4 FLOAT32 red
4 FLOAT32 green
4 FLOAT32 blue
4 FLOAT32 alpha

Errors

INVALID_OPERATION is generated if BlendColorEXT is called between
execution of Begin and the corresponding call to End.

New State

Initial
Get Value Get Command Type Value Attrib
--------- ----------- ---- ------- ------------
BLEND_COLOR_EXT GetFloatv C (0,0,0,0) color-buffer

New Implementation Dependent State

None

NVIDIA OpenGL Extension Specifications EXT_blend_minmax

 89

Name

EXT_blend_minmax

Name Strings

GL_EXT_blend_minmax

Version

$Date: 1995/03/31 04:40:34 $ $Revision: 1.3 $

Number

37

Dependencies

None

Overview

Blending capability is extended by respecifying the entire blend
equation. While this document defines only two new equations, the
BlendEquationEXT procedure that it defines will be used by subsequent
extensions to define additional blending equations.

The two new equations defined by this extension produce the minimum
(or maximum) color components of the source and destination colors.
Taking the maximum is useful for applications such as maximum projection
in medical imaging.

Issues

* I've prefixed the ADD token with FUNC, to indicate that the blend
equation includes the parameters specified by BlendFunc. (The min
and max equations don't.) Is this necessary? Is it too ugly?
Is there a better way to accomplish the same thing?

New Procedures and Functions

void BlendEquationEXT(enum mode);

New Tokens

Accepted by the <mode> parameter of BlendEquationEXT:

FUNC_ADD_EXT 0x8006
MIN_EXT 0x8007
MAX_EXT 0x8008

Accepted by the <pname> parameter of GetBooleanv, GetIntegerv,
GetFloatv, and GetDoublev:

BLEND_EQUATION_EXT 0x8009

EXT_blend_minmax NVIDIA OpenGL Extension Specifications

 90

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

None

Additions to Chapter 3 of the GL Specification (Rasterization)

None

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

The GL Specification defines a single blending equation. This
extension introduces a blend equation mode that is specified by calling
BlendEquationEXT with one of three enumerated values. The default
value FUNC_ADD_EXT specifies that the blending equation defined in
the GL Specification be used. This equation is

C' = (Cs * S) + (Cd * D)

/ 1.0 C' > 1.0
C = (

\ C' C' <= 1.0

where Cs and Cd are the source and destination colors, and S and D are
as specified by BlendFunc.

If BlendEquationEXT is called with <mode> set to MIN_EXT, the
blending equation becomes

C = min (Cs, Cd)

Finally, if BlendEquationEXT is called with <mode> set to MAX_EXT, the
blending equation becomes

C = max (Cs, Cd)

In all cases the blending equation is evaluated separately for each
color component.

Additions to Chapter 5 of the GL Specification (Special Functions)

None

Additions to Chapter 6 of the GL Specification (State and State Requests)

None

Additions to the GLX Specification

None

GLX Protocol

A new GL rendering command is added. The following command is sent to the
server as part of a glXRender request:

NVIDIA OpenGL Extension Specifications EXT_blend_minmax

 91

BlendEquationEXT
2 8 rendering command length
2 4097 rendering command opcode
4 ENUM mode

Errors

INVALID_ENUM is generated by BlendEquationEXT if its single parameter
is not FUNC_ADD_EXT, MIN_EXT, or MAX_EXT.

INVALID_OPERATION is generated if BlendEquationEXT is executed between
the execution of Begin and the corresponding execution to End.

New State

Get Value Get Command Type Initial Value Attribute
--------- ----------- ---- ------------- ---------
BLEND_EQUATION_EXT GetIntegerv Z3 FUNC_ADD_EXT color-buffer

New Implementation Dependent State

None

EXT_blend_subtract NVIDIA OpenGL Extension Specifications

 92

Name

EXT_blend_subtract

Name Strings

GL_EXT_blend_subtract

Version

$Date: 1995/03/31 04:40:39 $ $Revision: 1.4 $

Number

38

Dependencies

EXT_blend_minmax affects the definition of this extension

Overview

Two additional blending equations are specified using the interface
defined by EXT_blend_minmax. These equations are similar to the
default blending equation, but produce the difference of its left
and right hand sides, rather than the sum. Image differences are
useful in many image processing applications.

New Procedures and Functions

None

New Tokens

Accepted by the <mode> parameter of BlendEquationEXT:

FUNC_SUBTRACT_EXT 0x800A
FUNC_REVERSE_SUBTRACT_EXT 0x800B

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

None

Additions to Chapter 3 of the GL Specification (Rasterization)

None

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

Two additional blending equations are defined. If BlendEquationEXT is
called with <mode> set to FUNC_SUBTRACT_EXT, the blending equation
becomes

NVIDIA OpenGL Extension Specifications EXT_blend_subtract

 93

C' = (Cs * S) - (Cd * D)

/ 0.0 C' < 0.0
C = (

\ C' C' >= 0.0

where Cs and Cd are the source and destination colors, and S and D are
as specified by BlendFunc.

If BlendEquationEXT is called with <mode> set to
FUNC_REVERSE_SUBTRACT_EXT, the blending equation becomes

C' = (Cd * D) - (Cs * S)

/ 0.0 C' < 0.0
C = (

\ C' C' >= 0.0

In all cases the blending equation is evaluated separately for each
color component.

Additions to Chapter 5 of the GL Specification (Special Functions)

None

Additions to Chapter 6 of the GL Specification (State and State Requests)

None

Additions to the GLX Specification

None

GLX Protocol

None

Dependencies on EXT_blend_minmax

If this extension is supported, but EXT_blend_minmax is not, then
this extension effectively defines the procedure BlendEquationEXT, its
parameter FUNC_ADD_EXT, and the query target BLEND_EQUATION_EXT, as
described in EXT_blend_minmax. It is therefore as though
EXT_blend_minmax were also supported, except that equations MIN_EXT
and MAX_EXT are not supported.

Errors

INVALID_ENUM is generated by BlendEquationEXT if its single parameter
is not FUNC_ADD_EXT, MIN_EXT, MAX_EXT, FUNC_SUBTRACT_EXT, or
FUNC_REVERSE_SUBTRACT_EXT.

INVALID_OPERATION is generated if BlendEquationEXT is executed between
the execution of Begin and the corresponding execution to End.

EXT_blend_subtract NVIDIA OpenGL Extension Specifications

 94

New State

Get Value Get Command Type Initial Value Attribute
--------- ----------- ---- ------------- ------------
BLEND_EQUATION_EXT GetIntegerv Z5 FUNC_ADD_EXT color-buffer

New Implementation Dependent State

None

NVIDIA OpenGL Extension Specifications EXT_compiled_vertex_array

 95

XXX - Not complete yet!!!

Name

EXT_compiled_vertex_array

Name Strings

GL_EXT_compiled_vertex_array

Version

$Date: 1996/11/21 00:52:19 $ $Revision: 1.3 $

Number

97

Dependencies

None

Overview

This extension defines an interface which allows static vertex array
data to be cached or pre-compiled for more efficient rendering. This
is useful for implementations which can cache the transformed results
of array data for reuse by several DrawArrays, ArrayElement, or
DrawElements commands. It is also useful for implementations which
can transfer array data to fast memory for more efficient processing.

For example, rendering an M by N mesh of quadrilaterals can be
accomplished by setting up vertex arrays containing all of the
vertexes in the mesh and issuing M DrawElements commands each of
which operate on 2 * N vertexes. Each DrawElements command after
the first will share N vertexes with the preceding DrawElements
command. If the vertex array data is locked while the DrawElements
commands are executed, then OpenGL may be able to transform each
of these shared vertexes just once.

Issues

* Is compiled_vertex_array the right name for this extension?

* Should there be an implementation defined maximum number of array
elements which can be locked at a time (i.e. MAX_LOCKED_ARRAY_SIZE)?

Probably not, the lock request can always be ignored with no resulting
change in functionality if there are insufficent resources, and allowing
the GL to define this limit can make things difficult for applications.

* Should there be any restrictions on what state can be changed while
the vertex array data is locked?

Probably not. The GL can check for state changes and invalidate
any cached vertex state that may be affected. This is likely to
cause a performance hit, so the preferred use will be to not change

EXT_compiled_vertex_array NVIDIA OpenGL Extension Specifications

 96

state while the vertex array data is locked.

New Procedures and Functions

void LockArraysEXT (int first, sizei count)
void UnlockArraysEXT (void)

New Tokens

Accepted by the <pname> parameter of GetBooleanv, GetIntegerv,
GetFloatv, and GetDoublev:

ARRAY_ELEMENT_LOCK_FIRST_EXT 0x81A8
ARRAY_ELEMENT_LOCK_COUNT_EXT 0x81A9

Additions to Chapter 2 of the 1.1 Specification (OpenGL Operation)

After the discussion of InterleavedArrays, add a description of
array compiling/locking.

The currently enabled vertex arrays can be locked with the command
LockArraysEXT. When the vertex arrays are locked, the GL
can compile the array data or the transformed results of array
data associated with the currently enabled vertex arrays. The
vertex arrays are unlocked by the command UnlockArraysEXT.

Between LockArraysEXT and UnlockArraysEXT the application
should ensure that none of the array data in the range of
elements specified by <first> and <count> are changed.
Changes to the array data between the execution of LockArraysEXT
and UnlockArraysEXT commands may affect calls may affect DrawArrays,
ArrayElement, or DrawElements commands in non-sequential ways.

While using a compiled vertex array, references to array elements
by the commands DrawArrays, ArrayElement, or DrawElements which are
outside of the range specified by <first> and <count> are undefined.

Additions to Chapter 3 of the 1.1 Specification (Rasterization)

None

Additions to Chapter 4 of the 1.1 Specification (Per-Fragment Operations
and the Frame Buffer)

None

Additions to Chapter 5 of the 1.1 Specification (Special Functions)

LockArraysEXT and UnlockArraysEXT are not complied into display lists
but are executed immediately.

Additions to Chapter 6 of the 1.1 Specification (State and State Requests)

None

NVIDIA OpenGL Extension Specifications EXT_compiled_vertex_array

 97

Additions to the GLX Specification

XXX - Not complete yet!!!

GLX Protocol

XXX - Not complete yet!!!

Errors

INVALID_VALUE is generated if LockArrarysEXT parameter <first> is less
than zero.

INVALID_VALUE is generated if LockArraysEXT parameter <count> is less than
or equal to zero.

INVALID_OPERATION is generated if LockArraysEXT is called between execution
of LockArraysEXT and corresponding execution of UnlockArraysEXT.

INVALID_OPERATION is generated if UnlockArraysEXT is called without a
corresponding previous execution of LockArraysEXT.

INVALID_OPERATION is generated if LockArraysEXT or UnlockArraysEXT is called
between execution of Begin and the corresponding execution of End.

New State
Initial

Get Value Get Command Type Value Attrib
--------- ----------- ---- ------- ------
ARRAY_ELEMENT_LOCK_FIRST_EXT GetIntegerv Z+ 0 client-vertex-array
ARRAY_ELEMENT_LOCK_COUNT_EXT GetIntegerv Z+ 0 client-vertex-array

New Implementation Dependent State

None

EXT_draw_range_elements NVIDIA OpenGL Extension Specifications

 98

Name

EXT_draw_range_elements

Name Strings

GL_EXT_draw_range_elements

Version

$Date: 1997/5/19

Number

112

Status

Superceded by OpenGL 1.2 functionaltity.
See section 2.8 (page 25) of the OpenGL 1.2.1 specification.

Proposal

Add a new vertex array rendering command:

void glDrawRangeElementsEXT(
GLenum mode,
GLuint start,
GLuint end,
GLsizei count,
GLenum type,
const GLvoid *indices

);

Add two implementation-dependent limits for describing data size
recommendations for glDrawRangeElementsEXT:

GL_MAX_ELEMENTS_VERTICES_EXT 0x80E8
GL_MAX_ELEMENTS_INDICES_EXT 0x80E9

glDrawRangeElementsEXT is a restricted form of glDrawElements. All
vertices referenced by indices must lie between start and end inclusive.
Not all vertices between start and end must be referenced, however
unreferenced vertices may be sent through some of the vertex pipeline
before being discarded, reducing performance from what could be achieved
by an optimal index set. Index values which lie outside the range will
cause implementation-dependent results.

glDrawRangeElementsEXT may also be further constrained to only operate
at maximum performance for limited amounts of data. Implementations may
advertise recommended maximum amounts of vertex and index data using the
GL_MAX_ELEMENTS_VERTICES_EXT and GL_MAX_ELEMENTS_INDICES_EXT enumerants.
If a particular call to glDrawRangeElementsEXT has (end-start+1) greater
than GL_MAX_ELEMENTS_VERTICES_EXT or if count is greater than
GL_MAX_ELEMENTS_INDICES_EXT then the implementation may be forced to
process the data less efficiently than it could have with less data. An
implementation which has no effective limits can advertise the maximum

NVIDIA OpenGL Extension Specifications EXT_draw_range_elements

 99

integer value for the two enumerants. An implementation must always
process a glDrawRangeElementsEXT call with valid parameters regardless
of the amount of data passed in the call.

GL_INVALID_VALUE will be returned if end is less than start. Other
errors are as for glDrawElements.

Motivation:
Rendering primitives from indexed vertex lists is a fairly common
graphics operation, particularly in modeling applications such as VRML
viewers. OpenGL 1.1 added support for the glDrawElements API to allow
rendering of primitives by indexing vertex array data.

The specification of glDrawElements does not allow optimal performance
for some OpenGL implementations, however. In particular, it has no
restrictions on the number of indices given, the number of unique
vertices referenced nor a direct indication of the set of unique
vertices referenced by the given indices. This forces some OpenGL
implementations to walk the index data given, building up a separate
list of unique vertex references for later use in the pipeline.
Additionally, since some OpenGL implementations have internal
limitations on how many vertices they can deal with simultaneously the
unbounded nature of glDrawElements requires the implementation to be
prepared to segment the input data and do multiple passes. These
preprocessing steps can consume a significant amount of time.

Such preprocessing can be done once and stored when building display
lists but this only works for objects whose geometry does not change.
Applications using morphing objects or other objects that are changing
dynamically cannot take advantage of display lists and so must pay the
preprocessing penalty on every redraw.

glDrawRangeElementsEXT is designed to avoid the preprocessing steps
which may be necessary for glDrawElements. As such it does not have the
flexibility of glDrawElements but it is sufficiently functional for a
large class of applications to benefit from its use.
glDrawRangeElementsEXT enhances glDrawElements in two ways:
1. The set of unique vertices referenced by the indices is explicitly
indicated via the start and end parameters, removing the necessity to
determine this through examination of the index data. The
implementation is given a contiguous chunk of vertex data that it can
immediately begin streaming through the vertex pipeline.
2. Recommended limits on the amount of data to be processed can be
indicated by the implementation through GL_MAX_ELEMENTS_VERTICES_EXT and
GL_MAX_ELEMENTS_INDICES_EXT. If an application respects these limits it
removes the need to split the incoming data into multiple chunks since
the maximums can be set to the optimal values for the implementation to
handle in one pass.

The first restriction isn't particularly onerous for applications since
they can always call glDrawElements in the case where they cannot or do
not know whether they can call glDrawRangeElementsEXT. Performance
should be at least as good as it was calling glDrawElements alone. The
second point isn't really a restriction as glDrawRangeElementsEXT
doesn't fail if the data size limits are exceeded.

OpenGL implementation effort is also minimal. For implementations where

EXT_draw_range_elements NVIDIA OpenGL Extension Specifications

 100

glDrawElements performance is not affected by preprocessing
glDrawRangeElementsEXT can be implemented simply as a call to
glDrawElements and the maximums set to the maximum integer value. For
the case where glDrawElements is doing non-trivial preprocessing there
is probably already an underlying routine that takes consecutive, nicely
sectioned index and vertex chunks that glDrawRangeElementsEXT can plug
directly in to.

Design Decisions

The idea of providing a set of vertex indices along with a set of
element indices was considered but dropped as it still may require some
preprocessing, although there is some reduction in overhead from
glDrawElements. The implementation may require internal vertex data to
be contiguous, in which case a gather operation would have to be
performed with the vertex index list before vertex data could be
processed. It is expected that most apps will keep vertex data for
particular elements packed consecutively anyway so the added flexibility
of a vertex index list would potentially impose overhead with little
expected benefit. In the case where a vertex index list really is
necessary to avoid performance penalties due to sparse vertex usage
glDrawElements should provide performance similar to what such an API
would have.

The restriction on maximum data size cannot easily be lifted without
potential performance implications. For implementations which have an
internal maximum vertex buffer size it would be necessary to break up
large data sets into multiple chunks. Splitting indexed data requires
walking the indices and gathering those that fall within particular
chunks into sets for processing, a time-consuming operation. Splitting
the indices themselves is easier but still requires some processing to
handle connected primitives that cross a split.

NVIDIA OpenGL Extension Specifications EXT_fog_coord

 101

Name

EXT_fog_coord

Name Strings

GL_EXT_fog_coord

Status

Shipping (version 1.6)

Version

$Date: 1999/06/21 19:57:19 $ $Revision: 1.11 $

Number

149

Dependencies

OpenGL 1.1 is required.
The extension is written against the OpenGL 1.2 Specification.

Overview

This extension allows specifying an explicit per-vertex fog
coordinate to be used in fog computations, rather than using a
fragment depth-based fog equation.

Issues

* Should the specified value be used directly as the fog weighting
factor, or in place of the z input to the fog equations?

As the z input; more flexible and meets ISV requests.

* Do we want vertex array entry points? Interleaved array formats?

Yes for entry points, no for interleaved formats, following the
argument for secondary_color.

* Which scalar types should FogCoord accept? The full range, or just
the unsigned and float versions? At the moment it follows Index(),
which takes unsigned byte, signed short, signed int, float, and
double.

Since we're now specifying a number which behaves like an
eye-space distance, rather than a [0,1] quantity, integer types
are less useful. However, restricting the commands to floating
point forms only introduces some nonorthogonality.

Restrict to only float and double, for now.

* Interpolation of the fog coordinate may be perspective-correct or
not. Should this be affected by PERSPECTIVE_CORRECTION_HINT,

EXT_fog_coord NVIDIA OpenGL Extension Specifications

 102

FOG_HINT, or another to-be-defined hint?

PERSPECTIVE_CORRECTION_HINT; this is already defined to affect
all interpolated parameters. Admittedly this is a loss of
orthogonality.

* Should the current fog coordinate be queryable?

Yes, but it's not returned by feedback.

* Control the fog coordinate source via an Enable instead of a fog
parameter?

No. We might want to add more sources later.

* Should the fog coordinate be restricted to non-negative values?

Perhaps. Eye-coordinate distance of fragments will be
non-negative due to clipping. Specifying explicit negative
coordinates may result in very large computed f values, although
they are defined to be clipped after computation.

* Use existing DEPTH enum instead of FRAGMENT_DEPTH? Change name of
FRAGMENT_DEPTH_EXT to FOG_FRAGMENT_DEPTH_EXT?

Use FRAGMENT_DEPTH_EXT; FOG_FRAGMENT_DEPTH_EXT is somewhat
misleading, since fragment depth itself has no dependence on
fog.

New Procedures and Functions

void FogCoord[fd]EXT(T coord)
void FogCoord[fd]vEXT(T coord)
void FogCoordPointerEXT(enum type, sizei stride, void *pointer)

New Tokens

Accepted by the <pname> parameter of Fogi and Fogf:

FOG_COORDINATE_SOURCE_EXT 0x8450

Accepted by the <param> parameter of Fogi and Fogf:

FOG_COORDINATE_EXT 0x8451
FRAGMENT_DEPTH_EXT 0x8452

Accepted by the <pname> parameter of GetBooleanv, GetIntegerv,
GetFloatv, and GetDoublev:

CURRENT_FOG_COORDINATE_EXT 0x8453
FOG_COORDINATE_ARRAY_TYPE_EXT 0x8454
FOG_COORDINATE_ARRAY_STRIDE_EXT 0x8455

Accepted by the <pname> parameter of GetPointerv:

FOG_COORDINATE_ARRAY_POINTER_EXT 0x8456

NVIDIA OpenGL Extension Specifications EXT_fog_coord

 103

Accepted by the <array> parameter of EnableClientState and
DisableClientState:

FOG_COORDINATE_ARRAY_EXT 0x8457

Additions to Chapter 2 of the OpenGL 1.2 Specification (OpenGL Operation)

These changes describe a new current state type, the fog coordinate,
and the commands to specify it:

- (2.6, p. 12) Second paragraph changed to:

"Each vertex is specified with two, three, or four coordinates.
In addition, a current normal, current texture coordinates,
current color, and current fog coordinate may be used in
processing each vertex."

- 2.6.3, p. 19) First paragraph changed to

"The only GL commands that are allowed within any Begin/End
pairs are the commands for specifying vertex coordinates, vertex
colors, normal coordinates, texture coordinates, and fog
coordinates (Vertex, Color, Index, Normal, TexCoord,
FogCoord)..."

- (2.7, p. 20) Insert the following paragraph following the third
paragraph describing current normals:

" The current fog coodinate is set using
void FogCoord[fd]EXT(T coord)
void FogCoord[fd]vEXT(T coord)."

The last paragraph is changed to read:

"The state required to support vertex specification consists of
four floating-point numbers to store the current texture
coordinates s, t, r, and q, one floating-point value to store
the current fog coordinate, four floating-point values to store
the current RGBA color, and one floating-point value to store
the current color index. There is no notion of a current vertex,
so no state is devoted to vertex coordinates. The initial values
of s, t, and r of the current texture coordinates are zero; the
initial value of q is one. The initial fog coordinate is zero.
The initial current normal has coordinates (0,0,1). The initial
RGBA color is (R,G,B,A) = (1,1,1,1). The initial color index is
1."

- (2.8, p. 21) Added fog coordinate command for vertex arrays:

Change first paragraph to read:

"The vertex specification commands described in section 2.7
accept data in almost any format, but their use requires many
command executions to specify even simple geometry. Vertex data
may also be placed into arrays that are stored in the client's
address space. Blocks of data in these arrays may then be used
to specify multiple geometric primitives through the execution

EXT_fog_coord NVIDIA OpenGL Extension Specifications

 104

of a single GL command. The client may specify up to seven
arrays: one each to store edge flags, texture coordinates, fog
coordinates, colors, color indices, normals, and vertices. The
commands"

Add to functions listed following first paragraph:

void FogCoordPointerEXT(enum type, sizei stride, void *pointer)

Add to table 2.4 (p. 22):

Command Sizes Types
------- ----- -----
FogCoordPointerEXT 1 float,double

Starting with the second paragraph on p. 23, change to add
FOG_COORDINATE_ARRAY_EXT:

"An individual array is enabled or disabled by calling one of

void EnableClientState(enum array)
void DisableClientState(enum array)

with array set to EDGE_FLAG_ARRAY, TEXTURE_COORD_ARRAY,
FOG_COORDINATE_ARRAY_EXT, COLOR_ARRAY, INDEX_ARRAY,
NORMAL_ARRAY, or VERTEX_ARRAY, for the edge flag, texture
coordinate, fog coordinate, color, color index, normal, or
vertex array, respectively.

The ith element of every enabled array is transferred to the GL
by calling

void ArrayElement(int i)

For each enabled array, it is as though the corresponding
command from section 2.7 or section 2.6.2 were called with a
pointer to element i. For the vertex array, the corresponding
command is Vertex<size><type>v, where <size> is one of [2,3,4],
and <type> is one of [s,i,f,d], corresponding to array types
short, int, float, and double respectively. The corresponding
commands for the edge flag, texture coordinate, fog coordinate,
color, color, color index, and normal arrays are EdgeFlagv,
TexCoord<size><type>v, FogCoord<type>v, Color<size><type>v,
Index<type>v, and Normal<type>v, respectively..."

Change pseudocode on p. 27 to disable fog coordinate array for
canned interleaved array formats. After the lines

DisableClientState(EDGE_FLAG_ARRAY);
DisableClientState(INDEX_ARRAY);

insert the line

DisableClientState(FOG_COORDINATE_ARRAY_EXT);

Substitute "seven" for every occurence of "six" in the final
paragraph on p. 27.

NVIDIA OpenGL Extension Specifications EXT_fog_coord

 105

- (2.12, p. 41) Add fog coordinate to the current rasterpos state.

Change the first sentence of the first paragraph to read

"The state required for the current raster position consists of
three window coordinates x_w, y_w, and z_w, a clip coordinate
w_c value, an eye coordinate distance, a fog coordinate, a valid
bit, and associated data consisting of a color and texture
coordinates."

Change the last paragraph to read

"The current raster position requires six single-precision
floating-point values for its x_w, y_w, and z_w window
coordinates, its w_c clip coordinate, its eye coordinate
distance, and its fog coordinate, a single valid bit, a color
(RGBA color and color index), and texture coordinates for
associated data. In the initial state, the coordinates and
texture coordinates are both (0,0,0,1), the fog coordinate is 0,
the eye coordinate distance is 0, the valid bit is set, the
associated RGBA color is (1,1,1,1), and the associated color
index color is 1. In RGBA mode, the associated color index
always has its initial value; in color index mode, the RGBA
color always maintains its initial value."

- (3.10, p. 139) Change the second and third paragraphs to read

"This factor f may be computed according to one of three
equations:"

f = exp(-d*c) (3.24)
f = exp(-(d*c)^2) (3.25)
f = (e-c)/(e-s) (3.26)

If the fog source (as defined below) is FRAGMENT_DEPTH_EXT, then
c is the eye-coordinate distance from the eye, (0 0 0 1) in eye
coordinates, to the fragment center. If the fog source is
FOG_COORDINATE_EXT, then c is the interpolated value of the fog
coordinate for this fragment. The equation and the fog source,
along with either d or e and s, is specified with

void Fog{if}(enum pname, T param);
void Fog{if}v(enum pname, T params);

If <pname> is FOG_MODE, then <param> must be, or <param> must
point to an integer that is one of the symbolic constants EXP,
EXP2, or LINEAR, in which case equation 3.24, 3.25, or 3.26,,
respectively, is selected for the fog calculation (if, when 3.26
is selected, e = s, results are undefined). If <pname> is
FOG_COORDINATE_SOURCE_EXT, then <param> is or <params> points to
an integer that is one of the symbolic constants
FRAGMENT_DEPTH_EXT or FOG_COORDINATE_EXT. If <pname> is
FOG_DENSITY, FOG_START, or FOG_END, then <param> is or <params>
points to a value that is d, s, or e, respectively. If d is
specified less than zero, the error INVALID_VALUE results."

EXT_fog_coord NVIDIA OpenGL Extension Specifications

 106

- (3.10, p. 140) Change the last paragraph preceding section 3.11
to read

"The state required for fog consists of a three valued integer
to select the fog equation, three floating-point values d, e,
and s, an RGBA fog color and a fog color index, a two-valued
integer to select the fog coordinate source, and a single bit to
indicate whether or not fog is enabled. In the initial state,
fog is disabled, FOG_COORDINATE_SOURCE_EXT is
FRAGMENT_DEPTH_EXT, FOG_MODE is EXP, d = 1.0, e = 1.0, and s =
0.0; C_f = (0,0,0,0) and i_f=0."

Additions to Chapter 3 of the OpenGL 1.2.1 Specification (Rasterization)

None

Additions to Chapter 4 of the OpenGL 1.2.1 Specification (Per-Fragment
Operations and the Frame Buffer)

None

Additions to Chapter 5 of the OpenGL 1.2.1 Specification (Special Functions)

None

Additions to Chapter 6 of the OpenGL 1.2 Specification (State and State
Requests)

None

Additions to Appendix A of the OpenGL 1.2.1 Specification (Invariance)

None

Additions to the GLX / WGL / AGL Specifications

None

GLX Protocol

Two new GL rendering commands are added. The following commands are
sent to the server as part of a glXRender request:

FogCoordfvEXT
2 8 rendering command length
2 4124 rendering command opcode
4 FLOAT32 v[0]

FogCoorddvEXT
2 12 rendering command length
2 4125 rendering command opcode
8 FLOAT64 v[0]

Errors

INVALID_ENUM is generated if FogCoordPointerEXT parameter <type> is
not FLOAT or DOUBLE.

NVIDIA OpenGL Extension Specifications EXT_fog_coord

 107

INVALID_VALUE is generated if FogCoordPointerEXT parameter <stride>
is negative.

New State

(table 6.5, p. 195)
Get Value Type Get Command Initial Value Description Sec Attribute
--------- ---- ----------- ------------- ----------- --- ---------
CURRENT_FOG_COORDINATE_EXT R GetIntegerv, 0 Current 2.7 current

GetFloatv fog coordinate

(table 6.6, p. 197)
Initial

Get Value Type Get Command Value Description Sec Attribute
--------- ---- ----------- -------- ----------- --- ---------
FOG_COORDINATE_ARRAY_EXT B IsEnabled False Fog coord array enable 2.8 vertex-array
FOG_COORDINATE_ARRAY_TYPE_EXT Z8 GetIntegerv FLOAT Type of fog coordinate 2.8 vertex-array
FOG_COORDINATE_ARRAY_STRIDE_EXT Z+ GetIntegerv 0 Stride between fog coords 2.8 vertex-array
FOG_COORDINATE_ARRAY_POINTER_EXT Y GetPointerv 0 Pointer to the fog coord 2.8 vertex-array

array

(table 6.8, p. 198)
Get Value Type Get Command Initial Value Description Sec Attribute
--------- ---- ----------- ------------- ----------- --- ---------
FOG_COORDINATE_SOURCE_EXT Z2 GetIntegerv, FRAGMENT_DEPTH_EXT Source of fog 3.10 fog

GetFloatv coordinate for
fog calculation

Revision History

* Revision 1.6 - Functionality complete

* Revision 1.7-1.9 - Fix typos and add fields to bring up to date with
the new extension template. No functionality changes.

EXT_packed_pixels NVIDIA OpenGL Extension Specifications

 108

Name

EXT_packed_pixels

Name Strings

GL_EXT_packed_pixels

Version

$Date: 1997/09/22 23:23:58 $ $Revision: 1.21 $

Number

23

Dependencies

EXT_abgr affects the definition of this extension
EXT_texture3D affects the definition of this extension
EXT_subtexture affects the definition of this extension
EXT_histogram affects the definition of this extension
EXT_convolution affects the definition of this extension
SGI_color_table affects the definition of this extension
SGIS_texture4D affects the definition of this extension
EXT_cmyka affects the definition of this extension

Overview

This extension provides support for packed pixels in host memory. A
packed pixel is represented entirely by one unsigned byte, one
unsigned short, or one unsigned integer. The fields with the packed
pixel are not proper machine types, but the pixel as a whole is. Thus
the pixel storage modes, including PACK_SKIP_PIXELS, PACK_ROW_LENGTH,
PACK_SKIP_ROWS, PACK_IMAGE_HEIGHT_EXT, PACK_SKIP_IMAGES_EXT,
PACK_SWAP_BYTES, PACK_ALIGNMENT, and their unpacking counterparts all
work correctly with packed pixels.

New Procedures and Functions

None

New Tokens

Accepted by the <type> parameter of DrawPixels, ReadPixels, TexImage1D,
TexImage2D, GetTexImage, TexImage3DEXT, TexSubImage1DEXT,
TexSubImage2DEXT, TexSubImage3DEXT, GetHistogramEXT, GetMinmaxEXT,
ConvolutionFilter1DEXT, ConvolutionFilter2DEXT, ConvolutionFilter3DEXT,
GetConvolutionFilterEXT, SeparableFilter2DEXT, SeparableFilter3DEXT,
GetSeparableFilterEXT, ColorTableSGI, GetColorTableSGI, TexImage4DSGIS,
and TexSubImage4DSGIS:

UNSIGNED_BYTE_3_3_2_EXT 0x8032
UNSIGNED_SHORT_4_4_4_4_EXT 0x8033
UNSIGNED_SHORT_5_5_5_1_EXT 0x8034
UNSIGNED_INT_8_8_8_8_EXT 0x8035
UNSIGNED_INT_10_10_10_2_EXT 0x8036

NVIDIA OpenGL Extension Specifications EXT_packed_pixels

 109

Additions to Chapter 2 of the 1.0 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the 1.0 Specification (Rasterization)

The five tokens defined by this extension are added to Table 3.4:

<type> Parameter Corresponding Special
Token Value GL Data Type Interpretation
---------------- ------------- --------------
UNSIGNED_BYTE ubyte No
BYTE byte No
UNSIGNED_SHORT ushort No
SHORT short No
UNSIGNED_INT uint No
INT int No
FLOAT float No
BITMAP ubyte Yes
UNSIGNED_BYTE_3_3_2_EXT ubyte Yes
UNSIGNED_SHORT_4_4_4_4_EXT ushort Yes
UNSIGNED_SHORT_5_5_5_1_EXT ushort Yes
UNSIGNED_INT_8_8_8_8_EXT uint Yes
UNSIGNED_INT_10_10_10_2_EXT uint Yes

Table 3.4: DrawPixels and ReadPixels <type> parameter values and the
corresponding GL data types. Refer to table 2.2 for definitions of
GL data types. Special interpretations are described near the end
of section 3.6.3.

[Section 3.6.3 of the GL Specification (Rasterization of Pixel
Rectangles) is rewritten as follows:]

3.6.3 Rasterization of Pixel Rectangles

The process of drawing pixels encoded in host memory is diagrammed in
Figure 3.7. We describe the stages of this process in the order in which
they occur.

Pixels are drawn using

void DrawPixels(sizei width,
sizei height,
enum format,
enum type,
void* data);

<format> is a symbolic constant indicating what the values in memory
represent. <width> and <height> are the width and height, respectively,
of the pixel rectangle to be drawn. <data> is a pointer to the data to
be drawn. These data are represented with one of seven GL data types,
specified by <type>. The correspondence between the thirteen <type>
token values and the GL data types they indicate is given in Table 3.4.
If the GL is in color index mode and <format> is not one of COLOR_INDEX,
STENCIL_INDEX, or DEPTH_COMPONENT, then the error INVALID_OPERATION
occurs. Some additional constraints on the combinations of <format>

EXT_packed_pixels NVIDIA OpenGL Extension Specifications

 110

and <type> values that are accepted are discussed below.

Unpacking

Data are taken from host memory as a sequence of signed or unsigned bytes
(GL data types byte and ubyte), signed or unsigned short integers (GL data
types short and ushort), signed or unsigned integers (GL data types int
and uint), or floating-point values (GL data type float). These elements
are grouped into sets of one, two, three, four, or five values, depending
on the <format>, to form a group. Table 3.5 summarizes the format of
groups obtained from memory. It also indicates those formats that yield
indices and those that yield components.

Target
Format Name Buffer Element Meaning and Order
----------- ------ -------------------------
COLOR_INDEX Color Color index
STENCIL_INDEX Stencil Stencil index
DEPTH_COMPONENT Depth Depth component
RED Color R component
GREEN Color G component
BLUE Color B component
ALPHA Color A component
RGB Color R, G, B components
RGBA Color R, G, B, A components
ABGR_EXT Color A, B, G, R components
CMYK_EXT Color Cyan, Magenta, Yellow, Black components
CMYKA_EXT Color Cyan, Magenta, Yellow, Black, A components
LUMINANCE Color Luminance component
LUMINANCE_ALPHA Color Luminance, A components

Table 3.5: DrawPixels and ReadPixels formats. The third column
gives a description of and the number and order of elements in a
group.

By default the values of each GL data type are interpreted as they would
be specified in the language of the client's GL binding. If
UNPACK_SWAP_BYTES is set to TRUE, however, then the values are
interpreted with the bit orderings modified as per the table below. The
modified bit orderings are defined only if the GL data type ubyte has
eight bits, and then for each specific GL data type only if that type
is represented with 8, 16, or 32 bits.

Element Default
Size Bit Ordering Modified Bit Ordering
------- ------------ ---------------------
8-bit [7..0] [7..0]
16-bit [15..0] [7..0] [15..8]
32-bit [31..0] [7..0] [15..8] [23..16] [31..24]

Table: Bit ordering modification of elements when UNPACK_SWAP_BYTES
is TRUE. These reorderings are defined only when GL data type ubyte
has 8 bits, and then only for GL data types with 8, 16, or 32 bits.

The groups in memory are treated as being arranged in a rectangle. This
rectangle consists of a series of rows, with the first element of the
first group of the first row pointed to by the pointer passed to

NVIDIA OpenGL Extension Specifications EXT_packed_pixels

 111

DrawPixels. If the value of UNPACK_ROW_LENGTH is not positive, then the
number of groups in a row is <width>; otherwise the number of groups is
UNPACK_ROW_LENGTH. If the first element of the first row is at location
p in memory, then the location of the first element of the Nth row is

p + Nk

where N is the row number (counting from zero) and k is defined as

/ nl s >= a
k = <

\ a/s * ceiling(snl/a) s < a

where n is the number of elements in a group, l is the number of groups
in a row, a is the value of UNPACK_ALIGNMENT, and s is the size,
in units of GL ubytes, of an element. If the number of bits per
element is not 1, 2, 4, or 8 times the number of bits in a GL ubyte,
then k = nl for all values of a.

There is a mechanism for selecting a sub-rectangle of groups from a
larger containing rectangle. This mechanism relies on three integer
parameters: UNPACK_ROW_LENGTH, UNPACK_SKIP_ROWS, and UNPACK_SKIP_PIXELS.
Before obtaining the first group from memory, the pointer supplied to
DrawPixels is effectively advanced by

UNPACK_SKIP_PIXELS * n + UNPACK_SKIP_ROWS * k

elements. Then <width> groups are obtained from contiguous elements
in memory (without advancing the pointer), after which the pointer is
advanced by k elements. <height> sets of <width> groups of values are
obtained this way. See Figure 3.8.

Calling DrawPixels with a <type> of UNSIGNED_BYTE_3_3_2,
UNSIGNED_SHORT_4_4_4_4, UNSIGNED_SHORT_5_5_5_1, UNSIGNED_INT_8_8_8_8,
or UNSIGNED_INT_10_10_10_2 is a special case in which all the elements
of each group are packed into a single unsigned byte, unsigned short,
or unsigned int, depending on the type. The number of elements per
packed pixel is fixed by the type, and must match the number of
elements per group indicated by the <format> parameter. (See the table
below.) The error INVALID_OPERATION is generated if a mismatch occurs.

GL Number
<type> Parameter Data of Matching
Token Name Type Elements Pixel Formats
---------------- ---- -------- -------------
UNSIGNED_BYTE_3_3_2_EXT ubyte 3 RGB
UNSIGNED_SHORT_4_4_4_4_EXT ushort 4 RGBA,ABGR_EXT,CMYK_EXT
UNSIGNED_SHORT_5_5_5_1_EXT ushort 4 RGBA,ABGR_EXT,CMYK_EXT
UNSIGNED_INT_8_8_8_8_EXT uint 4 RGBA,ABGR_EXT,CMYK_EXT
UNSIGNED_INT_10_10_10_2_EXT uint 4 RGBA,ABGR_EXT,CMYK_EXT

Bitfield locations of the first, second, third, and fourth elements
of each packed pixel type are illustrated in the diagrams below. Each
bitfield is interpreted as an unsigned integer value. If the base GL
type is supported with more than the minimum precision (e.g. a 9-bit
byte) the packed elements are right-justified in the pixel.

EXT_packed_pixels NVIDIA OpenGL Extension Specifications

 112

UNSIGNED_BYTE_3_3_2_EXT:

7 6 5 4 3 2 1 0
+-----------+-----------+-------+
| | | |
+-----------+-----------+-------+

first second third
element element element

UNSIGNED_SHORT_4_4_4_4_EXT:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+---------------+---------------+---------------+---------------+
| | | | |
+---------------+---------------+---------------+---------------+

first second third fourth
element element element element

UNSIGNED_SHORT_5_5_5_1_EXT:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+-------------------+-------------------+-------------------+---+
| | | | |
+-------------------+-------------------+-------------------+---+

first second third fourth
element element element element

UNSIGNED_INT_8_8_8_8_EXT:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+-----------------------+-----------------------+-----------------------+-----------------------+
| | | | |
+-----------------------+-----------------------+-----------------------+-----------------------+

first second third fourth
element element element element

UNSIGNED_INT_10_10_10_2_EXT:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+-----------------------------+-----------------------------+-----------------------------+-----+
| | | | |
+-----------------------------+-----------------------------+-----------------------------+-----+

first second third fourth
element element element element

The assignment of elements to fields in the packed pixel is as
described in the table below:

First Second Third Fourth
Format Element Element Element Element
------ ------- ------- ------- -------
RGB red green blue
RGBA red green blue alpha
ABGR_EXT alpha blue green red
CMYK_EXT cyan magenta yellow black

NVIDIA OpenGL Extension Specifications EXT_packed_pixels

 113

Byte swapping, if enabled, is performed before the elements are
extracted from each pixel. The above discussions of row length and
image extraction are valid for packed pixels, if "group" is substituted
for "element" and the number of elements per group is understood to
be one.

Calling DrawPixels with a <type> of BITMAP is a special case in which
the data are a series of GL ubyte values. Each ubyte value specifies
8 1-bit elements with its 8 least-significant bits. The 8 single-bit
elements are ordered from most significant to least significant if the
value of UNPACK_LSB_FIRST is FALSE; otherwise, the ordering is from
least significant to most significant. The values of bits other than
the 8 least significant in each ubyte are not significant.

The first element of the first row is the first bit (as defined above)
of the ubyte pointed to by the pointer passed to DrawPixels. The first
element of the second row is the first bit (again as defined above) of
the ubyte at location p+k, where k is computed as

k = a * ceiling(nl/8a)

There is a mechanism for selecting a sub-rectangle of elements from
a BITMAP image as well. Before obtaining the first element from memory,
the pointer supplied to DrawPixels is effectively advanced by

UNPACK_SKIP_ROWS * k

ubytes. Then UNPACK_SKIP_PIXELS 1-bit elements are ignored, and the
subsequent <width> 1-bit elements are obtained, without advancing the
ubyte pointer, after which the pointer is advanced by k ubytes. <height>
sets of <width> elements are obtained this way.

Conversion to floating-point

This step applies only to groups of components. It is not performed on
indices. Each element in a group is converted to a floating-point value
according to the appropriate formula in Table 2.4 (section 2.12).
Unsigned integer bitfields extracted from packed pixels are interpreted
using the formula

f = c / ((2**N)-1)

where c is the value of the bitfield (interpreted as an unsigned
integer), N is the number of bits in the bitfield, and the division is
performed in floating point.

[End of changes to Section 3.6.3]

If this extension is supported, all commands that accept pixel data
also accept packed pixel data. These commands are DrawPixels,
TexImage1D, TexImage2D, TexImage3DEXT, TexSubImage1DEXT,
TexSubImage2DEXT, TexSubImage3DEXT, ConvolutionFilter1DEXT,
ConvolutionFilter2DEXT, ConvolutionFilter3DEXT, SeparableFilter2DEXT,
SeparableFilter3DEXT, ColorTableSGI, TexImage4DSGIS, and
TexSubImage4DSGIS.

EXT_packed_pixels NVIDIA OpenGL Extension Specifications

 114

Additions to Chapter 4 of the 1.0 Specification (Per-Fragment Operations
and the Framebuffer)

[Make the following changes to Section 4.3.2 (Reading Pixels):]

Final Conversion

For an index, if the <type> is not FLOAT, final conversion consists of
masking the index with the value given in Table 4.6; if the <type> is
FLOAT, then the integer index is converted to a GL float data value.
For a component, each component is first clamped to [0,1]. Then,
the appropriate conversion formula from Table 4.7 is applied to the
component.

<type> Parameter Index Mask
---------------- ----------
UNSIGNED_BYTE 2**8 - 1
BITMAP 1
BYTE 2**7 - 1
UNSIGNED_SHORT 2**16 - 1
SHORT 2**15 - 1
UNSIGNED_INT 2**32 - 1
INT 2**31 - 1

Table 4.6: Index masks used by ReadPixels. Floating point data
are not masked.

<type> GL Data Component
Parameter Type Conversion Formula
--------- ------- ------------------
UNSIGNED_BYTE ubyte c = ((2**8)-1)*f
BYTE byte c = (((2**8)-1)*f-1)/2
UNSIGNED_SHORT ushort c = ((2**16)-1)*f
SHORT short c = (((2**16)-1)*f-1)/2
UNSIGNED_INT uint c = ((2**32)-1)*f
INT int c = (((2**32)-1)*f-1)/2
FLOAT float c = f
UNSIGNED_BYTE_3_3_2_EXT ubyte c = ((2**N)-1)*f
UNSIGNED_SHORT_4_4_4_4_EXT ushort c = ((2**N)-1)*f
UNSIGNED_SHORT_5_5_5_1_EXT ushort c = ((2**N)-1)*f
UNSIGNED_INT_8_8_8_8_EXT uint c = ((2**N)-1)*f
UNSIGNED_INT_10_10_10_2_EXT uint c = ((2**N)-1)*f

Table 4.7: Reversed component conversions - used when component data
are being returned to client memory. Color, normal, and depth
components are converted from the internal floating-point
representation (f) to a datum of the specified GL data type (c) using
the equations in this table. All arithmetic is done in the internal
floating point format. These conversions apply to component data
returned by GL query commands and to components of pixel data returned
to client memory. The equations remain the same even if the
implemented ranges of the GL data types are greater than the minimum
required ranges. (Refer to table 2.2.) Equations with N as the
exponent are performed for each bitfield of the packed data type,
with N set to the number of bits in the bitfield.

NVIDIA OpenGL Extension Specifications EXT_packed_pixels

 115

Placement in Client Memory

Groups of elements are placed in memory just as they are taken from memory
for DrawPixels. That is, the ith group of the jth row (corresponding to
the ith pixel in the jth row) is placed in memory must where the ith group
of the jth row would be taken from for DrawPixels. See Unpacking under
section 3.6.3. The only difference is that the storage mode parameters
whose names begin with PACK_ are used instead of those whose names begin
with UNPACK_.

[End of changes to Section 4.3.2]

If this extension is supported, all commands that return pixel data
also return packed pixel data. These commands are ReadPixels,
GetTexImage, GetHistogramEXT, GetMinmaxEXT, GetConvolutionFilterEXT,
GetSeparableFilterEXT, and GetColorTableSGI.

Additions to Chapter 5 of the 1.0 Specification (Special Functions)

None

Additions to Chapter 6 of the 1.0 Specification (State and State Requests)

None

Additions to the GLX Specification

None

GLX Protocol

None

Dependencies on EXT_abgr

If EXT_abgr is not implemented, then the references to ABGR_EXT in this
file are invalid, and should be ignored.

Dependencies on EXT_texture3D

If EXT_texture3D is not implemented, then the references to
TexImage3DEXT in this file are invalid, and should be ignored.

Dependencies on EXT_subtexture

If EXT_subtexture is not implemented, then the references to
TexSubImage1DEXT, TexSubImage2DEXT, and TexSubImage3DEXT in this file
are invalid, and should be ignored.

Dependencies on EXT_histogram

If EXT_histogram is not implemented, then the references to
GetHistogramEXT and GetMinmaxEXT in this file are invalid, and should be
ignored.

Dependencies on EXT_convolution

EXT_packed_pixels NVIDIA OpenGL Extension Specifications

 116

If EXT_convolution is not implemented, then the references to
ConvolutionFilter1DEXT, ConvolutionFilter2DEXT, ConvolutionFilter3DEXT,
GetConvolutionFilterEXT, SeparableFilter2DEXT, SeparableFilter3DEXT, and
GetSeparableFilterEXT in this file are invalid, and should be ignored.

Dependencies on SGI_color_table

If SGI_color_table is not implemented, then the references to
ColorTableSGI and GetColorTableSGI in this file are invalid, and should
be ignored.

Dependencies on SGIS_texture4D

If SGIS_texture4D is not implemented, then the references to
TexImage4DSGIS and TexSubImage4DSGIS in this file are invalid, and should
be ignored.

Dependencies on EXT_cmyka

If EXT_cmyka is not implemented, then the references to CMYK_EXT and
CMYKA_EXT in this file are invalid, and should be ignored.

Errors

[For the purpose of this enumeration of errors, GenericPixelFunction
represents any OpenGL function that accepts or returns pixel data, using
parameters <type> and <format> to define the type and format of that
data. Currently these functions are DrawPixels, ReadPixels, TexImage1D,
TexImage2D, GetTexImage, TexImage3DEXT, TexSubImage1DEXT,
TexSubImage2DEXT, TexSubImage3DEXT, GetHistogramEXT, GetMinmaxEXT,
ConvolutionFilter1DEXT, ConvolutionFilter2DEXT, ConvolutionFilter3DEXT,
GetConvolutionFilterEXT, SeparableFilter2DEXT, SeparableFilter3DEXT,
GetSeparableFilterEXT, ColorTableSGI, GetColorTableSGI, TexImage4DSGIS,
and TexSubImage4DSGIS.]

INVALID_OPERATION is generated by GenericPixelFunction if its <type>
parameter is UNSIGNED_BYTE_3_3_2_EXT and its <format> parameter does not
specify three components. Currently the only 3-component format is RGB.

INVALID_OPERATION is generated by GenericPixelFunction if its <type>
parameter is UNSIGNED_SHORT_4_4_4_4_EXT, UNSIGNED_SHORT_5_5_5_1_EXT,
UNSIGNED_INT_8_8_8_8_EXT, or UNSIGNED_INT_10_10_10_2_EXT and its
<format> parameter does not specify four components. Currently the only
4-component formats are RGBA, ABGR_EXT, and CMYK_EXT.

New State

None

New Implementation Dependent State

None

NVIDIA OpenGL Extension Specifications EXT_paletted_texture

 117

Name

EXT_paletted_texture

Name Strings

GL_EXT_paletted_texture

Version

$Date: 1997/06/12 01:07:42 $ $Revision: 1.2 $

Number

78

Dependencies

GL_EXT_paletted_texture shares routines and enumerants with
GL_SGI_color_table with the minor modification that EXT replaces SGI.
In all other ways these calls should function in the same manner and the
enumerant values should be identical. The portions of
GL_SGI_color_table that are used are:

ColorTableSGI, GetColorTableSGI, GetColorTableParameterivSGI,
GetColorTableParameterfvSGI.
COLOR_TABLE_FORMAT_SGI, COLOR_TABLE_WIDTH_SGI,
COLOR_TABLE_RED_SIZE_SGI, COLOR_TABLE_GREEN_SIZE_SGI,
COLOR_TABLE_BLUE_SIZE_SGI, COLOR_TABLE_ALPHA_SIZE_SGI,
COLOR_TABLE_LUMINANCE_SIZE_SGI, COLOR_TABLE_INTENSITY_SIZE_SGI.

Portions of GL_SGI_color_table which are not used in
GL_EXT_paletted_texture are:

CopyColorTableSGI, ColorTableParameterivSGI,
ColorTableParameterfvSGI.
COLOR_TABLE_SGI, POST_CONVOLUTION_COLOR_TABLE_SGI,
POST_COLOR_MATRIX_COLOR_TABLE_SGI, PROXY_COLOR_TABLE_SGI,
PROXY_POST_CONVOLUTION_COLOR_TABLE_SGI,
PROXY_POST_COLOR_MATRIX_COLOR_TABLE_SGI, COLOR_TABLE_SCALE_SGI,
COLOR_TABLE_BIAS_SGI.

EXT_paletted_texture can be used in conjunction with EXT_texture3D.
EXT_paletted_texture modifies TexImage3DEXT to accept paletted image
data and allows TEXTURE_3D_EXT and PROXY_TEXTURE_3D_EXT to be used a
targets in the color table routines. If EXT_texture3D is unsupported
then references to 3D texture support in this spec are invalid and
should be ignored.

Overview

EXT_paletted_texture defines new texture formats and new calls to
support the use of paletted textures in OpenGL. A paletted texture is
defined by giving both a palette of colors and a set of image data which
is composed of indices into the palette. The paletted texture cannot
function properly without both pieces of information so it increases the
work required to define a texture. This is offset by the fact that the

EXT_paletted_texture NVIDIA OpenGL Extension Specifications

 118

overall amount of texture data can be reduced dramatically by factoring
redundant information out of the logical view of the texture and placing
it in the palette.

Paletted textures provide several advantages over full-color textures:

* As mentioned above, the amount of data required to define a
texture can be greatly reduced over what would be needed for full-color
specification. For example, consider a source texture that has only 256
distinct colors in a 256 by 256 pixel grid. Full-color representation
requires three bytes per pixel, taking 192K of texture data. By putting
the distinct colors in a palette only eight bits are required per pixel,
reducing the 192K to 64K plus 768 bytes for the palette. Now add an
alpha channel to the texture. The full-color representation increases
by 64K while the paletted version would only increase by 256 bytes.
This reduction in space required is particularly important for hardware
accelerators where texture space is limited.

* Paletted textures allow easy reuse of texture data for images
which require many similar but slightly different colored objects.
Consider a driving simulation with heavy traffic on the road. Many of
the cars will be similar but with different color schemes. If
full-color textures are used a separate texture would be needed for each
color scheme, while paletted textures allow the same basic index data to
be reused for each car, with a different palette to change the final
colors.

* Paletted textures also allow use of all the palette tricks
developed for paletted displays. Simple animation can be done, along
with strobing, glowing and other palette-cycling effects. All of these
techniques can enhance the visual richness of a scene with very little
data.

New Procedures and Functions

void ColorTableEXT(
enum target,
enum internalFormat,
sizei width,
enum format,
enum type,
const void *data);

void ColorSubTableEXT(
enum target,
sizei start,
sizei count,
enum format,
enum type,
const void *data);

void GetColorTableEXT(
enum target,
enum format,
enum type,
void *data);

NVIDIA OpenGL Extension Specifications EXT_paletted_texture

 119

void GetColorTableParameterivEXT(
enum target,
enum pname,
int *params);

void GetColorTableParameterfvEXT(
enum target,
enum pname,
float *params);

New Tokens

Accepted by the internalformat parameter of TexImage1D, TexImage2D and
TexImage3DEXT:
COLOR_INDEX1_EXT 0x80E2
COLOR_INDEX2_EXT 0x80E3
COLOR_INDEX4_EXT 0x80E4
COLOR_INDEX8_EXT 0x80E5
COLOR_INDEX12_EXT 0x80E6
COLOR_INDEX16_EXT 0x80E7

Accepted by the pname parameter of GetColorTableParameterivEXT and
GetColorTableParameterfvEXT:
COLOR_TABLE_FORMAT_EXT 0x80D8
COLOR_TABLE_WIDTH_EXT 0x80D9
COLOR_TABLE_RED_SIZE_EXT 0x80DA
COLOR_TABLE_GREEN_SIZE_EXT 0x80DB
COLOR_TABLE_BLUE_SIZE_EXT 0x80DC
COLOR_TABLE_ALPHA_SIZE_EXT 0x80DD
COLOR_TABLE_LUMINANCE_SIZE_EXT 0x80DE
COLOR_TABLE_INTENSITY_SIZE_EXT 0x80DF

Accepted by the value parameter of GetTexLevelParameter{if}v:
TEXTURE_INDEX_SIZE_EXT 0x80ED

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

None

Additions to Chapter 3 of the GL Specification (Rasterization)

Section 3.6.4, 'Pixel Transfer Operations,' subsection 'Color Index
Lookup,'

Point two is modified from 'The groups will be loaded as an
image into texture memory' to 'The groups will be loaded as an image
into texture memory and the internalformat parameter is not one of the
color index formats from table 3.8.'

Section 3.8, 'Texturing,' subsection 'Texture Image Specification' is
modified as follows:

The portion of the first paragraph discussing interpretation of format,
type and data is split from the portion discussing target, width and
height. The target, width and height section now ends with the sentence
'Arguments width and height specify the image's width and height.'

EXT_paletted_texture NVIDIA OpenGL Extension Specifications

 120

The format, type and data section is moved under a subheader 'Direct
Color Texture Formats' and begins with 'If internalformat is not one of
the color index formats from table 3.8,' and continues with the existing
text through the internalformat discussion.

After that section, a new section 'Paletted Texture Formats' has the
text:

If format is given as COLOR_INDEX then the image data is
composed of integer values representing indices into a table of colors
rather than colors themselves. If internalformat is given as one of the
color index formats from table 3.8 then the texture will be stored
internally as indices rather than undergoing index-to-RGBA mapping as
would previously have occurred. In this case the only valid values for
type are BYTE, UNSIGNED_BYTE, SHORT, UNSIGNED_SHORT, INT and
UNSIGNED_INT.

The image data is unpacked from memory exactly as for a
DrawPixels command with format of COLOR_INDEX for a context in color
index mode. The data is then stored in an internal format derived from
internalformat. In this case the only legal values of internalformat
are COLOR_INDEX1_EXT, COLOR_INDEX2_EXT, COLOR_INDEX4_EXT,
COLOR_INDEX8_EXT, COLOR_INDEX12_EXT and COLOR_INDEX16_EXT and the
internal component resolution is picked according to the index
resolution specified by internalformat. Any excess precision in the
data is silently truncated to fit in the internal component precision.

An application can determine whether a particular
implementation supports a particular paletted format (or any paletted
formats at all) by attempting to use the paletted format with a proxy
target. TEXTURE_INDEX_SIZE_EXT will be zero if the implementation
cannot support the texture as given.

An application can determine an implementation's desired
format for a particular paletted texture by making a TexImage call with
COLOR_INDEX as the internalformat, in which case target must be a proxy
target. After the call the application can query
TEXTURE_INTERNAL_FORMAT to determine what internal format the
implementation suggests for the texture image parameters.
TEXTURE_INDEX_SIZE_EXT can be queried after such a call to determine the
suggested index resolution numerically. The index resolution suggested
by the implementation does not have to be as large as the input data
precision. The resolution may also be zero if the implementation is
unable to support any paletted format for the given texture image.

Table 3.8 should be augmented with a column titled 'Index bits.' All
existing formats have zero index bits. The following formats are added
with zeroes in all existing columns:

Name Index bits
COLOR_INDEX1_EXT 1
COLOR_INDEX2_EXT 2
COLOR_INDEX4_EXT 4
COLOR_INDEX8_EXT 8
COLOR_INDEX12_EXT 12
COLOR_INDEX16_EXT 16

NVIDIA OpenGL Extension Specifications EXT_paletted_texture

 121

At the end of the discussion of level the following text should be
added:

All mipmapping levels share the same palette. If levels
are created with different precision indices then their internal formats
will not match and the texture will be inconsistent, as discussed above.

In the discussion of internalformat for CopyTexImage{12}D, at end of the
sentence specifying that 1, 2, 3 and 4 are illegal there should also be
a mention that paletted internalformat values are illegal.

At the end of the width, height, format, type and data section under
TexSubImage there should be an additional sentence:

If the target texture has an color index internal format
then format may only be COLOR_INDEX.

At the end of the first paragraph describing TexSubImage and
CopyTexSubImage the following sentence should be added:

If the target of a CopyTexSubImage is a paletted texture
image then INVALID_OPERATION is returned.

After the Alternate Image Specification Commands section, a new 'Palette
Specification Commands' section should be added.

Paletted textures require palette information to
translate indices into full colors. The command

void ColorTableEXT(enum target, enum internalformat, sizei width,
enum format, enum type, const void *data);

is used to specify the format and size of the palette
for paletted textures. target specifies which texture is to have its
palette changed and may be one of TEXTURE_1D, TEXTURE_2D,
PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, TEXTURE_3D_EXT or
PROXY_TEXTURE_3D_EXT. internalformat specifies the desired format and
resolution of the palette when in its internal form. internalformat can
be any of the non-index values legal for TexImage internalformat
although implementations are not required to support palettes of all
possible formats. width controls the size of the palette and must be a
power of two greater than or equal to one. format and type specify the
number of components and type of the data given by data. format can be
any of the formats legal for DrawPixels although implementations are not
required to support all possible formats. type can be any of the types
legal for DrawPixels except GL_BITMAP.

Data is taken from memory and converted just as if each
palette entry were a single pixel of a 1D texture. Pixel unpacking and
transfer modes apply just as with texture data. After unpacking and
conversion the data is translated into a internal format that matches
the given format as closely as possible. An implementation does not,
however, have a responsibility to support more than one precision for
the base formats.

If the palette's width is greater than than the range of
the color indices in the texture data then some of the palettes entries

EXT_paletted_texture NVIDIA OpenGL Extension Specifications

 122

will be unused. If the palette's width is less than the range of the
color indices in the texture data then the most-significant bits of the
texture data are ignored and only the appropriate number of bits of the
index are used when accessing the palette.

Specifying a proxy target causes the proxy texture's
palette to be resized and its parameters set but no data is transferred
or accessed. If an implementation cannot handle the palette data given
in the call then the color table width and component resolutions are set
to zero.

Portions of the current palette can be replaced with

void ColorSubTableEXT(enum target, sizei start, sizei count,
enum format, enum type, const void *data);

target can be any of the non-proxy values legal for
ColorTableEXT. start and count control which entries of the palette are
changed out of the range allowed by the internal format used for the
palette indices. count is silently clamped so that all modified entries
all within the legal range. format and type can be any of the values
legal for ColorTableEXT. The data is treated as a 1D texture just as in
ColorTableEXT.

In the 'Texture State and Proxy State' section the sentence fragment
beginning 'six integer values describing the resolutions...' should be
changed to refer to seven integer values, with the seventh being the
index resolution.

Palette data should be added in as a third category of texture state.

After the discussion of properties, the following should be added:

Next there is the texture palette. All textures have a
palette, even if their internal format is not color index. A texture's
palette is initially one RGBA element with all four components set to
1.0.

The sentence mentioning that proxies do not have image data or
properties should be extended with 'or palettes.'

The sentence beginning 'If the texture array is too large' describing
the effects of proxy failure should change to read:

If the implementation is unable to handle the texture
image data the proxy width, height, border width and component
resolutions are set to zero. This situation can occur when the texture
array is too large or an unsupported paletted format was requested.

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

None

Additions to Chapter 5 of the GL Specification (Special Functions)

None

NVIDIA OpenGL Extension Specifications EXT_paletted_texture

 123

Additions to Chapter 6 of the GL Specification (State and State
Requests)

In the section on GetTexImage, the sentence saying 'The components are
assigned among R, G, B and A according to' should be changed to be

If the internal format of the texture is not a color
index format then the components are assigned among R, G, B, and A
according to Table 6.1. Specifying COLOR_INDEX for format in this case
will generate the error INVALID_ENUM. If the internal format of the
texture is color index then the components are handled in one of two
ways depending on the value of format. If format is not COLOR_INDEX,
the texture's indices are passed through the texture's palette and the
resulting components are assigned among R, G, B, and A according to
Table 6.1. If format is COLOR_INDEX then the data is treated as single
components and the palette indices are returned. Components are taken
starting...

Following the GetTexImage section there should be a new section:

GetColorTableEXT is used to get the current texture palette.

void GetColorTableEXT(enum target, enum format, enum type, void *data);

GetColorTableEXT retrieves the texture palette of the
texture given by target. target can be any of the non-proxy targets
valid for ColorTableEXT. format and type are interpreted just as for
ColorTableEXT. All textures have a palette by default so
GetColorTableEXT will always be able to return data even if the internal
format of the texture is not a color index format.

Palette parameters can be retrieved using

void GetColorTableParameterivEXT(enum target, enum pname, int *params);
void GetColorTableParameterfvEXT(enum target, enum pname, float *params);

target specifies the texture being queried and pname
controls which parameter value is returned. Data is returned in the
memory pointed to by params.

Querying COLOR_TABLE_FORMAT_EXT returns the internal
format requested by the most recent ColorTableEXT call or the default.
COLOR_TABLE_WIDTH_EXT returns the width of the current palette.
COLOR_TABLE_RED_SIZE_EXT, COLOR_TABLE_GREEN_SIZE_EXT,
COLOR_TABLE_BLUE_SIZE_EXT and COLOR_TABLE_ALPHA_SIZE_EXT return the
actual size of the components used to store the palette data internally,
not the size requested when the palette was defined.

Table 6.11, "Texture Objects" should have a line appended for
TEXTURE_INDEX_SIZE_EXT:

TEXTURE_INDEX_SIZE_EXT n x Z+ GetTexLevelParameter 0 xD texture image i's index resolution 3.8 -

EXT_paletted_texture NVIDIA OpenGL Extension Specifications

 124

Revision History

Original draft, revision 0.5, December 20, 1995 (drewb) Created

Minor revisions and clarifications, revision 0.6, January 2, 1996 (drewb)
Replaced all request-for-comment blocks with final text
based on implementation.

Minor revisions and clarifications, revision 0.7, Feburary 5, 1996 (drewb)
Specified the state of the palette color information
when existing data is replaced by new data.

Clarified behavior of TexPalette on inconsistent textures.

Major changes due to ARB review, revision 0.8, March 1, 1996 (drewb)
Switched from using TexPaletteEXT and GetTexPaletteEXT
to using SGI's ColorTableEXT routines. Added ColorSubTableEXT so
equivalent functionality is available.

Allowed proxies in all targets.

Changed PALETTE?_EXT values to COLOR_INDEX?_EXT. Added
support for one and two bit palettes. Removed PALETTE_INDEX_EXT in
favor of COLOR_INDEX.

Decoupled palette size from texture data type. Palette
size is controlled only by ColorTableEXT.

Changes due to ARB review, revision 1.0, May 23, 1997 (drewb)
Mentioned texture3D.

Defined TEXTURE_INDEX_SIZE_EXT.

Allowed implementations to return an index size of zero to indicate
no support for a particular format.

Allowed usage of GL_COLOR_INDEX as a generic format in
proxy queries for determining an optimal index size for a particular
texture.

Disallowed CopyTexImage and CopyTexSubImage to paletted
formats.

Deleted mention of index transfer operations during GetTexImage with
paletted formats.

NVIDIA OpenGL Extension Specifications EXT_point_parameters

 125

Name

EXT_point_parameters

Name Strings

GL_EXT_point_parameters

Version

$Date: 1997/08/21 21:26:36 $ $Revision: 1.6 $

Number

54

Dependencies

SGIS_multisample affects the definition of this extension.

Overview

This extension supports additional geometric characteristics of points. It
can be used to render particles or tiny light sources, commonly referred
as "Light points".

The raster brightness of a point is a function of the point area, point
color, point transparency, and the response of the display's electron gun
and phosphor. The point area and the point transparency are derived from the
point size, currently provided with the <size> parameter of glPointSize.

The primary motivation is to allow the size of a point to be affected by
distance attenuation. When distance attenuation has an effect, the final
point size decreases as the distance of the point from the eye increases.

The secondary motivation is a mean to control the mapping from the point
size to the raster point area and point transparency. This is done in order
to increase the dynamic range of the raster brightness of points. In other
words, the alpha component of a point may be decreased (and its transparency
increased) as its area shrinks below a defined threshold.

This extension defines a derived point size to be closely related to point
brightness. The brightness of a point is given by:

1
dist_atten(d) = -------------------

a + b * d + c * d^2

brightness(Pe) = Brightness * dist_atten(|Pe|)

where 'Pe' is the point in eye coordinates, and 'Brightness' is some initial
value proportional to the square of the size provided with glPointSize. Here
we simplify the raster brightness to be a function of the rasterized point
area and point transparency.

EXT_point_parameters NVIDIA OpenGL Extension Specifications

 126

brightness(Pe) brightness(Pe) >= Threshold_Area
area(Pe) =

Threshold_Area Otherwise

factor(Pe) = brightness(Pe)/Threshold_Area

alpha(Pe) = Alpha * factor(Pe)

where 'Alpha' comes with the point color (possibly modified by lighting).

'Threshold_Area' above is in area units. Thus, it is proportional to the
square of the threshold provided by the programmer through this extension.

The new point size derivation method applies to all points, while the
threshold applies to multisample points only.

Issues

* Does point alpha modification affect the current color ?

No.

* Do we need a special function glGetPointParameterfvEXT, or
get by with glGetFloat ?

No.

* If alpha is 0, then we could toss the point before it reaches the
fragment stage.

No. This can be achieved with enabling the alpha test with reference of
0 and function of LEQUAL.

* Do we need a disable for applying the threshold ?

The default threshold value is 1.0. It is applied even if the point size
is constant.

If the default threshold is not overriden, the area of multisample
points with provided constant size of less than 1.0, is mapped to 1.0,
while the alpha component is modulated accordingly, to compensate for
the larger area. For multisample points this is not a problem, as there
are no relevant applications yet. As mentioned above, the threshold does
not apply to alias or antialias points.

The alternative is to have a disable of threshold application, and state
that threshold (if not disabled) applies to non antialias points only
(that is, alias and multisample points).

The behavior without an enable/disable looks fine.

* Future extensions (to the extension)

1. GL_POINT_FADE_ALPHA_CLAMP_EXT

When the derived point size is larger than the threshold size defined by
the GL_POINT_FADE_THRESHOLD_SIZE_EXT parameter, it might be desired to

NVIDIA OpenGL Extension Specifications EXT_point_parameters

 127

clamp the computed alpha to a minimum value, in order to keep the point
visible. In this case the formula below change:

factor = (derived_size/threshold)^2

factor clamp <= factor
clamped_value =

clamp factor < clamp

1.0 derived_size >= threshold
alpha *=

clamped_value Otherwise

where clamp is defined by the GL_POINT_FADE_ALPHA_CLAMP_EXT new parameter.

New Procedures and Functions

void glPointParameterfEXT (GLenum pname, GLfloat param);
void glPointParameterfvEXT (GLenum pname, GLfloat *params);

New Tokens

Accepted by the <pname> parameter of glPointParameterfEXT, and the <pname>
of glGet:

GL_POINT_SIZE_MIN_EXT
GL_POINT_SIZE_MAX_EXT
GL_POINT_FADE_THRESHOLD_SIZE_EXT

Accepted by the <pname> parameter of glPointParameterfvEXT, and the <pname>
of glGet:

GL_POINT_SIZE_MIN_EXT 0x8126
GL_POINT_SIZE_MAX_EXT 0x8127
GL_POINT_FADE_THRESHOLD_SIZE_EXT 0x8128
GL_DISTANCE_ATTENUATION_EXT 0x8129

Additions to Chapter 2 of the 1.0 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the 1.0 Specification (Rasterization)

All parameters of the glPointParameterfEXT and glPointParameterfvEXT
functions set various values applied to point rendering. The derived point
size is defined to be the <size> provided with glPointSize modulated with a
distance attenuation factor.

The parameters GL_POINT_SIZE_MIN_EXT and GL_POINT_SIZE_MAX_EXT simply
define an upper and lower bounds respectively on the derived point size.

The above parameters affect non multisample points as well as multisample
points, while the GL_POINT_FADE_THRESHOLD_SIZE_EXT parameter, has no effect
on non multisample points. If the derived point size is larger than
the threshold size defined by the GL_POINT_FADE_THRESHOLD_SIZE_EXT
parameter, the derived point size is used as the diameter of the rasterized
point, and the alpha component is intact. Otherwise, the threshold size is

EXT_point_parameters NVIDIA OpenGL Extension Specifications

 128

set to be the diameter of the rasterized point, while the alpha component is
modulated accordingly, to compensate for the larger area.

The distance attenuation function coefficients, namely a, b, and c in:

1
dist_atten(d) = -------------------

a + b * d + c * d^2

are defined by the <pname> parameter GL_DISTANCE_ATTENUATION_EXT of the
function glPointParameterfvEXT. By default a = 1, b = 0, and c = 0.

Let 'size' be the point size provided with glPointSize, let 'dist' be the
distance of the point from the eye, and let 'threshold' be the threshold
size defined by the GL_POINT_FADE_THRESHOLD_SIZE parameter of
glPointParameterfEXT. The derived point size is given by:

derived_size = size * sqrt(dist_atten(dist))

Note that when default values are used, the above formula reduces to:

derived_size = size

the diameter of the rasterized point is given by:

derived_size derived_size >= threshold
diameter =

threshold Otherwise

The alpha of a point is calculated to allow the fading of points instead of
shrinking them past a defined threshold size. The alpha component of the
rasterized point is given by:

1 derived_size >= threshold
alpha *=

(derived_size/threshold)^2 Otherwise

The threshold defined by GL_POINT_FADE_THRESHOLD_SIZE_EXT is not clamped
to the minimum and maximum point sizes.

Points do not affect the current color.

This extension doesn't change the feedback or selection behavior of points.

Additions to Chapter 4 of the 1.0 Specification (Per-Fragment Operations
and the Framebuffer)

None

Additions to Chapter 5 of the 1.0 Specification (Special Functions)

None

Additions to Chapter 6 of the 1.0 Specification (State and State Requests)

None

NVIDIA OpenGL Extension Specifications EXT_point_parameters

 129

Additions to the GLX Specification

None

Dependencies on SGIS_multisample

If SGIS_multisample is not implemented, then the references to
multisample points are invalid, and should be ignored.

Errors

INVALID_ENUM is generated if PointParameterfEXT parameter <pname> is not
GL_POINT_SIZE_MIN_EXT, GL_POINT_SIZE_MAX_EXT, or
GL_POINT_FADE_THRESHOLD_SIZE_EXT.

INVALID_ENUM is generated if PointParameterfvEXT parameter <pname> is
not GL_POINT_SIZE_MIN_EXT, GL_POINT_SIZE_MAX_EXT,
GL_POINT_FADE_THRESHOLD_SIZE_EXT, or GL_DISTANCE_ATTENUATION_EXT

INVALID_VALUE is generated when values are out of range according to:

<pname> valid range
-------- -----------
GL_POINT_SIZE_MIN_EXT >= 0
GL_POINT_SIZE_MAX_EXT >= 0
GL_POINT_FADE_THRESHOLD_SIZE_EXT >= 0

Issues

- should we generate INVALID_VALUE or just clamp?

New State

Initial
Get Value Get Command Type Value Attribute
--------- ----------- ---- --------- ---------
GL_POINT_SIZE_MIN_EXT GetFloatv R 0 point
GL_POINT_SIZE_MAX_EXT GetFloatv R M point
GL_POINT_FADE_THRESHOLD_SIZE_EXT GetFloatv R 1 point
GL_DISTANCE_ATTENUATION_EXT GetFloatv 3xR (1,0,0) point

M is the largest available point size.

New Implementation Dependent State

None

Backwards Compatibility

This extension replaces SGIS_point_parameters. The procedures, tokens,
and name strings now refer to EXT instead of SGIS. Enumerant values are
unchanged. SGI implementations which previously provided this
functionality should support both forms of the extension.

EXT_rescale_normal NVIDIA OpenGL Extension Specifications

 130

Name

EXT_rescale_normal

Name Strings

GL_EXT_rescale_normal

Version

$Date: 1997/07/02 23:38:17 $ $Revision: 1.7 $

Number

27

Dependencies

None

Overview

When normal rescaling is enabled a new operation is added to the
transformation of the normal vector into eye coordinates. The normal vector
is rescaled after it is multiplied by the inverse modelview matrix and
before it is normalized.

The rescale factor is chosen so that in many cases normal vectors with unit
length in object coordinates will not need to be normalized as they
are transformed into eye coordinates.

New Procedures and Functions

None

New Tokens

Accepted by the <cap> parameter of Enable, Disable, and IsEnabled,
and by the <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv,
and GetDoublev:

RESCALE_NORMAL_EXT 0x803A

Additions to Chapter 2 of the 1.1 Specification (OpenGL Operation)

Section 2.10.3

Finally, we consider how the ModelView transformation state affects
normals. Normals are of interest only in eye coordinates, so the rules
governing their transformation to other coordinate systems are not
examined.

Normals which have unit length when sent to the GL, have their length
changed by the inverse of the scaling factor after transformation by
the model-view inverse matrix when the model-view matrix represents
a uniform scale. If rescaling is enabled, then normals specified with

NVIDIA OpenGL Extension Specifications EXT_rescale_normal

 131

the Normal command are rescaled after transformation by the ModelView
Inverse.

Normals sent to the GL may or may not have unit length. In addition,
the length of the normals after transformation might be altered due
to transformation by the model-view inverse matrix. If normalization
is enabled, then normals specified with the Normal3 command are
normalized after transformation by the model-view inverse matrix and
after rescaling if rescaling is enabled. Normalization and rescaling
are controlled with

void Enable(enum target);

and

void Disable(enum target);

with target equal to NORMALIZE or RESCALE_NORMAL. This requires two
bits of state. The initial state is for normals not to be normalized or
rescaled.
.
.
.

Therefore, if the modelview matrix is M, then the transformed plane equation
is

(n_x' n_y' n_z' q') = ((n_x n_y n_z q) * (M^-1)),

the rescaled normal is

(n_x" n_y" n_z") = f * (n_x' n_y' n_z'),

and the fully transformed normal is

1 (n_x")
____________ (n_y") (2.1)

__________________________________ (n_z")
V (n_x")^2 + (n_y")^2 + (n_z")^2

If rescaling is disabled then f is 1, otherwise f is computed
as follows:

Let m_ij denote the matrix element in row i and column j of M^-1,
numbering the topmost row of the matrix as row 1, and the leftmost
column as column 1. Then

1

f = ________________________________
V (m_31)^2 + (m_32)^2 + (m_33)^2

Alternatively, an implementation my chose to normalize the normal
instead of rescaling the normal. Then

EXT_rescale_normal NVIDIA OpenGL Extension Specifications

 132

1

f = ________________________________
V (n_x')^2 + (n_y')^2 + (n_z')^2

If normalization is disabled, then the square root in equation 2.1 is
replaced with 1, otherwise

Additions to Chapter 3 of the 1.1 Specification (Rasterization)

None

Additions to Chapter 4 of the 1.1 Specification (Per-Fragment Operations and
the Framebuffer)

None

Additions to Chapter 5 of the 1.1 Specification (Special Functions)

None

Additions to Chapter 6 of the 1.1 Specification (State and State Requests)

None

Additions to the GLX Specification

None

GLX Protocol

None

Errors

None

New State

Get Value Get Command Type Initial Value Attribute
--------- ----------- ---- ------------- ---------
RESCALE_NORMAL_EXT IsEnabled B FALSE transform/enable

New Implementation Dependent State

None

NVIDIA OpenGL Extension Specifications EXT_secondary_color

 133

Name

EXT_secondary_color

Name Strings

GL_EXT_secondary_color

Version

NVIDIA Date: February 22, 2000
$Date: 1999/06/21 19:57:47 $ $Revision: 1.8 $

Number

145

Dependencies

Either EXT_separate_specular_color or OpenGL 1.2 is required, to specify
the "Color Sum" stage and other handling of the secondary color. This is
written against the 1.2 specification (available from www.opengl.org).

Overview

This extension allows specifying the RGB components of the secondary
color used in the Color Sum stage, instead of using the default
(0,0,0,0) color. It applies only in RGBA mode and when LIGHTING is
disabled.

Issues

* Can we use the secondary alpha as an explicit fog weighting factor?

ISVs prefer a separate interface (see GL_EXT_fog_coord). The current
interface specifies only the RGB elements, leaving the option of a
separate extension for SecondaryColor4() entry points open (thus
the apparently useless ARRAY_SIZE state entry).

There is an unpleasant asymmetry with Color3() - one assumes A =
1.0, the other assumes A = 0.0 - but this appears unavoidable given
the 1.2 color sum specification language. Alternatively, the color
sum language could be rewritten to not sum secondary A.

* What about multiple "color iterators" for use with aggrandized
multitexture implementations?

We may need this eventually, but the secondary color is well defined
and a more generic interface doesn't seem justified now.

* Interleaved array formats?

No. The multiplicative explosion of formats is too great.

* Do we want to be able to query the secondary color value? How does it
interact with lighting?

EXT_secondary_color NVIDIA OpenGL Extension Specifications

 134

The secondary color is not part of the GL state in the
separate_specular_color extension that went into OpenGL 1.2. There,
it can't be queried or obtained via feedback.

The secondary_color extension is slightly more general-purpose, so
the secondary color is explicitly in the GL state and can be queried
- but it's still somewhat limited and can't be obtained via
feedback, for example.

New Procedures and Functions

void SecondaryColor3[bsifd ubusui]EXT(T components)
void SecondaryColor3[bsifd ubusui]vEXT(T components)
void SecondaryColorPointerEXT(int size, enum type, sizei stride,

void *pointer)

New Tokens

Accepted by the <cap> parameter of Enable, Disable, and IsEnabled,
and by the <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv,
and GetDoublev:

COLOR_SUM_EXT 0x8458

Accepted by the <pname> parameter of GetBooleanv, GetIntegerv,
GetFloatv, and GetDoublev:

CURRENT_SECONDARY_COLOR_EXT 0x8459
SECONDARY_COLOR_ARRAY_SIZE_EXT 0x845A
SECONDARY_COLOR_ARRAY_TYPE_EXT 0x845B
SECONDARY_COLOR_ARRAY_STRIDE_EXT 0x845C

Accepted by the <pname> parameter of GetPointerv:

SECONDARY_COLOR_ARRAY_POINTER_EXT 0x845D

Accepted by the <array> parameter of EnableClientState and
DisableClientState:

SECONDARY_COLOR_ARRAY_EXT 0x845E

Additions to Chapter 2 of the 1.2 Draft Specification (OpenGL Operation)

These changes describe a new current state type, the secondary color, and
the commands to specify it:

- (2.6, p. 12) Second paragraph changed to:

"Each vertex is specified with two, three, or four coordinates. In
addition, a current normal, current texture coordinates, current
color, and current secondary color may be used in processing each
vertex."

Third paragraph, second sentence changed to:

"These associated colors are either based on the current color and
current secondary color, or produced by lighting, depending on

NVIDIA OpenGL Extension Specifications EXT_secondary_color

 135

whether or not lighting is enabled."

- 2.6.3, p. 19) First paragraph changed to

"The only GL commands that are allowed within any Begin/End pairs
are the commands for specifying vertex coordinates, vertex colors,
normal coordinates, and texture coordinates (Vertex, Color,
SecondaryColorEXT, Index, Normal, TexCoord)..."

- (2.7, p. 20) Starting with the fourth paragraph, change to:

"Finally, there are several ways to set the current color and
secondary color. The GL stores a current single-valued color index
as well as a current four-valued RGBA color and secondary color.
Either the index or the color and secondary color are significant
depending as the GL is in color index mode or RGBA mode. The mode
selection is made when the GL is initialized.

The commands to set RGBA colors and secondary colors are:

void Color[34][bsifd ubusui](T components)
void Color[34][bsifd ubusui]v(T components)
void SecondaryColor3[bsifd ubusui]EXT(T components)
void SecondaryColor3[bsifd ubusui]vEXT(T components)

The color command has two major variants: Color3 and Color4. The
four value versions set all four values. The three value versions
set R, G, and B to the provided values; A is set to 1.0. (The
conversion of integer color components (R, G, B, and A) to
floating-point values is discussed in section 2.13.)

The secondary color command has only the three value versions.
Secondary A is always set to 0.0.

Versions of the Color and SecondaryColorEXT commands that take
floating-point values accept values nominally between 0.0 and
1.0...."

The last paragraph is changed to read:

"The state required to support vertex specification consists of four
floating-point numbers to store the current texture coordinates s,
t, r, and q, four floating-point values to store the current RGBA
color, four floating-point values to store the current RGBA
secondary color, and one floating-point value to store the current
color index. There is no notion of a current vertex, so no state is
devoted to vertex coordinates. The initial values of s, t, and r of
the current texture coordinates are zero; the initial value of q is
one. The initial current normal has coordinates (0,0,1). The initial
RGBA color is (R,G,B,A) = (1,1,1,1). The initial RGBA secondary
color is (R,G,B,A) = (0,0,0,0). The initial color index is 1."

- (2.8, p. 21) Added secondary color command for vertex arrays:

Change first paragraph to read:

"The vertex specification commands described in section 2.7 accept

EXT_secondary_color NVIDIA OpenGL Extension Specifications

 136

data in almost any format, but their use requires many command
executions to specify even simple geometry. Vertex data may also be
placed into arrays that are stored in the client's address space.
Blocks of data in these arrays may then be used to specify multiple
geometric primitives through the execution of a single GL command.
The client may specify up to seven arrays: one each to store edge
flags, texture coordinates, colors, secondary colors, color indices,
normals, and vertices. The commands"

Add to functions listed following first paragraph:

void SecondaryColorPointerEXT(int size, enum type, sizei stride,
void *pointer)

Add to table 2.4 (p. 22):

Command Sizes Types
------- ----- -----
SecondaryColorPointerEXT 3 byte,ubyte,short,ushort,

int,uint,float,double

Starting with the second paragraph on p. 23, change to add
SECONDARY_COLOR_ARRAY_EXT:

"An individual array is enabled or disabled by calling one of

void EnableClientState(enum array)
void DisableClientState(enum array)

with array set to EDGE_FLAG_ARRAY, TEXTURE_COORD_ARRAY, COLOR_ARRAY,
SECONDARY_COLOR_ARRAY_EXT, INDEX_ARRAY, NORMAL_ARRAY, or
VERTEX_ARRAY, for the edge flag, texture coordinate, color,
secondary color, color index, normal, or vertex array, respectively.

The ith element of every enabled array is transferred to the GL by
calling

void ArrayElement(int i)

For each enabled array, it is as though the corresponding command
from section 2.7 or section 2.6.2 were called with a pointer to
element i. For the vertex array, the corresponding command is
Vertex<size><type>v, where <size> is one of [2,3,4], and <type> is
one of [s,i,f,d], corresponding to array types short, int, float,
and double respectively. The corresponding commands for the edge
flag, texture coordinate, color, secondary color, color index, and
normal arrays are EdgeFlagv, TexCoord<size><type>v,
Color<size><type>v, SecondaryColor3<type>vEXT, Index<type>v, and
Normal<type>v, respectively..."

Change pseudocode on p. 27 to disable secondary color array for
canned interleaved array formats. After the lines

DisableClientState(EDGE_FLAG_ARRAY);
DisableClientState(INDEX_ARRAY);

insert the line

NVIDIA OpenGL Extension Specifications EXT_secondary_color

 137

DisableClientState(SECONDARY_COLOR_ARRAY_EXT);

Substitute "seven" for every occurence of "six" in the final paragraph
on p. 27.

- (2.12, p. 41) Add secondary color to the current rasterpos state.

Change the last paragraph to read

"The current raster position requires five single-precision
floating-point values for its x_w, y_w, and z_w window coordinates,
its w_c clip coordinate, and its eye coordinate distance, a single
valid bit, a color (RGBA color, RGBA secondary color, and color
index), and texture coordinates for associated data. In the initial
state, the coordinates and texture coordinates are both $(0,0,0,1)$,
the eye coordinate distance is 0, the valid bit is set, the
associated RGBA color is $(1,1,1,1)$, the associated RGBA secondary
color is $(0,0,0,0)$, and the associated color index color is 1. In
RGBA mode, the associated color index always has its initial value;
in color index mode, the RGBA color and and secondary color always
maintain their initial values."

- (2.13, p. 43) Change second paragraph to acknowledge two colors when
lighting is disabled:

"Next, lighting, if enabled, produces either a color index or
primary and secondary colors. If lighting is disabled, the current
color index or current color (primary color) and current secondary
color are used in further processing. After lighting, RGBA colors
are clamped..."

- (Figure 2.8, p. 42) Change to show primary and secondary RGBA colors in
both lit and unlit paths.

- (2.13.1, p. 44) Change so that the second paragraph starts:

"Lighting may be in one of two states:

1. Lighting Off. In this state, the current color and current secondary
color are assigned to the vertex primary color and vertex secondary
color, respectively.

2. ..."

- (2.13.1, p. 48) Change the sentence following equation 2.5 (for spot_i)
so that color sum is implicitly enabled when SEPARATE_SPECULAR_COLOR is
set:

"All computations are carried out in eye coordinates. When c_es =
SEPARATE_SPECULAR_COLOR, it is as if color sum (see section 3.9) were
enabled, regardless of the value of COLOR_SUM_EXT."

- (3.9, p. 136) Change the first paragraph to read

EXT_secondary_color NVIDIA OpenGL Extension Specifications

 138

"After texturing, a fragment has two RGBA colors: a primary color c_pri
(which texturing, if enabled, may have modified) and a secondary color
c_sec.

If color sum is enabled, the components of these two colors are summed
to produce a single post-texturing RGBA color c (the A component of the
secondary color is always 0). The components of c are then clamped to
the range [0,1]. If color sum is disabled, then c_pri is assigned to the
post texturing color. Color sum is enabled or disabled using the generic
Enable and Disable commands, respectively, with the symbolic constant
COLOR_SUM_EXT.

The state required is a single bit indicating whether color sum is
enabled or disabled. In the initial state, color sum is disabled."

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)

None

Additions to the GLX Specification

None

GLX Protocol

Eight new GL rendering commands are added. The following commands
are sent to the server as part of a glXRender request:

SecondaryColor3bvEXT
2 8 rendering command length
2 4126 rendering command opcode
1 INT8 v[0]
1 INT8 v[1]
1 INT8 v[2]
1 unused

SecondaryColor3svEXT
2 12 rendering command length
2 4127 rendering command opcode
2 INT16 v[0]
2 INT16 v[1]
2 INT16 v[2]
2 unused

SecondaryColor3ivEXT
2 16 rendering command length
2 4128 rendering command opcode
4 INT32 v[0]
4 INT32 v[1]
4 INT32 v[2]

SecondaryColor3fvEXT
2 16 rendering command length
2 4129 rendering command opcode
4 FLOAT32 v[0]
4 FLOAT32 v[1]
4 FLOAT32 v[2]

NVIDIA OpenGL Extension Specifications EXT_secondary_color

 139

SecondaryColor3dvEXT
2 28 rendering command length
2 4130 rendering command opcode
8 FLOAT64 v[0]
8 FLOAT64 v[1]
8 FLOAT64 v[2]

SecondaryColor3ubvEXT
2 8 rendering command length
2 4131 rendering command opcode
1 CARD8 v[0]
1 CARD8 v[1]
1 CARD8 v[2]
1 unused

SecondaryColor3usvEXT
2 12 rendering command length
2 4132 rendering command opcode
2 CARD16 v[0]
2 CARD16 v[1]
2 CARD16 v[2]
2 unused

SecondaryColor3uivEXT
2 16 rendering command length
2 4133 rendering command opcode
4 CARD32 v[0]
4 CARD32 v[1]
4 CARD32 v[2]

Errors

INVALID_VALUE is generated if SecondaryColorPointerEXT parameter <size>
is not 3.

INVALID_ENUM is generated if SecondaryColorPointerEXT parameter <type>
is not BYTE, UNSIGNED_BYTE, SHORT, UNSIGNED_SHORT, INT, UNSIGNED_INT,
FLOAT, or DOUBLE.

INVALID_VALUE is generated if SecondaryColorPointerEXT parameter
<stride> is negative.

EXT_secondary_color NVIDIA OpenGL Extension Specifications

 140

New State

(table 6.5, p. 195)
Get Value Type Get Command Initial Value Description Sec Attribute
--------- ---- ----------- ------------- ----------- --- ---------
CURRENT_SECONDARY_COLOR_EXT C GetIntegerv, (0,0,0,0) Current 2.7 current

GetFloatv secondary color

(table 6.6, p. 197)
Initial

Get Value Type Get Command Value Description Sec Attribute
--------- ---- ----------- ------- -------------- --- ---------
SECONDARY_COLOR_ARRAY_EXT B IsEnabled False Sec. color array enable 2.8 vertex-array
SECONDARY_COLOR_ARRAY_SIZE_EXT Z+ GetIntegerv 3 Sec. colors per vertex 2.8 vertex-array
SECONDARY_COLOR_ARRAY_TYPE_EXT Z8 GetIntegerv FLOAT Type of sec. color components 2.8 vertex-array
SECONDARY_COLOR_ARRAY_STRIDE_EXT Z+ GetIntegerv 0 Stride between sec. colors 2.8 vertex-array
SECONDARY_COLOR_ARRAY_POINTER_EXT Y GetPointerv 0 Pointer to the sec. color array 2.8 vertex-array

(table 6.8, p. 198)
Get Value Type Get Command Initial Value Description Sec Attribute
--------- ---- ----------- ------------- ----------- --- ---------
COLOR_SUM_EXT B IsEnabled False True if color 3.9 fog/enable

sum enabled

NVIDIA OpenGL Extension Specifications EXT_separate_specular_color

 141

Name

EXT_separate_specular_color

Name Strings

GL_EXT_separate_specular_color

Version

$Date: 1997/10/05 00:16:23 $ $Revision: 1.3 $

Number

144

Dependencies

None

Overview

This extension adds a second color to rasterization when lighting is
enabled. Its purpose is to produce textured objects with specular
highlights which are the color of the lights. It applies only to
rgba lighting.

The two colors are computed at the vertexes. They are both clamped,
flat-shaded, clipped, and converted to fixed-point just like the
current rgba color (see Figure 2.8). Rasterization interpolates
both colors to fragments. If texture is enabled, the first (or
primary) color is the input to the texture environment; the fragment
color is the sum of the second color and the color resulting from
texture application. If texture is not enabled, the fragment color
is the sum of the two colors.

A new control to LightModel*, LIGHT_MODEL_COLOR_CONTROL_EXT, manages
the values of the two colors. It takes values: SINGLE_COLOR_EXT, a
compatibility mode, and SEPARATE_SPECULAR_COLOR_EXT, the object of
this extension. In single color mode, the primary color is the
current final color and the secondary color is 0.0. In separate
specular mode, the primary color is the sum of the ambient, diffuse,
and emissive terms of final color and the secondary color is the
specular term.

There is much concern that this extension may not be compatible with
the future direction of OpenGL with regards to better lighting and
shading models. Until those impacts are resolved, serious
consideration should be given before adding to the interface
specified herein (for example, allowing the user to specify a
second input color).

Issues

* Where is emissive included?

RESOLVED - Emissive is included with the ambient and diffuse

EXT_separate_specular_color NVIDIA OpenGL Extension Specifications

 142

terms. Grouping emissive with specular (the "proper" thing) could
be implemented with a new value for the color control.

* Should there be two colors when not lighting or with index
lighting?

RESOLVED - The answer is probably yes--there should be two colors
when lighting is disabled and there could be an incorporation of
two colors with index lighting; but these are beyond the scope of
this extension. Further, attempts to accomplish these may not be
compatible with the future direction of OpenGL with respect to
high quality lighting and shading models.

* What happens when texture is disabled?

RESOLVED - The extension specifies to add the two colors when
texture is disabled. This is compatible with the philosophy of
"if texture is disabled, this mode does not apply".

New Procedures and Functions

None.

New Tokens

Accepted by the <pname> parameter of LightModel*, and also by the
<pname> parameter of GetBooleanv, GetIntegerv, GetFloatv, and
GetDoublev:

LIGHT_MODEL_COLOR_CONTROL_EXT 0x81F8

Accepted by the <param> parameter of LightModel* when <pname> is
LIGHT_MODEL_COLOR_CONTROL_EXT:

SINGLE_COLOR_EXT 0x81F9
SEPARATE_SPECULAR_COLOR_EXT 0x81FA

Additions to Chapter 2 of the 1.0 Specification (OpenGL Operation)

- (2.13, p. 40) Rework the second paragraph to acknowledge two
colors:

"Next, lighting, if enabled, produces either a color index or
primary and secondary colors. If lighting is disabled, the
current color index or color is used in further processing (the
current color is the primary color and the secondary color is 0).
After lighting, colors are clamped..."

- (Figure 2.8, p. 41) Change RGBA to primary RGBA and secondary RGB:

Ideally, there might be an RGB2 underneath RGBA (both places).
Alternatively, a note in the caption could clarify that RGBA
referred to the primary RGBA and a secondary RGB. (Speaking of
the caption, the part about "m is the number of bits an R, G, B,
or A component" could be removed as m doesn't appear in the
diagram.)

NVIDIA OpenGL Extension Specifications EXT_separate_specular_color

 143

- (2.13.1, p. 42) Rework the opening of this section to not imply a
single color:

In the first sentence, change "a color" to "colors". Rephrase the
itemization of the two lighting states to:

"1. Lighting Off. In this state, the current color is assigned to
the vertex primary color. The vertex secondary color is 0.

2. Lighting On. In this state, the vertex primary and secondary
colors are computed from the current lighting parameters."

- (Table 2.7, p.44) Add new entry (at the bottom):

Parameter Type Default Value Description
--------- ---- ---------------- ------------------------------
c_es enum SINGLE_COLOR_EXT controls computation of colors

- (p. 45, top of page) Rephrase the first line and equation:

"Lighting produces two colors at a vertex: a primary color c_1 and
a secondary color c_2. The values of c_1 and c_2 depend on the
light model color control, c_es (note: c_es should be in italics
and c_1 and c_2 in bold, so this really won't be as confusing as
it seems). If c_es = SINGLE_COLOR_EXT, then the equations to
compute c_1 and c_2 are (note: the equation for c_1 is the current
equation for c):

c_1 = e_cm
+ a_cm * a_cs
+ SUM(att_i * spot_i * (a_cm * a_cli

+ dot(n, VP_pli) * d_cm * d_cli
+ f_i * dot(n, h_i)^s_rm * s_cm * s_cli)

c_2 = 0

If c_es = SEPARATE_SPECULAR_COLOR_EXT, then:

c_1 = e_cm
+ a_cm * a_cs
+ SUM (att_i * spot_i * (a_cm * a_cli

+ (n dot VP_pli) * d_cm * d_cli)

c_2 = SUM(att_i * spot_i * (f_i * (n dot h_i)^s_rm * s_cm * s_cli)

- (p. 45, second paragraph from bottom) Clarify that A is in the
primary color:

After the sentence "The value of A produced by lighting is the
alpha value associated with d_cm", add "A is always associated
with the primary color c_1; c_2 has no alpha component."

- (Table 2.8, p. 48) Add a new entry (at the bottom):

Parameter Name Number of values
--------- ----------------------------- ----------------
c_es LIGHT_MODEL_COLOR_CONTROL_EXT 1

EXT_separate_specular_color NVIDIA OpenGL Extension Specifications

 144

- (2.13.6, p. 51) Clarify that both primary and secondary colors are
clamped:

Replace "RGBA" in the first line of the section with "both primary
and secondary".

- (2.13.7, p. 52) Clarify what happens to primary and secondary
colors when flat shading--reword the first paragraph:

"A primitive may be flatshaded, meaning that all vertices of the
primitive are assigned the same color index or primary and
secondary colors. These come from the vertex that spawned the
primitive. For a point, these are the colors associated with the
point. For a line segment, they are the colors of the second
(final) vertex of the segment. For a polygon, they come from a
selected vertex depending on how the polygon was generated. Table
2.9 summarizes the possibilities."

- (2.13.8, p. 52) Rework to not imply a single color:

In the second sentence, change "If the color is" to "Those" and ",
it is" to "are". In the first sentence of the next paragraph,
change "the color" to "two colors".

Additions to Chapter 3 of the 1.0 Specification (Rasterization)

- (Figure 3.1, p. 55) Add a box between texturing and fog called
"color sum".

- (3.8, p. 85) In the first paragraph, second sentence, insert
"primary" before RGBA. Insert after this sentence "Texturing does
not affect the secondary color."

- (new section before 3.9) Insert new section titled "Color Sum":

"At the beginning of this stage in RGBA mode, a fragment has two
colors: a primary RGBA color (which texture, if enabled, may have
modified) and a secondary RGB color. This stage sums the R, G,
and B components of these two colors to produce a single RGBA
color. If the resulting RGB values exceed 1.0, they are clamped
to 1.0.

In color index mode, a fragment only has a single color index and
this stage does nothing."

Additions to Chapter 4 of the 1.0 Specification (Per-Fragment Operations
and the Frame Buffer)

None.

Additions to Chapter 5 of the 1.0 Specification (Special Functions)

- (5.3, p. 137) Specify that feedback returns the primary color by
changing the last sentence of the large paragraph in the middle
of the page to:

NVIDIA OpenGL Extension Specifications EXT_separate_specular_color

 145

"The colors returned are the primary colors. These colors and the
texture coordinates are those resulting from the clipping operations
as described in section 2.13.8."

Additions to Chapter 6 of the 1.0 Specification (State and State Requests)

- (Table 6.9, p. 157) Add:

Get Value - LIGHT_MODEL_COLOR_CONTROL_EXT
Type - Z2
Get Cmnd - GetIntegerv
Initial Value - SINGLE_COLOR_EXT
Description - color control
Sec. - (whatever it ends up as)
Attribute - lighting

Additions to the GLX Specification

None.

GLX Protocol

None.

Errors

None.

New State

(see changes to table 6.9)

EXT_shared_texture_palette NVIDIA OpenGL Extension Specifications

 146

Name

EXT_shared_texture_palette

Name Strings

GL_EXT_shared_texture_palette

Version

$Date: 1997/09/10 23:23:04 $ $Revision: 1.2 $

Number

141

Dependencies

EXT_paletted_texture is required.

Overview

EXT_shared_texture_palette defines a shared texture palette which may be
used in place of the texture object palettes provided by
EXT_paletted_texture. This is useful for rapidly changing a palette
common to many textures, rather than having to reload the new palette
for each texture. The extension acts as a switch, causing all lookups
that would normally be done on the texture's palette to instead use the
shared palette.

Issues

* Do we want to use a new <target> to ColorTable to specify the
shared palette, or can we just infer the new target from the
corresponding Enable?

* A future extension of larger scope might define a "texture palette
object" and bind these objects to texture objects dynamically, rather
than making palettes part of the texture object state as the current
EXT_paletted_texture spec does.

* Should there be separate shared palettes for 1D, 2D, and 3D
textures?

Probably not; palette lookups have nothing to do with the
dimensionality of the texture. If multiple shared palettes
are needed, we should define palette objects.

* There's no proxy mechanism for checking if a shared palette can
be defined with the requested parameters. Will it suffice to
assume that if a texture palette can be defined, so can a shared
palette with the same parameters?

* The changes to the spec are based on changes already made for
EXT_paletted_texture, which means that all three documents must
be referred to. This is quite difficult to read.

NVIDIA OpenGL Extension Specifications EXT_shared_texture_palette

 147

* The changes to section 3.8.6, defining how shared palettes are
enabled and disabled, might be better placed in section 3.8.1.
However, the underlying EXT_paletted_texture does not appear to
modify these sections to define exactly how palette lookups are
done, and it's not clear where to put the changes.

New Procedures and Functions

None

New Tokens

Accepted by the <pname> parameters of GetBooleanv, GetIntegerv,
GetFloatv, GetDoublev, IsEnabled, Enable, Disable, ColorTableEXT,
ColorSubTableEXT, GetColorTableEXT, GetColorTableParameterivEXT, and
GetColorTableParameterfd EXT:

SHARED_TEXTURE_PALETTE_EXT 0x81FB

Additions to Chapter 2 of the 1.1 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the 1.1 Specification (Rasterization)

Section 3.8, 'Texturing,' subsection 'Texture Image Specification' is
modified as follows:

In the Palette Specification Commands section, the sentence
beginning 'target specifies which texture is to' should be changed
to:

target specifies the texture palette or shared palette to be
changed, and may be one of TEXTURE_1D, TEXTURE_2D,
PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, TEXTURE_3D_EXT,
PROXY_TEXTURE_3D_EXT, or SHARED_TEXTURE_PALETTE_EXT.

In the 'Texture State and Proxy State' section, the sentence
beginning 'A texture's palette is initially...' should be changed
to:

There is also a shared palette not associated with any texture, which
may override a texture palette. All palettes are initially...

Section 3.8.6, 'Texture Application' is modified by appending the
following:

Use of the shared texture palette is enabled or disabled using the
generic Enable or Disable commands, respectively, with the symbolic
constant SHARED_TEXTURE_PALETTE_EXT.

The required state is one bit indicating whether the shared palette is
enabled or disabled. In the initial state, the shared palettes is
disabled.

EXT_shared_texture_palette NVIDIA OpenGL Extension Specifications

 148

Additions to Chapter 4 of the 1.1 Specification (Per-Fragment Operations
and the Frame buffer)

None

Additions to Chapter 5 of the 1.1 Specification (Special Functions)

None

Additions to Chapter 6 of the 1.1 Specification (State and State Requests)

In the section on GetTexImage, the sentence beginning 'If format is
not COLOR_INDEX...' should be changed to:

If format is not COLOR_INDEX, the texture's indices are passed
through the texture's palette, or the shared palette if one is
enabled, and the resulting components are assigned among R, G, B,
and A according to Table 6.1.

In the GetColorTable section, the first sentence of the second
paragraph should be changed to read:

GetColorTableEXT retrieves the texture palette or shared palette
given by target.

The first sentence of the third paragraph should be changed to read:

Palette parameters can be retrieved using

void GetColorTableParameterivEXT(enum target, enum pname, int *params);
void GetColorTableParameterfvEXT(enum target, enum pname, float *params);

target specifies the texture palette or shared palette being
queried and pname controls which parameter value is returned.

Additions to the GLX Specification

None

New State

Get Value Get Command Type Initial Value Attribute
--------- ----------- ---- ------------- ---------
SHARED_TEXTURE_PALETTE_EXT IsEnabled B False texture/enable

New Implementation Dependent State

None

NVIDIA OpenGL Extension Specifications EXT_stencil_wrap

 149

Name

EXT_stencil_wrap

Name Strings

GL_EXT_stencil_wrap

Version

Date: 11/15/1999 Version 1.2

Number

176

Dependencies

None

Overview

Various algorithms use the stencil buffer to "count" the number of
surfaces that a ray passes through. As the ray passes into an object,
the stencil buffer is incremented. As the ray passes out of an object,
the stencil buffer is decremented.

GL requires that the stencil increment operation clamps to its maximum
value. For algorithms that depend on the difference between the sum
of the increments and the sum of the decrements, clamping causes an
erroneous result.

This extension provides an enable for both maximum and minimum wrapping
of stencil values. Instead, the stencil value wraps in both directions.

Two additional stencil operations are specified. These new operations
are similiar to the existing INCR and DECR operations, but they wrap their
result instead of saturating it. This functionality matches the new
stencil operations introduced by DirectX 6.

New Procedures and Functions

None

New Tokens

Accepted by the <mode> parameter of BlendEquation:

INCR_WRAP_EXT 0x8507
DECR_WRAP_EXT 0x8508

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

None

EXT_stencil_wrap NVIDIA OpenGL Extension Specifications

 150

Additions to Chapter 3 of the GL Specification (Rasterization)

None

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

Section 4.1.4 "Stencil Test" (page 144), change the 3rd paragraph to read:

"... The symbolic constants are KEEP, ZERO, REPLACE, INCR, DECR,
INVERT, INCR_WRAP_EXT, and DECR_WRAP_EXT. The correspond to
keeping the current value, setting it to zero, replacing it with
the reference value, incrementing it with saturation, decrementing
it with saturation, bitwise inverting it, incrementing it without
saturation, and decrementing it without saturation. For purposes of
incrementing and decrementing, the stencil bits are considered as an
unsigned integer. Incrementing or decrementing with saturation will
clamp values at 0 and the maximum representable value. Incrementing
or decrementing without saturation will wrap such that incrementing
the maximum representable value results in 0 and decrementing 0
results in the maximum representable value. ..."

Additions to Chapter 5 of the GL Specification (Special Functions)

None

Additions to Chapter 6 of the GL Specification (State and State Requests)

None

Additions to the GLX Specification

None

GLX Protocol

None

Errors

INVALID_ENUM is generated by StencilOp if any of its parameters
are not KEEP, ZERO, REPLACE, INCR, DECR, INVERT, INCR_WRAP_EXT,
or DECR_WRAP_EXT.

New State

(table 6.15, page 205)
Get Value Type Get Command Initial Value Sec Attribute
------------------------ ---- ------------ ------------- ----- ---------
STENCIL_FAIL Z8 GetIntegerv KEEP 4.1.4 stencil-buffer
STENCIL_PASS_DEPTH_FAIL Z8 GetIntegerv KEEP 4.1.4 stencil-buffer
STENCIL_PASS_DEPTH_PASS Z8 GetIntegerv KEEP 4.1.4 stencil-buffer

NOTE: the only change is that Z6 type changes to Z8

New Implementation Dependent State

None

NVIDIA OpenGL Extension Specifications EXT_texture_compression_s3tc

 151

Name

EXT_texture_compression_s3tc

Name Strings

GL_EXT_texture_compression_s3tc

Status

FINAL

Version

1.0, 7 July 2000

Number

198

Dependencies

OpenGL 1.1 is required.

GL_ARB_texture_compression is required.

This extension is written against the OpenGL 1.2.1 Specification.

Overview

This extension provides additional texture compression functionality
specific to S3's S3TC format (called DXTC in Microsoft's DirectX API),
subject to all the requirements and limitations described by the extension
GL_ARB_texture_compression.

This extension supports DXT1, DXT3, and DXT5 texture compression formats.
For the DXT1 image format, this specification supports an RGB-only mode
and a special RGBA mode with single-bit "transparent" alpha.

IP Status

Contact S3 Incorporated (http://www.s3.com) regarding any intellectual
property issues associated with implementing this extension.

WARNING: Vendors able to support S3TC texture compression in Direct3D
drivers do not necessarily have the right to use the same functionality in
OpenGL.

Issues

(1) Should DXT2 and DXT4 (premultiplied alpha) formats be supported?

RESOLVED: No -- insufficient interest. Supporting DXT2 and DXT4
would require some rework to the TexEnv definition (maybe add a new
base internal format RGBA_PREMULTIPLIED_ALPHA) for these formats.
Note that the EXT_texture_env_combine extension (which extends normal
TexEnv modes) can be used to support textures with premultipled alpha.

(2) Should generic "RGB_S3TC_EXT" and "RGBA_S3TC_EXT" enums be supported
or should we use only the DXT<n> enums?

RESOLVED: No. A generic RGBA_S3TC_EXT is problematic because DXT3
and DXT5 are both nominally RGBA (and DXT1 with the 1-bit alpha is

EXT_texture_compression_s3tc NVIDIA OpenGL Extension Specifications

 152

also) yet one format must be chosen up front.

(3) Should TexSubImage support all block-aligned edits or just the minimal
functionality required by the the ARB_texture_compression extension?

RESOLVED: Allow all valid block-aligned edits.

(4) A pre-compressed image with a DXT1 format can be used as either an
RGB_S3TC_DXT1 or an RGBA_S3TC_DXT1 image. If the image has
transparent texels, how are they treated in each format?

RESOLVED: The renderer has to make sure that an RGB_S3TC_DXT1 format
is decoded as RGB (where alpha is effectively one for all texels),
while RGBA_S3TC_DXT1 is decoded as RGBA (where alpha is zero for all
texels with "transparent" encodings). Otherwise, the formats are
identical.

(5) Is the encoding of the RGB components for DXT1 formats correct in this
spec? MSDN documentation does not specify an RGB color for the
"transparent" encoding. Is it really black?

RESOLVED: Yes. The specification for the DXT1 format initially
required black, but later changed that requirement to a
recommendation. All vendors involved in the definition of this
specification support black. In addition, specifying black has a
useful behavior.

When blending multiple texels (GL_LINEAR filtering), mixing opaque and
transparent samples is problematic. Defining a black color on
transparent texels achieves a sensible result that works like a
texture with premultiplied alpha. For example, if three opaque white
and one transparent sample is being averaged, the result would be a
75% intensity gray (with an alpha of 75%). This is the same result on
the color channels as would be obtained using a white color, 75%
alpha, and a SRC_ALPHA blend factor.

(6) Is the encoding of the RGB components for DXT3 and DXT5 formats
correct in this spec? MSDN documentation suggests that the RGB blocks
for DXT3 and DXT5 are decoded as described the the DXT1 format.

RESOLVED: Yes -- this appears to be a bug in the MSDN documentation.
The specification for the DXT2-DXT5 formats require decoding using the
opaque block encoding, regardless of the relative values of "color0"
and "color1".

New Procedures and Functions

None.

New Tokens

Accepted by the <internalformat> parameter of TexImage2D, CopyTexImage2D,
and CompressedTexImage2DARB and the <format> parameter of
CompressedTexSubImage2DARB:

COMPRESSED_RGB_S3TC_DXT1_EXT 0x83F0
COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1
COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2
COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3

Additions to Chapter 2 of the OpenGL 1.2.1 Specification (OpenGL Operation)

None.

NVIDIA OpenGL Extension Specifications EXT_texture_compression_s3tc

 153

Additions to Chapter 3 of the OpenGL 1.2.1 Specification (Rasterization)

Add to Table 3.16.1: Specific Compressed Internal Formats

Compressed Internal Format Base Internal Format
========================== ====================
COMPRESSED_RGB_S3TC_DXT1_EXT RGB
COMPRESSED_RGBA_S3TC_DXT1_EXT RGBA
COMPRESSED_RGBA_S3TC_DXT3_EXT RGBA
COMPRESSED_RGBA_S3TC_DXT5_EXT RGBA

Modify Section 3.8.2, Alternate Image Specification

(add to end of TexSubImage discussion, p.123 -- after edit from the
ARB_texture_compression spec)

If the internal format of the texture image being modified is
COMPRESSED_RGB_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT1_EXT,
COMPRESSED_RGBA_S3TC_DXT3_EXT, or COMPRESSED_RGBA_S3TC_DXT5_EXT, the
texture is stored using one of the several S3TC compressed texture image
formats. Such images are easily edited along 4x4 texel boundaries, so the
limitations on TexSubImage2D or CopyTexSubImage2D parameters are relaxed.
TexSubImage2D and CopyTexSubImage2D will result in an INVALID_OPERATION
error only if one of the following conditions occurs:

* <width> is not a multiple of four or equal to TEXTURE_WIDTH,
unless <xoffset> and <yoffset> are both zero.

* <height> is not a multiple of four or equal to TEXTURE_HEIGHT,
unless <xoffset> and <yoffset> are both zero.

* <xoffset> or <yoffset> is not a multiple of four.

The contents of any 4x4 block of texels of an S3TC compressed texture
image that does not intersect the area being modifed are preserved during
valid TexSubImage2D and CopyTexSubImage2D calls.

Add to Section 3.8.2, Alternate Image Specification (adding to the end of
the CompressedTexImage section introduced by the ARB_texture_compression
spec)

If <internalformat> is COMPRESSED_RGB_S3TC_DXT1_EXT,
COMPRESSED_RGBA_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT3_EXT, or
COMPRESSED_RGBA_S3TC_DXT5_EXT, the compressed texture is stored using one
of several S3TC compressed texture image formats. The S3TC texture
compression algorithm supports only 2D images without borders.
CompressedTexImage1DARB and CompressedTexImage3DARB produce an
INVALID_ENUM error if <internalformat> is an S3TC format.
CompressedTexImage2DARB will produce an INVALID_OPERATION error if
<border> is non-zero.

Add to Section 3.8.2, Alternate Image Specification (adding to the end of
the CompressedTexSubImage section introduced by the
ARB_texture_compression spec)

If the internal format of the texture image being modified is
COMPRESSED_RGB_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT1_EXT,
COMPRESSED_RGBA_S3TC_DXT3_EXT, or COMPRESSED_RGBA_S3TC_DXT5_EXT, the
texture is stored using one of the several S3TC compressed texture image
formats. Since the S3TC texture compression algorithm supports only 2D
images, CompressedTexSubImage1DARB and CompressedTexSubImage3DARB produce

EXT_texture_compression_s3tc NVIDIA OpenGL Extension Specifications

 154

an INVALID_ENUM error if <format> is an S3TC format. Since S3TC images
are easily edited along 4x4 texel boundaries, the limitations on
CompressedTexSubImage2D are relaxed. CompressedTexSubImage2D will result
in an INVALID_OPERATION error only if one of the following conditions
occurs:

* <width> is not a multiple of four or equal to TEXTURE_WIDTH.
* <height> is not a multiple of four or equal to TEXTURE_HEIGHT.
* <xoffset> or <yoffset> is not a multiple of four.

The contents of any 4x4 block of texels of an S3TC compressed texture
image that does not intersect the area being modifed are preserved during
valid TexSubImage2D and CopyTexSubImage2D calls.

Additions to Chapter 4 of the OpenGL 1.2.1 Specification (Per-Fragment
Operations and the Frame Buffer)

None.

Additions to Chapter 5 of the OpenGL 1.2.1 Specification (Special Functions)

None.

Additions to Chapter 6 of the OpenGL 1.2.1 Specification (State and
State Requests)

None.

Additions to Appendix A of the OpenGL 1.2.1 Specification (Invariance)

None.

Additions to the AGL/GLX/WGL Specifications

None.

GLX Protocol

None.

Errors

INVALID_ENUM is generated by CompressedTexImage1DARB or
CompressedTexImage3DARB if <internalformat> is
COMPRESSED_RGB_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT1_EXT,
COMPRESSED_RGBA_S3TC_DXT3_EXT, or COMPRESSED_RGBA_S3TC_DXT5_EXT.

INVALID_OPERATION is generated by CompressedTexImage2DARB if if
<internalformat> is COMPRESSED_RGB_S3TC_DXT1_EXT,
COMPRESSED_RGBA_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT3_EXT, or
COMPRESSED_RGBA_S3TC_DXT5_EXT and <border> is not equal to zero.

INVALID_ENUM is generated by CompressedTexSubImage1DARB or
CompressedTexSubImage3DARB if <format> is COMPRESSED_RGB_S3TC_DXT1_EXT,
COMPRESSED_RGBA_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT3_EXT, or
COMPRESSED_RGBA_S3TC_DXT5_EXT.

INVALID_OPERATION is generated by TexSubImage2D CopyTexSubImage2D, or
CompressedTexSubImage2D if INTERNAL_FORMAT is
COMPRESSED_RGB_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT1_EXT,
COMPRESSED_RGBA_S3TC_DXT3_EXT, or COMPRESSED_RGBA_S3TC_DXT5_EXT and any of
the following apply: <width> is not a multiple of four or equal to
TEXTURE_WIDTH; <height> is not a multiple of four or equal to

NVIDIA OpenGL Extension Specifications EXT_texture_compression_s3tc

 155

TEXTURE_HEIGHT; <xoffset> or <yoffset> is not a multiple of four.

The following restrictions from the ARB_texture_compression specification
do not apply to S3TC texture formats, since subimage modification is
straightforward as long as the subimage is properly aligned.

DELETE: INVALID_OPERATION is generated by TexSubImage1D, TexSubImage2D,
DELETE: TexSubImage3D, CopyTexSubImage1D, CopyTexSubImage2D, or
DELETE: CopyTexSubImage3D if the internal format of the texture image is
DELETE: compressed and <xoffset>, <yoffset>, or <zoffset> does not equal
DELETE: -b, where b is value of TEXTURE_BORDER.

DELETE: INVALID_VALUE is generated by CompressedTexSubImage1DARB,
DELETE: CompressedTexSubImage2DARB, or CompressedTexSubImage3DARB if the
DELETE: entire texture image is not being edited: if <xoffset>,
DELETE: <yoffset>, or <zoffset> is greater than -b, <xoffset> + <width> is
DELETE: less than w+b, <yoffset> + <height> is less than h+b, or <zoffset>
DELETE: + <depth> is less than d+b, where b is the value of
DELETE: TEXTURE_BORDER, w is the value of TEXTURE_WIDTH, h is the value of
DELETE: TEXTURE_HEIGHT, and d is the value of TEXTURE_DEPTH.

See also errors in the GL_ARB_texture_compression specification.

New State

None.

Appendix

S3TC Compressed Texture Image Formats

Compressed texture images stored using the S3TC compressed image formats
are represented as a collection of 4x4 texel blocks, where each block
contains 64 or 128 bits of texel data. The image is encoded as a normal
2D raster image in which each 4x4 block is treated as a single pixel. If
an S3TC image has a width or height less than four, the data corresponding
to texels outside the image are irrelevant and undefined.

When an S3TC image with a width of <w>, height of <h>, and block size of
<blocksize> (8 or 16 bytes) is decoded, the corresponding image size (in
bytes) is:

ceil(<w>/4) * ceil(<h>/4) * blocksize.

When decoding an S3TC image, the block containing the texel at offset
(<x>, <y>) begins at an offset (in bytes) relative to the beginning of the
image of:

blocksize * (ceil(<w>/4) * floor(<y>/4) + floor(<x>/4)).

There are four distinct S3TC image formats:

COMPRESSED_RGB_S3TC_DXT1_EXT: Each 4x4 block of texels consists of 64
bits of RGB image data.

Each RGB image data block is encoded as a sequence of 8 bytes, called (in
order of increasing address):

c0_lo, c0_hi, c1_lo, c1_hi, bits_0, bits_1, bits_2, bits_3

The 8 bytes of the block are decoded into three quantities:

EXT_texture_compression_s3tc NVIDIA OpenGL Extension Specifications

 156

color0 = c0_lo + c0_hi * 256
color1 = c1_lo + c1_hi * 256
bits = bits_0 + 256 * (bits_1 + 256 * (bits_2 + 256 * bits_3))

color0 and color1 are 16-bit unsigned integers that are unpacked to
RGB colors RGB0 and RGB1 as though they were 16-bit packed pixels with
a <format> of RGB and a type of UNSIGNED_SHORT_5_6_5.

bits is a 32-bit unsigned integer, from which a two-bit control code
is extracted for a texel at location (x,y) in the block using:

code(x,y) = bits[2*(4*y+x)+1..2*(4*y+x)+0]

where bit 31 is the most significant and bit 0 is the least
significant bit.

The RGB color for a texel at location (x,y) in the block is given by:

RGB0, if color0 > color1 and code(x,y) == 0
RGB1, if color0 > color1 and code(x,y) == 1
(2*RGB0+RGB1)/3, if color0 > color1 and code(x,y) == 2
(RGB0+2*RGB1)/3, if color0 > color1 and code(x,y) == 3

RGB0, if color0 <= color1 and code(x,y) == 0
RGB1, if color0 <= color1 and code(x,y) == 1
(RGB0+RGB1)/2, if color0 <= color1 and code(x,y) == 2
BLACK, if color0 <= color1 and code(x,y) == 3

Arithmetic operations are done per component, and BLACK refers to an
RGB color where red, green, and blue are all zero.

Since this image has an RGB format, there is no alpha component and the
image is considered fully opaque.

COMPRESSED_RGBA_S3TC_DXT1_EXT: Each 4x4 block of texels consists of 64
bits of RGB image data and minimal alpha information. The RGB components
of a texel are extracted in the same way as COMPRESSED_RGB_S3TC_DXT1_EXT.

The alpha component for a texel at location (x,y) in the block is
given by:

0.0, if color0 <= color1 and code(x,y) == 3
1.0, otherwise

IMPORTANT: When encoding an RGBA image into a format using 1-bit
alpha, any texels with an alpha component less than 0.5 end up with an
alpha of 0.0 and any texels with an alpha component greater than or
equal to 0.5 end up with an alpha of 1.0. When encoding an RGBA image
into the COMPRESSED_RGBA_S3TC_DXT1_EXT format, the resulting red,
green, and blue components of any texels with a final alpha of 0.0
will automatically be zero (black). If this behavior is not desired
by an application, it should not use COMPRESSED_RGBA_S3TC_DXT1_EXT.
This format will never be used when a generic compressed internal
format (Table 3.16.2) is specified, although the nearly identical
format COMPRESSED_RGB_S3TC_DXT1_EXT (above) may be.

COMPRESSED_RGBA_S3TC_DXT3_EXT: Each 4x4 block of texels consists of 64
bits of uncompressed alpha image data followed by 64 bits of RGB image
data.

NVIDIA OpenGL Extension Specifications EXT_texture_compression_s3tc

 157

Each RGB image data block is encoded according to the
COMPRESSED_RGB_S3TC_DXT1_EXT format, with the exception that the two code
bits always use the non-transparent encodings. In other words, they are
treated as though color0 > color1, regardless of the actual values of
color0 and color1.

Each alpha image data block is encoded as a sequence of 8 bytes, called
(in order of increasing address):

a0, a1, a2, a3, a4, a5, a6, a7

The 8 bytes of the block are decoded into one 64-bit integer:

alpha = a0 + 256 * (a1 + 256 * (a2 + 256 * (a3 + 256 * (a4 +
256 * (a5 + 256 * (a6 + 256 * a7))))))

alpha is a 64-bit unsigned integer, from which a four-bit alpha value
is extracted for a texel at location (x,y) in the block using:

alpha(x,y) = bits[4*(4*y+x)+3..4*(4*y+x)+0]

where bit 63 is the most significant and bit 0 is the least
significant bit.

The alpha component for a texel at location (x,y) in the block is
given by alpha(x,y) / 15.

COMPRESSED_RGBA_S3TC_DXT5_EXT: Each 4x4 block of texels consists of 64
bits of compressed alpha image data followed by 64 bits of RGB image data.

Each RGB image data block is encoded according to the
COMPRESSED_RGB_S3TC_DXT1_EXT format, with the exception that the two code
bits always use the non-transparent encodings. In other words, they are
treated as though color0 > color1, regardless of the actual values of
color0 and color1.

Each alpha image data block is encoded as a sequence of 8 bytes, called
(in order of increasing address):

alpha0, alpha1, bits_0, bits_1, bits_2, bits_3, bits_4, bits_5

The alpha0 and alpha1 are 8-bit unsigned bytesw converted to alpha
components by multiplying by 1/255.

The 6 "bits" bytes of the block are decoded into one 48-bit integer:

bits = bits_0 + 256 * (bits_1 + 256 * (bits_2 + 256 * (bits_3 +
256 * (bits_4 + 256 * bits_5))))

bits is a 48-bit unsigned integer, from which a three-bit control code
is extracted for a texel at location (x,y) in the block using:

code(x,y) = bits[3*(4*y+x)+1..3*(4*y+x)+0]

where bit 47 is the most significant and bit 0 is the least
significant bit.

The alpha component for a texel at location (x,y) in the block is
given by:

alpha0, code(x,y) == 0
alpha1, code(x,y) == 1

EXT_texture_compression_s3tc NVIDIA OpenGL Extension Specifications

 158

(6*alpha0 + 1*alpha1)/7, alpha0 > alpha1 and code(x,y) == 2
(5*alpha0 + 2*alpha1)/7, alpha0 > alpha1 and code(x,y) == 3
(4*alpha0 + 3*alpha1)/7, alpha0 > alpha1 and code(x,y) == 4
(3*alpha0 + 4*alpha1)/7, alpha0 > alpha1 and code(x,y) == 5
(2*alpha0 + 5*alpha1)/7, alpha0 > alpha1 and code(x,y) == 6
(1*alpha0 + 6*alpha1)/7, alpha0 > alpha1 and code(x,y) == 7

(4*alpha0 + 1*alpha1)/5, alpha0 <= alpha1 and code(x,y) == 2
(3*alpha0 + 2*alpha1)/5, alpha0 <= alpha1 and code(x,y) == 3
(2*alpha0 + 3*alpha1)/5, alpha0 <= alpha1 and code(x,y) == 4
(1*alpha0 + 4*alpha1)/5, alpha0 <= alpha1 and code(x,y) == 5
0.0, alpha0 <= alpha1 and code(x,y) == 6
1.0, alpha0 <= alpha1 and code(x,y) == 7

Revision History

1.0, 07/07/00 prbrown1: Published final version agreed to by working
group members.

0.9, 06/24/00 prbrown1: Documented that block-aligned TexSubImage calls
do not modify existing texels outside the
modified blocks. Added caveat to allow for a
(0,0)-anchored TexSubImage operation of
arbitrary size.

0.7, 04/11/00 prbrown1: Added issues on DXT1, DXT3, and DXT5 encodings
where the MSDN documentation doesn't match what
is really done. Added enum values from the
extension registry.

0.4, 03/28/00 prbrown1: Updated to reflect final version of the
ARB_texture_compression extension. Allowed
block-aligned TexSubImage calls.

0.3, 03/07/00 prbrown1: Resolved issues pertaining to the format of RGB
blocks in the DXT3 and DXT5 formats (they don't
ever use the "transparent" encoding). Fixed
decoding of DXT1 blocks. Pointed out issue of
"transparent" texels in DXT1 encodings having
different behaviors for RGB and RGBA internal
formats.

0.2, 02/23/00 prbrown1: Minor revisions; added several issues.

0.11, 02/17/00 prbrown1: Slight modification to error semantics
(INVALID_ENUM instead of INVALID_OPERATION).

0.1, 02/15/00 prbrown1: Initial revisio

NVIDIA OpenGL Extension Specifications EXT_texture3D

 159

Name

EXT_texture3D

Name Strings

GL_EXT_texture3D

Version

$Date: 1996/04/05 19:17:05 $ $Revision: 1.22 $

Number

6

Dependencies

EXT_abgr affects the definition of this extension
EXT_texture is required

Overview

This extension defines 3-dimensional texture mapping. In order to
define a 3D texture image conveniently, this extension also defines the
in-memory formats for 3D images, and adds pixel storage modes to support
them.

One important application of 3D textures is rendering volumes of image
data.

New Procedures and Functions

void TexImage3DEXT(enum target,
int level,
enum internalformat,
sizei width,
sizei height,
sizei depth,
int border,
enum format,
enum type,
const void* pixels);

New Tokens

Accepted by the <pname> parameter of GetBooleanv, GetIntegerv,
GetFloatv, and GetDoublev, and by the <pname> parameter of PixelStore:

PACK_SKIP_IMAGES_EXT 0x806B
PACK_IMAGE_HEIGHT_EXT 0x806C
UNPACK_SKIP_IMAGES_EXT 0x806D
UNPACK_IMAGE_HEIGHT_EXT 0x806E

EXT_texture3D NVIDIA OpenGL Extension Specifications

 160

Accepted by the <cap> parameter of Enable, Disable, and IsEnabled, by
the <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv, and
GetDoublev, and by the <target> parameter of TexImage3DEXT, GetTexImage,
GetTexLevelParameteriv, GetTexLevelParameterfv, GetTexParameteriv, and
GetTexParameterfv:

TEXTURE_3D_EXT 0x806F

Accepted by the <target> parameter of TexImage3DEXT,
GetTexLevelParameteriv, and GetTexLevelParameterfv:

PROXY_TEXTURE_3D_EXT 0x8070

Accepted by the <pname> parameter of GetTexLevelParameteriv and
GetTexLevelParameterfv:

TEXTURE_DEPTH_EXT 0x8071

Accepted by the <pname> parameter of TexParameteriv, TexParameterfv,
GetTexParameteriv, and GetTexParameterfv:

TEXTURE_WRAP_R_EXT 0x8072

Accepted by the <pname> parameter of GetBooleanv, GetIntegerv,
GetFloatv, and GetDoublev:

MAX_3D_TEXTURE_SIZE_EXT 0x8073

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

None

Additions to Chapter 3 of the GL Specification (Rasterization)

The pixel storage modes are augmented to support 3D image formats in
memory. Table 3.1 is replaced with the table below:

Parameter Name Type Initial Value Valid Range
-------------- ---- ------------- -----------
UNPACK_SWAP_BYTES boolean FALSE TRUE/FALSE
UNPACK_LSB_FIRST boolean FALSE TRUE/FALSE
UNPACK_ROW_LENGTH integer 0 [0, infinity]
UNPACK_SKIP_ROWS integer 0 [0, infinity]
UNPACK_SKIP_PIXELS integer 0 [0, infinity]
UNPACK_ALIGNMENT integer 4 1, 2, 4, 8
UNPACK_IMAGE_HEIGHT_EXT integer 0 [0, infinity]
UNPACK_SKIP_IMAGES_EXT integer 0 [0, infinity]

Table 3.1: PixelStore parameters pertaining to one or more of
DrawPixels, TexImage1D, TexImage2D, and TexImage3DEXT.

When TexImage3DEXT is called, the groups in memory are treated as being
arranged in a sequence of adjacent rectangles. Each rectangle is a
2-dimensional image, whose size and organization are specified by the
<width> and <height> parameters to TexImage3DEXT. The values of
UNPACK_ROW_LENGTH and UNPACK_ALIGNMENT control the row-to-row spacing in
these images in exactly the manner described in the GL Specification for

NVIDIA OpenGL Extension Specifications EXT_texture3D

 161

2-dimensional images. If the value of UNPACK_IMAGE_HEIGHT_EXT is not
positive, then the number of rows in each 2-dimensional image is
<height>; otherwise the number of rows is UNPACK_IMAGE_HEIGHT_EXT. Each
2-dimensional image comprises an integral number of rows, and is exactly
adjacent to its neighbor images.

The mechanism for selecting a sub-volume of a 3-dimensional image builds
on the mechanism for selecting a sub-rectangle of groups from a larger
containing rectangle. If UNPACK_SKIP_IMAGES_EXT is positive, the
pointer is advanced by UNPACK_SKIP_IMAGES_EXT times the number of
elements in one 2-dimensional image. Then <depth> 2-dimensional images
are processed, each having a subimage extracted in the manner described
in the GL Specification for 2-dimensional images.

The selected groups are processed as though they were part of a
2-dimensional image. When the final R, G, B, and A components have been
computed for a group, they are assigned to components of a texel as
described by Table 3.6 in the EXT_texture extension. Counting from
zero, each resulting Nth texel is assigned internal integer coordinates
[i,j,k], where

i = (N mod width) - border

j = ((N div width) mod height) - border

k = ((N div (width * height)) mod depth) - border

and the div operator performs integer division with truncation. Thus
the last 2-dimensional image of the 3-dimensional image is indexed with
the highest value of k. The dimensions of the 3-dimensional texture
image are <width> x <height> x <depth>. Integer values that will
represent the base-2 logarithm of these dimensions are n, m, and l,
defined such that

width = 2**n + (2 * border)

height = 2**m + (2 * border)

depth = 2**l + (2 * border)

It is acceptable for an implementation to vary its allocation of
internal component resolution based any TexImage3DEXT parameter, but the
allocation must not be a function of any other factor, and cannot be
changed once it is established. In particular, allocations must be
invariant -- the same allocation must be made each time a texture image
is specified with the same parameter values. Provision is made for an
application to determine what component resolutions are available
without having to fully specify the texture (see below).

EXT_texture3D NVIDIA OpenGL Extension Specifications

 162

Texture Wrap Modes

The additional token value TEXTURE_WRAP_R_EXT is accepted by
TexParameteri, TexParameterv, TexParameteriv, and TexParameterfv,
causing table 3.7 to be replaced with the table below:

Name Type Legal Values
---- ---- ------------
TEXTURE_WRAP_S integer CLAMP, REPEAT
TEXTURE_WRAP_T integer CLAMP, REPEAT
TEXTURE_WRAP_R_EXT integer CLAMP, REPEAT
TEXTURE_MIN_FILTER integer NEAREST, LINEAR,

NEAREST_MIPMAP_NEAREST,
NEAREST_MIPMAP_LINEAR,
LINEAR_MIPMAP_NEAREST,
LINEAR_MIPMAP_LINEAR

TEXTURE_MAG_FILTER integer NEAREST, LINEAR
TEXTURE_BORDER_COLOR 4 floats any 4 values in [0,1]

Table 3.7: Texture parameters and their values.

If TEXTURE_WRAP_R_EXT is set to REPEAT, then the GL ignores the integer
part of R coordinates, using only the fractional part. CLAMP causes R
to be clamped to the range [0, 1]. The initial state is for
TEXTURE_WRAP_R_EXT to be REPEAT.

Texture Minification

Continuous coordinates s, t, u, and v are defined in figure 3.10 of the
GL Specification. To discuss 3-dimensional texture mapping, coordinates
r and w are defined similarly. Coordinate w is equal to -border at the
"far" edge of the 3D image, understanding the image to be right-handed,
with k values increasing toward the viewer. It has value depth+border
at the near edge of this volume. Coordinate r has the same direction,
but is normalized so that it is 0.0 and 1.0 at the "far" and "near"
edges of a borderless volume. If the volume has a border, the 0.0 and
1.0 mappings of r continue to bound the core image.

The formulas for p, used to determine the level of detail, are modified
by including dw/dx and dw/dy terms in the obvious ways. Equation 3.7
sums (dw/dx)**2 into the left term, and (dw/dy)**2 into the right term.
Equation 3.8 has ((dw/dx * Dx + dw/dy * Dy)**2 added to the two terms
under the square root. The requirements for the function f(x,y) become

1. f(x, y) is continuous and monotonically increasing in each of
|du/dx|, |du/dy|, |dv/dx|, |dv/dy|, |dw/dx|, and |dw/dy|.

2. Let

m_u = max(|du/dx|, |du/dy|)
m_v = max(|dv/dx|, |dv/dy|)
m_w = max(|dw/dx|, |dw/dy|)

Then

max(m_u, m_v, m_w) <= f(x, y) <= m_u + m_v + m_w

NVIDIA OpenGL Extension Specifications EXT_texture3D

 163

The i and j coordinates of the texel selected for NEAREST filtering are
as defined in equations 3.9 and 3.10 of the GL Specification.
Coordinate k is computed as

/ floor(w), r < 1
k = (

\ 2**l - 1, r = 1

A 2x2x2 cube of texels is selected for LINEAR filtering. The i and j
coordinates of these texels are computed as defined in the GL
Specification for 2-dimensional images. The k coordinates are
computed as

/ floor(w - 1/2) mod 2**l, TEXTURE_WRAP_R_EXT is REPEAT
k0 = (

\ floor(w - 1/2), TEXTURE_WRAP_R_EXT is CLAMP

/ (k0 + 1) mod 2**l, TEXTURE_WRAP_R_EXT is REPEAT
k1 = (

\ k0 + 1, TEXTURE_WRAP_R_EXT is CLAMP

Let

A = frac(u - 1/2)
B = frac(v - 1/2)
C = frac(w - 1/2)

where frac(x) denotes the fractional part of x. Let T[i,j,k] be the
texel at location [i,j,k] in the texture image. Then the texture value,
T, is found as

T = (1-A) * (1-B) * (1-C) * T[i0,j0,k0] +
A * (1-B) * (1-C) * T[i1,j0,k0] +

(1-A) * B * (1-C) * T[i0,j1,k0] +
A * B * (1-C) * T[i1,j1,k0] +

(1-A) * (1-B) * C * T[i0,j0,k1] +
A * (1-B) * C * T[i1,j0,k1] +

(1-A) * B * C * T[i0,j1,k1] +
A * B * C * T[i1,j1,k1]

for a 3-dimensional texture. If any of the selected T[i,j,k] in the
above equation refer to a border texel with unspecified value, then the
border color given by the current setting of TEXTURE_BORDER_COLOR is
used instead of the unspecified value or values.

Mipmapping

TEXTURE_MIN_FILTER values NEAREST_MIPMAP_NEAREST, NEAREST_MIPMAP_LINEAR,
LINEAR_MIPMAP_NEAREST, and LINEAR_MIPMAP_LINEAR each require the use of
a mipmap. A 3-dimensional mipmap is an ordered set of arrays
representing the same image; each array has a resolution lower than the
previous one. If the texture, excluding is border, has dimensions
2**n x 2**m x 2**l, then there are exactly max(n, m, l) + 1 mipmap
arrays. Each subsequent array has dimensions

size(i-1) x size(j-1) x size(k-1)

EXT_texture3D NVIDIA OpenGL Extension Specifications

 164

where the dimensions of the previous array are

size(i) x size(j) x size(k)

and

/ 2**x + 2*border, x > 0
size(x) = (

\ 1 + 2*border, x <= 0

Each array in a 3-dimensional mipmap is transmitted to the GL using
TexImage3DEXT; the array being set is indicated with the <level>
parameter. The rules for completeness of the set of arrays are as
described in the GL Specification, augmented in EXT_texture. The rules
for mipmap array selection, and for filtering of the two selected
arrays, are also as described in the GL Specification. Finally, the
rules for texture magnification are also exactly as described in the
GL Specification.

Texture Application

3-dimensional texture mapping is enabled and disabled using the generic
Enable and Disable commands, with <cap> specified as TEXTURE_3D_EXT. If
either or both TEXTURE_1D or TEXTURE_2D are enabled at the same time as
TEXTURE_3D_EXT, the 3-dimensional texture is used.

Query support

The proxy texture PROXY_TEXTURE_3D_EXT can be used by applications to
query an implementations maximum configurations just as it can be for
1-dimensional and 2-dimensional textures.

Alternate sets of partial per-level texture state are defined for
the proxy texture PROXY_TEXTURE_3D_EXT. Specifically,
TEXTURE_WIDTH, TEXTURE_HEIGHT, TEXTURE_DEPTH_EXT, TEXTURE_BORDER,
TEXTURE_COMPONENTS, TEXTURE_RED_SIZE_EXT, TEXTURE_GREEN_SIZE_EXT,
TEXTURE_BLUE_SIZE_EXT, TEXTURE_ALPHA_SIZE_EXT,
TEXTURE_LUMINANCE_SIZE_EXT, and TEXTURE_INTENSITY_SIZE_EXT are
maintained the the proxy texture. When TexImage3DEXT is called
with <target> set to PROXY_TEXTURE_3D_EXT, these proxy state
values are always respecified, even if the texture is too large to
actually be used. If the texture is too large, all of these state
variables are set to zero. If the texture could be accommodated
by TexImage3DEXT called with <target> TEXTURE_3D_EXT, these values
are set as though TEXTURE_3D_EXT were being defined. All of these
state value can be queried with GetTexLevelParameteriv with
<target> set to PROXY_TEXTURE_3D_EXT. Calling TexImage3DEXT with
<target> PROXY_TEXTURE_3D_EXT has no effect on the actual
3-dimensional texture or its state.

There is no image associated with PROXY_TEXTURE_3D_EXT. Therefore
PROXY_TEXTURE_3D_EXT cannot be used as a texture, and its image must
never be queried using GetTexImage. (The error INVALID_ENUM results if
this is attempted.) Likewise, there is no nonlevel-related state
associated with a proxy texture, so calling GetTexParameteriv or
GetTexParameterfv with <target> PROXY_TEXTURE_3D_EXT results in the

NVIDIA OpenGL Extension Specifications EXT_texture3D

 165

error INVALID_ENUM.

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

None

Additions to Chapter 5 of the GL Specification (Special Functions)

TexImage3DEXT with a proxy target is not included in display
lists, but is instead executed immediately.

Additions to Chapter 6 of the GL Specification (State and State Requests)

3-dimensional texture images are queried using GetTexImage with its
<target> parameter set to TEXTURE_3D_EXT. The assignment of texel
component values to the initial R, G, B, and A components of a pixel
group is described in EXT_texture. Pixel transfer and pixel storage
operations are applied as if the image were 2-dimensional, except that
the additional pixel storage state values PACK_IMAGE_HEIGHT_EXT and
PACK_SKIP_IMAGES_EXT affect the storage of the image into memory. The
correspondence of texels to memory locations is as defined for
TexImage3DEXT above, substituting PACK* state for UNPACK* state in all
occurrences.

Additions to the GLX Specification

None

EXT_texture3D NVIDIA OpenGL Extension Specifications

 166

GLX Protocol

A new GL rendering command is added. This command contains pixel data;
thus it is sent to the server either as part of a glXRender request
or as part of a glXRenderLarge request:

TexImage3DEXT
2 84+n+p rendering command length
2 4114 rendering command opcode
1 BOOL swap_bytes
1 BOOL lsb_first
2 unused
4 CARD32 row_length
4 CARD32 image_height
4 CARD32 image_depth
4 CARD32 skip_rows
4 CARD32 skip_images
4 CARD32 skip_volumes
4 CARD32 skip_pixels
4 CARD32 alignment
4 ENUM target
4 INT32 level
4 ENUM internalformat
4 INT32 width
4 INT32 height
4 INT32 depth
4 INT32 size4d
4 INT32 border
4 ENUM format
4 ENUM type
4 CARD32 null_image
n LISTofBYTE pixels
p unused, p=pad(n)

If the command is encoded in a glXRenderLarge request, the command
opcode and command length fields above are expanded to 4 bytes each:

4 88+n+p rendering command length
4 4114 rendering command opcode

If <width> < 0, <height> < 0, <depth> < 0, <format> is invalid or <type> is
invalid, then the command is erroneous and n=0.

<pixels> is arranged as a sequence of adjacent rectangles. Each rectangle is a
2-dimensional image, whose structure is determined by the image height and the
parameters <swap_bytes>, <lsb_first>, <row_length>, <skip_rows>, <skip_pixels>,
<alignment>, <width>, <format>, and <type> given in the request. If <image_height>
is not positive then the number of rows (i.e., the image height) is <height>;
otherwise the number of rows is <image_height>.

<skip_images> allows a sub-volume of the 3-dimensional image to be selected.
If <skip_images> is positive, then the pointer is advanced by <skip_images>
times the number of elements in one 2-dimensional image. Then <depth>
2-dimensional images are read, each having a subimage extracted in the
manner described in Appendix A of the GLX Protocol Specification.

Dependencies on EXT_abgr

If EXT_abgr is supported, the <format> parameter of TexImage3DEXT
accepts ABGR_EXT. Otherwise it does not.

NVIDIA OpenGL Extension Specifications EXT_texture3D

 167

Dependencies on EXT_texture

EXT_texture is required. All of the <components> tokens defined by
EXT_texture are accepted by the <internalformat> parameter of
TexImage3DEXT, with the same semantics that are defined by EXT_texture.

The query and error extensions defined by EXT_texture are extended in
this document.

Errors

INVALID_ENUM is generated if <target> is not TEXTURE_3D_EXT or
PROXY_TEXTURE_3D_EXT.

INVALID_ENUM is generated if the <target> parameter to
GetTexParameteriv, GetTexParameterfv or GetTexImage is
PROXY_TEXTURE_3D_EXT.

INVALID_VALUE is generated if <level> is less than zero

INVALID_ENUM is generated if <internalformat> is not ALPHA, RGB, RGBA,
LUMINANCE, LUMINANCE_ALPHA, or one of the tokens defined by the
EXT_texture extension. (Values 1, 2, 3, and 4 are not accepted as
internal formats by TexImage3DEXT).

INVALID_VALUE is generated if <width>, <height>, or <depth> is less than
zero, or cannot be represented as 2**k + 2*border for some integer k.

INVALID_VALUE is generated if <border> is not 0 or 1.

INVALID_ENUM is generated if <format> is not COLOR_INDEX, RED, GREEN,
BLUE, ALPHA, RGB, RGBA, LUMINANCE, or LUMINANCE_ALPHA (or ABGR_EXT if
EXT_abgr is supported).

INVALID_ENUM is generated if <type> is not UNSIGNED_BYTE, BYTE,
UNSIGNED_SHORT, SHORT, UNSIGNED_INT, INT, or FLOAT.

INVALID_OPERATION is generated if TexImage3DEXT is called between
execution of Begin and the corresponding execution of End.

TEXTURE_TOO_LARGE_EXT is generated if the texture as specified cannot be
accommodated by the implementation. This error will not occur if none
of <width>, <height>, or <depth> is greater than MAX_3D_TEXTURE_SIZE_EXT.

EXT_texture3D NVIDIA OpenGL Extension Specifications

 168

New State

Get Value Get Command Type Initial Value Attribute
--------- ----------- ---- ------------- ---------
UNPACK_SKIP_IMAGES_EXT GetIntegerv Z+ 0 -
UNPACK_IMAGE_HEIGHT_EXT GetIntegerv Z+ 0 -
PACK_SKIP_IMAGES_EXT GetIntegerv Z+ 0 -
PACK_IMAGE_HEIGHT_EXT GetIntegerv Z+ 0 -
TEXTURE_3D_EXT IsEnabled B FALSE texture/enable
TEXTURE_WRAP_R_EXT GetTexParameteriv 1 x Z2 REPEAT texture
TEXTURE_DEPTH_EXT GetTexLevelParameteriv 1 x 2 x levels x Z+ 0 -

(old state with new type information)

TEXTURE GetTexImage 3 x 1 x levels x I null -
TEXTURE_RED_SIZE_EXT GetTexLevelParameteriv 3 x 2 x levels x Z+ 0 -
TEXTURE_GREEN_SIZE_EXT GetTexLevelParameteriv 3 x 2 x levels x Z+ 0 -
TEXTURE_BLUE_SIZE_EXT GetTexLevelParameteriv 3 x 2 x levels x Z+ 0 -
TEXTURE_ALPHA_SIZE_EXT GetTexLevelParameteriv 3 x 2 x levels x Z+ 0 -
TEXTURE_LUMINANCE_SIZE_EXT GetTexLevelParameteriv 3 x 2 x levels x Z+ 0 -
TEXTURE_INTENSITY_SIZE_EXT GetTexLevelParameteriv 3 x 2 x levels x Z+ 0 -
TEXTURE_WIDTH GetTexLevelParameteriv 3 x 2 x levels x Z+ 0 -
TEXTURE_HEIGHT GetTexLevelParameteriv 2 x 2 x levels x Z+ 0 -
TEXTURE_BORDER GetTexLevelParameteriv 3 x 2 x levels x Z+ 0 -
TEXTURE_COMPONENTS (1D and 2D) GetTexLevelParameteriv 2 x 2 x levels x Z42 1 -
TEXTURE_COMPONENTS (3D) GetTexLevelParameteriv 1 x 2 x levels x Z38 LUMINANCE -
TEXTURE_BORDER_COLOR GetTexParameteriv 3 x C 0, 0, 0, 0 texture
TEXTURE_MIN_FILTER GetTexParameteriv 3 x Z6 NEAREST_MIPMAP_LINEAR texture
TEXTURE_MAG_FILTER GetTexParameteriv 3 x Z2 LINEAR texture
TEXTURE_WRAP_S GetTexParameteriv 3 x Z2 REPEAT texture
TEXTURE_WRAP_T GetTexParameteriv 2 x Z2 REPEAT texture

New Implementation Dependent State

Get Value Get Command Type Minimum Value
--------- ----------- ---- -------------
MAX_3D_TEXTURE_SIZE_EXT GetIntegerv Z+ 16

NVIDIA OpenGL Extension Specifications EXT_texture_cube_map

 169

Name

EXT_texture_cube_map

Name Strings

GL_EXT_texture_cube_map

Forward Compatibility

This extension is superceded by the ARB_texture_cube_map extension
that is officially sanctioned by the OpenGL Architectural
Review Board. Enumerant values for EXT_texture_cube_map and
ARB_texture_cube_map are identical. The two extensions are
operationally identical; the only difference is the change of
identifier from EXT to ARB.

Because the enumerants are identical for the two extensions and
because there are no new entry points, an application that detects
either the "GL_EXT_texture_cube_map" or "GL_ARB_texture_cube_map"
extension name will operate correctly using either extension.

NVIDIA's Release 4 drivers and early versions of NVIDIA's Release 5
drivers advertised the EXT_texture_cube_map without also advertising
the ARB_texture_cube_map extension because the ARB version of the
extension was not then available. To ensure that your applications
operate correctly with these older drivers, NVIDIA recommends that you
query for either the EXT_texture_cube_map or ARB_texture_cube_map
extension to determine when texture cube map functionality is
available. Because the enumerants and functionality is unchanged,
programs written to use ARB_texture_cube_map need only recognize
EXT_texture_cube_map to operate correctly.

EXT_texture_edge_clamp NVIDIA OpenGL Extension Specifications

 170

Name

EXT_texture_edge_clamp

Name Strings

GL_EXT_texture_edge_clamp

Version

$Date: 1997/09/22 23:04:01 $ $Revision: 1.1 $

Dependencies

SGIS_texture_filter4 affects the definition of this extension

Overview

The base OpenGL provides clamping such that the texture coordinates are
limited to exactly the range [0,1]. When a texture coordinate is
clamped using this algorithm, the texture sampling filter straddles the
edge of the texture image, taking 1/2 its sample values from within the
texture image, and the other 1/2 from the texture border. It is
sometimes desirable to clamp a texture without requiring a border, and
without using the constant border color.

This extension defines a new texture clamping algorithm.
CLAMP_TO_EDGE_EXT clamps texture coordinates at all mipmap levels such
that the texture filter never samples a border texel. When used with a
NEAREST or a LINEAR filter, the color returned when clamping is derived
only from texels at the edge of the texture image. When used with
FILTER4 filters, the filter operations of CLAMP_TO_EDGE_EXT are defined
but don't result in a nice clamp-to-edge color.

CLAMP_TO_EDGE_EXT is supported by 1, 2, and 3-dimensional textures
only.

Issues

* Is the arithmetic for FILTER4 filters correct? Is this the right
thing to do?

New Procedures and Functions

None

New Tokens

Accepted by the <param> parameter of TexParameteri and TexParameterf,
and by the <params> parameter of TexParameteriv and TexParameterfv, when
their <pname> parameter is TEXTURE_WRAP_S, TEXTURE_WRAP_T, or
TEXTURE_WRAP_R:

CLAMP_TO_EDGE_EXT 0x812F

Additions to Chapter 2 of the 1.0 Specification (OpenGL Operation)

None

NVIDIA OpenGL Extension Specifications EXT_texture_edge_clamp

 171

Additions to Chapter 3 of the 1.0 Specification (Rasterization)

GL Specification Table 3.7 is updated as follows:

Name Type Legal Values
---- ---- ------------
TEXTURE_WRAP_S integer CLAMP, REPEAT,

CLAMP_TO_EDGE_EXT
TEXTURE_WRAP_T integer CLAMP, REPEAT,

CLAMP_TO_EDGE_EXT
TEXTURE_WRAP_R integer CLAMP, REPEAT,

CLAMP_TO_EDGE_EXT
TEXTURE_MIN_FILTER integer NEAREST, LINEAR,

NEAREST_MIPMAP_NEAREST,
NEAREST_MIPMAP_LINEAR,
LINEAR_MIPMAP_NEAREST,
LINEAR_MIPMAP_LINEAR,
FILTER4_SGIS,
LINEAR_CLIPMAP_LINEAR_SGIX

TEXTURE_MAG_FILTER integer NEAREST, LINEAR,
FILTER4_SGIS,
LINEAR_DETAIL_SGIS,
LINEAR_DETAIL_ALPHA_SGIS,
LINEAR_DETAIL_COLOR_SGIS,
LINEAR_SHARPEN_SGIS,
LINEAR_SHARPEN_ALPHA_SGIS,
LINEAR_SHARPEN_COLOR_SGIS,
LINEAR_LEQUAL_R_SGIS,
LINEAR_GEQUAL_R_SGIS

TEXTURE_BORDER_COLOR 4 floats any 4 values in [0,1]
DETAIL_TEXTURE_LEVEL_SGIS integer any non-negative integer
DETAIL_TEXTURE_MODE_SGIS integer ADD, MODULATE
TEXTURE_MIN_LOD float any value
TEXTURE_MAX_LOD float any value
TEXTURE_BASE_LEVEL integer any non-negative integer
TEXTURE_MAX_LEVEL integer any non-negative integer
GENERATE_MIPMAP_SGIS boolean TRUE or FALSE
TEXTURE_CLIPMAP_OFFSET_SGIX 2 floats any 2 values

Table 3.7: Texture parameters and their values.

CLAMP_TO_EDGE_EXT texture clamping is specified by calling
TexParameteri with <target> set to TEXTURE_1D, TEXTURE_2D, or
TEXTURE_3D, <pname> set to TEXTURE_WRAP_S, TEXTURE_WRAP_T,
or TEXTURE_WRAP_R, and <param> set to CLAMP_TO_EDGE_EXT.

Let [min,max] be the range of a clamped texture coordinate, and let N
be the size of the 1D, 2D, or 3D texture image in the direction of
clamping. Then in all cases

max = 1 - min

because the clamping is always symmetric about the [0,1] mapped range of
a texture coordinate. When used with NEAREST or LINEAR filters,
CLAMP_TO_EDGE_EXT defines a minimum clamping value of

min = 1 / 2*N

EXT_texture_edge_clamp NVIDIA OpenGL Extension Specifications

 172

When used with FILTER4 filters, CLAMP_TO_EDGE_EXT defines a minimum
clamping value of

min = 3 / 2*N, N > 2

min = 1/2 N <= 2

Additions to Chapter 4 of the 1.0 Specification (Per-Fragment Operations
and the Framebuffer)

None

Additions to Chapter 5 of the 1.0 Specification (Special Functions)

None

Additions to Chapter 6 of the 1.0 Specification (State and State Requests)

None

Additions to the GLX Specification

None

Dependencies on SGIS_texture_filter4

If SGIS_texture_filter4 is not implemented, then discussions about the
interaction of filter4 texture filters and the clamping function
described in this file are invalid, and should be ignored.

Errors

None

New State

Only the type information changes for these parameters:

Get Value Get Command Type Initial Value Attrib
--------- ----------- ---- ------------- ------
TEXTURE_WRAP_S GetTexParameteriv n x Z3 REPEAT texture
TEXTURE_WRAP_T GetTexParameteriv n x Z3 REPEAT texture
TEXTURE_WRAP_R GetTexParameteriv n x Z3 REPEAT texture

New Implementation Dependent State

None

NVIDIA OpenGL Extension Specifications EXT_texture_env_add

 173

Name

EXT_texture_env_add

Name Strings

GL_EXT_texture_env_add

Status

Shipping (version 1.6)

Version

$Date: 1999/03/22 17:28:00 $ $Revision: 1.1 $

Number

185

Dependencies

None

Overview

New texture environment function ADD is supported with the following
equation:

Cv = Cf + Ct

New function may be specified by calling TexEnv with ADD token.

New Procedures and Functions

None

New Tokens

Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv, and
TexEnvfi when the <pname> parameter value is GL_TEXTURE_ENV_MODE

ADD

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

None

EXT_texture_env_add NVIDIA OpenGL Extension Specifications

 174

Additions to Chapter 3 of the GL Specification (Rasterization)

Texture Environment

Base Texture Format REPLACE MODULATE BLEND DECAL ADD
------------------- ------- -------- ----- ----- ---

ALPHA Rv = Rf
... Gv = Gf
... Bv = Bf
... Av = AfAt

LUMINANCE Rv = Rf+Lt
... Gv = Gf+Lt
... Bv = Bf+Lt
... Av = Af

LUMINANCE_ALPHA Rv = Rf+Lt
... Gv = Gf+Lt
... Bv = Bf+Lt
... Av = AfAt

INTENSITY Rv = Rf+It
... Gv = Gf+It
... Bv = Bf+It
... Av = Af+It

RGB Rv = Rf+Rt
... Gv = Gf+Gt
... Bv = Bf+Bt
... Av = Af

RGBA Rv = Rf+Rt
... Gv = Gf+Gt
... Bv = Bf+Bt
... Av = AfAt

Table 3.11: Texture functions.

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

None

Additions to Chapter 5 of the GL Specification (Special Functions)

None

Additions to Chapter 6 of the GL Specification (State and State Requests)

None

NVIDIA OpenGL Extension Specifications EXT_texture_env_add

 175

Additions to the GLX / WGL / AGL Specifications

None

GLX Protocol

None

Errors

None

New State

None

New Implementation Dependent State

None

EXT_texture_env_combine NVIDIA OpenGL Extension Specifications

 176

Name

EXT_texture_env_combine

Name Strings

GL_EXT_texture_env_combine

Version

$Date: 1999/04/02 13:54:17 $ $Revision: 1.7 $

Number

158

Dependencies

SGI_texture_color_table affects the definition of this extension
SGIX_texture_scale_bias affects the definition of this extension

Overview

New texture environment function COMBINE_EXT allows programmable
texture combiner operations, including:

REPLACE Arg0
MODULATE Arg0 * Arg1
ADD Arg0 + Arg1
ADD_SIGNED_EXT Arg0 + Arg1 - 0.5
INTERPOLATE_EXT Arg0 * (Arg2) + Arg1 * (1-Arg2)

where Arg0, Arg1 and Arg2 are derived from

PRIMARY_COLOR_EXT primary color of incoming fragment
TEXTURE texture color of corresponding texture unit
CONSTANT_EXT texture environment constant color
PREVIOUS_EXT result of previous texture environment; on

texture unit 0, this maps to PRIMARY_COLOR_EXT

and Arg2 is restricted to the alpha component of the corresponding source.

In addition, the result may be scaled by 1.0, 2.0 or 4.0.

Issues

Should the explicit bias be removed in favor of an implcit bias as
part of a ADD_SIGNED_EXT function?

- Yes. This pre-scale bias is a special case and will be treated
as such.

Should the primary color of the incoming fragment be available to
all texture environments? Currently it is only available to the
texture environment of texture unit 0.

- Yes, PRIMARY_COLOR_EXT has been added as an input source.

NVIDIA OpenGL Extension Specifications EXT_texture_env_combine

 177

Should textures from other texture units be allowed as sources?

- No, not in the base spec. Too many vendors have expressed
concerns about the scalability of such functionality. This can
be added as a subsequent extension.

All of the 1.2 modes except BLEND can be expressed in terms of
this extension. Should texture color be allowed as a source for
Arg2, so all of the 1.2 modes can be expressed? If so, should all
color sources be allowed, to maintain orthogonality?

- No, not in the base spec. This can be added as a subsequent
extension.

New Procedures and Functions

None

New Tokens

Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
and TexEnviv when the <pname> parameter value is TEXTURE_ENV_MODE

COMBINE_EXT 0x8570

Accepted by the <pname> parameter of TexEnvf, TexEnvi, TexEnvfv,
and TexEnviv when the <target> parameter value is TEXTURE_ENV

COMBINE_RGB_EXT 0x8571
COMBINE_ALPHA_EXT 0x8572
SOURCE0_RGB_EXT 0x8580
SOURCE1_RGB_EXT 0x8581
SOURCE2_RGB_EXT 0x8582
SOURCE0_ALPHA_EXT 0x8588
SOURCE1_ALPHA_EXT 0x8589
SOURCE2_ALPHA_EXT 0x858A
OPERAND0_RGB_EXT 0x8590
OPERAND1_RGB_EXT 0x8591
OPERAND2_RGB_EXT 0x8592
OPERAND0_ALPHA_EXT 0x8598
OPERAND1_ALPHA_EXT 0x8599
OPERAND2_ALPHA_EXT 0x859A
RGB_SCALE_EXT 0x8573
ALPHA_SCALE

Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
and TexEnviv when the <pname> parameter value is COMBINE_RGB_EXT
or COMBINE_ALPHA_EXT

REPLACE
MODULATE
ADD
ADD_SIGNED_EXT 0x8574
INTERPOLATE_EXT 0x8575

EXT_texture_env_combine NVIDIA OpenGL Extension Specifications

 178

Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
and TexEnviv when the <pname> parameter value is SOURCE0_RGB_EXT,
SOURCE1_RGB_EXT, SOURCE2_RGB_EXT, SOURCE0_ALPHA_EXT,
SOURCE1_ALPHA_EXT, or SOURCE2_ALPHA_EXT

TEXTURE
CONSTANT_EXT 0x8576
PRIMARY_COLOR_EXT 0x8577
PREVIOUS_EXT 0x8578

Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
and TexEnviv when the <pname> parameter value is
OPERAND0_RGB_EXT or OPERAND1_RGB_EXT

SRC_COLOR
ONE_MINUS_SRC_COLOR
SRC_ALPHA
ONE_MINUS_SRC_ALPHA

Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
and TexEnviv when the <pname> parameter value is
OPERAND0_ALPHA_EXT or OPERAND1_ALPHA_EXT

SRC_ALPHA
ONE_MINUS_SRC_ALPHA

Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
and TexEnviv when the <pname> parameter value is
OPERAND2_RGB_EXT or OPERAND2_ALPHA_EXT

SRC_ALPHA

Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
and TexEnviv when the <pname> parameter value is RGB_SCALE_EXT or
ALPHA_SCALE

1.0
2.0
4.0

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

None

Additions to Chapter 3 of the GL Specification (Rasterization)

Added to subsection 3.8.9, before the paragraph describing the
state requirements:

If the value of TEXTURE_ENV_MODE is COMBINE_EXT, the form of the
texture function depends on the values of COMBINE_RGB_EXT and
COMBINE_ALPHA_EXT, according to table 3.20. The RGB and ALPHA
results of the texture function are then multiplied by the values
of RGB_SCALE_EXT and ALPHA_SCALE, respectively. The results are
clamped to [0,1].

NVIDIA OpenGL Extension Specifications EXT_texture_env_combine

 179

COMBINE_RGB_EXT or
COMBINE_ALPHA_EXT Texture Function
------------------ ----------------
REPLACE Arg0
MODULATE Arg0 * Arg1
ADD Arg0 + Arg1
ADD_SIGNED_EXT Arg0 + Arg1 - 0.5
INTERPOLATE_EXT Arg0 * (Arg2) + Arg1 * (1-Arg2)

Table 3.20: COMBINE_EXT texture functions

The arguments Arg0, Arg1 and Arg2 are determined by the values of
SOURCE<n>_RGB_EXT, SOURCE<n>_ALPHA_EXT, OPERAND<n>_RGB_EXT and
OPERAND<n>_ALPHA_EXT. In the following two tables, Ct and At are
the filtered texture RGB and alpha values; Cc and Ac are the
texture environment RGB and alpha values; Cf and Af are the RGB
and alpha of the primary color of the incoming fragment; and Cp
and Ap are the RGB and alpha values resulting from the previous
texture environment. On texture environment 0, Cp and Ap are
identical to Cf and Af, respectively. The relationship is
described in tables 3.21 and 3.22.

SOURCE<n>_RGB_EXT OPERAND<n>_RGB_EXT Argument
----------------- -------------- --------
TEXTURE SRC_COLOR Ct

ONE_MINUS_SRC_COLOR (1-Ct)
SRC_ALPHA At
ONE_MINUS_SRC_ALPHA (1-At)

CONSTANT_EXT SRC_COLOR Cc
ONE_MINUS_SRC_COLOR (1-Cc)
SRC_ALPHA Ac
ONE_MINUS_SRC_ALPHA (1-Ac)

PRIMARY_COLOR_EXT SRC_COLOR Cf
ONE_MINUS_SRC_COLOR (1-Cf)
SRC_ALPHA Af
ONE_MINUS_SRC_ALPHA (1-Af)

PREVIOUS_EXT SRC_COLOR Cp
ONE_MINUS_SRC_COLOR (1-Cp)
SRC_ALPHA Ap
ONE_MINUS_SRC_ALPHA (1-Ap)

Table 3.21: Arguments for COMBINE_RGB_EXT functions

SOURCE<n>_ALPHA_EXT OPERAND<n>_ALPHA_EXT Argument
----------------- -------------- --------
TEXTURE SRC_ALPHA At

ONE_MINUS_SRC_ALPHA (1-At)
CONSTANT_EXT SRC_ALPHA Ac

ONE_MINUS_SRC_ALPHA (1-Ac)
PRIMARY_COLOR_EXT SRC_ALPHA Af

ONE_MINUS_SRC_ALPHA (1-Af)
PREVIOUS_EXT SRC_ALPHA Ap

ONE_MINUS_SRC_ALPHA (1-Ap)

Table 3.22: Arguments for COMBINE_ALPHA_EXT functions

EXT_texture_env_combine NVIDIA OpenGL Extension Specifications

 180

The mapping of texture components to source components is
summarized in Table 3.23. In the following table, At, Lt, It, Rt,
Gt and Bt are the filtered texel values.

Base Internal Format RGB Values Alpha Value
-------------------- ---------- -----------
ALPHA 0, 0, 0 At
LUMINANCE Lt, Lt, Lt 1
LUMINANCE_ALPHA Lt, Lt, Lt At
INTENSITY It, It, It It
RGB Rt, Gt, Bt 1
RGBA Rt, Gt, Bt At

Table 3.23: Correspondence of texture components to source
components for COMBINE_RGB_EXT and COMBINE_ALPHA_EXT arguments

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

None

Additions to Chapter 5 of the GL Specification (Special Functions)

None

Additions to Chapter 6 of the GL Specification (State and State Requests)

None

Additions to the GLX Specification

None

GLX Protocol

None

Errors

INVALID_ENUM is generated if <params> value for COMBINE_RGB_EXT or
COMBINE_ALPHA_EXT is not one of REPLACE, MODULATE, ADD,
ADD_SIGNED_EXT, or INTERPOLATE_EXT.

INVALID_ENUM is generated if <params> value for SOURCE0_RGB_EXT,
SOURCE1_RGB_EXT, SOURCE2_RGB_EXT, SOURCE0_ALPHA_EXT,
SOURCE1_ALPHA_EXT or SOURCE2_ALPHA_EXT is not one of TEXTURE,
CONSTANT_EXT, PRIMARY_COLOR_EXT or PREVIOUS_EXT.

INVALID_ENUM is generated if <params> value for OPERAND0_RGB_EXT
or OPERAND1_RGB_EXT is not one of SRC_COLOR, ONE_MINUS_SRC_COLOR,
SRC_ALPHA or ONE_MINUS_SRC_ALPHA.

INVALID_ENUM is generated if <params> value for OPERAND0_ALPHA_EXT
or OPERAND1_ALPHA_EXT is not one of SRC_ALPHA or
ONE_MINUS_SRC_ALPHA.

NVIDIA OpenGL Extension Specifications EXT_texture_env_combine

 181

INVALID_ENUM is generated if <params> value for OPERAND2_RGB_EXT
or OPERAND2_ALPHA_EXT is not SRC_ALPHA.

INVALID_VALUE is generated if <params> value for RGB_SCALE_EXT or
ALPHA_SCALE is not one of 1.0, 2.0, or 4.0.

Dependencies on SGI_texture_color_table

If SGI_texture_color_table is implemented, the expanded Rt, Gt,
Bt, and At values are used directly instead of the expansion
described by Table 3.23.

Dependencies on SGIX_texture_scale_bias

If SGIX_texture_scale_bias is implemented, the expanded Rt, Gt,
Bt, and At values are used directly instead of the expansion
described by Table 3.23.

New State

Get Value Get Command Type Initial Value Attribute
--------- ----------- ---- ------------- ---------
COMBINE_RGB_EXT GetTexEnviv n x Z4 MODULATE texture
COMBINE_ALPHA_EXT GetTexEnviv n x Z4 MODULATE texture
SOURCE0_RGB_EXT GetTexEnviv n x Z3 TEXTURE texture
SOURCE1_RGB_EXT GetTexEnviv n x Z3 PREVIOUS_EXT texture
SOURCE2_RGB_EXT GetTexEnviv n x Z3 CONSTANT_EXT texture
SOURCE0_ALPHA_EXT GetTexEnviv n x Z3 TEXTURE texture
SOURCE1_ALPHA_EXT GetTexEnviv n x Z3 PREVIOUS_EXT texture
SOURCE2_ALPHA_EXT GetTexEnviv n x Z3 CONSTANT_EXT texture
OPERAND0_RGB_EXT GetTexEnviv n x Z6 SRC_COLOR texture
OPERAND1_RGB_EXT GetTexEnviv n x Z6 SRC_COLOR texture
OPERAND2_RGB_EXT GetTexEnviv n x Z1 SRC_ALPHA texture
OPERAND0_ALPHA_EXT GetTexEnviv n x Z4 SRC_ALPHA texture
OPERAND1_ALPHA_EXT GetTexEnviv n x Z4 SRC_ALPHA texture
OPERAND2_ALPHA_EXT GetTexEnviv n x Z1 SRC_ALPHA texture
RGB_SCALE_EXT GetTexEnvfv n x R3 1.0 texture
ALPHA_SCALE GetTexEnvfv n x R3 1.0 texture

New Implementation Dependent State

None

NVIDIA Implementation Details

Because of a hardware limitation, TNT, TNT2, GeForce, and Quadro
treat "scale by 4.0" with the COMBINE_RGB_EXT or COMBINE_ALPHA_EXT
mode of ADD_SIGNED_EXT as "scale by 2.0".

EXT_texture_env_dot3 NVIDIA OpenGL Extension Specifications

 182

Name

EXT_texture_env_dot3

Name Strings

EXT_texture_env_dot3

Notice

Copyright ATI Technologies, 2000.

IP Status

None

Version

$Date: 2000/09/28 13:54:17 $ $Revision: 1.2 $

Number

None.

Dependencies

EXT_texture_env_combine is required and is modified by this extension
ARB_multitexture affects the definition of this extension

Overview

Adds new operation to the texture combiner operations.

DOT3_RGB_EXT Arg0 <dotprod> Arg1
DOT3_RGBA_EXT Arg0 <dotprod> Arg1

where Arg0, Arg1 are derived from

PRIMARY_COLOR_EXT primary color of incoming fragment
TEXTURE texture color of corresponding texture unit
CONSTANT_EXT texture environment constant color
PREVIOUS_EXT result of previous texture environment; on

texture unit 0, this maps to PRIMARY_COLOR_EXT

This operaion can only be performed if SOURCE0_RGB_EXT,
SOURCE1_RGB_EXT are defined.

Issues

None

New Procedures and Functions

None

NVIDIA OpenGL Extension Specifications EXT_texture_env_dot3

 183

New Tokens

Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
and TexEnviv when the <pname> parameter value is COMBINE_RGB_EXT

DOT3_RGB_EXT 0x8740
DOT3_RGBA_EXT 0x8741

Additions to Chapter 2 of the OpenGL 1.2 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the OpenGL 1.2 Specification (Rasterization)

Added to subsection 3.8.9, before the paragraph describing the
state requirements:

If the value of TEXTURE_ENV_MODE is COMBINE_EXT, the form of the
texture function depends on the values of COMBINE_RGB_EXT and
COMBINE_ALPHA_EXT, according to table 3.20. The RGB and ALPHA
results of the texture function are not multiplied by the values
of RGB_SCALE_EXT and ALPHA_SCALE, respectively. The results are
clamped to [0,1].

COMBINE_RGB_EXT Texture Function
------------------ ----------------
DOT3_RGB_EXT 4*((Arg0_r - 0.5)*(Arg1_r - 0.5) +

(Arg0_g - 0.5)*(Arg1_g - 0.5) +
(Arg0_b - 0.5)*(Arg1_b - 0.5))

This value is placed into all three
r,g,b components of the output.

DOT3_RGBA_EXT 4*((Arg0_r - 0.5)*(Arg1_r - 0.5) +
(Arg0_g - 0.5)*(Arg1_g - 0.5) +
(Arg0_b - 0.5)*(Arg1_b - 0.5))

This value is placed into all four
r,g,b,a components of the output.

Table 3.20: COMBINE_EXT texture functions

Additions to Chapter 4 of the OpenGL 1.2 Specification (Per-Fragment Operations
and the Framebuffer)

None

Additions to Chapter 5 of the OpenGL 1.2 Specification (Special Functions)

None

Additions to Chapter 6 of the OpenGL 1.2 Specification (State and State
Requests)

None

EXT_texture_env_dot3 NVIDIA OpenGL Extension Specifications

 184

Additions to the AGL/GLX/WGL Specifications

None

GLX Protocol

None

Errors

Modifications to EXT_texture_env_combine

Dependencies on ARB_multitexture

New State

None

New Implementation Dependent State

None

Revision History

None

NVIDIA OpenGL Extension Specifications EXT_texture_filter_anisotropic

 185

Name

EXT_texture_filter_anisotropic

Name Strings

GL_EXT_texture_filter_anisotropic

Notice

Copyright NVIDIA Corporation, 1999.

Version

August 24, 1999

Number

187

Dependencies

Written based on the wording of the OpenGL 1.2 specification.

Overview

Texture mapping using OpenGL's existing mipmap texture filtering
modes assumes that the projection of the pixel filter footprint into
texture space is a square (ie, isotropic). In practice however, the
footprint may be long and narrow (ie, anisotropic). Consequently,
mipmap filtering severely blurs images on surfaces angled obliquely
away from the viewer.

Several approaches exist for improving texture sampling by accounting
for the anisotropic nature of the pixel filter footprint into texture
space. This extension provides a general mechanism for supporting
anisotropic texturing filtering schemes without specifying a
particular formulation of anisotropic filtering.

The extension permits the OpenGL application to specify on
a per-texture object basis the maximum degree of anisotropy to
account for in texture filtering.

Increasing a texture object's maximum degree of anisotropy may
improve texture filtering but may also significantly reduce the
implementation's texture filtering rate. Implementations are free
to clamp the specified degree of anisotropy to the implementation's
maximum supported degree of anisotropy.

A texture's maximum degree of anisotropy is specified independent
from the texture's minification and magnification filter (as
opposed to being supported as an entirely new filtering mode).
Implementations are free to use the specified minification and
magnification filter to select a particular anisotropic texture
filtering scheme. For example, a NEAREST filter with a maximum
degree of anisotropy of two could be treated as a 2-tap filter that

EXT_texture_filter_anisotropic NVIDIA OpenGL Extension Specifications

 186

accounts for the direction of anisotropy. Implementations are also
permitted to ignore the minification or magnification filter and
implement the highest quality of anisotropic filtering possible.

Applications seeking the highest quality anisotropic filtering
available are advised to request a LINEAR_MIPMAP_LINEAR minification
filter, a LINEAR magnification filter, and a large maximum degree
of anisotropy.

Issues

Should there be a particular anisotropic texture filtering minification
and magnification mode?

RESOLUTION: NO. The maximum degree of anisotropy should control
when anisotropic texturing is used. Making this orthogonal to
the minification and magnification filtering modes allows these
settings to influence the anisotropic scheme used. Yes, such
an anisotropic filtering scheme exists in hardware.

What should the minimum value for MAX_TEXTURE_MAX_ANISTROPY_EXT be?

RESOLUTION: 2.0. To support this extension, at least 2 to 1
anisotropy should be supported.

Should an implementation-defined limit for the maximum maximum degree of
anisotropy be "get-able"?

RESOLUTION: YES. But you should not assume that a high maximum
maximum degree of anisotropy implies anything about texture
filtering performance or quality.

Should anything particular be said about anisotropic 3D texture filtering?

Not sure. Does the implementation example shown in the spec for
2D anisotropic texture filtering readily extend to 3D anisotropic
texture filtering?

New Procedures and Functions

None

New Tokens

Accepted by the <pname> parameters of GetTexParameterfv,
GetTexParameteriv, TexParameterf, TexParameterfv, TexParameteri,
and TexParameteriv:

TEXTURE_MAX_ANISOTROPY_EXT 0x84FE

Accepted by the <pname> parameters of GetBooleanv, GetDoublev,
GetFloatv, and GetIntegerv:

MAX_TEXTURE_MAX_ANISOTROPY_EXT 0x84FF

NVIDIA OpenGL Extension Specifications EXT_texture_filter_anisotropic

 187

Additions to Chapter 2 of the 1.2 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the 1.2 Specification (Rasterization)

-- Sections 3.8.3 "Texture Parameters"

Add the following entry to the end of Table 3.17:

Name Type Legal Values
-------------------------- ------ --------------------------
TEXTURE_MAX_ANISOTROPY_EXT float greater or equal to 1.0

-- Sections 3.8.5 "Texture Minification" and 3.8.6 "Texture Magnification"

After the first paragraph in Section 3.8.5:

"When the texture's value of TEXTURE_MAX_ANISOTROPY_EXT is equal to 1.0,
the GL uses an isotropic texture filtering approach as described in
this section and Section 3.8.6. However, when the texture's value
of TEXTURE_MAX_ANISOTROPY_EXT is greater than 1.0, the GL implementation
should use a texture filtering scheme that accounts for a degree
of anisotropy up to the smaller of the value of TEXTURE_MAX_ANISTROPY_EXT
or the implementation-defined value of MAX_TEXTURE_MAX_ANISTROPY_EXT.

The particular scheme for anisotropic texture filtering is
implementation dependent. Additionally, implementations are free
to consider the current texture minification and magnification modes
to control the specifics of the anisotropic filtering scheme used.

The anisotropic texture filtering scheme may only access mipmap
levels if the minification filter is one that requires mipmaps.
Additionally, when a minification filter is specified, the
anisotropic texture filtering scheme may only access texture mipmap
levels between the texture's values for TEXTURE_BASE_LEVEL and
TEXTURE_MAX_LEVEL, inclusive. Implementations are also recommended
to respect the values of TEXTURE_MAX_LOD and TEXTURE_MIN_LOD to
whatever extent the particular anisotropic texture filtering
scheme permits this."

The following describes one particular approach to implementing
anisotropic texture filtering for the 2D texturing case:

EXT_texture_filter_anisotropic NVIDIA OpenGL Extension Specifications

 188

"Anisotropic texture filtering substantially changes Section 3.8.5.
Previously a single scale factor P was determined based on the
pixel's projection into texture space. Now two scale factors,
Px and Py, are computed.

Px = sqrt(dudx^2 + dvdx^2)
Py = sqrt(dudy^2 + dvdy^2)

Pmax = max(Px,Py)
Pmin = min(Px,Py)

N = min(ceil(Pmax/Pmin),maxAniso);
Lamda' = log2(Pmax/N)

where maxAniso is the smaller of the texture's value of
TEXTURE_MAX_ANISOTROPY_EXT or the implementation-defined value of
MAX_TEXTURE_MAX_ANISOTROPY_EXT.

It is acceptable for implementation to round 'N' up to the nearest
supported sampling rate. For example an implementation may only
support power-of-two sampling rates.

It is also acceptable for an implementation to approximate the ideal
functions Px and Py with functions Fx and Fy subject to the following
conditions:

1. Fx is continuous and monotonically increasing in |du/dx| and |dv/dx|.
Fy is continuous and monotonically increasing in |du/dy| and |dv/dy|.

2. max(|du/dx|,|dv/dx|} <= Fx <= |du/dx| + |dv/dx|.
max(|du/dy|,|dv/dy|} <= Fy <= |du/dy| + |dv/dy|.

Instead of a single sample, Tau, at (u,v,Lamda), 'N' locations in the
mipmap at LOD Lamda, are sampled within the texture footprint of the pixel.
This sum TauAniso is defined using the single sample Tau. When the
texture's value of TEXTURE_MAX_ANISOTROPHY_EXT is greater than 1.0, use
TauAniso instead of Tau to determine the fragment's texture value.

i=N

TauAniso = 1/N \ Tau(u(x - 1/2 + i/(N+1), y), v(x - 1/2 + i/(N+1), y)), Px > Py
/

i=1

i=N

TauAniso = 1/N \ Tau(u(x, y - 1/2 + i/(N+1)), v(x, y - 1/2 + i/(N+1))), Py >= Px
/

i=1

NVIDIA OpenGL Extension Specifications EXT_texture_filter_anisotropic

 189

It is acceptable to approximate the u and v functions with equally spaced
samples in texture space at LOD Lamda:

i=N

TauAniso = 1/N \ Tau(u(x,y)+dudx(i/(N+1)-1/2), v(x,y)+dvdx(i/(N+1)-1/2)), Px > Py
/

i=1

i=N

TauAniso = 1/N \ Tau(u(x,y)+dudy(i/(N+1)-1/2), v(x,y)+dvdy(i/(N+1)-1/2)), Py >= Px
/

i=1

"

Additions to Chapter 4 of the 1.2 Specification (Per-Fragment Operations
and the Frame Buffer)

None

Additions to Chapter 5 of the 1.2 Specification (Special Functions)

None

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)

None

Additions to the GLX Specification

None

Errors

INVALID_VALUE is generated when TexParameter is called with <pname>
of TEXTURE_MAX_ANISOTROPY_EXT and a <param> value or value of what
<params> points to less than 1.0.

New State

(table 6.13, p203) add the entry:

Get Value Type Get Command Initial Value Description Sec Attribute
-------------------------- ---- ----------------- -------------- --------------- ----- ---------
TEXTURE_MAX_ANISOTROPY_EXT R GetTexParameterfv 1.0 Maximum degree 3.8.5 texture

of anisotropy

EXT_texture_filter_anisotropic NVIDIA OpenGL Extension Specifications

 190

New Implementation State

(table 6.25, p215) add the entry:

Get Value Type Get Command Minimum Value Description Sec Attribute
------------------------------ ---- ------------ -------------- --------------- ----- ---------
MAX_TEXTURE_MAX_ANISOTROPY_EXT R GetFloatv 2.0 Limit of 3.8.5 -

maximum degree
of anisotropy

NVIDIA OpenGL Extension Specifications EXT_texture_lod_bias

 191

Name

EXT_texture_lod_bias

Name Strings

GL_EXT_texture_lod_bias

Notice

Copyright NVIDIA Corporation, 1999, 2000.

Version

NVIDIA Date: May 23, 2000
$Id: //sw/main/docs/OpenGL/specs/GL_EXT_texture_lod_bias.txt#11 $

Number

186

Dependencies

Written based on the wording of the OpenGL 1.2 specification.

Affects ARB_multitexture.

Overview

OpenGL computes a texture level-of-detail parameter, called lambda
in the GL specification, that determines which mipmap levels and
their relative mipmap weights for use in mipmapped texture filtering.

This extension provides a means to bias the lambda computation
by a constant (signed) value. This bias can provide a way to blur
or pseudo-sharpen OpenGL's standard texture filtering.

This blurring or pseudo-sharpening may be useful for special effects
(such as depth-of-field effects) or image processing techniques
(where the mipmap levels act as pre-downsampled image versions).
On some implementations, increasing the texture lod bias may improve
texture filtering performance (at the cost of texture bluriness).

The extension mimics functionality found in Direct3D.

Issues

Should the texture LOD bias be settable per-texture object or
per-texture stage?

RESOLUTION: Per-texture stage. This matches the Direct3D
semantics for texture lod bias. Note that this differs from
the semantics of SGI's SGIX_texture_lod_bias extension that
has the biases per-texture object.

This also allows the same texture object to be used by two different
texture units for different blurring. This is useful for

EXT_texture_lod_bias NVIDIA OpenGL Extension Specifications

 192

extrapolating detail between various levels of detail in a
mipmapped texture.

For example, you can extrapolate texture detail with
ARB_multitexture and EXT_texture_env_combine by computing

(B0 - B2) * 2 + B2

where B0 is a non-biased texture (normal sharpness) and B2 is
the same texture but bias by 2 levels-of-detail (fairly blurry).
This has the effect of increasing the high-frequency information
in the texture. There are immediate Earth Sciences and medical
imaging applications for this technique.

Per-texture stage control of the LOD bias is also useful for
allowing an application to control overall texture bluriness.
This can be used in games to simulate disorientation (note that
only textures will blur, not edges). It can also be used to
globally control texturing performance. An application may be
able to sustain a constant frame rate by avoiding texture fetch
stalls by using slightly blurrier textures.

How does EXT_texture_lod_bias differ from SGIX_texture_lod bias?

EXT_texture_lod_bias adds a bias to lambda. The
SGIX_texture_lod_bias extension changes the computation of rho (the
log2 of which is lambda). The SGIX extension provides separate
biases in each texture dimension. The EXT extension does not
provide an "directionality" in the LOD control.

Does the texture lod bias occur before or after the TEXTURE_MAX_LOD
and TEXTURE_MIN_LOD clamping?

RESOLUTION: BEFORE. This allows the texture lod bias to still
be clamped within the max/min lod range.

Does anything special have to be said to keep the biased lambda value
from being less than zero or greater than the maximum number of
mipmap levels?

RESOLUTION: NO. The existing clamping in the specification
handles these situations.

The texture lod bias is specified to be a float. In practice, what
sort of range is assumed for the texture lod bias?

RESOLUTION: The MAX_TEXTURE_LOD_BIAS_EXT implementation constant
advertises the maximum absolute value of the supported texture
lod bias. The value is recommended to be at least the maximum
mipmap level supported by the implementation.

The texture lod bias is specified to be a float. In practice, what
sort of precision is assumed for the texture lod bias?

RESOLUTION; This is implementation dependent. Presumably,
hardware would implement the texture lod bias as a fractional bias

NVIDIA OpenGL Extension Specifications EXT_texture_lod_bias

 193

but the exact fractional precision supported is implementation
dependent. At least 4 fractional bits is recommended.

New Procedures and Functions

None

New Tokens

Accepted by the <target> parameters of GetTexEnvfv, GetTexEnviv,
TexEnvi, TexEnvf, Texenviv, and TexEnvfv:

TEXTURE_FILTER_CONTROL_EXT 0x8500

When the <target> parameter of GetTexEnvfv, GetTexEnviv, TexEnvi,
TexEnvf, TexEnviv, and TexEnvfv is TEXTURE_FILTER_CONTROL_EXT, then
the value of <pname> may be:

TEXTURE_LOD_BIAS_EXT 0x8501

Accepted by the <pname> parameters of GetBooleanv, GetIntegerv,
GetFloatv, and GetDoublev:

MAX_TEXTURE_LOD_BIAS_EXT 0x84FD

Additions to Chapter 2 of the 1.2 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the 1.2 Specification (Rasterization)

-- Section 3.8.5 "Texture Minification"

Change the first formula under "Scale Factor and Level of Detail" to read:

"The choice is governed by a scale factor p(x,y), the level of detail
parameter lambda(x,y), defined as

lambda'(x,y) = log2[p(x,y)] + lodBias

where lodBias is the texture unit's (signed) texture lod bias parameter
(as described in Section 3.8.9) clamped between the positive and negative
values of the implementation defined constant MAX_TEXTURE_LOD_BIAS_EXT."

-- Section 3.8.9 "Texture Environments and Texture Functions"

Change the first paragraph to read:

"The command

void TexEnv{if}(enum target, enum pname, T param);
void TexEnv{if}v(enum target, enum pname, T params);

sets parameters of the texture environment that specifies how texture
values are interepreted when texturing a fragment or sets per-texture
unit texture filtering parameters. The possible target parameters
are TEXTURE_ENV or TEXTURE_FILTER_CONTROL_EXT. ... When target is

EXT_texture_lod_bias NVIDIA OpenGL Extension Specifications

 194

TEXTURE_ENV, the possible environment parameters are TEXTURE_ENV_MODE
and TEXTURE_ENV_COLOR. ... When target is TEXTURE_FILTER_CONTROL_EXT,
the only possible texture filter parameter is TEXTURE_LOD_BIAS_EXT.
TEXTURE_LOD_BIAS_EXT is set to a signed floating point value that
is used to bias the level of detail parameter, lambda, as described
in Section 3.8.5."

Add a final paragraph at the end of the section:

"The state required for the per-texture unit filtering parameters
consists of one floating-point value."

Additions to Chapter 4 of the 1.2 Specification (Per-Fragment Operations
and the Frame Buffer)

None

Additions to Chapter 5 of the 1.2 Specification (Special Functions)

None

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)

-- Section 6.1.3 "Texture Environments and Texture Functions"

Change the third sentence of the third paragraph to read:

"The env argument to GetTexEnv must be either TEXTURE_ENV or
TEXTURE_FILTER_CONTROL_EXT."

Additions to the GLX Specification

None

Errors

INVALID_ENUM is generated when TexEnv is called with a <pname> of
TEXTURE_FILTER_PARAMETER_EXT and the value of <param> or what is pointed
to by <params> is not TEXTURE_LOD_BIAS_EXT.

New State

(table 6.14, p204) add the entry:

Get Value Type Get Command Initial Value Description Sec Attribute
----------------------- ---- ----------- -------------- --------------- ----- ---------
TEXTURE_LOD_BIAS_EXT R GetTexEnvfv 0.0 Biases texture 3.8.9 texture

level of detail

(When ARB_multitexture is supported, the TEXTURE_LOD_BIAS_EXT state is per-texture unit.)

New Implementation State

(table 6.24, p214) add the following entries:

Get Value Type Get Command Minimum Value Description Sec Attribute
----------------------- ---- ----------- ------------- ----------------- ----- ---------
MAX_TEXTURE_LOD_BIAS_EXT R+ GetFloatv 4.0 Maximum 3.8.9 -

absolute texture
lod bias

NVIDIA OpenGL Extension Specifications EXT_texture_lod_bias

 195

Revision History

6/2/00 - add spec language to allow GetTexEnv to accept
TEXTURE_FILTER_CONTROL_EXT.

EXT_texture_object NVIDIA OpenGL Extension Specifications

 196

Name

EXT_texture_object

Name Strings

GL_EXT_texture_object

Version

$Date: 1995/10/03 05:39:56 $ $Revision: 1.27 $

Number

20

Dependencies

EXT_texture3D affects the definition of this extension

Overview

This extension introduces named texture objects. The only way to name
a texture in GL 1.0 is by defining it as a single display list. Because
display lists cannot be edited, these objects are static. Yet it is
important to be able to change the images and parameters of a texture.

Issues

* Should the dimensions of a texture object be static once they are
changed from zero? This might simplify the management of texture
memory. What about other properties of a texture object?

No.

Reasoning

* Previous proposals overloaded the <target> parameter of many Tex
commands with texture object names, as well as the original
enumerated values. This proposal eliminated such overloading,
choosing instead to require an application to bind a texture object,
and then operate on it through the binding reference. If this
constraint ultimately proves to be unacceptable, we can always
extend the extension with additional binding points for editing and
querying only, but if we expect to do this, we might choose to bite
the bullet and overload the <target> parameters now.

* Commands to directly set the priority of a texture object and to
query the resident status of a texture object are included. I feel
that binding a texture object would be an unacceptable burden for
these management operations. These commands also allow queries and
operations on lists of texture objects, which should improve
efficiency.

* GenTexturesEXT does not return a success/failure boolean because
it should never fail in practice.

NVIDIA OpenGL Extension Specifications EXT_texture_object

 197

New Procedures and Functions

void GenTexturesEXT(sizei n,
uint* textures);

void DeleteTexturesEXT(sizei n,
const uint* textures);

void BindTextureEXT(enum target,
uint texture);

void PrioritizeTexturesEXT(sizei n,
const uint* textures,
const clampf* priorities);

boolean AreTexturesResidentEXT(sizei n,
const uint* textures,
boolean* residences);

boolean IsTextureEXT(uint texture);

New Tokens

Accepted by the <pname> parameters of TexParameteri, TexParameterf,
TexParameteriv, TexParameterfv, GetTexParameteriv, and GetTexParameterfv:

TEXTURE_PRIORITY_EXT 0x8066

Accepted by the <pname> parameters of GetTexParameteriv and
GetTexParameterfv:

TEXTURE_RESIDENT_EXT 0x8067

Accepted by the <pname> parameters of GetBooleanv, GetIntegerv,
GetFloatv, and GetDoublev:

TEXTURE_1D_BINDING_EXT 0x8068
TEXTURE_2D_BINDING_EXT 0x8069
TEXTURE_3D_BINDING_EXT 0x806A

Additions to Chapter 2 of the 1.0 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the 1.0 Specification (Rasterization)

Add the following discussion to section 3.8 (Texturing). In addition
to the default textures TEXTURE_1D, TEXTURE_2D, and TEXTURE_3D_EXT, it
is possible to create named 1, 2, and 3-dimensional texture objects.
The name space for texture objects is the unsigned integers, with zero
reserved by the GL.

A texture object is created by binding an unused name to TEXTURE_1D,
TEXTURE_2D, or TEXTURE_3D_EXT. This binding is accomplished by calling
BindTextureEXT with <target> set to TEXTURE_1D, TEXTURE_2D, or
TEXTURE_3D_EXT, and <texture> set to the name of the new texture object.
When a texture object is bound to a target, the previous binding for

EXT_texture_object NVIDIA OpenGL Extension Specifications

 198

that target is automatically broken.

When a texture object is first bound it takes the dimensionality of its
target. Thus, a texture object first bound to TEXTURE_1D is
1-dimensional; a texture object first bound to TEXTURE_2D is
2-dimensional, and a texture object first bound to TEXTURE_3D_EXT is
3-dimensional. The state of a 1-dimensional texture object
immediately after it is first bound is equivalent to the state of the
default TEXTURE_1D at GL initialization. Likewise, the state of a
2-dimensional or 3-dimensional texture object immediately after it is
first bound is equivalent to the state of the default TEXTURE_2D or
TEXTURE_3D_EXT at GL initialization. Subsequent bindings of a texture
object have no effect on its state. The error INVALID_OPERATION is
generated if an attempt is made to bind a texture object to a target of
different dimensionality.

While a texture object is bound, GL operations on the target to which it
is bound affect the bound texture object, and queries of the target to
which it is bound return state from the bound texture object. If
texture mapping of the dimensionality of the target to which a texture
object is bound is active, the bound texture object is used.

By default when an OpenGL context is created, TEXTURE_1D, TEXTURE_2D,
and TEXTURE_3D_EXT have 1, 2, and 3-dimensional textures associated
with them. In order that access to these default textures not be
lost, this extension treats them as though their names were all zero.
Thus the default 1-dimensional texture is operated on, queried, and
applied as TEXTURE_1D while zero is bound to TEXTURE_1D. Likewise,
the default 2-dimensional texture is operated on, queried, and applied
as TEXTURE_2D while zero is bound to TEXTURE_2D, and the default
3-dimensional texture is operated on, queried, and applied as
TEXTURE_3D_EXT while zero is bound to TEXTURE_3D_EXT.

Texture objects are deleted by calling DeleteTexturesEXT with <textures>
pointing to a list of <n> names of texture object to be deleted. After
a texture object is deleted, it has no contents or dimensionality, and
its name is freed. If a texture object that is currently bound is
deleted, the binding reverts to zero. DeleteTexturesEXT ignores names
that do not correspond to textures objects, including zero.

GenTexturesEXT returns <n> texture object names in <textures>. These
names are chosen in an unspecified manner, the only condition being that
only names that were not in use immediately prior to the call to
GenTexturesEXT are considered. Names returned by GenTexturesEXT are
marked as used (so that they are not returned by subsequent calls to
GenTexturesEXT), but they are associated with a texture object only
after they are first bound (just as if the name were unused).

An implementation may choose to establish a working set of texture
objects on which binding operations are performed with higher
performance. A texture object that is currently being treated as a
part of the working set is said to be resident. AreTexturesResidentEXT
returns TRUE if all of the <n> texture objects named in <textures> are
resident, FALSE otherwise. If FALSE is returned, the residence of each
texture object is returned in <residences>. Otherwise the contents of
the <residences> array are not changed. If any of the names in
<textures> is not the name of a texture object, FALSE is returned, the

NVIDIA OpenGL Extension Specifications EXT_texture_object

 199

error INVALID_VALUE is generated, and the contents of <residences> are
indeterminate. The resident status of a single bound texture object
can also be queried by calling GetTexParameteriv or GetTexParameterfv
with <target> set to the target to which the texture object is bound,
and <pname> set to TEXTURE_RESIDENT_EXT. This is the only way that the
resident status of a default texture can be queried.

Applications guide the OpenGL implementation in determining which
texture objects should be resident by specifying a priority for each
texture object. PrioritizeTexturesEXT sets the priorities of the <n>
texture objects in <textures> to the values in <priorities>. Each
priority value is clamped to the range [0.0, 1.0] before it is
assigned. Zero indicates the lowest priority, and hence the least
likelihood of being resident. One indicates the highest priority, and
hence the greatest likelihood of being resident. The priority of a
single bound texture object can also be changed by calling
TexParameteri, TexParameterf, TexParameteriv, or TexParameterfv with
<target> set to the target to which the texture object is bound, <pname>
set to TEXTURE_PRIORITY_EXT, and <param> or <params> specifying the new
priority value (which is clamped to [0.0,1.0] before being assigned).
This is the only way that the priority of a default texture can be
specified. (PrioritizeTexturesEXT silently ignores attempts to
prioritize nontextures, and texture zero.)

Additions to Chapter 4 of the 1.0 Specification (Per-Fragment Operations
and the Frame Buffer)

None

Additions to Chapter 5 of the 1.0 Specification (Special Functions)

BindTextureEXT and PrioritizeTexturesEXT are included in display lists.
All other commands defined by this extension are not included in display
lists.

Additions to Chapter 6 of the 1.0 Specification (State and State Requests)

IsTextureEXT returns TRUE if <texture> is the name of a valid texture
object. If <texture> is zero, or is a non-zero value that is not the
name of a texture object, or if an error condition occurs, IsTextureEXT
returns FALSE.

Because the query values of TEXTURE_1D, TEXTURE_2D, and TEXTURE_3D_EXT
are already defined as booleans indicating whether these textures are
enabled or disabled, another mechanism is required to query the
binding associated with each of these texture targets. The name
of the texture object currently bound to TEXTURE_1D is returned in
<params> when GetIntegerv is called with <pname> set to
TEXTURE_1D_BINDING_EXT. If no texture object is currently bound to
TEXTURE_1D, zero is returned. Likewise, the name of the texture object
bound to TEXTURE_2D or TEXTURE_3D_EXT is returned in <params> when
GetIntegerv is called with <pname> set to TEXTURE_2D_BINDING_EXT or
TEXTURE_3D_BINDING_EXT. If no texture object is currently bound to
TEXTURE_2D or to TEXTURE_3D_EXT, zero is returned.

A texture object comprises the image arrays, priority, border color,
filter modes, and wrap modes that are associated with that object. More

EXT_texture_object NVIDIA OpenGL Extension Specifications

 200

explicitly, the state list

TEXTURE,
TEXTURE_PRIORITY_EXT
TEXTURE_RED_SIZE,
TEXTURE_GREEN_SIZE,
TEXTURE_BLUE_SIZE,
TEXTURE_ALPHA_SIZE,
TEXTURE_LUMINANCE_SIZE,
TEXTURE_INTENSITY_SIZE,
TEXTURE_WIDTH,
TEXTURE_HEIGHT,
TEXTURE_DEPTH_EXT,
TEXTURE_BORDER,
TEXTURE_COMPONENTS,
TEXTURE_BORDER_COLOR,
TEXTURE_MIN_FILTER,
TEXTURE_MAG_FILTER,
TEXTURE_WRAP_S,
TEXTURE_WRAP_T,
TEXTURE_WRAP_R_EXT

composes a single texture object.

When PushAttrib is called with TEXTURE_BIT enabled, the priorities,
border colors, filter modes, and wrap modes of the currently bound
texture objects are pushed, as well as the current texture bindings and
enables. When an attribute set that includes texture information is
popped, the bindings and enables are first restored to their pushed
values, then the bound texture objects have their priorities, border
colors, filter modes, and wrap modes restored to their pushed values.

Additions to the GLX Specification

Texture objects are shared between GLX rendering contexts if and only
if the rendering contexts share display lists. No change is made to
the GLX API.

GLX Protocol

Six new GL commands are added.

The following rendering command is sent to the server as part of a
glXRender request:

BindTextureEXT
2 12 rendering command length
2 4117 rendering command opcode
4 ENUM target
4 CARD32 texture

The following rendering command can be sent to the server as part of a
glXRender request or as part of a glXRenderLarge request:

NVIDIA OpenGL Extension Specifications EXT_texture_object

 201

PrioritizeTexturesEXT
2 8+(n*8) rendering command length
2 4118 rendering command opcode
4 INT32 n
n*4 LISTofCARD32 textures
n*4 LISTofFLOAT32 priorities

If the command is encoded in a glXRenderLarge request, the
command opcode and command length fields above are expanded to
4 bytes each:

4 12+(n*8) rendering command length
4 4118 rendering command opcode

The remaining commands are non-rendering commands. These commands are
sent separately (i.e., not as part of a glXRender or glXRenderLarge
request), using either the glXVendorPrivate request or the
glXVendorPrivateWithReply request:

DeleteTexturesEXT
1 CARD8 opcode (X assigned)
1 16 GLX opcode (glXVendorPrivate)
2 4+n request length
4 12 vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 INT32 n
n*4 CARD32 textures

GenTexturesEXT
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 4 request length
4 13 vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 INT32 n

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 n reply length
24 unused
4*n LISTofCARD32 textures

EXT_texture_object NVIDIA OpenGL Extension Specifications

 202

AreTexturesResidentEXT
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 4+n request length
4 11 vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 INT32 n
4*n LISTofCARD32 textures

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 (n+p)/4 reply length
4 BOOL32 return_value
20 unused
n LISTofBOOL residences
p unused, p=pad(n)

IsTextureEXT
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 4 request length
4 14 vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 CARD32 textures

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 0 reply length
4 BOOL32 return_value
20 unused

Dependencies on EXT_texture3D

If EXT_texture3D is not supported, then all references to 3D textures
in this specification are invalid.

Errors

INVALID_VALUE is generated if GenTexturesEXT parameter <n> is negative.

INVALID_VALUE is generated if DeleteTexturesEXT parameter <n> is
negative.

INVALID_ENUM is generated if BindTextureEXT parameter <target> is not
TEXTURE_1D, TEXTURE_2D, or TEXTURE_3D_EXT.

INVALID_OPERATION is generated if BindTextureEXT parameter <target> is
TEXTURE_1D, and parameter <texture> is the name of a 2-dimensional or
3-dimensional texture object.

INVALID_OPERATION is generated if BindTextureEXT parameter <target> is
TEXTURE_2D, and parameter <texture> is the name of a 1-dimensional or
3-dimensional texture object.

INVALID_OPERATION is generated if BindTextureEXT parameter <target> is

NVIDIA OpenGL Extension Specifications EXT_texture_object

 203

TEXTURE_3D_EXT, and parameter <texture> is the name of a 1-dimensional
or 2-dimensional texture object.

INVALID_VALUE is generated if PrioritizeTexturesEXT parameter <n>
negative.

INVALID_VALUE is generated if AreTexturesResidentEXT parameter <n>
is negative.

INVALID_VALUE is generated by AreTexturesResidentEXT if any of the
names in <textures> is zero, or is not the name of a texture.

INVALID_OPERATION is generated if any of the commands defined in this
extension is executed between the execution of Begin and the
corresponding execution of End.

New State

Get Value Get Command Type Initial Value Attribute
--------- ----------- ---- ------------- ---------
TEXTURE_1D IsEnabled B FALSE texture/enable
TEXTURE_2D IsEnabled B FALSE texture/enable
TEXTURE_3D_EXT IsEnabled B FALSE texture/enable
TEXTURE_1D_BINDING_EXT GetIntegerv Z+ 0 texture
TEXTURE_2D_BINDING_EXT GetIntegerv Z+ 0 texture
TEXTURE_3D_BINDING_EXT GetIntegerv Z+ 0 texture
TEXTURE_PRIORITY_EXT GetTexParameterfv n x Z+ 1 texture
TEXTURE_RESIDENT_EXT AreTexturesResidentEXT n x B unknown -

TEXTURE GetTexImage n x levels x I null -
TEXTURE_RED_SIZE_EXT GetTexLevelParameteriv n x levels x Z+ 0 -
TEXTURE_GREEN_SIZE_EXT GetTexLevelParameteriv n x levels x Z+ 0 -
TEXTURE_BLUE_SIZE_EXT GetTexLevelParameteriv n x levels x Z+ 0 -
TEXTURE_ALPHA_SIZE_EXT GetTexLevelParameteriv n x levels x Z+ 0 -
TEXTURE_LUMINANCE_SIZE_EXT GetTexLevelParameteriv n x levels x Z+ 0 -
TEXTURE_INTENSITY_SIZE_EXT GetTexLevelParameteriv n x levels x Z+ 0 -
TEXTURE_WIDTH GetTexLevelParameteriv n x levels x Z+ 0 -
TEXTURE_HEIGHT GetTexLevelParameteriv n x levels x Z+ 0 -
TEXTURE_DEPTH_EXT GetTexLevelParameteriv n x levels x Z+ 0 -
TEXTURE_4DSIZE_SGIS GetTexLevelParameteriv n x levels x Z+ 0 -
TEXTURE_BORDER GetTexLevelParameteriv n x levels x Z+ 0 -
TEXTURE_COMPONENTS (1D and 2D) GetTexLevelParameteriv n x levels x Z42 1 -
TEXTURE_COMPONENTS (3D and 4D) GetTexLevelParameteriv n x levels x Z38 LUMINANCE -
TEXTURE_BORDER_COLOR GetTexParameteriv n x C 0, 0, 0, 0 texture
TEXTURE_MIN_FILTER GetTexParameteriv n x Z7 NEAREST_MIPMAP_LINEAR texture
TEXTURE_MAG_FILTER GetTexParameteriv n x Z3 LINEAR texture
TEXTURE_WRAP_S GetTexParameteriv n x Z2 REPEAT texture
TEXTURE_WRAP_T GetTexParameteriv n x Z2 REPEAT texture
TEXTURE_WRAP_R_EXT GetTexParameteriv n x Z2 REPEAT texture
TEXTURE_WRAP_Q_SGIS GetTexParameteriv n x Z2 REPEAT texture

New Implementation Dependent State

None

EXT_vertex_array NVIDIA OpenGL Extension Specifications

 204

Name

EXT_vertex_array

Name Strings

GL_EXT_vertex_array

Version

$Date: 1995/10/03 05:39:58 $ $Revision: 1.16 $ FINAL

Number

30

Dependencies

None

Overview

This extension adds the ability to specify multiple geometric primitives
with very few subroutine calls. Instead of calling an OpenGL procedure
to pass each individual vertex, normal, or color, separate arrays
of vertexes, normals, and colors are prespecified, and are used to
define a sequence of primitives (all of the same type) when a single
call is made to DrawArraysEXT. A stride mechanism is provided so that
an application can choose to keep all vertex data staggered in a
single array, or sparsely in separate arrays. Single-array storage
may optimize performance on some implementations.

This extension also supports the rendering of individual array elements,
each specified as an index into the enabled arrays.

Issues

* Should arrays for material parameters be provided? If so, how?

A: No. Let's leave this to a separate extension, and keep this
extension lean.

* Should a FORTRAN interface be specified in this document?

* It may not be possible to implement GetPointervEXT in FORTRAN. If
not, should we eliminate it from this proposal?

A: Leave it in.

* Should a stride be specified by DrawArraysEXT which, if non-zero,
would override the strides specified for the individual arrays?
This might improve the efficiency of single-array transfers.

A: No, it's not worth the effort and complexity.

* Should entry points for byte vertexes, byte indexes, and byte
texture coordinates be added in this extension?

NVIDIA OpenGL Extension Specifications EXT_vertex_array

 205

A: No, do this in a separate extension, which defines byte support
for arrays and for the current procedural interface.

* Should support for meshes (not strips) of rectangles be provided?

A: No. If this is necessary, define a separate quad_mesh extension
that supports both immediate mode and arrays. (Add QUAD_MESH_EXT
as an token accepted by Begin and DrawArraysEXT. Add
QuadMeshLengthEXT to specify the length of the mesh.)

Reasoning

* DrawArraysEXT requires that VERTEX_ARRAY_EXT be enabled so that
future extensions can support evaluation as well as direct
specification of vertex coordinates.

* This extension does not support evaluation. It could be extended
to provide such support by adding arrays of points to be evaluated,
and by adding enables to indicate that the arrays are to be
evaluated. I think we may choose to add an array version of
EvalMesh, rather than extending the operation of DrawArraysEXT,
so I'd rather wait on this one.

* <size> is specified before <type> to match the order of the
information in immediate mode commands, such as Vertex3f.
(first 3, then f)

* It seems reasonable to allow attribute values to be undefined after
DrawArraysEXT executes. This avoids implementation overhead in
the case where an incomplete primitive is specified, and will allow
optimization on multiprocessor systems. I don't expect this to be
a burden to programmers.

* It is not an error to call VertexPointerEXT, NormalPointerEXT,
ColorPointerEXT, IndexPointerEXT, TexCoordPointerEXT,
or EdgeFlagPointerEXT between the execution of Begin and the
corresponding execution of End. Because these commands will
typically be implemented on the client side with no protocol,
testing for between-Begin-End status requires that the client
track this state, or that a round trip be made. Neither is
desirable.

* Arrays are enabled and disabled individually, rather than with a
single mask parameter, for two reasons. First, we have had trouble
allocating bits in masks, so eliminating a mask eliminates potential
trouble down the road. We may eventually require a larger number of
array types than there are bits in a mask. Second, making the
enables into state eliminates a parameter in ArrayElementEXT, and
may allow it to execute more efficiently. Of course this state
model may result in programming errors, but OpenGL is full of such
hazards anyway!

* ArrayElementEXT is provided to support applications that construct
primitives by indexing vertex data, rather than by streaming through
arrays of data in first-to-last order. Because each call specifies
only a single vertex, it is possible for an application to explicitly

EXT_vertex_array NVIDIA OpenGL Extension Specifications

 206

specify per-primitive attributes, such as a single normal per
individual triangle.

* The <count> parameters are added to the *PointerEXT commands to
allow implementations to cache array data, and in particular to
cache the transformed results of array data that are rendered
repeatedly by ArrayElementEXT. Implementations that do not wish
to perform such caching can ignore the <count> parameter.

* The <first> parameter of DrawArraysEXT allows a single set of
arrays to be used repeatedly, possibly improving performance.

New Procedures and Functions

void ArrayElementEXT(int i);

void DrawArraysEXT(enum mode,
int first,
sizei count);

void VertexPointerEXT(int size,
enum type,
sizei stride,
sizei count,
const void* pointer);

void NormalPointerEXT(enum type,
sizei stride,
sizei count,
const void* pointer);

void ColorPointerEXT(int size,
enum type,
sizei stride,
sizei count,
const void* pointer);

void IndexPointerEXT(enum type,
sizei stride,
sizei count,
const void* pointer);

void TexCoordPointerEXT(int size,
enum type,
sizei stride,
sizei count,
const void* pointer);

void EdgeFlagPointerEXT(sizei stride,
sizei count,
const Boolean* pointer);

void GetPointervEXT(enum pname,
void** params);

NVIDIA OpenGL Extension Specifications EXT_vertex_array

 207

New Tokens

Accepted by the <cap> parameter of Enable, Disable, and IsEnabled, and
by the <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv, and
GetDoublev:

VERTEX_ARRAY_EXT 0x8074
NORMAL_ARRAY_EXT 0x8075
COLOR_ARRAY_EXT 0x8076
INDEX_ARRAY_EXT 0x8077
TEXTURE_COORD_ARRAY_EXT 0x8078
EDGE_FLAG_ARRAY_EXT 0x8079

Accepted by the <type> parameter of VertexPointerEXT, NormalPointerEXT,
ColorPointerEXT, IndexPointerEXT, and TexCoordPointerEXT:

DOUBLE_EXT 0x140A

Accepted by the <pname> parameter of GetBooleanv, GetIntegerv,
GetFloatv, and GetDoublev:

VERTEX_ARRAY_SIZE_EXT 0x807A
VERTEX_ARRAY_TYPE_EXT 0x807B
VERTEX_ARRAY_STRIDE_EXT 0x807C
VERTEX_ARRAY_COUNT_EXT 0x807D
NORMAL_ARRAY_TYPE_EXT 0x807E
NORMAL_ARRAY_STRIDE_EXT 0x807F
NORMAL_ARRAY_COUNT_EXT 0x8080
COLOR_ARRAY_SIZE_EXT 0x8081
COLOR_ARRAY_TYPE_EXT 0x8082
COLOR_ARRAY_STRIDE_EXT 0x8083
COLOR_ARRAY_COUNT_EXT 0x8084
INDEX_ARRAY_TYPE_EXT 0x8085
INDEX_ARRAY_STRIDE_EXT 0x8086
INDEX_ARRAY_COUNT_EXT 0x8087
TEXTURE_COORD_ARRAY_SIZE_EXT 0x8088
TEXTURE_COORD_ARRAY_TYPE_EXT 0x8089
TEXTURE_COORD_ARRAY_STRIDE_EXT 0x808A
TEXTURE_COORD_ARRAY_COUNT_EXT 0x808B
EDGE_FLAG_ARRAY_STRIDE_EXT 0x808C
EDGE_FLAG_ARRAY_COUNT_EXT 0x808D

Accepted by the <pname> parameter of GetPointervEXT:

VERTEX_ARRAY_POINTER_EXT 0x808E
NORMAL_ARRAY_POINTER_EXT 0x808F
COLOR_ARRAY_POINTER_EXT 0x8090
INDEX_ARRAY_POINTER_EXT 0x8091
TEXTURE_COORD_ARRAY_POINTER_EXT 0x8092
EDGE_FLAG_ARRAY_POINTER_EXT 0x8093

Additions to Chapter 2 of the 1.0 Specification (OpenGL Operation)

Array Specification

Individual array pointers and associated data are maintained for an
array of vertexes, an array of normals, an array of colors, an array

EXT_vertex_array NVIDIA OpenGL Extension Specifications

 208

of color indexes, an array of texture coordinates, and an array of edge
flags. The data associated with each array specify the data type of
the values in the array, the number of values per element in the array
(e.g. vertexes of 2, 3, or 4 coordinates), the byte stride from one
array element to the next, and the number of elements (counting from
the first) that are static. Static elements may be modified by the
application, but once they are modified, the application must explicitly
respecify the array before using it for any rendering. When an array is
specified, the pointer and associated data are saved as client-side
state, and static elements may be cached by the implementation. Non-
static (dynamic) elements are never accessed until ArrayElementEXT or
DrawArraysEXT is issued.

VertexPointerEXT specifies the location and data format of an array
of vertex coordinates. <pointer> specifies a pointer to the first
coordinate of the first vertex in the array. <type> specifies the data
type of each coordinate in the array, and must be one of SHORT, INT,
FLOAT, or DOUBLE_EXT, implying GL data types short, int, float, and
double respectively. <size> specifies the number of coordinates per
vertex, and must be 2, 3, or 4. <stride> specifies the byte offset
between pointers to consecutive vertexes. If <stride> is zero, the
vertex data are understood to be tightly packed in the array. <count>
specifies the number of vertexes, counting from the first, that are
static.

NormalPointerEXT specifies the location and data format of an array
of normals. <pointer> specifies a pointer to the first coordinate
of the first normal in the array. <type> specifies the data type
of each coordinate in the array, and must be one of BYTE, SHORT, INT,
FLOAT, or DOUBLE_EXT, implying GL data types byte, short, int, float,
and double respectively. It is understood that each normal comprises
three coordinates. <stride> specifies the byte offset between
pointers to consecutive normals. If <stride> is zero, the normal
data are understood to be tightly packed in the array. <count>
specifies the number of normals, counting from the first, that are
static.

ColorPointerEXT specifies the location and data format of an array
of color components. <pointer> specifies a pointer to the first
component of the first color element in the array. <type> specifies the
data type of each component in the array, and must be one of BYTE,
UNSIGNED_BYTE, SHORT, UNSIGNED_SHORT, INT, UNSIGNED_INT, FLOAT, or
DOUBLE_EXT, implying GL data types byte, ubyte, short, ushort, int,
uint, float, and double respectively. <size> specifies the number of
components per color, and must be 3 or 4. <stride> specifies the byte
offset between pointers to consecutive colors. If <stride> is zero,
the color data are understood to be tightly packed in the array.
<count> specifies the number of colors, counting from the first, that
are static.

IndexPointerEXT specifies the location and data format of an array
of color indexes. <pointer> specifies a pointer to the first index in
the array. <type> specifies the data type of each index in the
array, and must be one of SHORT, INT, FLOAT, or DOUBLE_EXT, implying
GL data types short, int, float, and double respectively. <stride>
specifies the byte offset between pointers to consecutive indexes. If
<stride> is zero, the index data are understood to be tightly packed

NVIDIA OpenGL Extension Specifications EXT_vertex_array

 209

in the array. <count> specifies the number of indexes, counting from
the first, that are static.

TexCoordPointerEXT specifies the location and data format of an array
of texture coordinates. <pointer> specifies a pointer to the first
coordinate of the first element in the array. <type> specifies the data
type of each coordinate in the array, and must be one of SHORT, INT,
FLOAT, or DOUBLE_EXT, implying GL data types short, int, float, and
double respectively. <size> specifies the number of coordinates per
element, and must be 1, 2, 3, or 4. <stride> specifies the byte offset
between pointers to consecutive elements of coordinates. If <stride> is
zero, the coordinate data are understood to be tightly packed in the
array. <count> specifies the number of texture coordinate elements,
counting from the first, that are static.

EdgeFlagPointerEXT specifies the location and data format of an array
of boolean edge flags. <pointer> specifies a pointer to the first flag
in the array. <stride> specifies the byte offset between pointers to
consecutive edge flags. If <stride> is zero, the edge flag data are
understood to be tightly packed in the array. <count> specifies the
number of edge flags, counting from the first, that are static.

The table below summarizes the sizes and data types accepted (or
understood implicitly) by each of the six pointer-specification commands.

Command Sizes Types
------- ----- -----
VertexPointerEXT 2,3,4 short, int, float, double
NormalPointerEXT 3 byte, short, int, float, double
ColorPointerEXT 3,4 byte, short, int, float, double,

ubyte, ushort, uint
IndexPointerEXT 1 short, int, float, double
TexCoordPointerEXT 1,2,3,4 short, int, float, double
EdgeFlagPointerEXT 1 boolean

Rendering the Arrays

By default all the arrays are disabled, meaning that they will not
be accessed when either ArrayElementEXT or DrawArraysEXT is called.
An individual array is enabled or disabled by calling Enable or
Disable with <cap> set to appropriate value, as specified in the
table below:

Array Specification Command Enable Token
--------------------------- ------------
VertexPointerEXT VERTEX_ARRAY_EXT
NormalPointerEXT NORMAL_ARRAY_EXT
ColorPointerEXT COLOR_ARRAY_EXT
IndexPointerEXT INDEX_ARRAY_EXT
TexCoordPointerEXT TEXTURE_COORD_ARRAY_EXT
EdgeFlagPointerEXT EDGE_FLAG_ARRAY_EXT

When ArrayElementEXT is called, a single vertex is drawn, using vertex
and attribute data taken from location <i> of the enabled arrays. The
semantics of ArrayElementEXT are defined in the C-code below:

EXT_vertex_array NVIDIA OpenGL Extension Specifications

 210

void ArrayElementEXT (int i) {
byte* p;
if (NORMAL_ARRAY_EXT) {

if (normal_stride == 0)
p = (byte*)normal_pointer + i * 3 * sizeof(normal_type);

else
p = (byte*)normal_pointer + i * normal_stride;

Normal3<normal_type>v ((normal_type*)p);
}
if (COLOR_ARRAY_EXT) {

if (color_stride == 0)
p = (byte*)color_pointer +

i * color_size * sizeof(color_type);
else

p = (byte*)color_pointer + i * color_stride;
Color<color_size><color_type>v ((color_type*)p);

}
if (INDEX_ARRAY_EXT) {

if (index_stride == 0)
p = (byte*)index_pointer + i * sizeof(index_type);

else
p = (byte*)index_pointer + i * index_stride;

Index<index_type>v ((index_type*)p);
}
if (TEXTURE_COORD_ARRAY_EXT) {

if (texcoord_stride == 0)
p = (byte*)texcoord_pointer +

i * texcoord_size * sizeof(texcoord_type);
else

p = (byte*)texcoord_pointer + i * texcoord_stride;
TexCoord<texcoord_size><texcoord_type>v ((texcoord_type*)p);

}
if (EDGE_FLAG_ARRAY_EXT) {

if (edgeflag_stride == 0)
p = (byte*)edgeflag_pointer + i * sizeof(boolean);

else
p = (byte*)edgeflag_pointer + i * edgeflag_stride;

EdgeFlagv ((boolean*)p);
}
if (VERTEX_ARRAY_EXT) {

if (vertex_stride == 0)
p = (byte*)vertex_pointer +

i * vertex_size * sizeof(vertex_type);
else

p = (byte*)vertex_pointer + i * vertex_stride;
Vertex<vertex_size><vertex_type>v ((vertex_type*)p);

}
}

ArrayElementEXT executes even if VERTEX_ARRAY_EXT is not enabled. No
drawing occurs in this case, but the attributes corresponding to
enabled arrays are modified.

When DrawArraysEXT is called, <count> sequential elements from each
enabled array are used to construct a sequence of geometric primitives,
beginning with element <first>. <mode> specifies what kind of
primitives are constructed, and how the array elements are used to

NVIDIA OpenGL Extension Specifications EXT_vertex_array

 211

construct these primitives. Accepted values for <mode> are POINTS,
LINE_STRIP, LINE_LOOP, LINES, TRIANGLE_STRIP, TRIANGLE_FAN, TRIANGLES,
QUAD_STRIP, QUADS, and POLYGON. If VERTEX_ARRAY_EXT is not enabled, no
geometric primitives are generated.

The semantics of DrawArraysEXT are defined in the C-code below:

void DrawArraysEXT(enum mode, int first, sizei count) {
int i;
if (count < 0)

/* generate INVALID_VALUE error and abort */
else {

Begin (mode);
for (i=0; i < count; i++)

ArrayElementEXT(first + i);
End ();

}
}

The ways in which the execution of DrawArraysEXT differs from the
semantics indicated in the pseudo-code above are:

1. Vertex attributes that are modified by DrawArraysEXT have an
unspecified value after DrawArraysEXT returns. For example, if
COLOR_ARRAY_EXT is enabled, the value of the current color is
undefined after DrawArraysEXT executes. Attributes that aren't
modified remain well defined.

2. Operation of DrawArraysEXT is atomic with respect to error
generation. If an error is generated, no other operations take
place.

Although it is not an error to respecify an array between the execution
of Begin and the corresponding execution of End, the result of such
respecification is undefined. Static array data may be read and cached
by the implementation at any time. If static array data are modified by
the application, the results of any subsequently issued ArrayElementEXT
or DrawArraysEXT commands are undefined.

Additions to Chapter 3 of the 1.0 Specification (Rasterization)

None

Additions to Chapter 4 of the 1.0 Specification (Per-Fragment Operations
and the Frame buffer)

None

Additions to Chapter 5 of the 1.0 Specification (Special Functions)

ArrayElementEXT and DrawArraysEXT are included in display lists.
When either command is entered into a display list, the necessary
array data (determined by the array pointers and enables) is also
entered into the display list. Because the array pointers and
enables are client side state, their values affect display lists
when the lists are created, not when the lists are executed.

EXT_vertex_array NVIDIA OpenGL Extension Specifications

 212

Array specification commands VertexPointerEXT, NormalPointerEXT,
ColorPointerEXT, IndexPointerEXT, TexCoordPointerEXT, and
EdgeFlagPointerEXT specify client side state, and are therefore
not included in display lists. Likewise Enable and Disable, when
called with <cap> set to VERTEX_ARRAY_EXT, NORMAL_ARRAY_EXT,
COLOR_ARRAY_EXT, INDEX_ARRAY_EXT, TEXTURE_COORD_ARRAY_EXT, or
EDGE_FLAG_ARRAY_EXT, are not included in display lists.
GetPointervEXT returns state information, and so is not included
in display lists.

Additions to Chapter 6 of the 1.0 Specification (State and State Requests)

GetPointervEXT returns in <param> the array pointer value specified
by <pname>. Accepted values for <pname> are VERTEX_ARRAY_POINTER_EXT,
NORMAL_ARRAY_POINTER_EXT, COLOR_ARRAY_POINTER_EXT,
INDEX_ARRAY_POINTER_EXT, TEXTURE_COORD_ARRAY_POINTER_EXT,
and EDGE_FLAG_ARRAY_POINTER_EXT.

All array data are client side state, and are not saved or restored
by PushAttrib and PopAttrib.

Additions to the GLX Specification

None

GLX Protocol

A new rendering command is added; it can be sent to the server as part of a
glXRender request or as part of a glXRenderLarge request:

The DrawArraysEXT command consists of three sections, in the following order:
(1) header information, (2) a list of array information, containing the type
and size of the array values for each enabled array and (3) a list of vertex
data. Each element in the list of vertex data contains information for a single
vertex taken from the enabled arrays.

DrawArraysEXT
2 16+(12*m)+(s*n) rendering command length
2 4116 rendering command opcode
4 CARD32 n (number of array elements)
4 CARD32 m (number of enabled arrays)
4 ENUM mode /* GL_POINTS etc */
12*m LISTofARRAY_INFO
s*n LISTofVERTEX_DATA

Where s = ns + cs + is + ts + es + vs + np + cp + ip + tp + ep + vp. (See
description below, under VERTEX_DATA.) Note that if an array is disabled
then no information is sent for it. For example, when the normal array is
disabled, there is no ARRAY_INFO record for the normal array and ns and np
are both zero.

Note that the list of ARRAY_INFO is unordered: since the ARRAY_INFO
record contains the array type, the arrays in the list may be stored
in any order. Also, the VERTEX_DATA list is a packed list of vertices.
For each vertex, data is retrieved from the enabled arrays, and stored
in the list.

If the command is encoded in a glXRenderLarge request, the command
opcode and command length fields above are expanded to 4 bytes each:

NVIDIA OpenGL Extension Specifications EXT_vertex_array

 213

4 20+(12*m)+(s*n) rendering command length
4 4116 rendering command opcode

ARRAY_INFO
4 ENUM data type

0x1400 i=1 BYTE
0x1401 i=1 UNSIGNED_BYTE
0x1402 i=2 SHORT
0x1403 i=2 UNSIGNED_SHORT
0x1404 i=4 INT
0x1405 i=4 UNSIGNED_INT
0x1406 i=4 FLOAT
0x140A i=8 DOUBLE_EXT

4 INT32 j (number of values in array element)
4 ENUM array type

0x8074 j=2/3/4 VERTEX_ARRAY_EXT
0x8075 j=3 NORMAL_ARRAY_EXT
0x8076 j=3/4 COLOR_ARRAY_EXT
0x8077 j=1 INDEX_ARRAY_EXT
0x8078 j=1/2/3/4 TEXTURE_COORD_ARRAY_EXT
0x8079 j=1 EDGE_FLAG_ARRAY_EXT

For each array, the size of an array element is i*j. Some arrays
(e.g., the texture coordinate array) support different data sizes;
for these arrays, the size, j, is specified when the array is defined.

VERTEX_DATA
if the normal array is enabled:

ns LISTofBYTE normal array element
np unused, np=pad(ns)

if the color array is enabled:

cs LISTofBYTE color array element
cp unused, cp=pad(cs)

if the index array is enabled:

is LISTofBYTE index array element
ip unused, ip=pad(is)

if the texture coord array is enabled:

ts LISTofBYTE texture coord array element
tp unused, tp=pad(ts)

if the edge flag array is enabled:

es LISTofBYTE edge flag array element
ep unused, ep=pad(es)

if the vertex array is enabled:

vs LISTofBYTE vertex array element
vp unused, vp=pad(vs)

where ns, cs, is, ts, es, vs is the size of the normal, color, index,
texture, edge and vertex array elements and np, cp, ip, tp, ep, vp is
the padding for the normal, color, index, texture, edge and vertex array
elements, respectively.

EXT_vertex_array NVIDIA OpenGL Extension Specifications

 214

Errors

INVALID_OPERATION is generated if DrawArraysEXT is called between the
execution of Begin and the corresponding execution of End.

INVALID_ENUM is generated if DrawArraysEXT parameter <mode> is not
POINTS, LINE_STRIP, LINE_LOOP, LINES, TRIANGLE_STRIP, TRIANGLE_FAN,
TRIANGLES, QUAD_STRIP, QUADS, or POLYGON.

INVALID_VALUE is generated if DrawArraysEXT parameter <count> is
negative.

INVALID_VALUE is generated if VertexPointerEXT parameter <size> is not
2, 3, or 4.

INVALID_ENUM is generated if VertexPointerEXT parameter <type> is not
SHORT, INT, FLOAT, or DOUBLE_EXT.

INVALID_VALUE is generated if VertexPointerEXT parameter <stride> or
<count> is negative.

INVALID_ENUM is generated if NormalPointerEXT parameter <type> is not
BYTE, SHORT, INT, FLOAT, or DOUBLE_EXT.

INVALID_VALUE is generated if NormalPointerEXT parameter <stride> or
<count> is negative.

INVALID_VALUE is generated if ColorPointerEXT parameter <size> is not
3 or 4.

INVALID_ENUM is generated if ColorPointerEXT parameter <type> is not
BYTE, UNSIGNED_BYTE, SHORT, UNSIGNED_SHORT, INT, UNSIGNED_INT, FLOAT,
or DOUBLE_EXT.

INVALID_VALUE is generated if ColorPointerEXT parameter <stride> or
<count> is negative.

INVALID_ENUM is generated if IndexPointerEXT parameter <type> is not
SHORT, INT, FLOAT, or DOUBLE_EXT.

INVALID_VALUE is generated if IndexPointerEXT parameter <stride> or
<count> is negative.

INVALID_VALUE is generated if TexCoordPointerEXT parameter <size> is not
1, 2, 3, or 4.

INVALID_ENUM is generated if TexCoordPointerEXT parameter <type> is not
SHORT, INT, FLOAT, or DOUBLE_EXT.

INVALID_VALUE is generated if TexCoordPointerEXT parameter <stride> or
<count> is negative.

INVALID_VALUE is generated if EdgeFlagPointerEXT parameter <stride> or
<count> is negative.

INVALID_ENUM is generated if GetPointervEXT parameter <pname> is not
VERTEX_ARRAY_POINTER_EXT, NORMAL_ARRAY_POINTER_EXT,

NVIDIA OpenGL Extension Specifications EXT_vertex_array

 215

COLOR_ARRAY_POINTER_EXT, INDEX_ARRAY_POINTER_EXT,
TEXTURE_COORD_ARRAY_POINTER_EXT, or EDGE_FLAG_ARRAY_POINTER_EXT.

New State
Initial

Get Value Get Command Type Value Attrib
--------- ----------- ---- ------- ------
VERTEX_ARRAY_EXT IsEnabled B False client
VERTEX_ARRAY_SIZE_EXT GetIntegerv Z+ 4 client
VERTEX_ARRAY_TYPE_EXT GetIntegerv Z4 FLOAT client
VERTEX_ARRAY_STRIDE_EXT GetIntegerv Z+ 0 client
VERTEX_ARRAY_COUNT_EXT GetIntegerv Z+ 0 client
VERTEX_ARRAY_POINTER_EXT GetPointervEXT Z+ 0 client
NORMAL_ARRAY_EXT IsEnabled B False client
NORMAL_ARRAY_TYPE_EXT GetIntegerv Z5 FLOAT client
NORMAL_ARRAY_STRIDE_EXT GetIntegerv Z+ 0 client
NORMAL_ARRAY_COUNT_EXT GetIntegerv Z+ 0 client
NORMAL_ARRAY_POINTER_EXT GetPointervEXT Z+ 0 client
COLOR_ARRAY_EXT IsEnabled B False client
COLOR_ARRAY_SIZE_EXT GetIntegerv Z+ 4 client
COLOR_ARRAY_TYPE_EXT GetIntegerv Z8 FLOAT client
COLOR_ARRAY_STRIDE_EXT GetIntegerv Z+ 0 client
COLOR_ARRAY_COUNT_EXT GetIntegerv Z+ 0 client
COLOR_ARRAY_POINTER_EXT GetPointervEXT Z+ 0 client
INDEX_ARRAY_EXT IsEnabled B False client
INDEX_ARRAY_TYPE_EXT GetIntegerv Z4 FLOAT client
INDEX_ARRAY_STRIDE_EXT GetIntegerv Z+ 0 client
INDEX_ARRAY_COUNT_EXT GetIntegerv Z+ 0 client
INDEX_ARRAY_POINTER_EXT GetPointervEXT Z+ 0 client
TEXTURE_COORD_ARRAY_EXT IsEnabled B False client
TEXTURE_COORD_ARRAY_SIZE_EXT GetIntegerv Z+ 4 client
TEXTURE_COORD_ARRAY_TYPE_EXT GetIntegerv Z4 FLOAT client
TEXTURE_COORD_ARRAY_STRIDE_EXT GetIntegerv Z+ 0 client
TEXTURE_COORD_ARRAY_COUNT_EXT GetIntegerv Z+ 0 client
TEXTURE_COORD_ARRAY_POINTER_EXT GetPointervEXT Z+ 0 client
EDGE_FLAG_ARRAY_EXT IsEnabled B False client
EDGE_FLAG_ARRAY_STRIDE_EXT GetIntegerv Z+ 0 client
EDGE_FLAG_ARRAY_COUNT_EXT GetIntegerv Z+ 0 client
EDGE_FLAG_ARRAY_POINTER_EXT GetPointervEXT Z+ 0 client

New Implementation Dependent State

None

EXT_vertex_weighting NVIDIA OpenGL Extension Specifications

 216

Name

EXT_vertex_weighting

Name Strings

GL_EXT_vertex_weighting

Notice

Copyright NVIDIA Corporation, 1999, 2000.

Status

Shipping (version 1.0)

Version

NVIDIA Date: May 25, 2000

Number

188

Dependencies

None

Written based on the wording of the OpenGL 1.2 specification but not
dependent on it.

Overview

The intent of this extension is to provide a means for blending
geometry based on two slightly differing modelview matrices.
The blending is based on a vertex weighting that can change on a
per-vertex basis. This provides a primitive form of skinning.

A second modelview matrix transform is introduced. When vertex
weighting is enabled, the incoming vertex object coordinates are
transformed by both the primary and secondary modelview matrices;
likewise, the incoming normal coordinates are transformed by the
inverses of both the primary and secondary modelview matrices.
The resulting two position coordinates and two normal coordinates
are blended based on the per-vertex vertex weight and then combined
by addition. The transformed, weighted, and combined vertex position
and normal are then used by OpenGL as the eye-space position and
normal for lighting, texture coordinate, generation, clipping,
and further vertex transformation.

Issues

Should the extension be written to extend to more than two vertex
weights and modelview matrices?

RESOLUTION: NO. Supports only one vertex weight and two modelview
matrices. If more than two is useful, that can be handled with

NVIDIA OpenGL Extension Specifications EXT_vertex_weighting

 217

another extension.

Should the weighting factor be GLclampf instead of GLfloat?

RESOLUTION: GLfloat. Though the value of a weighting factors
outside the range of zero to one (and even weights that do not add
to one) is dubious, there is no reason to limit the implementation
to values between zero and one.

Should the weights and modelview matrices be labeled 1 & 2 or 0 & 1?

RESOLUTION: 0 & 1. This is consistent with the way lights and
texture units are named in OpenGL. Make GL_MODELVIEW0_EXT
be an alias for GL_MODELVIEW. Note that the GL_MODELVIEW0_EXT+1
will not be GL_MODELVIEW1_EXT as is the case with GL_LIGHT0 and
GL_LIGHT1.

Should there be a way to simultaneously Rotate, Translate, Scale,
LoadMatrix, MultMatrix, etc. the two modelview matrices together?

RESOLUTION: NO. The application must use MatrixMode and repeated
calls to keep the matrices in sync if desired.

Should the secondary modelview matrix stack be as deep as the primary
matrix stack or can they be different sizes?

RESOLUTION: Must be the SAME size. This wastes a lot of memory
that will be probably never be used (the modelview matrix stack
must have at least 32 entries), but memory is cheap.

The value returned by MAX_MODELVIEW_STACK_DEPTH applies to both
modelview matrices.

Should there be any vertex array support for vertex weights.

RESOLUTION: YES.

Should we have a VertexWeight2fEXT that takes has two weight values?

RESOLUTION: NO. The weights are always vw and 1-vw.

What is the "correct" way to blend matrices, particularly when wo is
not one or the modelview matrix is projective?

RESOLUTION: While it may not be 100% correct, the extension blends
the vertices based on transforming the object coordinates by
both M0 and M1, but the resulting w coordinate comes from simply
transforming the object coordinates by M0 and extracting the w.

Another option would be to simply blend the two sets of eye
coordinates without any special handling of w. This is harder.

Another option would be to divide by w before blending the two
sets of eye coordinates. This is awkward because if the weight
is 1.0 with vertex weighting enabled, the result is not the
same as disabling vertex weighting since EYE_LINEAR texgen
is based of of the non-perspective corrected eye coordinates.

EXT_vertex_weighting NVIDIA OpenGL Extension Specifications

 218

As specified, the normal weighting and combination is performed on
unnormalized normals. Would the math work better if the normals
were normalized before weighting and combining?

RESOLUTION: Vertex weighting of normals is after the
GL_RESCALE_NORMAL step and before the GL_NORMALIZE step.

As specified, feedback and selection should apply vertex weighting
if enabled. Yuck, that would mean that we need software code for
vertex weighting.

RESOLUTION: YES, it should work with feedback and selection.

Sometimes it would be useful to mirror changes in both modelview
matrices. For example, the viewing transforms are likely to be
different, just the final modeling transforms would be different.
Should there be an API support for mirroring transformations into
both matrices?

RESOLUTION: NO. Such support is likely to complicate the
matrix management in the OpenGL. Applications can do a
Get matrix from modelview0 and then a LoadMatrix into modelview1
manually if they need to mirror things.

I also worry that if we had a mirrored matrix mode, it would
double the transform concatenation work if used naively.

Many of the changes to the two modelview matrices will be the same.
For example, the initial view transform loaded into each will be the
same. Should there be a way to "mirror" changes to both modelview
matrices?

RESOLUTION: NO. Mirroring matrix changes would complicate the
driver's management of matrices. Also, I am worried that naive
users would mirror all transforms and lead to lots of redundant
matrix concatenations. The most efficient way to handle the
slight differences between the modelview matrices is simply
to GetFloat the primary matrix, LoadMatrix the values in the
secondary modelview matrix, and then perform the "extra" transform
to the secondary modelview matrix.

Ideally, a glCopyMatrix(GLenum src, GLenum dst) type OpenGL
command could make this more efficient. There are similiar cases
where you want the modelview matrix mirrored in the texture matrix.
This is not the extension to solve this minor problem.

The post-vertex weighting normal is unlikely to be normalized.
Should this extension automatically enable normalization?

RESOLUTION: NO. Normalization should operate as specified.
The user is responsible for enabling GL_RESCALE_NORMAL or
GL_NORMALIZE as needed.

You could imagine cases where the application only sent
vertex weights of either zero or one and pre-normalized normals
so that GL_NORMALIZE would not strictly be required.

NVIDIA OpenGL Extension Specifications EXT_vertex_weighting

 219

Note that the vertex weighting of transformed normals occurs
BEFORE normalize and AFTER rescaling. See the issue below for
why this can make a difference.

How does vertex weighting interact with OpenGL 1.2's GL_RESCALE_NORMAL
enable?

RESOLUTION: Vertex weighting of transformed normals occurs
BEFORE normalize and AFTER rescaling.

OpenGL 1.2 permits normal rescaling to behave just like normalize
and because normalize immediately follows rescaling, enabling
rescaling can be implementied by simply always enabling normalize.

Vertex weighting changes this. If one or both of the modelview
matrices has a non-uniform scale, it may be useful to enable
rescaling and normalize and this operates differently than
simply enabling normalize. The difference is that rescaling
occurs before the normal vertex weighting.

An implementation that truly treated rescaling as a normalize
would support both a pre-weighting normalize and a post-weighting
normalize. Arguably, this is a good thing.

For implementations that perform simply rescaling and not a full
normalize to implement rescaling, the rescaling factor can be
concatenated into each particular inverse modelview matrix.

New Procedures and Functions

void VertexWeightfEXT(float weight);

void VertexWeightfvEXT(float *weight);

void VertexWeightPointerEXT(int size, enum type,
sizei stride, void *pointer);

New Tokens

Accepted by the <target> parameter of Enable:

VERTEX_WEIGHTING_EXT 0x8509

Accepted by the <mode> parameter of MatrixMode:

MODELVIEW0_EXT 0x1700 (alias to MODELVIEW enumerant)
MODELVIEW1_EXT 0x850A

EXT_vertex_weighting NVIDIA OpenGL Extension Specifications

 220

Accepted by the <pname> parameter of GetBooleanv, GetIntegerv,
GetFloatv, and GetDoublev:

VERTEX_WEIGHTING_EXT
MODELVIEW0_EXT
MODELVIEW1_EXT
MODELVIEW0_MATRIX_EXT 0x0BA6 (alias to MODELVIEW_MATRIX)
MODELVIEW1_MATRIX_EXT 0x8506
CURRENT_VERTEX_WEIGHT_EXT 0x850B
VERTEX_WEIGHT_ARRAY_EXT 0x850C
VERTEX_WEIGHT_ARRAY_SIZE_EXT 0x850D
VERTEX_WEIGHT_ARRAY_TYPE_EXT 0x850E
VERTEX_WEIGHT_ARRAY_STRIDE_EXT 0x850F
MODELVIEW0_STACK_DEPTH_EXT 0x0BA3 (alias to MODELVIEW_STACK_DEPTH)
MODELVIEW1_STACK_DEPTH_EXT 0x8502

Accepted by the <pname> parameter of GetPointerv:

VERTEX_WEIGHT_ARRAY_POINTER_EXT 0x8510

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

-- Section 2.6. 2nd paragraph changed:

"Each vertex is specified with two, three, or four coordinates.
In addition, a current normal, current texture coordinates, current
color, and current vertex weight may be used in processing each
vertex."

-- Section 2.6. New paragraph after the 3rd paragraph:

"A vertex weight is associated with each vertex. When vertex
weighting is enabled, this weight is used as a blending factor
to blend the position and normals transformed by the primary and
secondary modelview matrix transforms. The vertex weighting
functionality takes place completely in the "vertex / normal
transformation" stage of Figure 2.2."

-- Section 2.6.3. First paragraph changed to

"The only GL commands that are allowed within any Begin/End pairs are
the commands for specifying vertex coordinates, vertex colors, normal
coordinates, and texture coordinates (Vertex, Color, VertexWeightEXT,
Index, Normal, TexCoord)..."

-- Section 2.7. New paragraph after the 4th paragraph:

"The current vertex weight is set using

void VertexWeightfEXT(float weight);
void VertexWeightfvEXT(float *weight);

This weight is used when vertex weighting is enabled."

-- Section 2.7. The last paragraph changes from

"... and one floating-point value to store the current color index."

NVIDIA OpenGL Extension Specifications EXT_vertex_weighting

 221

to:

"... one floating-point number to store the vertex weight, and one
floating-point value to store the current color index."

-- Section 2.8. Change 1st paragraph to say:

"The client may specify up to seven arrays: one each to store edge
flags, texture coordinates, colors, color indices, vertex weights,
normals, and vertices. The commands"

Add to functions listed following first paragraph:

void VertexWeightPointerEXT(int size, enum type,
sizei stride, void *pointer);

Add to table 2.4 (p. 22):

Command Sizes Types
---------------------- ----- -----
VertexWeightPointerEXT 1 float

Starting with the second paragraph on p. 23, change to add
VERTEX_WEIGHT_ARRAY_EXT:

"An individual array is enabled or disabled by calling one of

void EnableClientState(enum array)
void DisableClientState(enum array)

with array set to EDGE_FLAG_ARRAY, TEXTURE_COORD_ARRAY, COLOR_ARRAY,
INDEX_ARRAY, VERTEX_ARRAY_WEIGHT_EXT, NORMAL_ARRAY, or VERTEX_ARRAY,
for the edge flag, texture coordinate, color, secondary color,
color index, normal, or vertex array, respectively.

The ith element of every enabled array is transferred to the GL by calling

void ArrayElement(int i)

For each enabled array, it is as though the corresponding command
from section 2.7 or section 2.6.2 were called with a pointer to
element i. For the vertex array, the corresponding command is
Vertex<size><type>v, where <size> is one of [2,3,4], and <type> is
one of [s,i,f,d], corresponding to array types short, int, float, and
double respectively. The corresponding commands for the edge flag,
texture coordinate, color, secondary color, color index, and normal
arrays are EdgeFlagv, TexCoord<size><type>v, Color<size><type>v,
Index<type>v, VertexWeightfvEXT, and Normal<type>v, respectively..."

Change pseudocode on p. 27 to disable vertex weight array for canned
interleaved array formats. After the lines

DisableClientState(EDGE_FLAG_ARRAY);
DisableClientState(INDEX_ARRAY);

insert the line

EXT_vertex_weighting NVIDIA OpenGL Extension Specifications

 222

DisableClientState(VERTEX_WEIGHT_ARRAY_EXT);

Substitute "seven" for every occurrence of "six" in the final
paragraph on p. 27.

-- Section 2.10. Change the sentence:

"The model-view matrix is applied to these coordinates to yield eye
coordinates."

to:

"The primary modelview matrix is applied to these coordinates to
yield eye coordinates. When vertex weighting is enabled, a secondary
modelview matrix is also applied to the vertex coordinates, the
result of the two modelview transformations are weighted by its
respective vertex weighting factor and combined by addition to yield
the true eye coordinates. Vertex weighting is enabled or disabled
using Enable and Disable (see section 2.10.3) with an argument of
VERTEX_WEIGHTING_EXT."

Change the 4th paragraph to:

"If vertex weighting is disabled and a vertex in object coordinates
is given by (xo yo zo wo)' and the primary model-view matrix is
M0, then the vertex's eye coordinates are found as

(xe ye ze we)' = M0 (xo yo zo wo)'

If vertex weighting is enabled, then the vertex's eye coordinates
are found as

(xe0 ye0 ze0 we0)' = M0 (xo yo zo wo)'

(xe1 ye1 ze1 we1)' = M1 (xo yo zo wo)'

(xe,ye,ze)' = vw*(xe0,ye0,ze0)' + (1-vw) * (xe1,ye1,ze1)'

we = we0

where M1 is the secondary modelview matrix and vw is the current
vertex weight."

-- Section 2.10.2 Change the 1st paragraph to say:

"The projection matrix and the primary and secondary modelview
matrices are set and modified with a variety of commands. The
affected matrix is determined by the current matrix mode. The
current matrix mode is set with

void MatrixMode(enum mode);

which takes one of the four pre-defined constants TEXTURE,
MODELVIEW0, MODELVIEW1, or PROJECTION (note that MODELVIEW is an
alias for MODELVIEW0). TEXTURE is described later. If the current
matrix is MODELVIEW0, then matrix operations apply to the primary

NVIDIA OpenGL Extension Specifications EXT_vertex_weighting

 223

modelview matrix; if MODELVIEW1, then matrix operations apply to
the secondary modelview matrix; if PROJECTION, then they apply to
the projection matrix."

Change the 9th paragraph to say:

"There is a stack of matrices for each of the matrix modes. For the
MODELVIEW0 and MODELVIEW1 modes, the stack is at least 32 (that is,
there is a stack of at least 32 modelview matrices). ..."

Change the last paragraph to say:

"The state required to implement transformations consists of a
four-valued integer indicating the current matrix mode, a stack of
at least two 4x4 matrices for each of PROJECTION and TEXTURE with
associated stack pointers, and two stacks of at least 32 4x4 matrices
with an associated stack pointer for MODELVIEW0 and MODELVIEW1.
Initially, there is only one matrix on each stack, and all matrices
are set to the identity. The initial matrix mode is MODELVIEW0."

-- Section 2.10.3 Change the 2nd and 7th paragraphs to say:

"For a modelview matrix M, the normal for this matrix is transformed
to eye coordinates by:

(nx' ny' nz' q') = (nx ny nz q) * M^-1

where, if (x y z w)' are the associated vertex coordinates, then

/ 0, w= 0
|

q = | -(nx ny nz) (x y z)' (2.1)
| --------------------, w != 0
\ w

Implementations may choose instead to transform (x y z)' to eye
coordinates using

(nx' ny' nz') = (nx ny nz) * Mu^-1

Where Mu is the upper leftmost 3x3 matrix taken from M.

Rescale multiplies the transformed normals by a scale factor

(nx" ny" nz") = f (nx' ny' nz')

If rescaling is disabled, then f = 1. If rescaling is enabled, then
f is computed as (mij denotes the matrix element in row i and column j
of M^-1, numbering the topmost row of the matrix as row 1 and the
leftmost column as column 1

1
f = ---------------------------

sqrt(m31^2 + m32^2 + m33^2)

Note that if the normals sent to GL were unit length and the model-view
matrix uniformly scales space, the rescale make sthe transformed normals

EXT_vertex_weighting NVIDIA OpenGL Extension Specifications

 224

unit length.

Alternatively, an implementation may chose f as

1
f = ---------------------------

sqrt(nx'^2 + ny'^2 + nz'^2)

recomputing f for each normal. This makes all non-zero length
normals unit length regardless of their input length and the nature
of the modelview matrix.

After rescaling, the final transformed normal used in lighting, nf,
depends on whether vertex weighting is enabled or not.

When vertex weighting is disabled, nf is computed as

nf = m * (nx"0 ny"0 nz"0)

where (nx"0 ny"0 nz"0) is the normal transformed as described
above using the primary modelview matrix for M.

If normalization is enabled m=1. Otherwise

1
m = ------------------------------

sqrt(nx"0^2 + ny"0^2 + nz"0^2)

However when vertex weighting is enabled, the normal is transformed
twice as described above, once by the primary modelview matrix and
again by the secondary modelview matrix, weighted using the current
per-vertex weight, and normalized. So nf is computed as

nf = m * (nx"w ny"w nz"w)

where nw is the weighting normal computed as

nw = vw * (nx"0 ny"0 nz"0) + (1-vw) * (nx"1 ny"1 nz"1)

where (nx"0 ny"0 nz"0) is the normal transformed as described
above using the primary modelview matrix for M, and (nx"1 ny"1 nz"1) is
the normal transformed as described above using the secondary modelview
matrix for M, and vw is the current pver-vertex weight."

-- Section 2.12. Changes the 3rd paragraph:

"The coordinates are treated as if they were specified in a
Vertex command. The x, y, z, and w coordinates are transformed
by the current primary modelview and perspective matrices. These
coordinates, along with current values, are used to generate a
color and texture coordinates just as done for a vertex, except
that vertex weighting is always treated as if it is disabled."

Additions to Chapter 3 of the GL Specification (Rasterization)

None

NVIDIA OpenGL Extension Specifications EXT_vertex_weighting

 225

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

None

Additions to Chapter 5 of the GL Specification (Special Functions)

None

Additions to Chapter 6 of the GL Specification (State and State Requests)

None

Additions to the GLX Specification

None

GLX Protocol

A new GL rendering command is added. The following command is sent
to the server as part of a glXRender request:

VertexWeightfvEXT
2 8 rendering command length
2 4135 rendering command opcode
4 FLOAT32 weight0

To support vertex arrays, the DrawArrays rendering command (sent via
a glXRender or glXRenderLarge request) is amended as follows:

The list of arrays listed for the third element in the ARRAY_INFO
structure is amended to include:

0x850c j=1 VERTEX_WEIGHT_ARRAY_EXT

The VERTEX_DATA description is amended to include:

If the vertex weight array is enabled:
ws LISTofBYTE vertex weight array element
wp unused, wp=pad(ws)

with the following paragraph amended to read:

"where ns, cs, is, ts, es, vs, ws is the size of the normal, color,
index, texture, edge, vertex, and vertex weight array elements and
np, cp, ip, tp, ep, vp, wp is the padding for the normal, color,
index, texture, edge, vertex, and vertex weight array elements,
respectively."

Errors

The current vertex weight can be updated at any time. In particular
WeightVertexEXT can be called between a call to Begin and the
corresponding call to End.

INVALID_VALUE is generated if VertexWeightPointerEXT parameter <size>
is not 1.

EXT_vertex_weighting NVIDIA OpenGL Extension Specifications

 226

INVALID_ENUM is generated if VertexWeightPointerEXT parameter <type>
is not FLOAT.

INVALID_VALUE is generated if VertexWeightPointerEXT parameter <stride>
is negative.

New State

(table 6.5, p196)
Get Value Type Get Command Initial Value Description Sec Attribute
--------- ---- ----------- ------------- ----------- --- ---------
CURRENT_VERTEX_WEIGHT_EXT F GetFloatv 1 Current 2.8 current

vertex weight

(table 6.6, p197)
Get Value Type Get Command Initial Value Description Sec Attribute
--------- ---- ----------- ------------- ----------- --- ---------
VERTEX_WEIGHT_ARRAY_EXT B IsEnabled False Vertex weight enable 2.8 vertex-array
VERTEX_WEIGHT_ARRAY_SIZE_EXT Z+ GetIntegerv 1 Weights per vertex 2.8 vertex-array
VERTEX_WEIGHT_ARRAY_TYPE_EXT Z1 GetIntegerv FLOAT Type of weights 2.8 vertex-array
VERTEX_WEIGHT_ARRAY_STRIDE_EXT Z GetIntegerv 0 Stride between weights 2.8 vertex-array
VERTEX_WEIGHT_ARRAY_POINTER_EXT Y GetPointerv 0 Pointer to vertex weight array 2.8 vertex-array

(table 6.7, p198)
Get Value Type Get Command Initial Value Description Sec Attribute
--------- ---- ----------- ------------- ----------- ------ ---------
MODELVIEW0_MATRIX_EXT 32*xM4 GetFloatv Identity Primary modelview 2.10.2 -

stack
MODELVIEW1_MATRIX_EXT 32*xM4 GetFloatv Identity Secondary modelview 2.10.2 -

stack
MODELVIEW0_STACK_DEPTH_EXT Z+ GetIntegerv 1 Primary modelview 2.10.2 -

stack depth
MODELVIEW1_STACK_DEPTH_EXT Z+ GetIntegerv 1 Secondary modelview 2.10.2 -

stack depth
MATRIX_MODE Z4 GetIntegerv MODELVIEW0 Current matrix mode 2.10.2 transform
VERTEX_WEIGHTING_EXT B IsEnabled False Vertex weighting 2.10.2 transform/enable

on/off

NOTE: MODELVIEW_MATRIX is an alias for MODELVIEW0_MATRIX_EXT
MODELVIEW_STACK_DEPTH is an alias for MODELVIEW0_STACK_DEPTH_EXT

New Implementation Dependent State

None

Revision History

12/16/2000 amended to include GLX protocol for vertex arrays
5/25/2000 added missing MODELVIEW#_MATRIX tokens values

NVIDIA OpenGL Extension Specifications IBM_texture_mirrored_repeat

 227

Name

IBM_texture_mirrored_repeat

Name Strings

GL_IBM_texture_mirrored_repeat

Version

$Date: 1999/12/28 01:40:35 $ $Revision: 1.2 $
IBM Id: texture_mirrored_repeat.spec,v 1.5 1998/01/16 18:09:31 pbrown Exp

Number

unassigned

Dependencies

EXT_texture_3D
IBM_texture_edge_clamp

Overview

IBM_texture_mirrored_repeat extends the set of texture wrap modes to
include a mode (GL_MIRRORED_REPEAT_IBM) that effectively uses a texture
map twice as large at the original image in which the additional half of
the new image is a mirror image of the original image.

This new mode relaxes the need to generate images whose opposite edges
match by using the original image to generate a matching "mirror image".

Issues

* The spec clamps the final (u,v) coordinates to the range [0.5, 2^n-0.5].
This will produce the same effect as trapping a sample of the border texel
and using the corresponding edge texel. The choice of technique is purely
an implementation detail.

New Procedures and Functions

None

New Tokens

Accepted by the <param> parameter of TexParameteri and TexParameterf,
and by the <params> parameter of TexParameteriv and TexParameterfv, when
their <pname> parameter is TEXTURE_WRAP_S, TEXTURE_WRAP_T, or
TEXTURE_WRAP_R_EXT:

GL_MIRRORED_REPEAT_IBM 0x8370

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

None.

Additions to Chapter 3 of the GL Specification (Rasterization)

None

IBM_texture_mirrored_repeat NVIDIA OpenGL Extension Specifications

 228

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

Change to Section 3.8 (Subsection "Texture Wrap Modes")

If TEXTURE_WRAP_S, TEXTURE_WRAP_T, or TEXTURE_WRAP_R_EXT is set to
MIRRORED_REPEAT_IBM, the s (or t or r) coordinate is converted to:

s - floor(s), if floor(s) is even, or
1 - (s - floor(s)), if floor(s) is odd.

Change to Section 3.8.1, Texture Minification

Let:
u(x,y) = 2^n * s(x,y),
v(x,y) = 2^m * t(x,y), and
w(x,y) = 2^l * r(x,y).

If the TEXTURE_WRAP_S, TEXTURE_WRAP_T, or TEXTURE_WRAP_R_EXT is set to
either MIRRORED_REPEAT_IBM or CLAMP_TO_EDGE_IBM, the resulting u, v, or
w coordinates (respectively) are clamped to the range [0.5, 2^n-0.5].

Additions to Chapter 5 of the GL Specification (Special Functions)

None

Additions to Chapter 6 of the GL Specification (State and State Requests)

None

Additions to the GLX Specification

None

GLX Protocol

None.

Errors

None

Dependencies on EXT_texture3D

If EXT_texture3D is not implemented, then the references clamping of 3D
textures in this file are invalid, and references to TEXTURE_WRAP_R_EXT
should be ignored.

Dependencies on IBM_texture_edge_clamp

If IBM_texture_edge_clamp is not implemented, then the references to
CLAMP_TO_EDGE_IBM should be ignored.

New State

Only the type information changes for these parameters:

Get Value Get Command Type Initial Value Attrib
--------- ----------- ---- ------------- ------
TEXTURE_WRAP_S GetTexParameteriv n x Z5 REPEAT texture
TEXTURE_WRAP_T GetTexParameteriv n x Z5 REPEAT texture
TEXTURE_WRAP_R_EXT GetTexParameteriv n x Z5 REPEAT texture

NVIDIA OpenGL Extension Specifications IBM_texture_mirrored_repeat

 229

New Implementation Dependent State

None

NV_blend_square NVIDIA OpenGL Extension Specifications

 230

Name

NV_blend_square

Name Strings

GL_NV_blend_square

Version

Date: 8/7/1999 Version: 1.0

Number

194

Dependencies

Written based on the wording of the OpenGL 1.2 specification.

Overview

It is useful to be able to multiply a number by itself in the blending
stages -- for example, in certain types of specular lighting effects
where a result from a dot product needs to be taken to a high power.

This extension provides four additional blending factors to permit
this and other effects: SRC_COLOR and ONE_MINUS_SRC_COLOR for source
blending factors, and DST_COLOR and ONE_MINUS_DST_COLOR for destination
blending factors.

New Procedures and Functions

None

New Tokens

None

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

None

Additions to Chapter 3 of the GL Specification (Rasterization)

None

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

Two lines are added to each of tables 4.1 and 4.2:

NVIDIA OpenGL Extension Specifications NV_blend_square

 231

Value Blend Factors
----- -------------
ZERO (0, 0, 0, 0)
ONE (1, 1, 1, 1)
SRC_COLOR (Rs, Gs, Bs, As) NEW
ONE_MINUS_SRC_COLOR (1, 1, 1, 1) - (Rs, Gs, Bs, As) NEW
DST_COLOR (Rd, Gd, Bd, Ad)
ONE_MINUS_DST_COLOR (1, 1, 1, 1) - (Rd, Gd, Bd, Ad)
SRC_ALPHA (As, As, As, As) / Ka
ONE_MINUS_SRC_ALPHA (1, 1, 1, 1) - (As, As, As, As) / Ka
DST_ALPHA (Ad, Ad, Ad, Ad) / Ka
ONE_MINUS_DST_ALPHA (1, 1, 1, 1) - (Ad, Ad, Ad, Ad) / Ka
CONSTANT_COLOR (Rc, Gc, Bc, Ac)
ONE_MINUS_CONSTANT_COLOR (1, 1, 1, 1) - (Rc, Gc, Bc, Ac)
CONSTANT_ALPHA (Ac, Ac, Ac, Ac)
ONE_MINUS_CONSTANT_ALPHA (1, 1, 1, 1) - (Ac, Ac, Ac, Ac)
SRC_ALPHA_SATURATE (f, f, f, 1)

Table 4.1: Values controlling the source blending function and the
source blending values they compute. f = min(As, 1 - Ad).

Value Blend Factors
----- -------------
ZERO (0, 0, 0, 0)
ONE (1, 1, 1, 1)
SRC_COLOR (Rs, Gs, Bs, As)
ONE_MINUS_SRC_COLOR (1, 1, 1, 1) - (Rs, Gs, Bs, As)
DST_COLOR (Rd, Gd, Bd, Ad) NEW
ONE_MINUS_DST_COLOR (1, 1, 1, 1) - (Rd, Gd, Bd, Ad) NEW
SRC_ALPHA (As, As, As, As) / Ka
ONE_MINUS_SRC_ALPHA (1, 1, 1, 1) - (As, As, As, As) / Ka
DST_ALPHA (Ad, Ad, Ad, Ad) / Ka
ONE_MINUS_DST_ALPHA (1, 1, 1, 1) - (Ad, Ad, Ad, Ad) / Ka
CONSTANT_COLOR_EXT (Rc, Gc, Bc, Ac)
ONE_MINUS_CONSTANT_COLOR_EXT (1, 1, 1, 1) - (Rc, Gc, Bc, Ac)
CONSTANT_ALPHA_EXT (Ac, Ac, Ac, Ac)
ONE_MINUS_CONSTANT_ALPHA_EXT (1, 1, 1, 1) - (Ac, Ac, Ac, Ac)

Table 4.2: Values controlling the destination blending function and
the destination blending values they compute.

Additions to Chapter 5 of the GL Specification (Special Functions)

None

Additions to Chapter 6 of the GL Specification (State and State Requests)

None

Additions to the GLX Specification

None

GLX Protocol

None

Errors

None

NV_blend_square NVIDIA OpenGL Extension Specifications

 232

New State

(table 6.15, page 205)
Get Value Type Get Command Initial Value Sec Attribute
------------------------ ---- ------------ ------------- ----- ---------
BLEND_SRC Z15 GetIntegerv ONE 4.1.6 color-buffer
BLEND_DST Z14 GetIntegerv ZERO 4.1.6 color-buffer

NOTE: the only change is that Z13 changes to Z15 and Z12 changes to Z14

New Implementation Dependent State

None

NVIDIA OpenGL Extension Specifications NV_evaluators

 233

Name

NV_evaluators

Name Strings

GL_NV_evaluators

Notice

Copyright NVIDIA Corporation, 2000, 2001.

IP Status

NVIDIA Proprietary.

Version

NVIDIA Date: April 13, 2001
$Id: //sw/main/docs/OpenGL/specs/GL_NV_evaluators.txt#2 $

Number

225

Dependencies

Written based on the wording of the OpenGL 1.2.1 specification.

Assumes support for the ARB_multitexture extension.

NV_vertex_program affects the definition of this extension.

Overview

OpenGL evaluators provide applications with the capability to
specify polynomial or rational curves and surfaces using control
points relative to the Bezier basis. The curves and surfaces are
then drawn by evaluating the polynomials provided at various values
for the u parameter of a curve or the (u,v) parameters of a surface.
A tensor product formulation is used for the surfaces.

For various historical reasons, evaluators have not been
particularly popular as an interface for drawing curves and surfaces.
This extension proposes a new interface for surfaces that provides a
number of significant enhancements to the functionality provided by
the original OpenGL evaluators.

Many implementations never optimized evaluators, so applications
often implemented their own algorithms instead. This extension
relaxes some restrictions that make it difficult to optimize
evaluators.

Also, new vertex attributes have been added to OpenGL through
extensions, including multiple sets of texture coordinates, a
secondary color, a fog coordinate, a vertex weight, and others.
The extensions which added these vertex attributes never bothered

NV_evaluators NVIDIA OpenGL Extension Specifications

 234

to update the functionality of evaluators, since they were used so
little in the first place. In turn, evaluators have become more and
more out of date, making it even less likely that developers will
want to use them. Most of the attributes are not a big loss, but
support for multiple sets of texture coordinates would be absolutely
essential to developers considering the use of evaluators.

OpenGL evaluators only support rectangular patches, not triangular
patches. Although triangular patches can be converted into
rectangular patches, direct support for triangular patches is likely
to be more efficient.

The tessellation algorithm used is too inflexible for most purposes;
only the number of rows and columns can be specified. Adjacent
patches must then have identical numbers of rows and columns, or
severe cracking will occur. Ideally, a number of subdivisions could
be specified for all four sides of a rectangular patch and for all
three of a triangular patch. This extension goes one step further
and allows those numbers to be specified in floating-point, providing
a mechanism for smoothly changing the level of detail of the surface.

Meshes evaluated with EvalMesh are required to match up exactly
with equivalent meshes evaluated with EvalCoord or EvalPoint.
This makes it difficult or impossible to use optimizations such as
forward differencing.

Finally, little attention is given to some of the difficult problems
that can arise when multiple patches are drawn. Depending on the
way evaluators are implemented, and depending on the orientation of
edges, numerical accuracy problems can cause cracks to appear between
patches with the same boundary control points. This extension makes
guarantees that an edge shared between two patches will match up
exactly under certain conditions.

Issues

* Should one-dimensional evaluators be supported?

RESOLVED: No. This extension is intended for surfaces only.

* Should we support triangular patches?

RESOLVED: Yes. Otherwise, applications will have to convert
them to rectangular patches themselves. We can do this more
efficiently.

* What domain should triangular patches be defined on?

RESOLVED: (0,0),(1,0),(0,1).

* What memory layout should we use for triangular patch control
points?

RESOLVED: Both a[i][j], where i+j <= n, and a packed format are
supported.

NVIDIA OpenGL Extension Specifications NV_evaluators

 235

* Is it worth it to have "evaluator objects"?

RESOLVED: No. We will leave these out for now.

* Should we support the original evaluators' ability to specify
a map from an arbitrary (u1,v1) to an arbitrary (u2,v2)?

RESOLVED: No. Maps will always extend from (0,0) to (1,1)
and will always be evaluated from (0,0) to (1,1).

* Should the new interface support an EvalCoord-like syntax?

RESOLVED: No. We are only interested in evaluating an entire
mesh at once.

* Should we support the "mode" parameter to the existing EvalMesh2,
which allows the mesh to be tessellated in wireframe or as points?

RESOLVED: No. We will leave in the parameter and require that
it be FILL, though, to leave room for a future extension.

* Should there be a new interface to specify control points or should
Map2{fd} be reused?

RESOLVED: A new interface. There are enough changes compared to
the original evaluators that we can't reuse the old interface
without causing more problems. For example, the target
parameter of Map2{fd} is really a cross of target and index
in MapControlPointsNV, and so it ends up creating an excessive
number of enumerants.

* How should grids be specified?

RESOLVED: A MapParameter command. This is better than a new
MapGrid- style command because it can be extended to include
new parameter types.

* Should there be any rules about the order of generation of
primitives within a single patch?

RESOLVED: No. The tessellation algorithm itself is not even
specified, so it makes no sense to do this. Applications must
not depend on the order in which the primitives are drawn.

* Should the stride for MapControlPointsNV be specified in basic
machine units (i.e. unsigned bytes) or in floats/doubles?

RESOLVED: ubytes. Most of the rest of OpenGL (vertex arrays,
pixel path, etc.) uses ubytes; evaluators are actually
inconsistent.

* How much leeway should implementations be given to choose their own
algorithm for tessellation?

RESOLVED: The integral tessellation scheme will require a
specific tessellation of the boundary edges of the patch, but the
interior tessellation is implementation-specific. The fractional

NV_evaluators NVIDIA OpenGL Extension Specifications

 236

tessellation scheme will only require a minimum number of segments
along each edge. In either case, a minimum number of triangles
for the entire patch is specified.

* Should there be rules to ensure that the triangles will be
oriented in a consistent fashion?

RESOLVED: Yes. This is essential for features such as backface
culling to work properly. The rule given ensures that the
orientation will be identical to the orientation used for the
original evaluators.

* Should there be a separate MAX_EVAL_ORDER for rational surfaces?

RESOLVED: Yes. Rational surfaces require additional calculation to
be done by the implementation, especially if AUTO_NORMAL is
enabled. Furthermore, the most useful rational surfaces are of low
order. For example, all the conic sections are quadratic rational
surfaces.

* Should there be enables similar to AUTO_NORMAL that generate
partials of U (tangents), partials of V, and/or binormals?

RESOLVED: No. The application is responsible for configuring
the evaluators appropriately.

The auto normal functionality is supported because it is fairly
complicated and was already a core part of OpenGL for evaluators.
Plus there is already a "normal" vertex attribute for it to
automatically generate.

The partials of U and partials of V are fairly straightforward
to evaluate (just take the derivative of the bivariate polynomial
in terms of either U or V) plus there is not a particular vertex
attribute associated with each of these.

New Procedures and Functions

void MapControlPointsNV(enum target, uint index, enum type,
sizei ustride, sizei vstride,
int uorder, int vorder,
boolean packed,
const void *points)

void MapParameterivNV(enum target, enum pname, const int *params)
void MapParameterfvNV(enum target, enum pname, const float *params)

void GetMapControlPointsNV(enum target, uint index, enum type,
sizei ustride, sizei vstride,
boolean packed, void *points)

void GetMapParameterivNV(enum target, enum pname, int *params)
void GetMapParameterfvNV(enum target, enum pname, float *params)
void GetMapAttribParameterivNV(enum target, uint index, enum pname,

int *params)
void GetMapAttribParameterfvNV(enum target, uint index, enum pname,

float *params)

NVIDIA OpenGL Extension Specifications NV_evaluators

 237

void EvalMapsNV(enum target, enum mode)

New Tokens

Accepted by the <target> parameter of MapControlPointsNV,
MapParameter[if]vNV, GetMapControlPointsNV, GetMapParameter[if]vNV,
GetMapAttribParameter[if]vNV, and EvalMapsNV:

EVAL_2D_NV 0x86C0
EVAL_TRIANGULAR_2D_NV 0x86C1

Accepted by the <pname> parameter of MapParameter[if]vNV and
GetMapParameter[if]vNV:

MAP_TESSELLATION_NV 0x86C2

Accepted by the <pname> parameter of GetMapAttribParameter[if]vNV:

MAP_ATTRIB_U_ORDER_NV 0x86C3
MAP_ATTRIB_V_ORDER_NV 0x86C4

Accepted by the <cap> parameter of Disable, Enable, and IsEnabled,
and by the <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv,
and GetDoublev:

EVAL_FRACTIONAL_TESSELLATION_NV 0x86C5

EVAL_VERTEX_ATTRIB0_NV 0x86C6
EVAL_VERTEX_ATTRIB1_NV 0x86C7
EVAL_VERTEX_ATTRIB2_NV 0x86C8
EVAL_VERTEX_ATTRIB3_NV 0x86C9
EVAL_VERTEX_ATTRIB4_NV 0x86CA
EVAL_VERTEX_ATTRIB5_NV 0x86CB
EVAL_VERTEX_ATTRIB6_NV 0x86CC
EVAL_VERTEX_ATTRIB7_NV 0x86CD
EVAL_VERTEX_ATTRIB8_NV 0x86CE
EVAL_VERTEX_ATTRIB9_NV 0x86CF
EVAL_VERTEX_ATTRIB10_NV 0x86D0
EVAL_VERTEX_ATTRIB11_NV 0x86D1
EVAL_VERTEX_ATTRIB12_NV 0x86D2
EVAL_VERTEX_ATTRIB13_NV 0x86D3
EVAL_VERTEX_ATTRIB14_NV 0x86D4
EVAL_VERTEX_ATTRIB15_NV 0x86D5

Accepted by the <pname> parameter of GetBooleanv, GetIntegerv,
GetFloatv, and GetDoublev:

MAX_MAP_TESSELLATION_NV 0x86D6
MAX_RATIONAL_EVAL_ORDER_NV 0x86D7

Additions to Chapter 2 of the 1.2 Specification (OpenGL Operation)

None.

NV_evaluators NVIDIA OpenGL Extension Specifications

 238

Additions to Chapter 3 of the 1.2 Specification (Rasterization)

None.

Additions to Chapter 4 of the 1.2 Specification (Per-Fragment Operations
and the Frame Buffer)

None.

Additions to Chapter 5 of the 1.2 Specification (Special Functions)

-- NEW Section 5.7 "General Evaluators"

"General evaluators are similar to evaluators in that they can
be used to evaluate polynomial and rational mappings, but general
evaluators have several new features that the original evaluators
do not. First, they support triangular surfaces in addition to
(quadrilateral) tensor product surfaces. Second, the tessellation
can be varied continuously as well as in integral steps. Finally,
general evaluators can evaluate all vertex attributes, not just the
vertex, color, normal, and texture coordinates.

Several elements of the original evaluators have been removed in
the general evaluators interface. The general evaluators always
evaluate four components in parallel, whereas the original evaluators
might evaluate between 1 and 4 (see the "k" column in Table 5.1 on
page 165). The original evaluators can map on an arbitrary domain
and can map grids on an arbitrary region, whereas the general
evaluators only use the [0,1] range. Support for 1D evaluators,
an EvalCoord-style interface, and the "mode" parameter of EvalMesh*
has also been removed from the general evaluators.

The command

void MapControlPointsNV(enum target, uint index, enum type,
sizei ustride, sizei vstride,
int uorder, int vorder, boolean packed,
const void *points);

specifies control points for a general evaluator map. target
is the type of evaluator map and can be either EVAL_2D_NV or
EVAL_TRIANGULAR_2D_NV. index is the number of the vertex attribute
register the map will be used to evaluate for; these are the same
indices used in the GL_NV_vertex_program extension. Table X.1
shows the relationship between these indices and the conventional
per-vertex attributes for implementations that do not support
GL_NV_vertex_program.

NVIDIA OpenGL Extension Specifications NV_evaluators

 239

Vertex
Attribute Conventional
Conventional
Register Per-vertex Conventional Component
Number Parameter Per-vertex Parameter Command Mapping
--------- --------------- -------------------------------------- -----------
-
0 vertex position Vertex x,y,z,w
1 vertex weights VertexWeightEXT w,0,0,1
2 normal Normal x,y,z,1
3 primary color Color r,g,b,a
4 secondary color SecondaryColorEXT r,g,b,1
5 fog coordinate FogCoordEXT fc,0,0,1
6 - - -
7 - - -
8 texture coord 0 MultiTexCoordARB(GL_TEXTURE0_ARB, ...) s,t,r,q
9 texture coord 1 MultiTexCoordARB(GL_TEXTURE1_ARB, ...) s,t,r,q
10 texture coord 2 MultiTexCoordARB(GL_TEXTURE2_ARB, ...) s,t,r,q
11 texture coord 3 MultiTexCoordARB(GL_TEXTURE3_ARB, ...) s,t,r,q
12 texture coord 4 MultiTexCoordARB(GL_TEXTURE4_ARB, ...) s,t,r,q
13 texture coord 5 MultiTexCoordARB(GL_TEXTURE5_ARB, ...) s,t,r,q
14 texture coord 6 MultiTexCoordARB(GL_TEXTURE6_ARB, ...) s,t,r,q
15 texture coord 7 MultiTexCoordARB(GL_TEXTURE7_ARB, ...) s,t,r,q

Table X.1: Aliasing of vertex attributes with conventional per-vertex
parameters.

type is either FLOAT or DOUBLE. ustride and vstride are the numbers
of basic machine units (typically unsigned bytes) between control
points in the u and v directions. uorder and vorder have the same
meaning they do in the Map2{fd} command. The error INVALID_VALUE
is generated if either uorder or vorder is less than one or greater
than MAX_EVAL_ORDER. The error INVALID_OPERATION is generated if
target is EVAL_TRIANGULAR_2D_NV and uorder is not equal to vorder.

points is a pointer to an array of control points. If target is
EVAL_2D_NV, there are uorder*vorder control points in the array,
and if it is EVAL_TRIANGULAR_2D_NV, there are uorder*(uorder+1)/2
points in the array. If packed is FALSE, control point i,j is
located

(ustride)i + (vstride)j

basic machine units from points. If target is EVAL_2D_NV, i ranges
from 0 to uorder-1, and j ranges from 0 to vorder-1. If target is
EVAL_TRIANGULAR_2D_NV, i and j range from 0 to uorder-1, and i+j
must be less than or equal to uorder-1.

If packed is TRUE and target is EVAL_2D_NV, control point i,j is
located

(ustride)(j*uorder + i)

basic machine units from points. If packed is TRUE and target is
EVAL_TRIANGULAR_2D_NV, control point i,j is located

(ustride)(j*uorder + i - j*(j-1)/2)

NV_evaluators NVIDIA OpenGL Extension Specifications

 240

basic machine units from points.

The error INVALID_OPERATION is generated if index is 0, one of the
control points' fourth components is not equal to 1, and either uorder
of vorder is greater than MAX_RATIONAL_EVAL_ORDER_NV.

The evaluation of a 2D tensor product map is performed in the same
way as for the original evaluators. The exact coordinates produced
by the original evaluators may differ from those produced by the
general evaluators, since different algorithms may be used.

A triangular map may be evaluated as follows. Let Ri,j be the
4-component vector for control point i,j and n be the degree of the
patch (i.e. uorder-1). Then:

\ (n) (n-i) i j n-i-j

p_t(u,v) = / (i) (j) u v (1-u-v) Ri,j

i,j >= 0
i+j <= n

evaluates the point p_t(u,v) on the triangular patch at parameter
values (u,v). (The notation on the left indicates "n choose i" and
"n minus i choose j", i.e., binomial coefficients.)

The evaluation of any particular attribute can be enabled or disabled
with Enable and Disable using one of the EVAL_VERTEX_ATTRIBi_NV
constants.

If AUTO_NORMAL is enabled (see section 5.1), analytically computed
normals are evaluated as well. The formula for the normal is the same
as the one in section 5.1, except that the magnitude of the normals is
undefined. These normals should be renormalized by enabling NORMALIZE,
or by normalizing them in a vertex program. The w of the normal
vertex attribute will always be 1.

The commands

void MapParameter{if}vNV(enum target, enum pname, T params);

can be used to specify the level of tessellation to evaluate,
where target is EVAL_2D_NV or EVAL_TRIANGULAR_2D_NV and pname is
MAP_TESSELLATION_NV. If target is EVAL_2D_NV, params contains the
four values [nu0,nu1,nv0,nv1], and if it is EVAL_TRIANGULAR_2D_NV,
params contains the three values [n1,n2,n3]. The state for each
target is independent of the other. These values are clamped to
the range [1.0, MAX_MAP_TESSELLATION_NV].

The use of a fractional tessellation algorithm can be
enabled or disabled with Enable and Disable using the
EVAL_FRACTIONAL_TESSELLATION_NV constant. The fractional tessellation
algorithm allows the tessellation to smoothly morph without popping
as the tessellation parameters are varied by small amounts.

NVIDIA OpenGL Extension Specifications NV_evaluators

 241

The command

void EvalMapsNV(enum target, enum mode);

evaluates the currently enabled maps. target is either EVAL_2D_NV
or EVAL_TRIANGULAR_2D and specifies which set of maps to evaluate.
mode must be FILL. If EVAL_VERTEX_ATTRIB0_NV is not enabled, the
error INVALID_OPERATION results.

If EVAL_FRACTIONAL_TESSELLATION_NV is disabled, tensor product maps
are evaluated such that the boundaries of the mesh are divided into
ceil(nu0) segments on the edge from (0,0) to (1,0), ceil(nu1) segments
on the edge from (0,1) to (1,1), ceil(nv0) segments on the edge from
(0,0) to (0,1), and ceil(nv1) segments on the edge from (1,0) to
(1,1). These segments must be evaluated at equal spacings in (u,v)
parameter space.

Triangular maps are evaluated such that the boundary of the mesh from
(0,0) to (1,0) has ceil(n1) equally-spaced segments, the boundary
from (1,0) to (0,1) has ceil(n2) equally-spaced segments, and the
boundary from (0,1) to (0,0) has ceil(n3) equally-spaced segments.

If EVAL_FRACTIONAL_TESSELLATION_NV is enabled, each edge must be
tessellated with no fewer the number of segments that would be used in
the non- fractional case for any values of the tessellation parameters.
Furthermore, the tessellation of each edge must vary smoothly with the
parameters; that is, a small change in any or all of the parameters
must cause a small change in the tessellation. Whenever a new vertex
is introduced into the tessellation, it must be coincident with another
vertex, and whenever a vertex is removed, it must have been coincident
with a different vertex. The parameter-space position of any vertex
must be a continuous function of the tessellation parameters.

The same minimum triangle requirements apply to fractional
tessellations as to integral tessellations.

A tensor product patch must always be tessellated with no fewer than

2 * ceil((nu0+nu1)/2) * ceil((nv0+nv1)/2)

triangles in total.

A triangular patch must always be tessellated with no fewer than

ceil((n1+n2+n3)/3)^2

triangles in total.

If a triangle is formed by evaluating the maps at the three
coordinates (u1,v1), (u2,v2), and (u3,v3), it must be true that

(u3-u1)*(v2-v1) - (u2-u1)*(v3-v1) >= 0

to ensure that all triangles in a patch have a consistent
orientation.

NV_evaluators NVIDIA OpenGL Extension Specifications

 242

The current value of any vertex attribute for which the evaluation
of a map is enabled becomes undefined after an EvalMapsNV command.
If AUTO_NORMAL is enabled, the current normal becomes undefined as
well.

If AUTO_NORMAL is enabled, the analytically computed normals take
precedence over the currently enabled map for vertex attribute 2
(the normal).

To prevent cracks, certain rules must be established for performing
the evaluations. The goal of these rules is to ensure that no
matter what order control points are specified in and what the
tessellation parameters are, so long as the control points on any edge
exactly match the control points of an adjacent edge, and so long as
the subdivision parameter for that edge is the same for the adjacent
patch, there will be no cracking artifacts between the two patches.
These requirements are completely independent of numerical precision.
In particular, we will require that these shared vertices' positions
be equal. Furthermore, there must be no cracking inside the geometry
of any patch, and normals must not change in a discontinuous fashion
so that there are no discontinuities in lighting or other effects
that use the normal.

Let two patches share an edge of equal order (the order of an edge is
the order of the patch in that direction for a tensor product patch,
or the order of the patch for a triangular patch). Then this edge is
said to be consistent if all the vertex control points (vertex
attribute 0) are identical on each edge (although they may be specified
in the opposite direction, or even in a different coordinate; one may
an edge in the u direction, and one may be an edge in the v direction).

If an edge is consistent, and if each of the two patches are
tessellated with identical tessellation parameters for that edge,
then the vertex coordinates given to vertex processing must be
exactly equal for each of the vertices.

The vertex coordinates given to vertex processing for the corner
vertices of any patch must be exactly equal to the values of the
corner control points of that patch, regardless of the patch's
order, type, tessellation parameters, the state of the AUTO_NORMAL or
EVAL_FRACTIONAL_TESSELLATION_NV enables, the control points, order,
or enable of any other associated map, or any other OpenGL state.

The vertex coordinates and normals given to vertex processing for
any vertex of a patch must be exactly equal each time that vertex
is evaluated during the tessellation of a patch. Since each vertex
is shared between several triangles in the patch, any variation in
these coordinates and normals would result in cracks or lighting
discontinuities.

The state required for the general evaluators consists of a bit
indicating whether fractional tessellation is enabled or disabled, 16
bits indicating whether the evaluation of each vertex attribute is
enabled or disabled, four floating-point map tessellation values for
tensor product patches, three floating-point map tessellation values
for triangular patches, and a map specification for a tensor product
patch and a triangular patch for each vertex attribute. A map

NVIDIA OpenGL Extension Specifications NV_evaluators

 243

specification consists of two integers indicating the order of the
map in u and v and a two-dimensional array of vectors of four
floating-point values containing the control points for that map.
The initial state of fractional tessellation is disabled. The initial
state of evaluation of vertex attribute 0 is enabled, and the initial
state of evaluation for any other vertex attribute is disabled. The
initial value of the tessellation parameters is 1.0. The initial order
of each map specification is an order of 1 in both u and v and a
single control point of [0,0,0,1]."

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)

-- NEW Section 6.1.13 "General Evaluator Queries"

"The commands

void GetMapParameterivNV(enum target, enum pname, int *params);
void GetMapParameterfvNV(enum target, enum pname, float *params);

obtain the parameters for a map target. target may be one of
EVAL_2D_NV or EVAL_TRIANGULAR_2D_NV. pname must be MAP_TESSELLATION_NV.
The map tessellation is placed in params.

The commands

void GetMapAttribParameterivNV(enum target, uint index, enum pname,
int *params);

void GetMapAttribParameterfvNV(enum target, uint index, enum pname,
float *params);

obtain parameters for a single map. target may be one of EVAL_2D_NV
or EVAL_TRIANGULAR_2D_NV. index is the number of the vertex attribute
register the map is used for evaluating. If pname is
MAP_ATTRIB_U_ORDER_NV, the u order of the map is placed in params. If
pname is MAP_ATTRIB_V_ORDER_NV, the v order of the map is placed in
params.

The command

void GetMapControlPointsNV(enum target, uint index, enum type,
sizei ustride, sizei vstride, boolean packed,
void *points);

obtains the control points of a map. target may be one of EVAL_2D_NV
or EVAL_TRIANGULAR_2D_NV. index is the number of the vertex attribute
register the map is used for evaluating. type is either FLOAT or
DOUBLE. ustride and vstride are the numbers of basic machine units
(typically unsigned bytes) between control points in the u and v
directions. points is a pointer to an array where the control points
are to be written. If target is EVAL_2D_NV, there are uorder*vorder
control points in the array, and if it is EVAL_TRIANGULAR_2D_NV, there
are uorder*(uorder+1)/2 points in the array. If packed is FALSE,
control point i,j is located

(ustride)i + (vstride)j

basic machine units from points. If packed is TRUE and target is

NV_evaluators NVIDIA OpenGL Extension Specifications

 244

EVAL_2D_NV, control point i,j is located

(ustride)(j*uorder + i)

basic machine units from points. If packed is TRUE and target is
EVAL_TRIANGULAR_2D_NV, control point i,j is located

(ustride)(j*uorder + i - j*(j-1)/2)

basic machine units from points. If target is EVAL_2D_NV, i ranges
from 0 to uorder-1, and j ranges from 0 to vorder-1. If target is
EVAL_TRIANGULAR_2D_NV, i and j range from 0 to uorder-1, and i+j
must be less than or equal to uorder-1."

Additions to the GLX Specification

Nine new GL commands are added.

The following three rendering commands are sent to the sever
as part of a glXRender request:

MapParameterivNV
2 12+4*n rendering command length
2 ???? rendering command opcode
4 ENUM target
4 ENUM pname

0x86C2 GL_MAP_TESSELLATION_NV
n=3 if (target == GL_EVAL_TRIANGULAR_2D_NV)
n=4 if (target == GL_EVAL_2D_NV)

else n=0 command is erroneous
4*n LISTofINT32 params

MapParameterfvNV
2 12+4*n rendering command length
2 ???? rendering command opcode
4 ENUM target
4 ENUM pname

0x86C2 GL_MAP_TESSELLATION_NV
n=3 if (target == GL_EVAL_TRIANGULAR_2D_NV)
n=4 if (target == GL_EVAL_2D_NV)

else n=0 command is erroneous
4*n LISTofFLOAT32 params

EvalMapsNV
2 12 rendering command length
2 ???? rendering command opcode
4 ENUM target
4 ENUM mode

The following rendering command is potentially large and can be sent
in a glXRender or glXRenderLarge request:

MapControlPointsNV
2 24+m rendering command length
2 ???? rendering command opcode
4 ENUM target
4 CARD32 index
4 CARD32 type
4 INT32 uorder
4 INT32 vorder
m (see below) points

Determine m from the table below; n depends on the target. If the
target is GL_EVAL_2D_NV, then n = uorder*vorder. If the target
is GL_EVAL_TRIANGULAR_2D_NV, then n = uorder * (uorder+1)/2.
The points data is packed such that when unpacked by the server,

NVIDIA OpenGL Extension Specifications NV_evaluators

 245

the value of ustride is 16 for GL_FLOAT typed data and 32 for
GL_DOUBLE typed data.

type encoding of type type of lists m (bytes)
--------- ---------------- ------------- ---------
GL_FLOAT 0x1406 LISTofFLOAT32 n*4
GL_DOUBLE 0x140A LISTofFLOAT64 n*8

If the command is encoded in a glXRenderLarge request, the command
opcode and command length fields above are expanded to 4 bytes each:

4 28+m rendering command length
4 ???? rendering command opcode

The remaining five commands are non-rendering commands. These commands
are sent separately (i.e., not as part of a glXRender or glXRenderLarge
request), using the glXVendorPrivateWithReply request:

GetMapParameterivNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 5 request length
4 ???? vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 ENUM target
4 ENUM pname

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 m reply length, m=(n==1?0:n)
4 unused
4 CARD32 n

if (n=1) this follows:

4 INT32 params
12 unused

otherwise this follows:

16 unused
n*4 LISTofINT32 params

GetMapParameterfvNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 5 request length
4 ???? vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 ENUM target
4 ENUM pname

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 m reply length, m=(n==1?0:n)
4 unused
4 CARD32 n

if (n=1) this follows:

4 FLOAT32 params
12 unused

otherwise this follows:

16 unused
n*4 LISTofFLOAT32 params

NV_evaluators NVIDIA OpenGL Extension Specifications

 246

GetMapAttribParameterivNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 6 request length
4 ???? vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 ENUM target
4 CARD32 index
4 ENUM pname

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 m reply length, m=(n==1?0:n)
4 unused
4 CARD32 n

if (n=1) this follows:

4 INT32 params
12 unused

otherwise this follows:

16 unused
n*4 LISTofINT32 params

GetMapAttribParameterfvNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 6 request length
4 ???? vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 ENUM target
4 CARD32 index
4 ENUM pname

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 m reply length, m=(n==1?0:n)
4 unused
4 CARD32 n

if (n=1) this follows:

4 FLOAT32 params
12 unused

otherwise this follows:

16 unused
n*4 LISTofFLOAT32 params

NVIDIA OpenGL Extension Specifications NV_evaluators

 247

GetMapControlPointsNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 6 request length
4 ???? vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 ENUM target
4 CARD32 index
4 ENUM type

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 m reply length, m
4 unused
4 CARD32 uorder
4 CARD32 vorder
12 unused

if type == 0x1406 (GL_FLOAT) and target == 0x86C0
(GL_EVAL_2D_NV), m = 4*uorder*vorder and the packed control
points follow assuming ustride = 16

m*4 LISTofFLOAT32 params

if type == 0x140A (GL_DOUBLE) and target == 0x86C0
(GL_EVAL_2D_NV), m = 4*uorder*vorder and the packed control
points follow asssuming ustride = 32

m*8 LISTofFLOAT64 params

if type == 0x1406 (GL_FLOAT) and target == 0x86C1
(GL_EVAL_TRIANGULAR_2D_NV), m = 4*uorder*(uorder+1)/2 and
the packed control points follow assuming ustride = 16

m*4 LISTofFLOAT32 params

if type == 0x140A (GL_DOUBLE) and target == 0x86C1
(GL_EVAL_TRIANGULAR_2D_NV), m = 4*uorder*(uorder+1)/2 and
the packed control points follow asssuming ustride = 32

m*8 LISTofFLOAT64 params

otherwise m = 0 and nothing else follows.

Errors

The error INVALID_VALUE is generated if MapControlPointsNV,
GetMapControlPointsNV, or GetMapAttribParameter{if}v is called where
index is greater than 15.

The error INVALID_VALUE is generated if MapControlPointsNV
or GetMapControlPointsNV is called where ustride or vstride is
negative.

The error INVALID_VALUE is generated if MapControlPointsNV is
called where uorder or vorder is less than one or greater than
MAX_EVAL_ORDER.

The error INVALID_OPERATION is generated if MapControlPointsNV is
called where target is EVAL_TRIANGULAR_2D_NV and uorder is not equal
to vorder.

The error INVALID_OPERATION is generated if MapControlPointsNV is
called where index is 0, one of the control points' fourth

NV_evaluators NVIDIA OpenGL Extension Specifications

 248

components is not equal to 1, and either uorder of vorder is greater
than MAX_RATIONAL_EVAL_ORDER_NV.

The error INVALID_OPERATION is generated if EvalMapsNV is called
where EVAL_VERTEX_ATTRIB0_NV is disabled.

New State

(add to table 6.22, page 212)

Get Value Type Get Command Initial Value Description Sec Attribute
------------------------------- ----------- ------------------------ ---------------- -------------- ----- ---------
EVAL_FRACTIONAL_TESSELLATION_NV B IsEnabled False fractional 5.7 eval/enable

tess. enable
EVAL_VERTEX_ATTRIBi_NV Bx16 IsEnabled True if i=0, attrib eval 5.7 eval/enable

false otherwise enable

EVAL_2D_NV R4x16x8*x8* GetMapControlPointsNV [0,0,0,1] control points 5.7 -
EVAL_TRIANGULAR_2D_NV R4x16x8*x8* GetMapControlPoints [0,0,0,1] control points 5.7 -

MAP_TESSELLATION_NV R4,R3 GetMapParameter*NV all 1.0 level of 5.7 eval
tessellation

MAP_ATTRIB_U_ORDER_NV Z8*x16x2 GetMapAttribParameter*NV 1 map order in 5.7 -
U direction

MAP_ATTRIB_V_ORDER_NV Z8*x16x2 GetMapAttribParameter*NV 1 map order in 5.7 -
V direction

New Implementation Dependent State

(add to table 6.24/6.25, page 214)

Get Value Type Get Command Minimum Value Description Sec Attribute
------------------------ ---- ------------ ------------- ----------- ----- ---------
MAX_MAP_TESSELLATION_NV Z+ GetIntegerv 256 maximum level 5.7 -

of tessellation
MAX_RATIONAL_EVAL_ORDER_NV Z+ GetIntegerv 4 maximum order 5.7 -

of rational
surfaces

Revision History

none yet

NVIDIA OpenGL Extension Specifications NV_fence

 249

Name

NV_fence

Name Strings

GL_NV_fence

Notice

Copyright NVIDIA Corporation, 2000, 2001.

IP Status

NVIDIA Proprietary.

Status

Shipping as of June 8, 2000 (version 1.0)

Version

April 13, 2001 (version 1.0)
$Id: //sw/main/docs/OpenGL/specs/GL_NV_fence.txt#11 $

Number

222

Dependencies

None

Overview

The goal of this extension is provide a finer granularity of
synchronizing GL command completion than offered by standard OpenGL,
which offers only two mechanism for synchronization: Flush and Finish.
Since Flush merely assures the user that the commands complete in a
finite (though undetermined) amount of time, it is, thus, of only
modest utility. Finish, on the other hand, stalls CPU execution
until all pending GL commands have completed. This extension offers
a middle ground - the ability to "finish" a subset of the command
stream, and the ability to determine whether a given command has
completed or not.

This extension introduces the concept of a "fence" to the OpenGL
command stream. Once the fence is inserted into the command stream, it
can be queried for a given condition - typically, its completion.
Moreover, the application may also request a partial Finish -- that is,
all commands prior to the fence will be forced to complete until control
is returned to the calling process. These new mechanisms allow for
synchronization between the host CPU and the GPU, which may be accessing
the same resources (typically memory).

NV_fence NVIDIA OpenGL Extension Specifications

 250

This extension is useful in conjunction with NV_vertex_array_range
to determine when vertex information has been pulled from the
vertex array range. Once a fence has been tested TRUE or finished,
all vertex indices issued before the fence must have been pulled.
This ensures that the vertex data memory corresponding to the issued
vertex indices can be safely modified (assuming no other outstanding
vertex indices are issued subsequent to the fence).

Issues

Do we need an IsFenceNV command?

RESOLUTION: Yes. Not sure who would use this, but it's in there.
Semantics currently follow the texture object definition --
that is, calling IsFenceNV before SetFenceNV will return FALSE.

Are the fences sharable between multiple contexts?

RESOLUTION: No.

Potentially this could change with a subsequent extension.

What other conditions will be supported?

Only ALL_COMPLETED_NV will be supported initially. Future extensions
may wish to implement additional fence conditions.

What is the relative performance of the calls?

Execution of a SetFenceNV is not free, but will not trigger a
Flush or Finish.

Is the TestFenceNV call really necessary? How often would this be used
compared to the FinishFenceNV call (which also flushes to ensure this
happens in finite time)?

It is conceivable that a user may use TestFenceNV to decide
which portion of memory should be used next without stalling
the CPU. An example of this would be a scenario where a single
AGP buffer is used for both static (unchanged for multiple frames)
and dynamic (changed every frame) data. If the user has written
dynamic data to all banks dedicated to dynamic data, and still
has more dynamic objects to write, the user would first want to
check if the first dynamic object has completed, before writing
into the buffer. If the object has not completed, instead of
stalling the CPU with a FinishFenceNV call, it would possibly
be better to start overwriting static objects instead.

What should happen if TestFenceNV is called for a name before SetFenceNV
is called?

We should probably generate an error, and return TRUE.
This follows the semantics for texture object names before
they are bound, in that they acquire their state upon binding.
We will arbitrarily return TRUE for consistency.

NVIDIA OpenGL Extension Specifications NV_fence

 251

What should happen if FinishFenceNV is called for a name before
SetFenceNV is called?

RESOLUTION: Generate an INVALID_OPERATION error because the
fence id does not exist yet. SetFenceNV must be called to create
a fence.

Do we need a mechanism to query which condition a given fence was
set with?

RESOLUTION: Yes, use glGetFenceivNV with FENCE_CONDITION_NV.

Should we allow these commands to be compiled within display list?
Which ones? How about within Begin/End pairs?

RESOLUTION: DeleteFencesNV, GenFencesNV, TestFenceNV, and
IsFenceNV are executed immediately while FinishFenceNV and
SetFenceNV are compiled. Do not allow any of these commands
within Begin/End pairs.

Can fences be used as a form of performance monitoring?

Yes, with some caveats. By setting and testing or finishing
fences, developers can measure the GPU latency for completing
GL operations. For example, developers might do the following:

start = getCurrentTime();
updateTextures();
glSetFenceNV(TEXTURE_LOAD_FENCE, GL_ALL_COMPLETED_NV);
drawBackground();
glSetFenceNV(DRAW_BACKGROUND_FENCE, GL_ALL_COMPLETED_NV);
drawCharacters();
glSetFenceNV(DRAW_CHARACTERS_FENCE, GL_ALL_COMPLETED_NV);

glFinishFenceNV(TEXTURE_LOAD_FENCE);
textureLoadEnd = getCurrentTime();

glFinishFenceNV(DRAW_BACKGROUND_FENCE);
drawBackgroundEnd = getCurrentTime();

glFinishFenceNV(DRAW_CHARACTERS_FENCE);
drawCharactersEnd = getCurrentTime();

printf("texture load time = %d\n", textureLoadEnd - start);
printf("draw background time = %d\n", drawBackgroundEnd - textureLoadEnd);
printf("draw characters time = %d\n", drawCharacters - drawBackgroundEnd);

Note that there is a small amount of overhead associated with
inserting each fence into the GL command stream. Each fence
causes the GL command stream to momentarily idle (idling the
entire GPU pipeline). The significance of this idling should
be small if there are a small nuber of fences and large amount
of intervening commands.

If the time between two fences is zero or very near zero,
it probably means that a GPU-CPU synchronization such as a
glFinish probably occurred. A glFinish is an explicit GPU-CPU
synchronization, but sometimes implicit GPU-CPU synchronizations
are performed by the driver.

NV_fence NVIDIA OpenGL Extension Specifications

 252

New Procedures and Functions

void GenFencesNV(sizei n, uint *fences);

void DeleteFencesNV(sizei n, const uint *fences);

void SetFenceNV(uint fence, enum condition);

boolean TestFenceNV(uint fence);

void FinishFenceNV(uint fence);

boolean IsFenceNV(uint fence);

void GetFenceivNV(uint fence, enum pname, int *params);

New Tokens

Accepted by the <condition> parameter of SetFenceNV:

ALL_COMPLETED_NV 0x84F2

Accepted by the <pname> parameter of GetFenceivNV:

FENCE_STATUS_NV 0x84F3
FENCE_CONDITION_NV 0x84F4

Additions to Chapter 5 of the OpenGL 1.2.1 Specification (Special Functions)

Add to the end of Section 5.4 "Display Lists"

"DeleteFencesNV, GenFencesNV, GetFenceivNV, TestFenceNV, and IsFenceNV
are not complied into display lists but are executed immediately."

After the discussion of Flush and Finish (Section 5.5) add a
description of the fence operations:

"5.X Fences

The command

void SetFenceNV(uint fence, enum condition);

sets a fence within the GL command stream, and assigns the fence a
status of FALSE and a condition as set by the condition argument.
The condition argument must be ALL_COMPLETED_NV. Once the fence's
condition is satisfied within the command stream, its state is changed
to TRUE. For a condition of ALL_COMPLETED_NV, this is completion of
the fence command. No other state is affected by execution of the
fence command. A fence's state can be queried by calling the command

boolean TestFenceNV(uint fence);

NVIDIA OpenGL Extension Specifications NV_fence

 253

The command

void FinishFenceNV(uint fence);

forces all GL commands prior to the fence to satisfy the condition
set within SetFenceNV, which, in this spec, is always completion.
FinishFenceNV does not return until all effects from these commands
on GL client and server state and the framebuffer are fully realized.

The fence must first be created before it can be used. The command

void GenFencesNV(sizei n, uint *fences);

returns n previously unused fence names in fences. These names
are marked as used, for the purposes of GenFencesNV only, but acquire
boolean state only when they have been set.

Fences are deleted by calling

void DeleteFencesNV(sizei n, const uint *fences);

fences contains n names of fences to be deleted. After a fence is
deleted, it has no state, and its name is again unused. Unused names
in fences are silently ignored.

If the fence passed to TestFenceNV or FinishFenceNV is not the name
of a fence, the error INVALID_OPERATION is generated. In this case,
TestFenceNV will return TRUE, for the sake of consistency.

State must be maintained to indicate which fence integers are
currently used or set. In the initial state, no indices are in use.
When a fence integer is set, the condition and status of the fence
are also maintained. The status is a boolean. The condition is
the value last set as the condition by SetFenceNV.

Once the status of a fence has been finished (via FinishFenceNV)
or tested and the returned status is TRUE (via either TestFenceNV
or GetFenceivNV querying the FENCE_STATUS_NV), the status remains
TRUE until the next SetFenceNV of the fence."

Additions to Chapter 6 of the OpenGL 1.2.1 Specification (State and State
Requests)

Insert new section after Section 6.1.10 "Minmax Query"

"6.1.11 Fence Query

The command

boolean IsFenceNV(uint fence);

return TRUE if texture is the name of a fence. If fence is not the
name of a fence, or if an error condition occurs, IsFenceNV returns
FALSE. A name returned by GenFencesNV, but not yet set via SetFenceNV,
is not the name of a fence.

NV_fence NVIDIA OpenGL Extension Specifications

 254

The command

void GetFenceivNV(uint fence, enum pname, int *params)

obtains the indicated fence state for the specified fence in the array
params. pname must be either FENCE_STATUS_NV or FENCE_CONDITION_NV.
The INVALID_OPERATION error is generated if the named fence does
not exist."

Additions to the GLX Specification

None

GLX Protocol

Seven new GL commands are added.

The following two rendering commands are sent to the sever as part
of a glXRender request:

SetFenceNV
2 12 rendering command length
2 4143 rendering command opcode
4 CARD32 fence
4 CARD32 condition

FinishFenceNV
2 8 rendering command length
2 4144 rendering command opcode
4 CARD32 fence

The remaining five commands are non-rendering commands. These
commands are sent separately (i.e., not as part of a glXRender or
glXRenderLarge request), using the glXVendorPrivateWithReply request:

DeleteFencesNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 4+n request length
4 1276 vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 INT32 n
n*4 LISTofCARD32 fences

NVIDIA OpenGL Extension Specifications NV_fence

 255

GenFencesNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 4 request length
4 1277 vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 INT32 n

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 n reply length
24 unused
n*4 LISTofCARD322 fences

IsFenceNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 4 request length
4 1278 vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 INT32 n

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 0 reply length
4 BOOL32 return value
20 unused
1 1 reply

TestFenceNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 4 request length
4 1279 vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 INT32 fence

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 0 reply length
4 BOOL32 return value
20 unused

NV_fence NVIDIA OpenGL Extension Specifications

 256

GetFenceivNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 5 request length
4 1280 vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 INT32 fence
4 CARD32 pname

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 m reply length, m=(n==1?0:n)
4 unused
4 CARD32 n

if (n=1) this follows:

4 INT32 params
12 unused

otherwise this follows:

16 unused
n*4 LISTofINT32 params

Note that polling with TestFenceNV when using indirect GLX rendering
will be considerably less efficient than using FinishFenceNV
because TestFenceNV is an X protocol round-trip while FinishFenceNV
synchronizes the GLX command stream without an X protocol round-trip.

Errors

INVALID_VALUE is generated if GenFencesNV parameter <n> is negative.

INVALID_VALUE is generated if DeleteFencesNV parameter <n> is negative.

INVALID_OPERATION is generated if the fence used in TestFenceNV or
FinishFenceNV is not the name of a fence.

INVALID_ENUM is generated if the condition used in SetFenceNV
is not ALL_COMPLETED_NV.

INVALID_OPERATION is generated if any of the commands defined in
this extension is executed between the execution of Begin and the
corresponding execution of End.

INVALID_OPERATION is generated if the named fence in GetFenceivNV
does not exist.

INVALID_VALUE is generated if DeleteFencesNV or GenFencesNV are
called where n is negative.

NVIDIA OpenGL Extension Specifications NV_fence

 257

New State

Table 6.X. Fence Objects.

Get value Type Get command Initial value Description Section Attribute
------------------ ---- ------------ ---------------------------- --------------- ------- ---------
FENCE_STATUS_NV B GetFenceivNV determined by 1st SetFenceNV Fence status 5.X -
FENCE_CONDITION_NV Z1 GetFenceivNV determined by 1st SetFenceNV Fence condition 5.X -

New Implementation Dependent State

None

GeForce Implementation Details

This section describes implementation-defined limits for GeForce:

SetFenceNV calls are not free. They should be used prudently,
and a "good number" of commands should be sent between calls to
SetFenceNV. Each fence insertion will cause the GPU's command
processing to go momentarily idle. Testing or finishing a fence
may require an one or more somewhat expensive uncached reads.

Do not leave a fence untested or unfinished for an extremely large
interval of intervening fences. If more than approximately 2
billion (specifically 2^31-1) intervening fences are inserted into
the GL command stream before a fence is tested or finished, said
fence may indicate an incorrect status. Note that certain GL
operations involving display lists, compiled vertex arrays, and
textures may insert fences implicitly for internal driver use.

In practice, this limitation is unlikely to be a practical
limitation if fences are finished or tested within a few frames
of their insertion into the GL command stream.

Revision History

November 13, 2000 - GLX enumerant values assigned

NV_fog_distance NVIDIA OpenGL Extension Specifications

258

Name

NV_fog_distance

Name Strings

GL_NV_fog_distance

Notice

Copyright NVIDIA Corporation, 1999, 2000, 2001.

IP Status

NVIDIA Proprietary.

Status

Shipping (version 1.0)

Version

NVIDIA Date: January 18, 2001
$Id: //sw/main/docs/OpenGL/specs/GL_NV_fog_distance.txt#14 $

Number

192

Dependencies

Written based on the wording of the OpenGL 1.2 specification.

Overview

Ideally, the fog distance (used to compute the fog factor as
described in Section 3.10) should be computed as the per-fragment
Euclidean distance to the fragment center from the eye. In practice,
implementations "may choose to approximate the eye-coordinate
distance from the eye to each fragment center by abs(ze). Further,
[the fog factor] f need not be computed at each fragment, but may
be computed at each vertex and interpolated as other data are."

This extension provides the application specific control over how
OpenGL computes the distance used in computing the fog factor.

The extension supports three fog distance modes: "eye plane absolute",
where the fog distance is the absolute planar distance from the eye
plane (i.e., OpenGL's standard implementation allowance as cited above);
"eye plane", where the fog distance is the signed planar distance
from the eye plane; and "eye radial", where the fog distance is
computed as a Euclidean distance. In the case of the eye radial
fog distance mode, the distance may be computed per-vertex and then
interpolated per-fragment.

The intent of this extension is to provide applications with better

NVIDIA OpenGL Extension Specifications NV_fog_distance

 259

control over the tradeoff between performance and fog quality.
The "eye planar" modes (signed or absolute) are straightforward
to implement with good performance, but scenes are consistently
under-fogged at the edges of the field of view. The "eye radial"
mode can provide for more accurate fog at the edges of the field of
view, but this assumes that either the eye radial fog distance is
computed per-fragment, or if the fog distance is computed per-vertex
and then interpolated per-fragment, then the scene must be
sufficiently tessellated.

Issues

What should the default state be?

IMPLEMENTATION DEPENDENT.

The EYE_PLANE_ABSOLUTE_NV mode is the most consistent with the way
most current OpenGL implementations are implemented without this
extension, but because this extension provides specific control
over a capability that core OpenGL is intentionally lax about,
the default fog distance mode is left implementation dependent.
We would not want a future OpenGL implementation that supports
fast EYE_RADIAL_NV fog distance to be stuck using something less.

Advice: If an implementation can provide fast per-pixel EYE_RADIAL_NV
support, then EYE_RADIAL_NV is the ideal default, but if not, then
EYE_PLANE_ABSOLUTE_NV is the most reasonable default mode.

How does this extension interact with the EXT_fog_coord extension?

If FOG_COORDINATE_SOURCE_EXT is set to FOG_COORDINATE_EXT,
then the fog distance mode is ignored. However, the fog
distance mode is used when the FOG_COORDINATE_SOURCE_EXT is
set to FRAGMENT_DEPTH_EXT. Essentially, when the EXT_fog_coord
functionality is enabled, the fog distance is supplied by the
user-supplied fog-coordinate so no automatic fog distance computation
is performed.

New Procedures and Functions

None

New Tokens

Accepted by the <pname> parameters of Fogf, Fogi, Fogfv, Fogiv,
GetBooleanv, GetIntegerv, GetFloatv, and GetDoublev:

FOG_DISTANCE_MODE_NV 0x855A

When the <pname> parameter of Fogf, Fogi, Foggv, and Fogiv, is
FOG_DISTANCE_MODE_NV, then the value of <param> or the value pointed
to by <params> may be:

EYE_RADIAL_NV 0x855B
EYE_PLANE
EYE_PLANE_ABSOLUTE_NV 0x855C

NV_fog_distance NVIDIA OpenGL Extension Specifications

 260

Additions to Chapter 2 of the 1.2 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the 1.2 Specification (Rasterization)

-- Section 3.10 "Fog"

Add to the end of the 3rd paragraph:

"If pname is FOG_DISTANCE_MODE_NV, then param must be, or params
must point to an integer that is one of the symbolic constants
EYE_PLANE_ABSOLUTE_NV, EYE_PLANE, or EYE_RADIAL_NV and this symbolic
constant determines how the fog distance should be computed."

Replace the 4th paragraph beginning "An implementation may choose
to approximate ..." with:

"When the fog distance mode is EYE_PLANE_ABSOLUTE_NV, the fog
distance z is approximated by abs(ze) [where ze is the Z component
of the fragment's eye position]. When the fog distance mode is
EYE_PLANE, the fog distance z is approximated by ze. When the
fog distance mode is EYE_RADIAL_NV, the fog distance z is computed
as the Euclidean distance from the center of the fragment in eye
coordinates to the eye position. Specifically:

z = sqrt(xe*xe + ye*ye + ze*ze);

In the EYE_RADIAL_NV fog distance mode, the Euclidean distance
is permitted to be computed per-vertex, and then interpolated
per-fragment."

Change the last paragraph to read:

"The state required for fog consists of a three valued integer to
select the fog equation, a three valued integer to select the fog
distance mode, three floating-point values d, e, and s, and RGBA fog
color and a fog color index, and a single bit to indicate whether
or not fog is enabled. In the initial state, fog is disabled,
FOG_MODE is EXP, FOG_DISTANCE_NV is implementation defined, d =
1.0, e = 1.0, and s = 0.0; Cf = (0,0,0,0) and if = 0."

Additions to Chapter 4 of the 1.2 Specification (Per-Fragment Operations
and the Frame Buffer)

None

Additions to Chapter 5 of the 1.2 Specification (Special Functions)

None

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)

None

NVIDIA OpenGL Extension Specifications NV_fog_distance

 261

Additions to the GLX Specification

None

Errors

INVALID_ENUM is generated when Fog is called with a <pname> of
FOG_DISTANCE_MODE_NV and the value of <param> or what is pointed
to by <params> is not one of EYE_PLANE_ABSOLUTE_NV, EYE_PLANE,
or EYE_RADIAL_NV.

New State

(table 6.8, p198) add the entry:

Get Value Type Get Command Initial Value Description Sec Attribute
-------------------- ---- ----------- --------------- ----------- ----- ---------
FOG_DISTANCE_MODE_NV Z3 GetIntegerv implementation Determines how 3.10 fog

dependent fog distance
is computed

New Implementation State

None

NV_light_max_exponent NVIDIA OpenGL Extension Specifications

262

Name

NV_light_max_exponent

Name Strings

GL_NV_light_max_exponent

Notice

Copyright NVIDIA Corporation, 1999, 2000.

Version

May 20, 1999

Number

189

Dependencies

None

Overview

Default OpenGL does not permit a shininess or spot exponent over
128.0. This extension permits implementations to support and
advertise a maximum shininess and spot exponent beyond 128.0.

Note that extremely high exponents for shininess and/or spot light
cutoff will require sufficiently high tessellation for acceptable
lighting results.

Paul Deifenbach's thesis suggests that higher exponents are
necessary to approximate BRDFs with per-vertex ligthing and
multiple passes.

New Procedures and Functions

None

New Tokens

Accepted by the <pname> parameters of GetBooleanv, GetIntegerv,
GetFloatv, and GetDoublev:

MAX_SHININESS_NV 0x8504
MAX_SPOT_EXPONENT_NV 0x8505

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

In Table 2.7, change the srm range entry to read:

"(range: [0.0, value of MAX_SHININESS_NV])"

In Table 2.7, change the srli range entry to read:

NVIDIA OpenGL Extension Specifications NV_light_max_exponent

 263

"(range: [0.0, value of MAX_SPOT_EXPONENT_NV])"

Add to the end of the second paragraph in Section 2.13.2:

"The values of MAX_SHININESS_NV and MAX_SPOT_EXPONENT_NV are
implementation dependent, but must be equal or greater than 128."

Additions to Chapter 3 of the GL Specification (Rasterization)

None

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

None.

Additions to Chapter 5 of the GL Specification (Special Functions)

None

Additions to Chapter 6 of the GL Specification (State and State Requests)

None

Additions to the GLX Specification

None

GLX Protocol

None

Errors

INVALID_VALUE is generated by Material if enum is SHININESS and the
shininess param is greater than the MAX_SHININESS_NV.

INVALID_VALUE is generated by Material if enum is SPOT_EXPONENT and
the shininess param is greater than the MAX_SPOT_EXPONENT_NV.

New State

None.

New Implementation Dependent State

NV_light_max_exponent NVIDIA OpenGL Extension Specifications

 264

(table 6.24, p214) add the following entries:

Minimum
Get Value Type Get Command Value Description Sec Attribute
---------------------- ---- ----------- -------- ---------------- ------- ---------
MAX_SHININESS_NV Z+ GetIntegerv 128 Maximum 2.13.2 -

shininess for
specular lighting

MAX_SPOT_EXPONENT_NV Z+ GetIntegerv 128 Maximum 2.13.2 -
exponent for
spot lights

NVIDIA Implementation Details

NVIDIA's Release 4 drivers incorrectly and accidently advertised this
extension with an "EXT" prefix instead of an "NV" prefix. Release 5
and later drivers correctly advertise this extension with an "NV"
extension.

Revision History

5/20/00 - earlier versions of this specification had the incorrect
enumerant values which did not match NVIDIA's driver implementation.

NVIDIA OpenGL Extension Specifications NV_multisample_filter_hint

 265

Name

NV_multisample_filter_hint

Name Strings

GL_NV_multisample_filter_hint

Notice

Copyright NVIDIA Corporation, 2001.

IP Status

NVIDIA Proprietary.

Status

Shipping, May 2001

Version

NVIDIA Date: May 16, 2001
$Id: //sw/main/docs/OpenGL/specs/GL_NV_multisample_filter_hint.txt#2 $

Number

??

Dependencies

Written based on the OpenGL 1.2.1 specification.

Requires ARB_multisample.

Overview

OpenGL multisampling typically assumes that the samples of a given
pixel are weighted uniformly and averaged to compute the pixel's
resolved color. This extension provides a hint that permits
implementations to provide an alternative method of resolving the
color of multisampled pixels.

As an example of such an alternative method, NVIDIA's GeForce3 GPU
provides a technique known as Quincunx filtering. This technique
is used in two-sample multisampling, but it blends the pixel's two
samples and three additional samples from adjacent pixels. The sample
pattern is analogous to the 5 pattern on a die. The quality of this
technique is widely regarded as comparable to 4 sample multisampling.

Issues

Is the glHint mechanism the right mechanism to expose this functionality?

RESOLUTION: Yes. Multisample filtering quality is subject to
the kinds of variations that the glHint was intended to control.

NV_multisample_filter_hint NVIDIA OpenGL Extension Specifications

 266

Arguably, the glHint mechanism only provides two definite settings:
GL_FASTEST and GL_NICEST while there may be many different
techniques for controlling multisample filtering quality.
We expect hardware to support only one or two techniques rather
than a multitude of nearly indistinguishable sampling techniques.

When does changing the multisampling filter hint take effect?

RESOLUTION: It may not be until the next swap buffers or glClear
operation that the multisample hint actually takes effect.
This may be implementation dependent.

What is the meaning of GL_DONT_CARE for the multisample hint?

RESOLUTION: By default, NVIDIA expects to treat GL_DONT_CARE
the same as GL_FASTEST. However, the meaning of GL_DONT_CARE
for this hint may be subject to a registry (or environment) setting,
possibly settable through a control panel.

Does GL_NICEST require Quincunx filtering?

RESOLUTION: No. NVIDIA's GeForce3 Quincunx filtering is one
possible technique that may be used to implement the GL_NICEST
setting, but future GPUs may use other techniques.

Can the meaning of the multisample hint vary depending on the number
of samples of the drawable?

RESOLUTION: Yes.

The following describes how GeForce3 uses the multisample hint:

When using 2-sample multisampling with GeForce3, the multisample
filter hint affects multisample filtering as follows: GL_NICEST uses
5-tap Quincunx multisample filtering while GL_FASTEST uses standard
even-weighted 2-tap multisample filtering of the pixel's 2 samples.

When using 4-sample multisampling with GeForce3, the multisample
filter hint affects multisample filtering as follows: GL_NICEST
uses 9-tap 3x3 multisample filtering while GL_FASTEST uses standard
even-weighted 4-tap multisample filtering of the pixel's 4 samples.

What is the difference between a "tap" and a "sample"?

In the context of multisample filtering, a sample is
a subpixel frame buffer sample containing color, depth, and
stencil information. A tap is a source of data for filtering.
Typically, samples are filtered by evenly weighting all the samples
belonging to a pixel. In this case, the number of taps for the
filter is equal to the number of samples for the pixel. In other
filtering schemes, the number of taps and samples may not be equal
(and potentially not evenly weighted as well). For example,
GeForce3's quincunx filtering uses 5 taps even though each pixel
has only 2 multisample samples. Three of the five taps source
samples outside the pixel's footprint of two samples.

NVIDIA OpenGL Extension Specifications NV_multisample_filter_hint

 267

Should the multisample filtering technique be determined by the
visual/PFD rather than OpenGL rendering context state?

RESOLUTION: No. The number of multisample samples per pixel that
a window has is a property of the visual/PFD, but the filtering
technique does not have to be defined up-front at when the pixel
format is set.

While not quite consistent with the way ARB_multisample is specified,
NVIDIA uses the SwapBuffers operation as a trigger for downsampling
multisample sample buffers (other operations such as glReadPixels
also trigger downsampling). But a SwapBuffers operation can be
requested without a current OpenGL rendering context. What happens
when a SwapBuffers operation is performed with no current OpenGL
rendering context?

RESOLUTION: The multisample filter hint is treated as GL_DONT_CARE
in this case. Applications that want the multisample filter hint
to apply to their BufferSwap operation should perform the BufferSwap
operation while bound to an OpenGL rendering context.

New Procedures and Functions

None

New Tokens

Accepted by the <target> parameter of Hint and by the <pname>
parameter of GetBooleanv, GetIntegerv, GetFloatv, and GetDoublev:

MULTISAMPLE_FILTER_HINT_NV 0x8534

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

None

Additions to Chapter 3 of the GL Specification (Rasterization)

None

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

None

Additions to Chapter 5 of the GL Specification (Special Functions)

-- Section 5.6 "Hints"

Replace the description of hint targets in the first paragraph with:

"target may be one of PERSPECTIVE_HINT, indicating the desired
quality of parameter interpolation; POINT_SMOOTH_HINT, indicating the
desired sampling quality of points; LINE_SMOOTH_HINT, indicating the
desired sampling quality of lines; POLYGON_SMOOTH_HINT, indicating
the desired sampling quality of polygons; FOG_HINT, indicating
whether fog calculations are done per pixel or per vertex; and

NV_multisample_filter_hint NVIDIA OpenGL Extension Specifications

 268

MULTISAMPLE_FILTER_HINT, indicating the desired quality of multisample
filtering. The MULTISAMPLE_FILTER_HINT is ignored if the frame buffer
has no multisample samples. When NICEST (or possibly DONT_CARE)
multisample filtering is requested and the frame buffer supports
multisampling, the multisample filter pattern may involve samples
outside the pixel's sample set. The exact NICEST (or possibly
DONT_CARE) multisample filtering technique used is implementation
dependent and may vary with the number of multisample samples
supported."

Additions to Chapter 6 of the GL Specification (State and State Requests)

None

Additions to the GLX, WGL, and AGL Specification

Add the following to the description of what happens at SwapBuffers
time.

"When a SwapBuffers operation is performed by a thread without
a current OpenGL rendering context and the target drawable to be
swapped is multisampled, any multisample filtering operation that
occurs should be done as if the GL_MULTISAMPLE_FILTER_HINT value is
set to GL_DONT_CARE."

GLX Protocol

None

Errors

None

New State

(table 6.23, p213) add the following entry:

Get Value Type Get Command Initial Value Description Sec Attribute
---------------------------- ---- ----------- ------------- ----------- ------ --------------
MULTISAMPLE_FILTER_HINT_NV Z3 GetIntegerv DONT_CARE Multisample filter 5.6 hint

quality hint

Revision History

None

NVIDIA OpenGL Extension Specifications NV_packed_depth_stencil

 269

Name

NV_packed_depth_stencil

Name Strings

GL_NV_packed_depth_stencil

Notice

Copyright NVIDIA Corporation, 2000, 2001.

IP Status

NVIDIA Proprietary.

Version

NVIDIA Date: January 18, 2001
$Id: //sw/main/docs/OpenGL/specs/GL_NV_packed_depth_stencil.txt#6 $

Number

??

Dependencies

Written based on the wording of the OpenGL 1.2.1 specification.

SGIX_depth_texture affects the definition of this extension.

Overview

Many OpenGL implementations have chosen to interleave the depth and
stencil buffers into one buffer, often with 24 bits of depth
precision and 8 bits of stencil data. 32 bits is more than is needed
for the depth buffer much of the time; a 24-bit depth buffer, on the
other hand, requires that reads and writes of depth data be unaligned
with respect to power-of-two boundaries. On the other hand, 8 bits
of stencil data is more than sufficient for most applications, so it
is only natural to pack the two buffers into a single buffer with
both depth and stencil data. OpenGL never provides direct access to
the buffers, so the OpenGL implementation can provide an interface to
applications where it appears the one merged buffer is composed of
two logical buffers.

One disadvantage of this scheme is that OpenGL lacks any means by
which this packed data can be handled efficiently. For example, when
an application reads from the 24-bit depth buffer, using the type
GL_UNSIGNED_SHORT will lose 8 bits of data, while GL_UNSIGNED_INT has
8 too many. Both require expensive format conversion operations. A
24-bit format would be no more suitable, because it would also suffer
from the unaligned memory accesses that made the standalone 24-bit
depth buffer an unattractive proposition in the first place.

NV_packed_depth_stencil NVIDIA OpenGL Extension Specifications

 270

Many applications, such as parallel rendering applications, may also
wish to draw to or read back from both the depth and stencil buffers
at the same time. Currently this requires two separate operations,
reducing performance. Since the buffers are interleaved, drawing to
or reading from both should be no more expensive than using just one;
in some cases, it may even be cheaper.

This extension provides a new data format, GL_DEPTH_STENCIL_NV, that
can be used with the glDrawPixels, glReadPixels, and glCopyPixels
commands, as well as a packed data type, GL_UNSIGNED_INT_24_8_NV,
that is meant to be used with GL_DEPTH_STENCIL_NV. No other formats
are supported with GL_DEPTH_STENCIL_NV. If SGIX_depth_texture is
supported, GL_DEPTH_STENCIL_NV/GL_UNSIGNED_INT_24_8_NV data can also
be used for textures; this provides a more efficient way to supply
data for a 24-bit depth texture.

GL_DEPTH_STENCIL_NV data, when passed through the pixel path,
undergoes both depth and stencil operations. The depth data is
scaled and biased by the current GL_DEPTH_SCALE and GL_DEPTH_BIAS,
while the stencil data is shifted and offset by the current
GL_INDEX_SHIFT and GL_INDEX_OFFSET. The stencil data is also put
through the stencil-to-stencil pixel map.

glDrawPixels of GL_DEPTH_STENCIL_NV data operates similarly to that
of GL_STENCIL_INDEX data, bypassing the OpenGL fragment pipeline
entirely, unlike the treatment of GL_DEPTH_COMPONENT data. The
stencil and depth masks are applied, as are the pixel ownership and
scissor tests, but all other operations are skipped.

glReadPixels of GL_DEPTH_STENCIL_NV data reads back a rectangle from
both the depth and stencil buffers.

glCopyPixels of GL_DEPTH_STENCIL_NV data copies a rectangle from
both the depth and stencil buffers. Like glDrawPixels, it applies
both the stencil and depth masks but skips the remainder of the
OpenGL fragment pipeline.

glTex[Sub]Image[1,2,3]D of GL_DEPTH_STENCIL_NV data loads depth data
into a depth texture. glGetTexImage of GL_DEPTH_STENCIL_NV data can
be used to retrieve depth data from a depth texture.

Issues

* Depth data has a format of GL_DEPTH_COMPONENT, and stencil data
has a format of GL_STENCIL_INDEX. So shouldn't the enumerant be
called GL_DEPTH_COMPONENT_STENCIL_INDEX_NV?

RESOLVED: No, this is fairly clumsy.

* Should we support CopyPixels?

RESOLVED: Yes. Right now copying stencil data means masking off
just the stencil bits, while copying depth data has strange
unintended consequences (fragment operations) and is difficult to
implement. It is easy and useful to add CopyPixels support.

NVIDIA OpenGL Extension Specifications NV_packed_depth_stencil

 271

* Should we support textures?

RESOLVED: Yes. 24-bit depth textures have no good format without
this extension.

* Should the depth/stencil format support other standard types,
like GL_FLOAT or GL_UNSIGNED_INT?

RESOLVED: No, this extension is designed to be minimalist.
Supporting more types gains little because the new types will
just require data format conversions. Our goal is to match the
native format of the buffer, not add broad new classes of
functionality.

* Should the 24/8 format be supported for other formats, such as
LUMINANCE_ALPHA? Should we support an 8/24 reversed format as
well?

RESOLVED: No and no, this adds implementation burden and gains us
little, if anything.

* Does anything need to be written in the spec on the topic of
using GL_DEPTH_STENCIL_NV formats for glTexImage* or
glGetTexImage?

RESOLVED: No. Since the SGIX_depth_texture extension spec was
never actually written (the additions to Section 3 are "XXX -
lots" and a few brief notes on how it's intended to work), it's
impossible to write what would essentially be amendments to that
spec.

However, it is worthwhile to mention here the intended behavior.
When downloading into a depth component texture, the stencil
indices are ignored, and when retrieving a depth component
texture, the stencil indices obtained from the texture are
undefined.

* Should anything be said about performance?

RESOLVED: No, not in the spec. However, common sense should
apply. Apps should probably check that GL_DEPTH_BITS is 24 and
that GL_STENCIL_BITS is 8 before using either the new DrawPixels
or ReadPixels formats. CopyPixels is probably safe regardless of
the size of either buffer. The 24/8 format should probably only
be used with 24-bit depth textures.

New Procedures and Functions

None.

NV_packed_depth_stencil NVIDIA OpenGL Extension Specifications

 272

New Tokens

Accepted by the <format> parameter of DrawPixels, ReadPixels,
TexImage1D, TexImage2D, TexImage3D, TexSubImage1D, TexSubImage2D,
TexSubImage3D, and GetTexImage, and by the <type> parameter of
CopyPixels:

DEPTH_STENCIL_NV 0x84F9

Accepted by the <type> parameter of DrawPixels, ReadPixels,
TexImage1D, TexImage2D, TexImage3D, TexSubImage1D, TexSubImage2D,
TexSubImage3D, and GetTexImage:

UNSIGNED_INT_24_8_NV 0x84FA

Additions to Chapter 2 of the OpenGL 1.2.1 Specification (OpenGL Operation)

None.

Additions to Chapter 3 of the OpenGL 1.2.1 Specification (Rasterization)

Update the first paragraph on page 90 to say:

"... If the GL is in color index mode and <format> is not one of
COLOR_INDEX, STENCIL_INDEX, DEPTH_COMPONENT, or DEPTH_STENCIL_NV,
then the error INVALID_OPERATION occurs. If <type> is BITMAP and
<format> is not COLOR_INDEX or STENCIL_INDEX then the error
INVALID_ENUM occurs. If <format> is DEPTH_STENCIL_NV and <type> is
not UNSIGNED_INT_24_8_NV then the error INVALID_ENUM occurs. Some
additional constraints on the combinations of <format> and <type>
values that are accepted is discussed below."

Add a row to Table 3.5 (page 91):

type Parameter GL Type Special
--
...
UNSIGNED_INT_2_10_10_10_REV uint Yes
UNSIGNED_INT_24_8_NV uint Yes

Add a row to Table 3.6 (page 92):

Format Name Element Meaning and Order Target Buffer
--
...
DEPTH_COMPONENT Depth Depth
DEPTH_STENCIL_NV Depth and Stencil Index Depth and Stencil
...

Add a row to Table 3.8 (page 94):

type Parameter GL Type Components Pixel Formats
--
...
UNSIGNED_INT_2_10_10_10_REV uint 4 RGBA,BGRA
UNSIGNED_INT_24_8_NV uint 2 DEPTH_STENCIL_NV

NVIDIA OpenGL Extension Specifications NV_packed_depth_stencil

 273

Update the last paragraph on page 93 to say:

"Calling DrawPixels with a <type> of UNSIGNED_BYTE_3_3_2, ...,
UNSIGNED_INT_2_10_10_10_REV, or UNSIGNED_INT_24_8_NV is a special
case in which all the components of each group are packed into a
single unsigned byte, unsigned short, or unsigned int, depending on
the type."

Add the following diagram to Table 3.11 (page 97):

UNSIGNED_INT_24_8_NV

31 30 29 28 27 26 ... 12 11 10 9 8 7 6 5 4 3 2 1 0
+----------------------------------+---------------+
| 1st Component | 2nd Component |
+----------------------------------+---------------+

Add a row to Table 3.12 (page 98):

Format | 1st 2nd 3rd 4th
-----------------+-------------------------------
... |
BGRA | blue green red alpha
DEPTH_STENCIL_NV | depth stencil N/A N/A

Add the following paragraph to the end of the section "Conversion to
floating-point" (page 99):

"For groups of components that contain both standard components and
index elements, such as DEPTH_STENCIL_NV, the index elements are not
converted."

Update the last paragraph in the section "Conversion to Fragments"
(page 100) to say:

"... Groups arising from DrawPixels with a <format> of STENCIL_INDEX
or DEPTH_STENCIL_NV are treated specially and are described in
section 4.3.1."

Update the first paragraph of section 3.6.5 "Pixel Transfer
Operations" (pages 100-101) to say:

"The GL defines five kinds of pixel groups:

1. RGBA component: Each group comprises four color components:
red, green, blue, and alpha.

2. Depth component: Each group comprises a single depth component.
3. Color index: Each group comprises a single color index.
4. Stencil index: Each group comprises a single stencil index.
5. Depth/stencil: Each group comprises a depth component and a

stencil index."

Update the first paragraph in the section "Arithmetic on Components"
(page 101) to say:

"This step applies only to RGBA component and depth component groups
and the depth components in depth/stencil groups. ..."

NV_packed_depth_stencil NVIDIA OpenGL Extension Specifications

 274

Update the first paragraph in the section "Arithmetic on Indices"
(page 101) to say:

"This step applies only to color index and stencil index groups and
the stencil indices in depth/stencil groups. ..."

Update the first paragraph in the section "Stencil Index Lookup"
(page 102) to say:

"This step applies only to stencil index groups and the stencil
indices in depth/stencil groups. ..."

Additions to Chapter 4 of the OpenGL 1.2.1 Specification (Per-Fragment
Operations and the Frame Buffer)

Replace section 4.3.1 "Writing to the Stencil Buffer" (page 156) with
the following:

"4.3.1 Writing to the Stencil Buffer or to the Depth and Stencil
Buffers

The operation of DrawPixels was described in section 3.6.4, except if
the <format> argument was STENCIL_INDEX or DEPTH_STENCIL_NV. In this
case, all operations described for DrawPixels take place, but window
(x,y) coordinates, each with the corresponding stencil index or depth
value and stencil index, are produced in lieu of fragments. Each
coordinate-data pair is sent directly to the per-fragment operations,
bypassing the texture, fog, and antialiasing application stages of
rasterization. Each pair is then treated as a fragment for purposes
of the pixel ownership and scissor tests; all other per-fragment
operations are bypassed. Finally, each stencil index is written to
its indicated location in the framebuffer, subject to the current
setting of StencilMask, and if a depth component is present, if the
setting of DepthMask is not FALSE, it is also written to the
framebuffer; the setting of DepthTest is ignored.

The error INVALID_OPERATION results if there is no stencil buffer, or
if the <format> argument was DEPTH_STENCIL_NV, if there is no depth
buffer."

Add the following paragraph after the second paragraph of the
section "Obtaining Pixels from the Framebuffer" (page 158):

"If the <format> is DEPTH_STENCIL_NV, then values are taken from both
the depth buffer and the stencil buffer. If there is no depth buffer
or if there is no stencil buffer, the error INVALID_OPERATION
occurs. If the <type> parameter is not UNSIGNED_INT_24_8_NV, the
error INVALID_ENUM occurs."

Update the third paragraph on page 159 to say:

"If the GL is in RGBA mode, and <format> is one of RED, GREEN, BLUE,
ALPHA, RGB, RGBA, BGR, BGRA, LUMINANCE, or LUMINANCE_ALPHA, then red,
green, blue, and alpha values are obtained from the framebuffer

NVIDIA OpenGL Extension Specifications NV_packed_depth_stencil

 275

Update the first sentence of the section "Conversion of RGBA values"
(page 159) to say:

"This step applies only if the GL is in RGBA mode, and then only if
<format> is neither STENCIL_INDEX, DEPTH_COMPONENT, nor
DEPTH_STENCIL_NV."

Update the section "Conversion of Depth values" (page 159) to say:

"This step applies only if <format> is DEPTH_COMPONENT or
DEPTH_STENCIL_NV. Each element taken from the depth buffer is taken
to be a fixed-point value in [0,1] with m bits, where m is the number
of bits in the depth buffer (see section 2.10.1)."

Add a row to Table 4.6 (page 160):

type Parameter Index Mask

... ...
INT 2^31-1
UNSIGNED_INT_24_8_NV 2^8-1

Add the following paragraph to the end of the section "Final
Conversion" (page 160):

"For a depth/stencil pair, first the depth component is clamped to
[0,1]. Then the appropriate conversion formula from Table 4.7 is
applied to the depth component, while the index is masked by the
value given in Table 4.6 or converted to a GL float data type if the
<type> is FLOAT."

Add a row to Table 4.7 (page 161):

type Parameter GL Type Component Conversion ...
--
...
UNSIGNED_INT_2_10_10_10_REV uint c = (2^N - 1)f
UNSIGNED_INT_24_8_NV uint c = (2^N - 1)f (depth only)

Update the second and third paragraphs of section 4.3.3 (page 162) to
say:

"<type> is a symbolic constant that must be one of COLOR, STENCIL,
DEPTH, or DEPTH_STENCIL_NV, indicating that the values to be
transfered are colors, stencil values, or depth values, respectively.
The first four arguments have the same interpretation as the
corresponding arguments to ReadPixels.

Values are obtained from the framebuffer, converted (if appropriate),
then subjected to the pixel transfer operations described in section
3.6.5, just as if ReadPixels were called with the corresponding
arguments. If the <type> is STENCIL, DEPTH, or DEPTH_STENCIL_NV,
then it is as if the <format> for ReadPixels were STENCIL_INDEX,
DEPTH_COMPONENT, or DEPTH_STENCIL_NV, respectively. If the <type> is
COLOR, then if the GL is in RGBA mode, it is as if the <format> were
RGBA, while if the GL is in color index mode, it is as if the
<format> were COLOR_INDEX."

NV_packed_depth_stencil NVIDIA OpenGL Extension Specifications

 276

Additions to Chapter 5 of the OpenGL 1.2.1 Specification (Special Functions)

None.

Additions to Chapter 6 of the OpenGL 1.2.1 Specification (State and
State Requests)

None.

GLX Protocol

None.

Errors

The error INVALID_ENUM is generated if DrawPixels or ReadPixels is
called where format is DEPTH_STENCIL_NV and type is not
UNSIGNED_INT_24_8_NV.

The error INVALID_OPERATION is generated if DrawPixels or ReadPixels
is called where type is UNSIGNED_INT_24_8_NV and format is not
DEPTH_STENCIL_NV.

The error INVALID_OPERATION is generated if DrawPixels or ReadPixels
is called where format is DEPTH_STENCIL_NV and there is not both a
depth buffer and a stencil buffer.

The error INVALID_OPERATION is generated if CopyPixels is called
where type is DEPTH_STENCIL_NV and there is not both a depth buffer
and a stencil buffer.

New State

None.

Revision History

none yet

NVIDIA OpenGL Extension Specifications NV_register_combiners

 277

Name

NV_register_combiners

Name Strings

GL_NV_register_combiners

Notice

Copyright NVIDIA Corporation, 1999, 2000, 2001.

IP Status

NVIDIA Proprietary.

Status

Shipping (version 1.4)

Version

NVIDIA Date: January 18, 2001 (version 1.4)
$Id: //sw/main/docs/OpenGL/specs/GL_NV_register_combiners.txt#44 $

Number

191

Dependencies

ARB_multitexture, assuming the value of MAX_ACTIVE_TEXTURES_ARB is
at least 2.

Written based on the wording of the OpenGL 1.2 specification with
the ARB_multitexture appendix E.

Overview

NVIDIA's next-generation graphics processor and its derivative designs
support an extremely configurable mechanism know as "register combiners"
for computing fragment colors.

The register combiner mechanism is a significant redesign of NVIDIA's
original TNT combiner mechanism as introduced by NVIDIA's RIVA
TNT graphics processor. Familiarity with the TNT combiners will
help the reader appreciate the greatly enhanced register combiners
functionality (see the NV_texture_env_combine4 OpenGL extension
specification for this background). The register combiner mechanism
has the following enhanced functionality:

The numeric range of combiner computations is from [-1,1]
(instead of TNT's [0,1] numeric range),

The set of available combiner inputs is expanded to include the
secondary color, fog color, fog factor, and a second combiner
constant color (TNT's available combiner inputs consist of
only zero, a single combiner constant color, the primary color,

NV_register_combiners NVIDIA OpenGL Extension Specifications

 278

texture 0, texture 1, and, in the case of combiner 1, the result
of combiner 0).

Each combiner variable input can be independently scaled and
biased into several possible numeric ranges (TNT can only
complement combiner inputs).

Each combiner stage computes three distinct outputs (instead
TNT's single combiner output).

The output operations include support for computing dot products
(TNT has no support for computing dot products).

After each output operation, there is a configurable scale and bias
applied (TNT's combiner operations builds in a scale and/or bias
into some of its combiner operations).

Each input variable for each combiner stage is fetched from any
entry in a combiner register set. Moreover, the outputs of each
combiner stage are written into the register set of the subsequent
combiner stage (TNT could only use the result from combiner 0 as
a possible input to combiner 1; TNT lacks the notion of an
input/output register set).

The register combiner mechanism supports at least two general combiner
stages and then a special final combiner stage appropriate for
applying a color sum and fog computation (TNT provides two simpler
combiner stages, and TNT's color sum and fog stages are hard-wired
and not subsumed by the combiner mechanism as in register combiners).

The register combiners fit into the OpenGL pipeline as a rasterization
processing stage operating in parallel to the traditional OpenGL
texture environment, color sum, AND fog application. Enabling this
extension bypasses OpenGL's existing texture environment, color sum,
and fog application processing and instead use the register combiners.
The combiner and texture environment state is orthogonal so
modifying combiner state does not change the traditional OpenGL
texture environment state and the texture environment state is
ignored when combiners are enabled.

OpenGL application developers can use the register combiner mechanism
for very sophisticated shading techniques. For example, an
approximation of Blinn's bump mapping technique can be achieved with
the combiner mechanism. Additionally, multi-pass shading models
that require several passes with unextended OpenGL 1.2 functionality
can be implemented in several fewer passes with register combiners.

Issues

Should we expose the full register combiners mechanism?

RESOLUTION: NO. We ignore small bits of NV10 hardware
functionality. The texture LOD input is ignored. We also ignore
the inverts on input to the EF product.

NVIDIA OpenGL Extension Specifications NV_register_combiners

 279

Do we provide full gets for all the combiner state?

RESOLUTION: YES.

Do we parameterize combiner input and output updates to avoid
enumerant explosions?

RESOLUTION: YES. To update a combiner stage input variable, you
need to specify the <stage>, <portion>, and <variable>. To update a
combiner stage output operation, you need to specify the <stage> and
<portion>. This does mean that we need to add special Get routines
that are likewise parameterized. Hence, GetCombinerInputParameter*,
GetCombinerOutputParameter*, and GetFinalCombinerInputParameter*.

Is the register combiner functionality a super-set of the TNT combiner
functionality?

Yes, but only in the sense of being a computational super-set.
All computations performed with the TNT combiners can be performed
with the register combiners, but the sequence of operations necessary
to configure an identical computational result can be quite
different.

For example, the TNT combiners have an operation that includes
a final complement operation. The register combiners can perform
range mappings only on inputs, but not on outputs. The register
combiners can mimic the TNT operation with a post-operation
complement only by taking pains to complement on input any uses
of the output in later combiner stages.

What this does mean is that NV10's hardware functionality
will permit support for both the NV_register_combiners AND
NV_texture_env_combine4 extensions.

Note the existance of an "speclit" input complement bit supported
by NV10 (but not accessible through the NV_register_combiners extensions).

Should we say anything about the precision of the combiner
computations?

RESOLUTION: NO. The spec is written as if the computations are
done on floating point values ranging from -1.0 to 1.0 (clamping is
specified where this range is exceeded). The fact that NV10 does
the computations as 9-bit signed fixed point is not mentioned in
the spec. This permits a future design to support more precision
or use a floating pointing representation.

What should the initial combiner state be?

RESOLUTION: See tables NV_register_combiners.4 and
NV_register_combiners.5. The default state has one general combiner
stage active that modulates the incoming color with texture 0.
The final combiner is setup initially to implement OpenGL 1.2's
standard color sum and fog stages.

What should happen to the TEXTURE0_ARB and TEXTUER1_ARB inputs if
one or both textures are disabled?

NV_register_combiners NVIDIA OpenGL Extension Specifications

 280

RESOLUTION: The value of these inputs is undefined.

What do the TEXTURE0_ARB and TEXTURE1_ARB inputs correspond to?
Does the number correspond to the absolute texture unit number
or is the number based on how many textures are enabled (ie,
TEXTURE_ARB0 would correspond to the 2nd texture unit if the
2nd unit is enabled, but the 1st is disabled).

RESOLUTION: The absolute texture unit.

This should be a lot less confusing to the programmer than having
the texture inputs switch textures if texture 0 is disabled.

Note that the proposed hardware actually determines the TEXTURE0
and TEXTURE1 input based on which texture is enabled. This means
it is up to the ICD to properly update the combiner state when just
one texture is enabled. Since we will already have to do this to
track the standard OpenGL texture environment for ARB_multitexture,
we can do it for this extension too.

Should the combiners state be PushAttrib/PopAttrib'ed along with
the texture state?

RESOLUTION: YES.

Should we advertise the LOD fractional input to the combiners?

RESOLUTION: NO.

There will be a performance impact when two combiner stages are
enabled versus just one stage. Should we mention that somewhere?

RESOLUTION: NO. (But it is worth mentioning in this issues
section.)

Should the scale and bias for the CombinerOutputNV be indicated
by enumerants or specified outright as floats?

RESOLUTION: ENUMERANTS. While some future combiners might
support an arbitrary scale & bias specified as floats, NV10 just
does the enumerated options.

Should a dot product be computed in parralel with the sum of
products?

RESOLUTION: NO. Language has been added ot the CombinerOutputNV
discussion saying that if either <abDotProduct> or <cdDotProduct>
is true, then <sumOutput> must be GL_DISCARD.

The rationale for this is that we want to minimize the number of
adders that are required to ease a transition to floating point.

New Procedures and Functions

void CombinerParameterfvNV(GLenum pname,
const GLfloat *params);

NVIDIA OpenGL Extension Specifications NV_register_combiners

 281

void CombinerParameterivNV(GLenum pname,
const GLint *params);

void CombinerParameterfNV(GLenum pname,
GLfloat param);

void CombinerParameteriNV(GLenum pname,
GLint param);

void CombinerInputNV(GLenum stage,
GLenum portion,
GLenum variable,
GLenum input,
GLenum mapping,
GLenum componentUsage);

void CombinerOutputNV(GLenum stage,
GLenum portion,
GLenum abOutput,
GLenum cdOutput,
GLenum sumOutput,
GLenum scale,
GLenum bias,
GLboolean abDotProduct,
GLboolean cdDotProduct,
GLboolean muxSum);

void FinalCombinerInputNV(GLenum variable,
GLenum input,
GLenum mapping,
GLenum componentUsage);

void GetCombinerInputParameterfvNV(GLenum stage,
GLenum portion,
GLenum variable,
GLenum pname,
GLfloat *params);

void GetCombinerInputParameterivNV(GLenum stage,
GLenum portion,
GLenum variable,
GLenum pname,
GLint *params);

void GetCombinerOutputParameterfvNV(GLenum stage,
GLenum portion,
GLenum pname,
GLfloat *params);

void GetCombinerOutputParameterivNV(GLenum stage,
GLenum portion,
GLenum pname,
GLint *params);

NV_register_combiners NVIDIA OpenGL Extension Specifications

 282

void GetFinalCombinerInputParameterfvNV(GLenum variable,
GLenum pname,
GLfloat *params);

void GetFinalCombinerInputParameterivNV(GLenum variable,
GLenum pname,
GLfloat *params);

New Tokens

Accepted by the <cap> parameter of Enable, Disable, and IsEnabled,
and by the <pname> parameter of GetBooleanv, GetIntegerv,
GetFloatv, and GetDoublev:

REGISTER_COMBINERS_NV 0x8522

Accepted by the <stage> parameter of CombinerInputNV,
CombinerOutputNV, GetCombinerInputParameterfvNV,
GetCombinerInputParameterivNV, GetCombinerOutputParameterfvNV,
and GetCombinerOutputParameterivNV:

COMBINER0_NV 0x8550
COMBINER1_NV 0x8551
COMBINER2_NV 0x8552
COMBINER3_NV 0x8553
COMBINER4_NV 0x8554
COMBINER5_NV 0x8555
COMBINER6_NV 0x8556
COMBINER7_NV 0x8557

Accepted by the <variable> parameter of CombinerInputNV,
GetCombinerInputParameterfvNV, and GetCombinerInputParameterivNV:

VARIABLE_A_NV 0x8523
VARIABLE_B_NV 0x8524
VARIABLE_C_NV 0x8525
VARIABLE_D_NV 0x8526

Accepted by the <variable> parameter of FinalCombinerInputNV,
GetFinalCombinerInputParameterfvNV, and
GetFinalCombinerInputParameterivNV:

VARIABLE_A_NV
VARIABLE_B_NV
VARIABLE_C_NV
VARIABLE_D_NV
VARIABLE_E_NV 0x8527
VARIABLE_F_NV 0x8528
VARIABLE_G_NV 0x8529

NVIDIA OpenGL Extension Specifications NV_register_combiners

 283

Accepted by the <input> parameter of CombinerInputNV:

ZERO (not new)
CONSTANT_COLOR0_NV 0x852A
CONSTANT_COLOR1_NV 0x852B
FOG (not new)
PRIMARY_COLOR_NV 0x852C
SECONDARY_COLOR_NV 0x852D
SPARE0_NV 0x852E
SPARE1_NV 0x852F
TEXTURE0_ARB (see ARB_multitexture)
TEXTURE1_ARB (see ARB_multitexture)

Accepted by the <mapping> parameter of CombinerInputNV:

UNSIGNED_IDENTITY_NV 0x8536
UNSIGNED_INVERT_NV 0x8537
EXPAND_NORMAL_NV 0x8538
EXPAND_NEGATE_NV 0x8539
HALF_BIAS_NORMAL_NV 0x853A
HALF_BIAS_NEGATE_NV 0x853B
SIGNED_IDENTITY_NV 0x853C
SIGNED_NEGATE_NV 0x853D

Accepted by the <input> parameter of FinalCombinerInputNV:

ZERO (not new)
CONSTANT_COLOR0_NV
CONSTANT_COLOR1_NV
FOG (not new)
PRIMARY_COLOR_NV
SECONDARY_COLOR_NV
SPARE0_NV
SPARE1_NV
TEXTURE0_ARB (see ARB_multitexture)
TEXTURE1_ARB (see ARB_multitexture)
E_TIMES_F_NV 0x8531
SPARE0_PLUS_SECONDARY_COLOR_NV 0x8532

Accepted by the <mapping> parameter of FinalCombinerInputNV:

UNSIGNED_IDENTITY_NV
UNSIGNED_INVERT_NV

Accepted by the <scale> parameter of CombinerOutputNV:

NONE (not new)
SCALE_BY_TWO_NV 0x853E
SCALE_BY_FOUR_NV 0x853F
SCALE_BY_ONE_HALF_NV 0x8540

Accepted by the <bias> parameter of CombinerOutputNV:

NONE (not new)
BIAS_BY_NEGATIVE_ONE_HALF_NV 0x8541

NV_register_combiners NVIDIA OpenGL Extension Specifications

 284

Accepted by the <abOutput>, <cdOutput>, and <sumOutput> parameter
of CombinerOutputNV:

DISCARD_NV 0x8530
PRIMARY_COLOR_NV
SECONDARY_COLOR_NV
SPARE0_NV
SPARE1_NV
TEXTURE0_ARB (see ARB_multitexture)
TEXTURE1_ARB (see ARB_multitexture)

Accepted by the <pname> parameter of GetCombinerInputParameterfvNV
and GetCombinerInputParameterivNV:

COMBINER_INPUT_NV 0x8542
COMBINER_MAPPING_NV 0x8543
COMBINER_COMPONENT_USAGE_NV 0x8544

Accepted by the <pname> parameter of GetCombinerOutputParameterfvNV
and GetCombinerOutputParameterivNV:

COMBINER_AB_DOT_PRODUCT_NV 0x8545
COMBINER_CD_DOT_PRODUCT_NV 0x8546
COMBINER_MUX_SUM_NV 0x8547
COMBINER_SCALE_NV 0x8548
COMBINER_BIAS_NV 0x8549
COMBINER_AB_OUTPUT_NV 0x854A
COMBINER_CD_OUTPUT_NV 0x854B
COMBINER_SUM_OUTPUT_NV 0x854C

Accepted by the <pname> parameter of CombinerParameterfvNV,
CombinerParameterivNV, GetBooleanv, GetDoublev, GetFloatv, and
GetIntegerv:

CONSTANT_COLOR0_NV
CONSTANT_COLOR1_NV

Accepted by the <pname> parameter of CombinerParameterfvNV,
CombinerParameterivNV, CombinerParameterfNV, CombinerParameteriNV,
GetBooleanv, GetDoublev, GetFloatv, and GetIntegerv:

NUM_GENERAL_COMBINERS_NV 0x854E
COLOR_SUM_CLAMP_NV 0x854F

Accepted by the <pname> parameter of GetFinalCombinerInputParameterfvNV
and GetFinalCombinerInputParameterivNV:

COMBINER_INPUT_NV
COMBINER_MAPPING_NV
COMBINER_COMPONENT_USAGE_NV

Accepted by the <pname> parameter of GetBooleanv, GetDoublev,
GetFloatv, and GetIntegerv:

MAX_GENERAL_COMBINERS_NV 0x854D

NVIDIA OpenGL Extension Specifications NV_register_combiners

 285

Additions to Chapter 2 of the 1.2 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the 1.2 Specification (Rasterization)

-- Figure 3.1 "Rasterization" (page 58)

+ Change the "Texturing" block to say "Texture Fetching".

+ Insert a new block between "Texture Fetching" and "Color Sum".
Name the new block "Texture Environment Application".

+ Insert a new block after "Texture Fetching". Name the new block
"Register Combiners Application".

+ The output of the "Texture Fetching" stage feeds to both "Texture
Environment Application" and "Register Combiners Application".

+ The input for "Color Sum" comes from "Texture Environment
Application".

+ The output to "Fragments" is switched (controlled by
Disable/Enable REGISTER_COMBINERS_NV) between the output of "Fog"
and "Register Combiners Application".

Essentially, when register combiners are enabled, the entire standard
texture environment application, color sum, and fog blocks are
replaced with the single register combiners block. [Note that this
is different from how the NV_texture_env_combine4 extension works;
that extension controls the texture environment application
block, but still uses the standard color sum and fog blocks.]

-- NEW Section 3.8.12 "Register Combiners Application"

"In parallel to the texture application, color sum, and fog processes
described in sections 3.8.10, 3.9, and 3.10, register combiners provide
a means of computing fcoc, the final combiner output color, for
each fragment generated by rasterization.

The register combiners consist of two or more general combiner stages
arranged in a fixed sequence ordered by each combiner stage's number.
An implementation supports a maximum number of general combiners
stages, which may be queried by calling GetIntegerv with the symbolic
constant MAX_GENERAL_COMBINERS_NV. Implementations must
support at least two general combiner stages. The general combiner
stages are named COMBINER0_NV, COMBINER1_NV, and so on.

Each general combiner in the sequence receives its inputs and
computes its outputs in an identical manner. At the end of the
sequence of general combiner stages, there is a final combiner stage
that operates in a different manner than the general combiner stages.
The general combiner operation is described first, followed by a
description of the final combiner operation.

Each combiner stage (the general combiner stages and the final
combiner stage) has an associated combiner register set. Each

NV_register_combiners NVIDIA OpenGL Extension Specifications

 286

combiner register set contains <n> RGBA vectors with components
ranging from -1.0 to 1.0 where <n> is 8 plus the maximum number
of active textures supported (that is, the implementation's value
for MAX_ACTIVE_TEXTURES_ARB). The combiner register set entries
are listed in the table NV_register_combiners.1.

[Table NV_register_combiners.1]

Initial Output
Register Name Value Reference Status
--------------------- ---------- ---------------- ---------
ZERO 0 - read only
CONSTANT_COLOR0_NV ccc0 Section 3.8.12.1 read only
CONSTANT_COLOR1_NV ccc1 Section 3.8.12.1 read only
FOG Cf Section 3.10 read only
PRIMARY_COLOR_NV cpri Section 2.13.1 read/write
SECONDARY_COLOR_NV csec Section 2.13.1 read/write
SPARE0_NV see below Section 3.8.12 read/write
SPARE1_NV undefined Section 3.8.12 read/write
TEXTURE0_ARB CT0 Figure E.2 read/write
TEXTURE1_ARB CT1 Figure E.2 read/write
TEXTURE<i>_ARB CT<i> Figure E.2 read/write

The register set of COMBINER0_NV, the first combiner stage,
is initialized as described in table NV_register_combiners.1.

The initial value of the alpha portion of register SECONDARY_COLOR_NV
is undefined. The initial value of the alpha portion of register
SPARE0_NV is the alpha component of texture 0 if texturing is
enabled for texture 0; however, the initial value of the RGB portion
SPARE0_NV is undefined. The initial value of the SPARE1_NV register
is undefined. The initial of registers TEXTURE0_ARB, TEXTURE1_ARB,
and TEXTURE<i>_ARB are undefined if texturing is not enabled for
textures 0, 1, and <i>, respectively.

The mapping of texture components to components of texture registers
is summarized in Table NV_register_combiners.2. In the following
table, At, Lt, It, Rt, Gt, Bt, and Dt, are the filtered texel
values.

NVIDIA OpenGL Extension Specifications NV_register_combiners

 287

[Table NV_register_combiners.2]: Correspondence of texture components
to register components for texture registers.

Base Internal Format RGB Values Alpha Value
-------------------- ---------- -----------
ALPHA 0, 0, 0 At
LUMINANCE Lt, Lt, Lt 1
LUMINANCE_ALPHA Lt, Lt, Lt At
INTENSITY It, It, It It
RGB Rt, Gt, Bt 1
RGBA Rt, Gt, Bt At

DEPTH_COMPONENT 0, 0, 0, Lt
(when TEXTURE_COMPARE_SGIX is false)

DEPTH_COMPONENT Lt, Lt, Lt, Lt
(when TEXTURE_COMPARE_SGIX is true)

HILO_NV 0, 0, 0, 0
DSDT_NV 0, 0, 0, 0
DSDT_MAG_NV 0, 0, 0, 0
DSDT_MAG_INTENSITY_NV 0, 0, 0, It

Note that the ALPHA, DEPTH_COMPONENT, and DSDT_MAG_INTENSITY_NV
base internal formats are mapped to components differently than
one could infer from the standard texture environment operations
with this formats.

3.8.12.1 Combiner Parameters

Combiner parameters are specified by

CombinerParameterfvNV(GLenum pname, const GLfloat *params);
CombinerParameterivNV(GLenum pname, const GLint *params);
CombinerParameterfNV(GLenum pname, GLfloat param);
CombinerParameteriNV(GLenum pname, GLint param);

<pname> is a symbolic constant indicating which parameter is to be
set as described in the table NV_register_combiners.3:

[Table NV_register_combiners.3]
Number

Parameter Name of values Type
--------- ------------------------- --------- ---------------
ccc0 CONSTANT_COLOR0_NV 4 color
ccc1 CONSTANT_COLOR1_NV 4 color
ngc NUM_GENERAL_COMBINERS_NV 1 positive integer
csc COLOR_SUM_CLAMP_NV 1 boolean

<params> is a pointer to a group of values to which to set the
indicated parameter. <param> is simply the indicated parameter.
The number of values pointed to depends on the parameter being
set as shown in the table above. Color parameters specified with
CombinerParameter*NV are converted to floating-point values (if
specified as integers) as indicated by Table 2.6 for signed integers.
The floating-point color values are then clamped to the range [0,1].

The values ccc0 and ccc1 named by CONSTANT_COLOR0_NV and

NV_register_combiners NVIDIA OpenGL Extension Specifications

 288

CONSTANT_COLOR1_NV are constant colors available for inputs to the
combiner stages. The value ngc named by NUM_GENERAL_COMBINERS_NV
is a positive integer indicating how many general combiner stages are
active, that is, how many general combiner stages a fragment should
be processed by. Setting ngc to a value less than one or
greater than the value of MAX_GENERAL_COMBINERS_NV generates an
INVALID_VALUE error. The value csc named by COLOR_SUM_CLAMP_NV
is a boolean described in section 3.8.12.3.

3.8.12.2 General Combiner Stage Operation

The command

CombinerInputNV(GLenum stage,
GLenum portion,
GLenum variable,
GLenum input,
GLenum mapping,
GLenum componentUsage);

controls the assignment of all the general combiner input variables.
For the RGB combiner portion, these are Argb, Brgb, Crgb, and
Drgb; and for the combiner alpha portion, these are Aa, Ba, Ca,
and Da. The <stage> parameter is a symbolic constant of the form
COMBINER<i>_NV, indicating that general combiner stage <i> is to
be updated. The constant COMBINER<i>_NV = COMBINER0_NV + <i>
where <i> is in the range 0 to <k>-1 and <k> is the implementation
dependent value of MAX_COMBINERS_NV. The <portion> parameter
may be either RGB or ALPHA and determines whether the RGB color
vector or alpha scalar portion of the specified combiner stage is
updated. The <variable> parameter may be one of VARIABLE_A_NV,
VARIABLE_B_NV, VARIABLE_C_NV, or VARIABLE_D_NV and determines
which respective variable of the specified combiner stage and
combiner stage portion is updated.

The <input>, <mapping>, and <componentUsage> parameters specify
the assignment of a value for the input variable indicated by
<stage>, <portion>, and <variable>. The <input> parameter may be
one of the register names from table NV_register_combiners.1.

The <componentUsage> parameter may be one of RGB, ALPHA, or BLUE.

When the <portion> parameter is RGB, a <componentUsage> parameter
of RGB indicates that the RGB portion of the indicated register
should be assigned to the RGB portion of the combiner input variable,
while an ALPHA <componentUsage> parameter indicates that the
alpha portion of the indicated register should be replicated across
the RGB portion of the combiner input variable.

When the <portion> parameter is ALPHA, the <componentUsage>
parameter of ALPHA indicates that the alpha portion of the indicated
register should be assigned to the alpha portion of the combiner
input variable, while a BLUE <componentUsage> parameter indicates
that the blue component of the indicated register should be assigned
to the alpha portion of the combiner input variable.

When the <portion> parameter is ALPHA, a <componentUsage> parameter

NVIDIA OpenGL Extension Specifications NV_register_combiners

 289

of RGB generates an INVALID_OPERATION error. When the <portion>
parameter is RGB, a <componentUsage> parameter of BLUE generates
an INVALID_OPERATION error.

When the <portion> parameter is ALPHA, an <input> parameter of FOG
generates an INVALID_OPERATION error. The alpha component of the
fog register is only available in the final combiner. The alpha
component of the fog register is the fragment's fog factor when
fog is enabled; otherwise, the alpha component of the fog register
is one.

Before the value in the register named by <input> is assigned to the
specified input variable, a range mapping is performed based on
<mapping>. The mapping may be one of the tokens from the table
NV_register_combiners.4.

[Table NV_register_combiners.4]

Mapping Name Mapping Function
----------------------- -------------------------------------
UNSIGNED_IDENTITY_NV max(0.0, e)
UNSIGNED_INVERT_NV 1.0 - min(max(e, 0.0), 1.0)
EXPAND_NORMAL_NV 2.0 * max(0.0, e) - 1.0
EXPAND_NEGATE_NV -2.0 * max(0.0, e) + 1.0
HALF_BIAS_NORMAL_NV max(0.0, e) - 0.5
HALF_BIAS_NEGATE_NV -max(0.0, e) + 0.5
SIGNED_IDENTITY_NV e
SIGNED_NEGATE_NV -e

Based on the <mapping> parameter, the mapping function in the table
above is evaluated for each element <e> of the input vector before
assigning the result to the specified input variable. Note that
the mapping for the RGB and alpha portion of each input variable
is distinct.

Each general combiner stage computes the following ten expressions
based on the values assigned to the variables Argb, Brgb, Crgb,
Drgb, Aa, Ba, Ca, and Da as determined by the combiner state set
by CombinerInputNV.

["gcc" stands for general combiner computation.]

gcc1rgb = [Argb[r]*Brgb[r], Argb[g]*Brgb[g], Argb[b]*Brgb[b]]

gcc2rgb = [Argb[r]*Brgb[r] + Argb[g]*Brgb[g] + Argb[b]*Brgb[b],
Argb[r]*Brgb[r] + Argb[g]*Brgb[g] + Argb[b]*Brgb[b],
Argb[r]*Brgb[r] + Argb[g]*Brgb[g] + Argb[b]*Brgb[b]]

gcc3rgb = [Crgb[r]*Drgb[r], Crgb[g]*Drgb[g], Crgb[b]*Drgb[b]]

gcc4rgb = [Crgb[r]*Drgb[r] + Crgb[g]*Drgb[g] + Crgb[b]*Drgb[b],
Crgb[r]*Drgb[r] + Crgb[g]*Drgb[g] + Crgb[b]*Drgb[b],
Crgb[r]*Drgb[r] + Crgb[g]*Drgb[g] + Crgb[b]*Drgb[b]]

gcc5rgb = gcc1rgb + gcc3rgb

gcc6rgb = gcc1rgb or gcc3rgb [see below]

NV_register_combiners NVIDIA OpenGL Extension Specifications

 290

gcc1a = Aa * Ba

gcc2a = Ca * Da

gcc3a = gcc1a + gcc2a

gcc4a = gcc1a or gcc2a [see below]

The computation of gcc6rgb and gcc4a involves a special "or"
operation. This operation evaluates to the left-hand operand if the
alpha component of the combiner's SPARE0_NV register is less than
0.5; otherwise, the operation evaluates to the right-hand operand.

The command

CombinerOutputNV(GLenum stage,
GLenum portion,
GLenum abOutput,
GLenum cdOutput,
GLenum sumOutput,
GLenum scale,
GLenum bias,
GLboolean abDotProduct,
GLboolean cdDotProduct,
GLboolean muxSum);

controls the general combiner output operation including designating
the register set locations where results of the general combiner's
three computations are written. The <stage> and <portion>
parameters take the same values as the respective parameters for
CombinerInputNV.

If the <portion> parameter is ALPHA, specifying a non-FALSE value
for either of the parameters <abDotProduct> or <cdDotProduct>,
generates an INVALID_VALUE error.

If the <abDotProduct> or <cdDotProduct> parameter is non-FALSE,
the value of the <sumOutput> parameter must be GL_DISCARD_NV;
otherwise, generate an INVALID_OPERATION error.

The <scale> parameter must be one of NONE, SCALE_BY_TWO_NV,
SCALE_BY_FOUR_NV, or SCALE_BY_ONE_HALF_NV and specifies the
value of the combiner stage's portion scale, either cscalergb or
cscalea depending on the <portion> parameter, to 1.0, 2.0, 4.0,
or 0.5, respectively.

The <bias> parameter must be either NONE or
BIAS_BY_NEGATIVE_ONE_HALF_NV and specifies the value of the
combiner stage's portion bias, either cbiasrgb or cbiasa depending
on the <portion> parameter, to 0.0 or -0.5, respectively. If <scale>
is either SCALE_BY_ONE_HALF_NV or SCALE_BY_FOUR_NV, a <bias> of
BIAS_BY_NEGATIVE_ONE_HALF_NV generates an INVALID_OPERATION error.

If the <abDotProduct> parameter is FALSE, then

if <portion> is RGB, out1rgb = max(min(gcc1rgb + cbiasrgb) * cscalergb, 1), -1)
if <portion> is ALPHA, out1a = max(min((gcc1a + cbiasa) * cscalea, 1), -1)

NVIDIA OpenGL Extension Specifications NV_register_combiners

 291

otherwise <portion> must be RGB and

out1rgb = max(min((gcc2rgb + cbiasrgb) * cscalergb, 1), -1)

If the <cdDotProduct> parameter is FALSE, then

if <portion> is RGB, out2rgb = max(min((gcc3rgb + cbiasrgb) * cscalergb, 1), -1)
if <portion> is ALPHA, out2a = max(min((gcc2a + cbiasa) * cscalea, 1), -1)

otherwise <portion> must be RGB so

out2rgb = max(min((gcc4rgb + cbiasrgb) * cscalergb, 1), -1)

If the <muxSum> parameter is FALSE, then

if <portion> is RGB, out3rgb = max(min((gcc5rgb + cbiasrgb) * cscalergb, 1), -1)
if <portion> is ALPHA, out3a = max(min((gcc3a + cbiasa) * cscalea, 1), -1)

otherwise

if <portion> is RGB, out3rgb = max(min((gcc6rgb + cbiasrgb) * cscalergb, 1), -1)
if <portion> is ALPHA, out3a = max(min((gcc4a + cbiasa) * cscalea, 1), -1)

out1rgb, out2rgb, and out3rgb are written to the RGB portion of
combiner stage's registers named by <abOutput>, <cdOutput>, and
<sumOutput> respectively. out1a, out2a, and out3a are written to
the alpha portion of combiner stage's registers named by <abOutput>,
<cdOutput>, and <sumOutput> respectively. The parameters <abOutput>,
<cdOutput>, and <sumOutput> must be either DISCARD_NV or one of
the register names from table NV_register_combiners.1 that has an output
status of read/write. If an output is set to DISCARD_NV, that
output is not written to any register. The error INVALID_OPERATION
is generated if <abOutput>, <cdOutput>, and <sumOutput> do not all
name unique register names (though multiple outputs to DISCARD_NV
are legal).

When the general combiner stage's register set is written based on
the computed outputs, the updated register set is copied to the
register set of the subsequent combiner stage in the combiner
sequence. Copied undefined values are likewise undefined.
The subsequent combiner stage following the last active general
combiner stage, indicated by the general combiner stage's number
being equal to ngc-1, in the sequence is the final combiner
stage. In other words, the number of general combiner stages
each fragment is transformed by is determined by the value of
NUM_GENERAL_COMBINERS_NV.

3.8.12.3 Final Combiner Stage Operation

The final combiner stage operates differently from the general
combiner stages. While a general combiner stage updates its register
set and passes the register set to the next combiner stage, the final
combiner outputs an RGBA color fcoc, the final combiner output color.
The final combiner stage is capable of applying the standard OpenGL
color sum and fog operations, but has the configurability to be
used for other purposes.

The command

FinalCombinerInputNV(GLenum variable,

NV_register_combiners NVIDIA OpenGL Extension Specifications

 292

GLenum input,
GLenum mapping,
GLenum componentUsage);

controls the assignment of all the final combiner input variables.
The variables A, B, C, D, E, and F are RGB vectors. The variable
G is an alpha scalar. The <variable> parameter may be one of
VARIABLE_A_NV, VARIABLE_B_NV, VARIABLE_C_NV, VARIABLE_D_NV,
VARIABLE_E_NV, VARIABLE_F_NV, and VARIABLE_G_NV, and determines
which respective variable of the final combiner stage is updated.

The <input>, <mapping>, and <componentUsage> parameters specify
the assignment of a value for the input variable indicated by
<variable>.

The <input> parameter may be any one of the register names from
table NV_register_combiners.1 or be one of two pseudo-register
names, either E_TIMES_F_NV or SPARE0_PLUS_SECONDARY_COLOR_NV.
The value of E_TIMES_F_NV is the product of the value of
variable E times the value of variable F. The value of
SPARE0_PLUS_SECONDARY_COLOR_NV is the value the SPARE0_NV
register mapped using the UNSIGNED_IDENITY_NV input mapping plus
the value of the SECONDARY_COLOR_NV register mapped using the
UNSIGNED_IDENTITY_NV input mapping. If csc, the color sum clamp,
is non-FALSE, the value of SPARE0_PLUS_SECONDARY_COLOR_NV is first
clamped to the range [0,1]. The alpha component of E_TIMES_F_NV
and SPARE0_PLUS_SECONDARY_COLOR_NV is always zero.

When <variable> is one of VARIABLE_E_NV, VARIABLE_F_NV,
or VARIABLE_G_NV and <input> is either E_TIMES_F_NV or
SPARE0_PLUS_SECONDARY_COLOR_NV, generate an INVALID_OPERATION
error. When <variable> is VARIABLE_A_NV and <input> is
SPARE0_PLUS_SECONDARY_COLOR_NV, generate an INVALID_OPERATION
error.

The <componentUsage> parameter may be one of RGB, BLUE, ALPHA
(with certain restrictions depending on the <variable> and <input>
as described below).

When the <variable> parameter is not VARIABLE_G_NV, a
<componentUsage> parameter of RGB indicates that the RGB portion of
the indicated register should be assigned to the RGB portion of the
combiner input variable, while an ALPHA <componentUsage> parameter
indicates that the alpha portion of the indicated register should
be replicated across the RGB portion of the combiner input variable.

When the <variable> parameter is VARIABLE_G_NV, a <componentUsage>
parameter of ALPHA indicates that the alpha component of the
indicated register should be assigned to the alpha portion of the
G input variable, while a BLUE <componentUsage> parameter indicates
that the blue component of the indicated register should be assigned
to the alpha portion of the G input variable.

The INVALID_OPERATION error is generated when <componentUsage> is
BLUE and <variable> is not VARIABLE_G_NV. The INVALID_OPERATION
error is generated when <componentUsage> is RGB and <variable>
is VARIABLE_G_NV.

NVIDIA OpenGL Extension Specifications NV_register_combiners

 293

The INVALID_OPERATION error is generated when both the <input>
parameter is either E_TIMES_F_NV or SPARE0_PLUS_SECONDARY_COLOR_NV
and the <componentUsage> parameter is ALPHA or BLUE.

Before the value in the register named by <input> is assigned to
the specified input variable, a range mapping is performed based
on <mapping>. The mapping may be either UNSIGNED_IDENTITY_NV
or UNSIGNED_INVERT_NV and operates as specified in table
NV_register_combiners.4.

The final combiner stage computes the following expression based
on the values assigned to the variables A, B, C, D, E, F, and G as
determined by the combiner state set by FinalCombinerInputNV

fcoc = [min(ab[r] + iac[r] + D[r], 1.0),
min(ab[g] + iac[g] + D[g], 1.0),
min(ab[b] + iac[b] + D[b], 1.0),
G]

where

ab = [A[r]*B[r], A[g]*B[g], A[b]*B[b]]
iac = [(1.0 -A [r])*C[r], (1.0 - A[g])*C[g], (1.0 - A[b])*C[b]]

3.8.12.4 Required State

The state required for the register combiners is a bit indicating
whether register combiners are enabled or disabled, an integer
indicating how many general combiners are active, a bit indicating
whether or not the color sum clamp to 1 should be performed, two
RGBA constant colors, <n> sets of general combiner stage state where
<n> is the value of MAX_GENERAL_COMBINERS_NV, and the final
combiner stage state. The per-stage general combiner state consists
of the RGB input portion state and the alpha input portion state.
Each portion (RGB and alpha) of the per-stage general combiner
state consists of: four integers indicating the input register for
the four variables A, B, C, and D; four integers to indicate each
variable's range mapping; four bits to indicate whether to use the
alpha component of the input for each variable; a bit indicating
whether the AB dot product should be output; a bit indicating
whether the CD dot product should be output; a bit indicating
whether the sum or mux output should be output; two integers to
maintain the output scale and bias enumerants; three integers to
maintain the output register set names. The final combiner stage
state consists of seven integers to indicate the input register
for the seven variables A, B, C, D, E, F, and G; seven integers to
indicate each variable's range mapping; and seven bits to indicate
whether to use the alpha component of the input for each variable.

The general combiner per-stage state is initialized as described
in table NV_register_combiners.5.

NV_register_combiners NVIDIA OpenGL Extension Specifications

 294

[Table NV_register_combiners.5]

Component
Portion Variable Input Usage Mapping
------- -------- ------------------ --------- ----------------------
RGB A PRIMARY_COLOR_NV RGB UNSIGNED_IDENTITY_NV
RGB B ZERO RGB UNSIGNED_INVERT_NV
RGB C ZERO RGB UNSIGNED_IDENTITY_NV
RGB D ZERO RGB UNSIGNED_IDENTITY_NV
alpha A PRIMARY_COLOR_NV ALPHA UNSIGNED_IDENTITY_NV
alpha B ZERO ALPHA UNSIGNED_INVERT_NV
alpha C ZERO ALPHA UNSIGNED_IDENTITY_NV
alpha D ZERO ALPHA UNSIGNED_IDENTITY_NV

The final combiner stage state is initialized as described in table
NV_register_combiners.6.

[Table NV_register_combiners.6]

Component
Variable Input Usage Mapping
-------- -------------------------------- --------- ----------------------
A FOG ALPHA UNSIGNED_IDENTITY_NV
B SPARE0_PLUS_SECONDARY_COLOR_NV RGB UNSIGNED_IDENTITY_NV
C FOG RGB UNSIGNED_IDENTITY_NV
D ZERO RGB UNSIGNED_IDENTITY_NV
E ZERO RGB UNSIGNED_IDENTITY_NV
F ZERO RGB UNSIGNED_IDENTITY_NV
G SPARE0_NV ALPHA UNSIGNED_IDENTITY_NV"

-- NEW Section 3.8.11 "Antialiasing Application"

Insert the following paragraph BEFORE the section's first paragraph:

"Register combiners are enabled or disabled using the generic Enable
and Disable commands, respectively, with the symbolic constant
REGISTER_COMBINERS_NV. If the register combiners are enabled (and not
in color index mode), the fragment's color value is replaced with fcoc,
the final combiner output color, computed in section 3.8.12; otherwise,
the fragment's color value is the result of the fog application
in section 3.10."

Additions to Chapter 4 of the 1.2 Specification (Per-Fragment Operations
and the Frame Buffer)

None

Additions to Chapter 5 of the 1.2 Specification (Special Functions)

None

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)

-- Section 6.1.3 "Enumerated Queries"

Change the first two sentences (page 182) to say:

"Other commands exist to obtain state variables that are identified by
a category (clip plane, light, material, combiners, etc.) as well as

NVIDIA OpenGL Extension Specifications NV_register_combiners

 295

a symbolic constant. These are"

Add to the bottom of the list of function prototypes (page 183):

void GetCombinerInputParameterfvNV(GLenum stage, GLenum portion,
GLenum variable,
GLenum pname, const GLfloat *params);

void GetCombinerInputParameterivNV(GLenum stage, GLenum portion,
GLenum variable,
GLenum pname, const GLint *params);

void GetCombinerOutputParameterfvNV(GLenum stage, GLenum portion,
GLenum pname, const GLfloat *params);

void GetCombinerOutputParameterivNV(GLenum stage, GLenum portion,
GLenum pname, GLint *params);

void GetFinalCombinerInputParameterfvNV(GLenum variable, GLenum pname,
const GLfloat *params);

void GetFinalCombinerInputParameterivNV(GLenum variable, GLenum pname,
const GLfloat *params);

Add the following paragraph to the end of the section (page 184):

"The GetCombinerInputParameterfvNV,
GetCombinerInputParameterivNV, GetCombinerOutputParameterfvNV,
and GetCombinerOutputParameterivNV parameter <stage> may be one of
COMBINER0_NV, COMBINER1_NV, and so on, indicating which general
combiner stage to query. The GetCombinerInputParameterfvNV,
GetCombinerInputParameterivNV, GetCombinerOutputParameterfvNV,
and GetCombinerOutputParameterivNV parameter <portion> may be
either RGB or ALPHA, indicating which portion of the general
combiner stage to query. The GetCombinerInputParameterfvNV
and GetCombinerInputParameterivNV parameter <variable> may
be one of VARIABLE_A_NV, VARIABLE_B_NV, VARIABLE_C_NV,
or VARIABLE_D_NV, indicating which variable of the general
combiner stage to query. The GetFinalCombinerInputParameterfvNV
and GetFinalCombinerInputParameterivNV parameter <variable> may be one
of VARIABLE_A_NV, VARIABLE_B_NV, VARIABLE_C_NV, VARIABLE_D_NV,
VARIABLE_E_NV, VARIABLE_F_NV, or VARIABLE_G_NV."

Additions to the GLX Specification

None.

GLX Protocol

Thirteen new GL commands are added.

The following seven rendering commands are sent to the sever as part
of a glXRender request:

CombinerParameterfNV
2 12 rendering command length
2 4136 rendering command opcode
4 ENUM pname
4 FLOAT32 param

CombinerParameterfvNV
2 8+4*n rendering command length

NV_register_combiners NVIDIA OpenGL Extension Specifications

 296

2 4137 rendering command opcode
4 ENUM pname

0x852A n=4 GL_CONSANT_COLOR0_NV
0x852B n=4 GL_CONSANT_COLOR1_NV
0x854E n=1 GL_NUM_GENERAL_COMBINERS_NV
0x854F n=1 GL_COLOR_SUM_CLAMP_NV
else n=0

4*n LISTofFLOAT32 params

CombinerParameteriNV
2 12 rendering command length
2 4138 rendering command opcode
4 ENUM pname
4 INT32 param

CombinerParameterivNV
2 8+4*n rendering command length
2 4139 rendering command opcode
4 ENUM pname

0x852A n=4 GL_CONSANT_COLOR0_NV
0x852B n=4 GL_CONSANT_COLOR1_NV
0x854E n=1 GL_NUM_GENERAL_COMBINERS_NV
0x854F n=1 GL_COLOR_SUM_CLAMP_NV
else n=0

4*n LISTofINT32 params

CombinerInputNV
2 28 rendering command length
2 4140 rendering command opcode
4 ENUM stage
4 ENUM portion
4 ENUM variable
4 ENUM input
4 ENUM mapping
4 ENUM componentUsage

CombinerOutputNV
2 36 rendering command length
2 4141 rendering command opcode
4 ENUM stage
4 ENUM portion
4 ENUM abOutput
4 ENUM cdOutput
4 ENUM sumOutput
4 ENUM scale
4 ENUM bias
1 BOOL abDotProduct
1 BOOL cdDotProduct
1 BOOL muxSum
1 BOOL unused

NVIDIA OpenGL Extension Specifications NV_register_combiners

 297

FinalCombinerOutputNV
2 20 rendering command length
2 4142 rendering command opcode
4 ENUM variable
4 ENUM input
4 ENUM mapping
4 ENUM componentUsage

The remaining six commands are non-rendering commands. These commands
are sent separately (i.e., not as part of a glXRender or glXRenderLarge
request), using the glXVendorPrivateWithReply request:

GetCombinerInputParameterfvNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 7 request length
4 1270 vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 ENUM stage
4 ENUM portion
4 ENUM variable
4 ENUM pname

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 m reply length, m = (n==1 ? 0 : n)
4 unused
4 CARD32 unused

if (n=1) this follows:

4 FLOAT32 params
12 unused

otherwise this follows:

16 unused
n*4 LISTofFLOAT32 params

NV_register_combiners NVIDIA OpenGL Extension Specifications

 298

GetCombinerInputParameterivNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 7 request length
4 1271 vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 ENUM stage
4 ENUM portion
4 ENUM variable
4 ENUM pname

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 m reply length, m = (n==1 ? 0 : n)
4 unused
4 CARD32 unused

if (n=1) this follows:

4 INT32 params
12 unused

otherwise this follows:

16 unused
n*4 LISTofINT32 params

GetCombinerOutputParameterfvNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 6 request length
4 1272 vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 ENUM stage
4 ENUM portion
4 ENUM pname

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 m reply length, m = (n==1 ? 0 : n)
4 unused
4 CARD32 unused

if (n=1) this follows:

4 FLOAT32 params
12 unused

otherwise this follows:

16 unused
n*4 LISTofFLOAT32 params

NVIDIA OpenGL Extension Specifications NV_register_combiners

 299

GetCombinerOutputParameterivNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 6 request length
4 1273 vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 ENUM stage
4 ENUM portion
4 ENUM pname

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 m reply length, m = (n==1 ? 0 : n)
4 unused
4 CARD32 unused

if (n=1) this follows:

4 INT32 params
12 unused

otherwise this follows:

16 unused
n*4 LISTofINT32 params

GetFinalCombinerInputParameterfvNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 5 request length
4 1274 vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 ENUM variable
4 ENUM pname

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 m reply length, m = (n==1 ? 0 : n)
4 unused
4 CARD32 unused

if (n=1) this follows:

4 FLOAT32 params
12 unused

otherwise this follows:

16 unused
n*4 LISTofFLOAT32 params

NV_register_combiners NVIDIA OpenGL Extension Specifications

 300

GetFinalCombinerInputParameterivNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 5 request length
4 1275 vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 ENUM variable
4 ENUM pname

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 m reply length, m = (n==1 ? 0 : n)
4 unused
4 CARD32 unused

if (n=1) this follows:

4 INT32 params
12 unused

otherwise this follows:

16 unused
n*4 LISTofINT32 params

Errors

INVALID_VALUE is generated when CombinerParameterfvNV
or CombinerParameterivNV is called with <pname> set to
NUM_GENERAL_COMBINERS and the value pointed to by <params>
is less than one or greater or equal to the value of
MAX_GENERAL_COMBINERS_NV.

INVALID_OPERATION is generated when CombinerInputNV is called
with a <componentUsage> parameter of RGB and a <portion> parameter
of ALPHA.

INVALID_OPERATION is generated when CombinerInputNV is called
with a <componentUsage> parameter of BLUE and a <portion> parameter
of RGB.

INVALID_OPERATION is generated When CombinerInputNV is called with a
<componentUsage> parameter of ALPHA and an <input> parameter of FOG.

INVALID_VALUE is generated when CombinerOutputNV is called with
a <portion> parameter of ALPHA, but a non-FALSE value for either
of the parameters <abDotProduct> or <cdDotProduct>.

INVALID_OPERATION is generated when CombinerOutputNV is called with
a <scale> of either SCALE_BY_TWO_NV or SCALE_BY_FOUR_NV and a
<bias> of BIAS_BY_NEGATIVE_ONE_HALF_NV.

INVALID_OPERATION is generated when CombinerOutputNV is called such
that <abOutput>, <cdOutput>, and <sumOutput> do not all name unique
register names (though multiple outputs to DISCARD_NV are legal).

NVIDIA OpenGL Extension Specifications NV_register_combiners

 301

INVALID_OPERATION is generated when FinalCombinerOutputNV
is called where <variable> is one of VARIABLE_E_NV,
VARIABLE_F_NV, or VARIABLE_G_NV and <input> is E_TIMES_F_NV
or SPARE0_PLUS_SECONDARY_COLOR_NV.

INVALID_OPERATION is generated when FinalCombinerOutputNV
is called where <variable> is VARIABLE_A_NV and <input> is
SPARE0_PLUS_SECONDARY_COLOR_NV.

INVALID_OPERATION is generated when FinalCombinerInputNV is called
with VARIABLE_G_NV for <variable> and RGB for <componentUsage>.

INVALID_OPERATION is generated when FinalCombinerInputNV is called
with a value other than VARIABLE_G_NV for <variable> and BLUE for
<componentUsage>.

INVALID_OPERATION is generated when FinalCombinerInputNV is
called where the <input> parameter is either E_TIMES_F_NV or
SPARE0_PLUS_SECONDARY_COLOR_NV and the <componentUsage> parameter
is ALPHA.

INVALID_OPERATION is generated when CombinerOutputNV is called with
either <abDotProduct> or <cdDotProduct> assigned non-FALSE and
<sumOutput> is not GL_DISCARD_NV.

NV_register_combiners NVIDIA OpenGL Extension Specifications

 302

New State

-- (NEW table 6.29, after p217)

Get Value Type Get Command Initial Value Description Sec Attribute
--------- -------- -------------------------------- --------------------- ---------------- -------- ----------
REGISTER_COMBINERS_NV B IsEnabled False register 3.8.11
texture/enable

combiners enable
NUM_GENERAL_COMBINERS_NV Z+ GetIntegerv 1 number of active 3.8.12.1 texture

combiner stages
COLOR_SUM_CLAMP_NV B GetBooleanv True whether or not 3.8.12.1 texture

SPARE0_PLUS_
SECONDARY_
COLOR_NV clamps
combiner stages

CONSTANT_COLOR0_NV C GetFloatv 0,0,0,0 combiner constant 3.8.12.1 texture
color zero

CONSTANT_COLOR1_NV C GetFloatv 0,0,0,0 combiner constant 3.8.12.1 texture
color one

COMBINER_INPUT_NV Z8x#x2x4 GetCombinerInputParameter*NV see 3.8.12.4 combiner input 3.8.12.2 texture
variables

COMBINER_COMPONENT_USAGE_NV Z3x#x2x4 GetCombinerInputParameter*NV see 3.8.12.4 use alpha for 3.8.12.2 texture
combiner input

COMBINER_MAPPING_NV Z8x#x2x4 GetCombinerInputParameter*NV see 3.8.12.4 complement 3.8.12.2 texture
combiner input

COMBINER_AB_DOT_PRODUCT_NV Bx#x2 GetCombinerOutputParameter*NV False output AB dot 3.8.12.3 texture
product

COMBINER_CD_DOT_PRODUCT_NV Bx#x2 GetCombinerOutputParameter*NV False output CD dot 3.8.12.3 texture
product

COMBINER_MUX_SUM_NV Bx#x2 GetCombinerOutputParameter*NV False output mux sum 3.8.12.3 texture
COMBINER_SCALE_NV Z2x#x2 GetCombinerOutputParameter*NV NONE output scale 3.8.12.3 texture
COMBINER_BIAS_NV Z2x#x2 GetCombinerOutputParameter*NV NONE output bias 3.8.12.3 texture
COMBINER_AB_OUTPUT_NV Z7x#x2 GetCombinerOutputParameter*NV DISCARD_NV AB output 3.8.12.3 texture

register
COMBINER_CD_OUTPUT_NV Z7x#x2 GetCombinerOutputParameter*NV DISCARD_NV CD output 3.8.12.3 texture

register
COMBINER_SUM_OUTPUT_NV Z7x#x2 GetCombinerOutputParameter*NV SPARE0_NV sum output 3.8.12.3 texture

register
COMBINER_INPUT_NV Z10x7 GetFinalCombinerInputParameter*NV see 3.8.12.4 final combiner 3.8.12.4 texture

input
COMBINER_MAPPING_NV Z2x7 GetFinalCombinerInputParameter*NV UNSIGNED_IDENTITY_NV final combiner 3.8.12.4 texture

input mapping
COMBINER_COMPONENT_USAGE_NV Z2x7 GetFinalCombinerInputParameter*NV see 3.8.12.4 use alpha for 3.8.12.4 texture

final combiner
input mapping

[where # is the value of MAX_GENERAL_COMBINERS_NV]

New Implementation Dependent State

(table 6.24, p214) add the following entry:

Get Value Type Get Command Minimum Value Description Sec Attribute
------------------------ ---- ----------- ------------- ---------------- ------ ---------
MAX_GENERAL_COMBINERS_NV Z+ GetIntegerv 2 Maximum num of 3.8.12 -

general combiner
stages

NVIDIA Implementation Details

The effective range of the RGB portion of the final combiner should
be [0,4] if the color sum clamp is false. Exercising this range
requires assigning SPARE0_PLUS_SECONDARY_COLOR_NV to the D variable
and either B or C or both B and C. In practice this is a very
unlikely configuration.

However due to a bug in the GeForce 256 and Quadro hardware, values
generated above 2 in the RGB portion of the final combiner will be
computed incorrectly. GeForce2 GTS and subsequent NVIDIA GPUs have

NVIDIA OpenGL Extension Specifications NV_register_combiners

 303

fixed this bug.

Revision History

April 4, 2000 - Document that alpha component of the FOG register
should be zero when fog is disabled. The Release 4 NVIDIA drivers
have a bug where this is not always true (though it often still is).
The bug is fixed in the Release 5 NVIDIA drivers.

June 8, 2000 - The alpha component of the FOG register is not
available for use until the final combiner. The specification
previously incorrectly stated:

"INVALID_OPERATION is generated When CombinerInputNV is called with
a <portion> parameter of ALPHA and an <input> parameter of FOG."

It is actually the <componentUsage> (not the <portion>) that should
not be allowed to be ALPHA. The Release 4 NVIDIA drivers implemented
the above incorrect error check. The Release 5 (and later) NVIDIA
drivers (after June 8, 2000) have fixed this bug and correctly
implement the error based on <componentUsage>.

The specification previously did not allow BLUE for the
<componentUsage> of the G variable in the final combiner. This is
now allowed in the Release 5 (and later) NVIDIA drivers (after June
8, 2000). The Release 4 NVIDIA drivers do not permit BLUE for the
<componentUsage> of the G variable and generate an INVALID_OPERATION
error if this is attempted. The Release 5 NVIDIA drivers (after June
8, 2000) have fixed this bug and permit BLUE for the <componentUsage>
of the G variable.

August 11, 2000 - The "mux" operation was incorrectly documented in
previous versions of this specification. The correct mux behave is
as follows:

spare0_alpha >= 0.5 ? C*D : A*B

or

spare0_alpha < 0.5 ? A*B : C*D

Previous versions of this specification had the mux sense reversed.

October 31, 2000 - The initial general combiner state
was misdocumented for the B variable. Previously, Table
NV_register_combiners.5 said that the RGB and alpha inputs for B
were GL_TEXTURE#_ARB and the RGB and alpha input mappings for B
were GL_UNSIGNED_IDENTITY_NV. The table is now updated so that the
RGB and alpha inputs for B are GL_ZERO and the RGB and alpha input
mappings for B are GL_UNSIGNED_INVERT_NV. The implementation has
always behaved in the manner described by the updated specification.

December 13, 2000 - Added a new table NV_register_combiners.2
describing the correspondence of texture components to register
components for texture registers. This table is based on the
table in the EXT_texture_env_combine extension. The table includes
correspondences for HILO, DSDT, DSDT_MAG, DSDT_MAG_INTENSITY, and
DEPTH_COMPONENT formatted textures when supported in conjunction
with the NV_texture_shader, SGIX_depth_texture, and SGIX_shadow
extensions.

Because a new table 2 was inserted, all the tables beyond it are
renumbered.

NV_register_combiners NVIDIA OpenGL Extension Specifications

 304

Document the behavior of SIGNED_NEGATE_NV in conjunction with shadow
mapping in the "NVIDIA Implementation Details" section.

NVIDIA OpenGL Extension Specifications NV_register_combiners2

 305

Name

NV_register_combiners2

Name Strings

GL_NV_register_combiners2

Notice

Copyright NVIDIA Corporation, 2000, 2001.

IP Status

NVIDIA Proprietary.

Status

Implemented.

Version

NVIDIA Date: April 13, 2001
$Id: //sw/main/docs/OpenGL/specs/GL_NV_register_combiners2.txt#1 $

Number

227

Dependencies

Written based on the wording of the OpenGL 1.2.1 specification.

Assumes support for the NV_register_combiners extension (version 1.4).

Overview

The NV_register_combiners extension provides a powerful fragment
coloring mechanism. This specification extends the register combiners
functionality to support more color constant values that are unique
for each general combiner stage.

The base register combiners functionality supports only two color
constants. These two constants are available in every general
combiner stage and in the final combiner.

When many general combiner stages are supported, more than two
unique color constants is often required. The obvious way to extend
the register combiners is to add several more color constant
registers. But adding new unique color constant registers is
expensive for hardware implementation because every color constant
register must be available as an input to any stage.

In practice however, it is the total set of general combiner stages
that requires more color constants, not each and every individual
general combiner stage. Each individual general combiner stage
typically requires only one or two color constants.

NV_register_combiners2 NVIDIA OpenGL Extension Specifications

 306

By keeping two color constant registers but making these two registers
contain two unique color constant values for each general combiner
stage, the hardware expense of supporting multiple color constants
is minimized. Additionally, this scheme scales appropriately as
more general combiner stages are added.

Issues

How do is compatibility maintained with the original register
combiners?

RESOLUTION: Initially, per general combiner stage constants are
disabled and the register combiners operate as described in the
original NV_register_combiners specification. A distinct "per
stage constants" enable exposes this extension's new functionality.

Where do the final combiner color constant values come from?

RESOLUTION: When "per stage constants" is enabled, the final
combiner color constants continue to use the constant colors set
with glCombinerParaterfvNV.

New Procedures and Functions

void CombinerStageParameterfvNV(GLenum stage,
GLenum pname,
const GLfloat *params);

void GetCombinerStageParameterfvNV(GLenum stage,
GLenum pname,
GLfloat *params);

New Tokens

Accepted by the <cap> parameter of Disable, Enable, and IsEnabled,
and by the <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv,
and GetDoublev:

PER_STAGE_CONSTANTS_NV 0x8535

Accepted by the <pname> parameter of CombinerStageParameterfvNV
and GetCombinerStageParameterfvNV:

CONSTANT_COLOR0_NV (see NV_register_combiners)
CONSTANT_COLOR1_NV (see NV_register_combiners)

NVIDIA OpenGL Extension Specifications NV_register_combiners2

 307

Accepted by the <stage> parameter of CombinerStageParameterfvNV and
GetCombinerStageParameterfvNV:

COMBINER0_NV (see NV_register_combiners)
COMBINER1_NV (see NV_register_combiners)
COMBINER2_NV (see NV_register_combiners)
COMBINER3_NV (see NV_register_combiners)
COMBINER4_NV (see NV_register_combiners)
COMBINER5_NV (see NV_register_combiners)
COMBINER6_NV (see NV_register_combiners)
COMBINER7_NV (see NV_register_combiners)

Additions to Chapter 2 of the 1.2 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the 1.2 Specification (Rasterization)

-- Section 3.8.12 "Register Combiners Application"

Add a paragraph immediately before section 3.8.12.1:

"The ccc0 and ccc1 values map to particular constant color values.
The ccc0 and ccc1 mappings depend on whether per-stage constants
are enabled or not. Per-stage constants are enabled and disabled
with the Enable and Disable commands using the symbolic constant
PER_STAGE_CONSTANTS_NV.

When per-stage constants are disabled, ccc0 and ccc1 are mapped to
the register combiners' global color constant values, gccc0 and
gccc1.

When per-stage constants are enabled, ccc0 and ccc1 depend
on the combiner stage that inputs the COLOR_CONSTANT0_NV and
COLOR_CONSTANT1_NV registers. Each general combiner stage # maps
ccc0 and ccc1 to the per-stage values s#ccc0 and s#ccc1 respectively.
The final combiner maps ccc0 and ccc1 to the values gccc0 and gccc1
(the same as if per-stage constants are disabled).

gccc0, gccc1, s#ccc0, and s#ccc1 are further described in the
following section."

-- Section 3.8.12.1 "Combiner Parameters"

Change Table NV_register_combiners.3 to read "gccc0" instead of
"ccc0" and "gccc1" instead of "ccc1".

Change the first sentence of the last paragraph to read:

"The values gccc0 and gccc1 named by CONSTANT_COLOR0_NV and
CONSTANT_COLOR1_NV are global constant colors available for inputs to
the final combiner stage and, when per-stage constants is disabled,
to the general combiner stages."

NV_register_combiners2 NVIDIA OpenGL Extension Specifications

 308

Add the following after the last paragraph in the section:

"Per-stage combiner parameters are specified by

void CombinerStageParameterfvNV(GLenum stage,
GLenum pname,
const GLfloat *params);

The <stage> parameter is a symbolic constant of the form
COMBINER<#>_NV, indicating the general combiner stage <#> whose
parameter named by <pname> is to be updated. <pname> must be
either CONSTANT_COLOR0_NV or CONSTANT_COLOR1_NV. <params> is a
pointer to a group of values to which to set the indicated parameter.
The parameter names CONSTANT_COLOR0_NV and CONSTANT_COLOR1_NV update
the per-stage color constants s#ccc0 and s#ccc1 respectively where #
is the number of the specified general combiner stage."

Additions to Chapter 4 of the 1.2 Specification (Per-Fragment Operations
and the Frame Buffer)

None

Additions to Chapter 5 of the 1.2 Specification (Special Functions)

None

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)

-- Section 6.1.3 "Enumerated Queries"

Add to the bottom of the list of function prototypes (page 183):

void GetCombinerStageParameterfvNV(GLenum stage,
GLenum pname,
GLfloat *params);

Change the first sentence describing the register combiner queries
to mention GetCombinerStageParameterfvNV so the sentence reads:

"The GetCombinerInputParameterfvNV, GetCombinerInputParameterivNV,
GetCombinerOutputParameterfvNV, GetCombinerOutputParameterivNV,
and GetCombinerStageParameterfvNV parameter <stage> may be one of
COMBINER0_NV, COMBINER1_NV, and so on, indicating which general
combiner stage to query."

Additions to the GLX Specification

None

NVIDIA OpenGL Extension Specifications NV_register_combiners2

 309

GLX Protocol

Two new GL commands are added.

The following rendering command is sent to the sever as part of a
glXRender request:

CombinerParameterfvNV
2 8+4*n rendering command length
2 ???? rendering command opcode
4 ENUM pname

0x852A n=4 GL_CONSANT_COLOR0_NV
0x852B n=4 GL_CONSANT_COLOR1_NV
else n=0

4*n LISTofFLOAT32 params

The remaining command is a non-rendering command. This commands
is sent separately (i.e., not as part of a glXRender or glXRenderLarge
request), using the glXVendorPrivateWithReply request:

GetCombinerStageParameterfvNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 5 request length
4 ???? vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 ENUM stage
4 ENUM pname

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 m reply length, m = (n==1 ? 0 : n)
4 unused
4 CARD32 unused

if (n=1) this follows:

4 FLOAT32 params
12 unused

otherwise this follows:

16 unused
n*4 LISTofFLOAT32 params

Errors

None

New State

Get Value Type Get Command Initial Value Description Sec Attribute
---------------------- ---- ----------------------------- ------------- ------------------ -------- --------------
PER_STAGE_CONSTANTS_NV B IsEnabled False enable for 3.8.12 texture/enable
CONSTANT_COLOR0_NV Cx# GetCombinerStageParameterfvNV 0,0,0,0 per-stage constant 3.8.12.1 texture

color zero
CONSTANT_COLOR1_NV Cx# GetCombinerStageParameterfvNV 0,0,0,0 per-stage constant 3.8.12.1 texture

color one

[where # is the value of MAX_GENERAL_COMBINERS_NV]

NV_register_combiners2 NVIDIA OpenGL Extension Specifications

 310

New Implementation State

None

NVIDIA OpenGL Extension Specifications NV_texgen_emboss

 311

Name

NV_texgen_emboss

Name Strings

GL_NV_texgen_emboss

Notice

Copyright NVIDIA Corporation, 1999, 2001.

IP Status

NVIDIA Proprietary.

Status

Deprecated. Future NVIDIA drivers will NOT support this extension.
Developers are strongly encouraged to use NV_vertex_program instead
of this extension.

Version

NVIDIA Date: February 20, 2001
$Id: //sw/main/docs/OpenGL/specs/GL_NV_texgen_emboss.txt#22 $

Number

193

Dependencies

ARB_multitexture.

Written based on the wording of the OpenGL 1.2 specification and the
ARB_multitexture extension.

Overview

This extension provides a new texture coordinate generation mode
suitable for multitexture-based embossing (or bump mapping) effects.

Given two texture units, this extension generates the texture
coordinates of a second texture unit (an odd-numbered texture unit)
as a perturbation of a first texture unit (an even-numbered texture
unit one less than the second texture unit). The perturbation is
based on the normal, tangent, and light vectors. The normal vector
is supplied by glNormal; the light vector is supplied as a direction
vector to a specified OpenGL light's position; and the tanget
vector is supplied by the second texture unit's current texture
coordinate. The perturbation is also scaled by program-supplied
scaling constants.

If both texture units are bound to the same texture representing a
height field, by subtracting the difference between the resulting two
filtered texels, programs can achieve a per-pixel embossing effect.

NV_texgen_emboss NVIDIA OpenGL Extension Specifications

 312

Issues

Can you do embossing on any texture unit?

NO. Just odd numbered units. This meets a constraint of the
proposed hardware implementation, and because embossing takes two
texture units anyway, it shouldn't be a real limitation.

Can you just enable one coordinate of a texture unit for embossing?

Yes but NOT REALLY. The texture coordinate generation formula
is specified such that only when ALL the coordinates are enabled
and are using embossing, do you get the embossing computation.
Otherwise, you get undefined values for texture coordinates enabled
for texture coordinate generation and setup for embossing.

Does the light specified have to be enabled for embossing to work?

Yes, currently. But perhaps we could require implementations to
enable a phantom light (the light colors would be black).

Could the emboss constant just be the reciprocal of the width and
height of the texture units texture if that's what the programmer
will have it be most of the time?

NO. Too much work and there may be reasons for the programmer to
control this.

OpenGL's base texture environment functionality isn't powerful enough
to do the subtraction needed for embossing. Where would you get
powerful enough texture environment functionality.

Another extension. Try NV_register_combiners.

What is the interpretation of CT?

For the purposes of embossing, CT should be thought of as the
vertex's tangent vector. This tangent vector indicates the direction
on the "surface" where PCTs is not changing and PCTt is increasing.

Are the CT and PCT variables the user-supplied current texture
coordinates?

YES. Except when the texture unit's texture coordinate evaluator
is enabled, then CT and PCT use the respective evaluated texture
coordinates.

This extension specification's language "Denote as CT the texture
unit's current texture coordinates" and "Denote as PCT the previous
texture unit's current texture coordinates" refers to the "current
texture coordinates" OpenGL state which is the state specified
via glTexCoord. Plus the exception for evaluators.

To be explicit, PCT is NOT the result of texgen or the texture
matrix. Likewise, CT is NOT the result of texgen or the
texture matrix. PCT and CT are the respective texture unit's

NVIDIA OpenGL Extension Specifications NV_texgen_emboss

 313

evaluated texture coordinate if the vertex is evaluated with
texture coordinate evaluation enabled, otherwise if the vertex is
generated via vertex arrays with the respective texture coordinate
array enabled, the texture coordinate from the texture coordinate
array, otherwise the respective current texture coordinate is used.

New Procedures and Functions

None

New Tokens

Accepted by the <param> parameters of TexGend, TexGenf, and TexGeni
when <pname> parameter is TEXTURE_GEN_MODE:

EMBOSS_MAP_NV 0x855F

When the <pname> parameter of TexGendv, TexGenfv, and TexGeniv is
TEXTURE_GEN_MODE, then the array <params> may also contain
EMBOSS_MAP_NV.

Accepted by the <pname> parameters of GetTexGendv, GetTexGenfv,
GetTexGeniv, TexGend, TexGendv, TexGenf, TexGenfv, TexGeni, and
TexGeniv:

EMBOSS_LIGHT_NV 0x855D
EMBOSS_CONSTANT_NV 0x855E

Additions to Chapter 2 of the 1.2 Specification (OpenGL Operation)

-- Section 2.10.4 "Generating Texture Coordinates"

Change the last sentence in the 1st paragraph to:

"If <pname> is TEXTURE_GEN_MODE, then either <params> points to
or <param> is an integer that is one of the symbolic constants
OBJECT_LINEAR, EYE_LINEAR, SPHERE_MAP, or EMBOSS_MAP_NV."

Add these paragraphs after the 4th paragraph:

"When used with a suitable texture, suitable explicit texture
coordinates, a suitable (extended) texture environment,
suitable lighting parameters, and suitable embossing parameters,
calling TexGen with TEXTURE_GEN_MODE indicating EMBOSS_MAP_NV
can simulate the lighting effect of embossing on a polygon.
The error INVALID_ENUM occurs when the active texture unit has an
even number.

The emboss constant and emboss light parameters for controlling
the EMBOSS_MAP_NV mode are specified by calling TexGen with pname
set to EMBOSS_CONSTANT_NV and EMBOSS_LIGHT_NV respectively.

When pname is EMBOSS_CONSTANT_NV, param or what params points
to is a scalar value. An error INVALID_ENUM occurs if pname is
EMBOSS_CONSTANT_NV and coord is R or Q. An error INVALID_ENUM
also occurs if pname is EMBOSS_CONSTANT_NV and the active texture
unit number is even.

NV_texgen_emboss NVIDIA OpenGL Extension Specifications

 314

When pname is EMBOSS_LIGHT_NV, param or what params points to is
a symbolic constant of the form LIGHTi, indicating that light i
is to have the specified parameter set. An error INVALID_ENUM
occurs if pname is EMBOSS_LIGHT_NV and coord is R or Q. An error
INVALID_ENUM occurs if pname is EMBOSS_LIGHT_NV and the active
texture unit number is even. An error INVALID_ENUM occurs if
pname is EMBOSS_LIGHT_NV and the value i for LIGHTi is negative
or is greater than or equal to the value of MAX_LIGHTS.

If TEXTURE_GEN_MODE indicates EMBOSS_MAP_NV, the generation function
for the coordinates S, T, R, and Q is computed as follows.

Denote as L the light direction vector from the vertex's eye
position to the position of the light specified by the coordinate's
EMBOSS_LIGHT_NV state (the direction vector is computed as described
in Section 3.13.1).

Denote as N the current normal after transformation to eye
coordinates.

Denote as CT the texture unit's current texture coordinates
transformed to eye coordinates by normal transformation (as
described in Section 3.10.3) and normalized.

However, if the vertex is evaluated (as described in Section 5.1)
and the texture unit's texture coordinate map is enabled, use the
texture unit's evaluated texture coordinate to compute CT.

Denote as B the cross product of N and the <s,t,r> vector of CT.

Bx = Ny*CTr - CTt*Nz
By = Nz*CTs - CTr*Nx
Bz = Nx*CTt - CTs*Ny

Denote as BN the normalized version of the vector B.

BNx = Bx / sqrt(Bx*Bx + By*By + Bz*Bz);
BNy = By / sqrt(Bx*Bx + By*By + Bz*Bz);
BNz = Bz / sqrt(Bx*Bx + By*By + Bz*Bz);

Denote as T the cross product of B and N.

Tx = BNy*Nz - Ny*BNz
Ty = BNz*Nx - Nz*BNx
Tz = BNx*Ny - Nx*BNy

Observe that BN and T are orthonormal.

Denote as PCT the previous texture unit's current texture
coordinates. If the number of the texture unit for the texture
coordinates being generated is n, then the previous texture unit
is texture unit number n-1. Note that n is restricted to be odd.

However, if the vertex is evaluated (as described in Section 5.1)
and the previous texture unit's texture coordinate map is enabled,

NVIDIA OpenGL Extension Specifications NV_texgen_emboss

 315

use the previous texture unit's evaluated texture coordinate to
compute PCT.

Denote Ks as the S coordinate's EMBOSS_CONSTANT_NV state. Denote Kt
as the T coordinate's EMBOSS_CONSTANT_NV state. These constants
should typically be set to the reciprocal of the width and height
respectively of the texture map used for embossing.

Denote E as follows:

Es = PCTs + Ks * (Lx*BNx + Ly*BNy + Lz*BNz) * PCTq
Et = PCTt - Kt * (Lx*Tx + Ly*Ty + Lz*Tz) * PCTq
Er = PCTr
Eq = PCTq

Then the value assigned to an s, t, r, and q coordinates are Es,
Et, Er, and Eq respectively. However, for this assignment to
occur, the following three conditions must be met. First, all the
texture coordinate generation modes of all the texture coordinates
(S, T, R, and Q) of the texture unit must be set to EMBOSS_MAP_NV.
Second, all the texture coordinate generation modes of the texture
unit must be enabled. Third, the EMBOSS_LIGHT_NV parameters of
coordinates S and T must be identical and the light and lighting
must be enabled. If these conditions are not met, the values of
all coordinates in the texture unit with the EMBOSS_MAP_NV mode
are undefined."

The last paragraph's first sentence should be changed to:

"The state required for texture coordinate generation comprises
a five-valued integer for each coordinate indicating coordinate
generation mode, and a bit for each coordinate to indicate whether
texture coordinate generation is enabled or disabled. In addition,
four coefficients are required for the four coordinates for each
of EYE_LINEAR and OBJECT_LINEAR; also, an emboss constant and
emboss light are required for each of the four coordinates....
The initial values for emboss constants and emboss lights are 1.0
and LIGHT0 respectively."

Additions to Chapter 3 of the 1.2 Specification (Rasterization)

None

Additions to Chapter 4 of the 1.2 Specification (Per-Fragment Operations
and the Frame Buffer)

None

Additions to Chapter 5 of the 1.2 Specification (Special Functions)

None

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)

None

NV_texgen_emboss NVIDIA OpenGL Extension Specifications

 316

Additions to the GLX Specification

None

Errors

INVALID_ENUM is generated when TexGen is called with a <pname>
of TEXTURE_GEN_MODE, a <param> value or value of what <params>
points to of EMBOSS_MAP_NV, and the active texture unit is even.

INVALID_ENUM is generated when TexGen is called with a <pname>
of EMBOSS_CONSTANT_NV and the active texture unit is even.

INVALID_ENUM is generated when TexGen is called with a <pname>
of EMBOSS_LIGHT_NV and the active texture unit is even.

INVALID_ENUM is generated when TexGen is called with a <coord>
of R or Q when <pname> indicates EMBOSS_CONSTANT_NV.

INVALID_ENUM is generated when TexGen is called with a <coord>
of R or Q when <pname> indicates EMBOSS_LIGHT_NV.

INVALID_ENUM is generated when TexGen is called with a <pname>
of EMBOSS_LIGHT_NV and the value of i for the parameter LIGHTi is
negative or is greater than or equal to the value of MAX_LIGHTS.

New State

(table 6.14, p204) change the entry for TEXTURE_GEN_MODE to:

Get Value Type Get Command Initial Value Description Sec Attribute
------------------ ---- ----------- ------------- ----------- ------ ---------
TEXTURE_GEN_MODE 4xZ5 GetTexGeniv EYE_LINEAR Function used for 2.10.4 texture

texgen (for s,t,r,
and q)

EMBOSS_CONSTANT_NV 4xR GetTexGenfv 1.0 Scaling constant 2.10.4 texture
for emboss texgen

EMBOSS_LIGHT_NV 4xZ8* GetTexGeniv LIGHT0 Light used for 2.10.4 texture
embossing.

When ARB_multitexture is supported, the Type column is per-texture unit.

(the TEXTURE_GEN_MODE type changes from 4xZ3 to 4xZ5)

New Implementation State

None

Revision History

2001/02/20 - Status changed to deprecated.

NV_texgen_reflection NVIDIA OpenGL Extension Specifications

317

Name

NV_texgen_reflection

Name Strings

GL_NV_texgen_reflection

Notice

Copyright NVIDIA Corporation, 1999.
NVIDIA Proprietary.

Version

August 24, 1999

Number

179

Dependencies

Written based on the wording of the OpenGL 1.2 specification but
not dependent on it.

Overview

This extension provides two new texture coordinate generation modes
that are useful texture-based lighting and environment mapping.
The reflection map mode generates texture coordinates (s,t,r)
matching the vertex's eye-space reflection vector. The reflection
map mode is useful for environment mapping without the singularity
inherent in sphere mapping. The normal map mode generates texture
coordinates (s,t,r) matching the vertex's transformed eye-space
normal. The normal map mode is useful for sophisticated cube map
texturing-based diffuse lighting models.

Issues

Should we place the normal/reflection vector in the (s,t,r) texture
coordinates or (s,t,q) coordinates?

RESOLUTION: (s,t,r). Even if the proposed hardware uses "q" for
the third component, the API should claim to support generation of
(s,t,r) and let the texture matrix (through a concatenation with
the user-supplied texture matrix) move "r" into "q".

Should you be able to have some texture coordinates computing
REFLECTION_MAP_NV and others not? Same question with NORMAL_MAP_NV.

RESOLUTION: YES. This is the way that SPHERE_MAP works. It is
not clear that this would ever be useful though.

Should something special be said about the handling of the q
texture coordinate for this spec?

NV_texgen_reflection NVIDIA OpenGL Extension Specifications

 318

RESOLUTION: NO. But the following paragraph is useful for
implementors concerned about the handling of q.

The REFLECTION_MAP_NV and NORMAL_MAP_NV modes are intended to supply
reflection and normal vectors for cube map texturing hardware.
When these modes are used for cube map texturing, the generated
texture coordinates can be thought of as an reflection vector.
The value of the q texture coordinate then simply scales the
vector but does not change its direction. Because only the vector
direction (not the vector magnitude) matters for cube map texturing,
implementations are free to leave q undefined when any of the s,
t, or r texture coordinates are generated using REFLECTION_MAP_NV
or NORMAL_MAP_NV.

New Procedures and Functions

None

New Tokens

Accepted by the <param> parameters of TexGend, TexGenf, and TexGeni
when <pname> parameter is TEXTURE_GEN_MODE:

NORMAL_MAP_NV 0x8511
REFLECTION_MAP_NV 0x8512

When the <pname> parameter of TexGendv, TexGenfv, and TexGeniv is
TEXTURE_GEN_MODE, then the array <params> may also contain
NORMAL_MAP_NV or REFLECTION_MAP_NV.

Additions to Chapter 2 of the 1.2 Specification (OpenGL Operation)

-- Section 2.10.4 "Generating Texture Coordinates"

Change the last sentence in the 1st paragraph to:

"If <pname> is TEXTURE_GEN_MODE, then either <params> points to
or <param> is an integer that is one of the symbolic constants
OBJECT_LINEAR, EYE_LINEAR, SPHERE_MAP, REFLECTION_MAP_NV, or
NORMAL_MAP_NV."

Add these paragraphs after the 4th paragraph:

"If TEXTURE_GEN_MODE indicates REFLECTION_MAP_NV, compute the
reflection vector r as described for the SPHERE_MAP mode. Then the
value assigned to an s coordinate (the first TexGen argument value
is S) is s = rx; the value assigned to a t coordinate is t = ry;
and the value assigned to a r coordinate is r = rz. Calling TexGen
with a <coord> of Q when <pname> indicates REFLECTION_MAP_NV
generates the error INVALID_ENUM.

If TEXTURE_GEN_MODE indicates NORMAL_MAP_NV, compute the normal
vector n' as described in section 2.10.3. Then the value assigned
to an s coordinate (the first TexGen argument value is S) is s =
nfx; the value assigned to a t coordinate is t = nfy; and the
value assigned to a r coordinate is r = nfz. (The values nfx, nfy,
and nfz are the components of nf.) Calling TexGen with a <coord>

NVIDIA OpenGL Extension Specifications NV_texgen_reflection

 319

of Q when <pname> indicates REFLECTION_MAP_NV generates the error
INVALID_ENUM.

The last paragraph's first sentence should be changed to:

"The state required for texture coordinate generation comprises a
five-valued integer for each coordinate indicating coordinate
generation mode, ..."

Additions to Chapter 3 of the 1.2 Specification (Rasterization)

None

Additions to Chapter 4 of the 1.2 Specification (Per-Fragment Operations
and the Frame Buffer)

None

Additions to Chapter 5 of the 1.2 Specification (Special Functions)

None

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)

None

Additions to the GLX Specification

None

Errors

INVALID_ENUM is generated when TexGen is called with a <coord> of Q
when <pname> indicates REFLECTION_MAP_NV or NORMAL_MAP_NV.

New State

(table 6.14, p204) change the entry for TEXTURE_GEN_MODE to:

Get Value Type Get Command Initial Value Description Sec Attribute
---------------- ---- ----------- ------------- ----------- ------ ---------
TEXTURE_GEN_MODE 4xZ5 GetTexGeniv EYE_LINEAR Function used for 2.10.4 texture

texgen (for s,t,r,
and q)

(the type changes from 4xZ3 to 4xZ5)

New Implementation State

None

NV_texture_compression_vtc NVIDIA OpenGL Extension Specifications

320

Name

NV_texture_compression_vtc

Name Strings

GL_NV_texture_compression_vtc

Notice

Copyright NVIDIA Corporation, 2000, 2001.

IP Status

NVIDIA Proprietary.

Version

NVIDIA Date: April 13, 2001
$Id: //sw/main/docs/OpenGL/specs/GL_NV_texture_compression_vtc.txt#2 $

Number

228

Dependencies

Written based on the wording of the OpenGL 1.2.1 specification.

ARB_texture_compression is required.

EXT_texture_compression_s3tc is required.

Overview

This extension adds support for the VTC 3D texture compression
formats, which are analogous to the S3TC texture compression formats,
with the addition of some retiling in the Z direction. VTC has the
same compression ratio as S3TC and uses 4x4x1, 4x4x2, or 4x4x4
blocks.

Issues

* Should the enumerants' (1) values and (2) names be reused from
the S3TC extension?

RESOLVED: Yes and yes. There is such a close correspondence
between the formats that introducing new values or names would
serve no purpose.

* Should the block alignment restrictions differ in any way from
the block alignment restrictions in the S3TC extension?

RESOLVED: No, except for the addition of the Z-direction block
alignment restriction, which is analogous to the X and Y
restrictions.

NVIDIA OpenGL Extension Specifications NV_texture_compression_vtc

 321

New Procedures and Functions

None.

New Tokens

Accepted by the <internalformat> parameter of TexImage3D and
CompressedTexImage3DARB and the <format> parameter of
CompressedTexSubImage2DARB:

COMPRESSED_RGB_S3TC_DXT1_EXT 0x83F0
COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1
COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2
COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3

Additions to Chapter 2 of the OpenGL 1.2.1 Specification (OpenGL Operation)

None.

Additions to Chapter 3 of the OpenGL 1.2.1 Specification (Rasterization)

Modify the paragraph added to the end of the TexSubImage discussion
(page 123) by EXT_texture_compression_s3tc to say:

"If the internal format of the texture image being modified is
COMPRESSED_RGB_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT1_EXT,
COMPRESSED_RGBA_S3TC_DXT3_EXT, or COMPRESSED_RGBA_S3TC_DXT5_EXT, the
texture is stored using one of several S3TC or VTC compressed texture
image formats. Such images are easily edited along 4x4 texel
boundaries, so the limitations on TexSubImage2D, TexSubImage3D,
CopyTexSubImage2D, and CopyTexSubImage3D parameters are relaxed.
These commands will result in an INVALID_OPERATION error only if one
of the following conditions occurs:

* <width> is not a multiple of four or equal to TEXTURE_WIDTH.
* <height> is not a multiple of four or equal to TEXTURE_HEIGHT.
* <depth> is not a multiple of four or equal to TEXTUR_DEPTH.
* <xoffset>, <yoffset>, or <zoffset> is not a multiple of four."

Modify the paragraph added to Section 3.8.2 "Alternate Image
Specification" at the end of the CompressedTexImage section by
EXT_texture_compression_s3tc to say:

"If <internalformat> is COMPRESSED_RGB_S3TC_DXT1_EXT,
COMPRESSED_RGBA_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT3_EXT, or
COMPRESSED_RGBA_S3TC_DXT5_EXT, the compressed texture is stored using
one of several S3TC or VTC compressed texture image formats. The
S3TC texture compression algorithm supports only 2D images without
borders, while the VTC texture compression algorithm supports only
3D images without borders. CompressedTexImage1DARB produces an
INVALID_ENUM error if <internalformat> is an S3TC/VTC format.
CompressedTexImage2DARB and CompressedTexImage3DARB will produce an
INVALID_OPERATION error if <border> is non-zero."

Modify the paragraph added to Section 3.8.2 "Alternate Image
Specification" at the end of the CompressedTexSubImage section by
EXT_texture_compression_s3tc to say:

NV_texture_compression_vtc NVIDIA OpenGL Extension Specifications

 322

"If the internal format of the texture image being modified is
COMPRESSED_RGB_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT1_EXT,
COMPRESSED_RGBA_S3TC_DXT3_EXT, or COMPRESSED_RGBA_S3TC_DXT5_EXT, the
texture is stored using one of several S3TC or VTC compressed texture
image formats. Since these algorithms support only 2D and 3D images,
CompressedTexSubImage1DARB produces an INVALID_ENUM error if <format>
is an S3TC/VTC format. Since S3TC/VTC images are easily edited along
4x4 and 4x4x4 texel boundaries, the limitations on
CompressedTexSubImage2D and CompressedTexSubImage3D are relaxed.
CompressedTexSubImage2D and CompressedTexSubImage3D will result in an
INVALID_OPERATION error only if one of the following conditions
occurs:

* <width> is not a multiple of four or equal to TEXTURE_WIDTH.
* <height> is not a multiple of four or equal to TEXTURE_HEIGHT.
* <depth> is not a multiple of four or equal to TEXTUR_DEPTH.
* <xoffset>, <yoffset>, or <zoffset> is not a multiple of four."

Additions to Chapter 4 of the OpenGL 1.2.1 Specification (Per-Fragment
Operations and the Frame Buffer)

None.

Additions to Chapter 5 of the OpenGL 1.2.1 Specification (Special Functions)

None.

Additions to Chapter 6 of the OpenGL 1.2.1 Specification (State and
State Requests)

None.

Additions to Appendix A of the OpenGL 1.2.1 Specification (Invariance)

None.

GLX Protocol

None.

Errors

The INVALID_ENUM error that was generated by CompressedTexImage3DARB
if <internalformat> is COMPRESSED_RGB_S3TC_DXT1_EXT,
COMPRESSED_RGBA_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT3_EXT, or
COMPRESSED_RGBA_S3TC_DXT5_EXT no longer occurs.

INVALID_OPERATION is generated by CompressedTexImage3DARB if if
<internalformat> is COMPRESSED_RGB_S3TC_DXT1_EXT,
COMPRESSED_RGBA_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT3_EXT, or
COMPRESSED_RGBA_S3TC_DXT5_EXT and <border> is not equal to zero.

The INVALID_ENUM error that was generated by
CompressedTexSubImage3DARB if <format> is
COMPRESSED_RGB_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT1_EXT,
COMPRESSED_RGBA_S3TC_DXT3_EXT, or COMPRESSED_RGBA_S3TC_DXT5_EXT no

NVIDIA OpenGL Extension Specifications NV_texture_compression_vtc

 323

longer occurs.

INVALID_OPERATION is generated by TexSubImage3D, CopyTexSubImage3D,
or CompressedTexSubImage3D if INTERNAL_FORMAT is
COMPRESSED_RGB_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT1_EXT,
COMPRESSED_RGBA_S3TC_DXT3_EXT, or COMPRESSED_RGBA_S3TC_DXT5_EXT and
any of the following apply: <width> is not a multiple of four or
equal to TEXTURE_WIDTH; <height> is not a multiple of four or equal
to TEXTURE_HEIGHT; <depth> is not a multiple of four or equal to
TEXTURE_DEPTH; <xoffset>, <yoffset>, or <zoffset> is not a multiple
of four.

See also errors in the GL_ARB_texture_compression and
GL_EXT_texture_compression_s3tc specifications.

New State

None.

Appendix

VTC Compressed Texture Image Formats

Each VTC compression format is similar to a corresponding S3TC
compression format, but where an S3TC block encodes a 4x4 block of
texels, a VTC block encodes a 4x4x1, 4x4x2, or 4x4x4 block of texels.
If the depth of the image is four or greater, 4x4x4 blocks are used,
and if the depth is 1 or 2, 4x4x1 or 4x4x2 blocks are used.

The size in bytes of a VTC image with dimensions w, h, and d is:

ceil(w/4) * ceil(h/4) * d * blocksize,

where blocksize is the size of an analogous 4x4 S3TC block and is
either 8 or 16 bytes.

The block containing a texel at location (x,y,z) starts at an offset
inside the image of:

blocksize * min(d,4) * (floor(x/4) +
ceil(w/4) * (floor(y/4) +

ceil(h/4) * floor(z/4)))

bytes.

A 4x4x1 block of each of the four formats is stored in exactly the
same way that a 4x4 block of the analogous S3TC format is stored.

A 4x4x2 or 4x4x4 block is stored as two or four consecutive 4x4
blocks of the analogous S3TC format, one for each layer inside the
block. For example, a 4x4x2 DXT1 block consists of 16 bytes in
total. The first 8 bytes encode the texels at locations (0,0,0)
through (3,3,0), and the second 8 bytes encode the texels at
locations (0,0,1) through (3,3,1).

For definitions of the S3TC formats, please refer to the
EXT_texture_compression_s3tc specification.

NV_texture_compression_vtc NVIDIA OpenGL Extension Specifications

 324

Revision History

none yet

NVIDIA OpenGL Extension Specifications NV_texture_env_combine4

 325

Name

NV_texture_env_combine4

Name Strings

GL_NV_texture_env_combine4

Notice

Copyright NVIDIA Corporation, 1999, 2000, 2001.

IP Status

NVIDIA Proprietary.

Version

NVIDIA Date: January 18, 2001
$Date: 1999/06/21 13:54:17 $ $Revision: 1.2 $
$Id: //sw/main/docs/OpenGL/specs/GL_NV_texture_env_combine4.txt#13 $

Number

195

Dependencies

EXT_texture_env_combine is required and is modified by this extension
ARB_multitexture affects the definition of this extension

Overview

New texture environment function COMBINE4_NV allows programmable
texture combiner operations, including

ADD Arg0 * Arg1 + Arg2 * Arg3
ADD_SIGNED_EXT Arg0 * Arg1 + Arg2 * Arg3 - 0.5

where Arg0, Arg1, Arg2 and Arg3 are derived from

ZERO the value 0
PRIMARY_COLOR_EXT primary color of incoming fragment
TEXTURE texture color of corresponding texture unit
CONSTANT_EXT texture environment constant color
PREVIOUS_EXT result of previous texture environment; on

texture unit 0, this maps to PRIMARY_COLOR_EXT
TEXTURE<n>_ARB texture color of the <n>th texture unit

In addition, the result may be scaled by 1.0, 2.0 or 4.0.

Issues

None

NV_texture_env_combine4 NVIDIA OpenGL Extension Specifications

 326

New Procedures and Functions

None

New Tokens

Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv, and
TexEnviv when the <pname> parameter value is TEXTURE_ENV_MODE

COMBINE4_NV 0x8503

Accepted by the <pname> parameter of GetTexEnvfv, GetTexEnviv,
TexEnvf, TexEnvi, TexEnvfv, and TexEnviv when the <target> parameter
value is TEXTURE_ENV

SOURCE3_RGB_NV 0x8583
SOURCE3_ALPHA_NV 0x858B
OPERAND3_RGB_NV 0x8593
OPERAND3_ALPHA_NV 0x859B

Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv, and
TexEnviv when the <pname> parameter value is SOURCE0_RGB_EXT,
SOURCE1_RGB_EXT, SOURCE2_RGB_EXT, SOURCE3_RGB_NV, SOURCE0_ALPHA_EXT,
SOURCE1_ALPHA_EXT, SOURCE2_ALPHA_EXT, or SOURCE3_ALPHA_NV

ZERO
TEXTURE<n>_ARB

where <n> is in the range 0 to NUMBER_OF_TEXTURE_UNITS_ARB-1.

Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv, and
TexEnviv when the <pname> parameter value is OPERAND0_RGB_EXT,
OPERAND1_RGB_EXT, OPERAND2_RGB_EXT or OPERAND3_RGB_NV

SRC_COLOR
ONE_MINUS_SRC_COLOR
SRC_ALPHA
ONE_MINUS_SRC_ALPHA

Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv, and
TexEnviv when the <pname> parameter value is OPERAND0_ALPHA_EXT,
OPERAND1_ALPHA_EXT, OPERAND2_ALPHA_EXT, or OPERAND3_ALPHA_NV

SRC_ALPHA
ONE_MINUS_SRC_ALPHA

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

None

Additions to Chapter 3 of the GL Specification (Rasterization)

Added to subsection 3.8.9, before the paragraph describing the state
requirements:

If the value of TEXTURE_ENV_MODE is COMBINE4_NV, the form of the
texture function depends on the values of COMBINE_RGB_EXT and

NVIDIA OpenGL Extension Specifications NV_texture_env_combine4

 327

COMBINE_ALPHA_EXT, according to table 3.21. The RGB and ALPHA results
of the texture function are then multiplied by the values of
RGB_SCALE_EXT and ALPHA_SCALE, respectively. The results are clamped
to [0,1]. If the value of COMBINE_RGB_EXT or COMBINE_ALPHA_EXT is not
one of the listed values, the result is undefined.

COMBINE_RGB_EXT or
COMBINE_ALPHA_EXT Texture Function
------------------ ----------------
ADD Arg0 * Arg1 + Arg2 * Arg3
ADD_SIGNED_EXT Arg0 * Arg1 + Arg2 * Arg3 - 0.5

Table 3.21: COMBINE4_NV texture functions

The arguments Arg0, Arg1, Arg2 and Arg3 are determined by the values
of SOURCE<n>_RGB_EXT, SOURCE<n>_ALPHA_EXT, OPERAND<n>_RGB_EXT and
OPERAND<n>_ALPHA_EXT. In the following two tables, Ct and At are the
filtered texture RGB and alpha values; Cc and Ac are the texture
environment RGB and alpha values; Cf and Af are the RGB and alpha of
the primary color of the incoming fragment; and Cp and Ap are the RGB
and alpha values resulting from the previous texture environment. On
texture environment 0, Cp and Ap are identical to Cf and Af,
respectively. Ct<n> and At<n> are the filtered texture RGB and alpha
values from the texture bound to the <n>th texture unit. If the <n>th
texture unit is disabled, the value of each component is 1. The
relationship is described in tables 3.22 and 3.23.

SOURCE<n>_RGB_EXT OPERAND<n>_RGB_EXT Argument
----------------- -------------- --------
ZERO SRC_COLOR 0

ONE_MINUS_SRC_COLOR 1
SRC_ALPHA 0
ONE_MINUS_SRC_ALPHA 1

TEXTURE SRC_COLOR Ct
ONE_MINUS_SRC_COLOR (1-Ct)
SRC_ALPHA At
ONE_MINUS_SRC_ALPHA (1-At)

CONSTANT_EXT SRC_COLOR Cc
ONE_MINUS_SRC_COLOR (1-Cc)
SRC_ALPHA Ac
ONE_MINUS_SRC_ALPHA (1-Ac)

PRIMARY_COLOR_EXT SRC_COLOR Cf
ONE_MINUS_SRC_COLOR (1-Cf)
SRC_ALPHA Af
ONE_MINUS_SRC_ALPHA (1-Af)

PREVIOUS_EXT SRC_COLOR Cp
ONE_MINUS_SRC_COLOR (1-Cp)
SRC_ALPHA Ap
ONE_MINUS_SRC_ALPHA (1-Ap)

TEXTURE<n>_ARB SRC_COLOR Ct<n>
ONE_MINUS_SRC_COLOR (1-Ct<n>)
SRC_ALPHA At<n>
ONE_MINUS_SRC_ALPHA (1-At<n>)

Table 3.22: Arguments for COMBINE_RGB_EXT functions

NV_texture_env_combine4 NVIDIA OpenGL Extension Specifications

 328

SOURCE<n>_ALPHA_EXT OPERAND<n>_ALPHA_EXT Argument
------------------- -------------- --------
ZERO SRC_ALPHA 0

ONE_MINUS_SRC_ALPHA 1
TEXTURE SRC_ALPHA At

ONE_MINUS_SRC_ALPHA (1-At)
CONSTANT_EXT SRC_ALPHA Ac

ONE_MINUS_SRC_ALPHA (1-Ac)
PRIMARY_COLOR_EXT SRC_ALPHA Af

ONE_MINUS_SRC_ALPHA (1-Af)
PREVIOUS_EXT SRC_ALPHA Ap

ONE_MINUS_SRC_ALPHA (1-Ap)
TEXTURE<n>_ARB SRC_ALPHA At<n>

ONE_MINUS_SRC_ALPHA (1-At<n>)

Table 3.23: Arguments for COMBINE_ALPHA_EXT functions

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

None

Additions to Chapter 5 of the GL Specification (Special Functions)

None

Additions to Chapter 6 of the GL Specification (State and State Requests)

None

Additions to the GLX Specification

None

GLX Protocol

None

Errors

INVALID_ENUM is generated if <params> value for SOURCE0_RGB_EXT,
SOURCE1_RGB_EXT, SOURCE2_RGB_EXT, SOURCE3_RGB_NV, SOURCE0_ALPHA_EXT,
SOURCE1_ALPHA_EXT, SOURCE2_ALPHA_EXT or SOURCE3_ALPHA_NV is not one of
ZERO, TEXTURE, CONSTANT_EXT, PRIMARY_COLOR_EXT, PREVIOUS_EXT or
TEXTURE<n>_ARB, where <n> is in the range 0 to
NUMBER_OF_TEXTURE_UNITS_ARB-1.

INVALID_ENUM is generated if <params> value for OPERAND0_RGB_EXT,
OPERAND1_RGB_EXT, OPERAND2_RGB_EXT or OPERAND3_RGB_NV is not one of
SRC_COLOR, ONE_MINUS_SRC_COLOR, SRC_ALPHA or ONE_MINUS_SRC_ALPHA.

INVALID_ENUM is generated if <params> value for OPERAND0_ALPHA_EXT
OPERAND1_ALPHA_EXT, OPERAND2_ALPHA_EXT, or OPERAND3_ALPHA_NV is not
one of SRC_ALPHA or ONE_MINUS_SRC_ALPHA.

NVIDIA OpenGL Extension Specifications NV_texture_env_combine4

 329

Modifications to EXT_texture_env_combine

This extension relaxes the restrictions on SOURCE<n>_RGB_EXT,
SOURCE<n>_ALPHA_EXT, OPERAND<n>_RGB_EXT and OPERAND<n>_ALPHA_EXT for
use with EXT_texture_env_combine. All params specified by Table 3.22
and Table 3.23 are valid.

Dependencies on ARB_multitexture

If ARB_multitexture is not implemented, all references to
TEXTURE<n>_ARB and NUMBER_OF_TEXTURE_UNITS_ARB are deleted.

New State

Get Value Get Command Type Initial Value Attribute
--------- ----------- ---- ------------- ---------
SOURCE3_RGB_NV GetTexEnviv n x Z5+n ZERO texture
SOURCE3_ALPHA_NV GetTexEnviv n x Z5+n ZERO texture
OPERAND3_RGB_NV GetTexEnviv n x Z2 ONE_MINUS_SRC_COLOR texture
OPERAND3_ALPHA_NV GetTexEnviv n x Z2 ONE_MINUS_SRC_ALPHA texture

New Implementation Dependent State

None

NVIDIA Implementation Details

Because of a hardware limitation, TNT, TNT2, GeForce, and Quadro
treat "scale by 4.0" with the COMBINE_RGB_EXT or COMBINE_ALPHA_EXT
mode of ADD_SIGNED_EXT as "scale by 2.0".

NV_texture_rectangle NVIDIA OpenGL Extension Specifications

 330

Name

NV_texture_rectangle

Name Strings

GL_NV_texture_rectangle

Notice

Copyright NVIDIA Corporation, 2000, 2001.

IP Status

NVIDIA Proprietary.

Status

Implemented in NVIDIA's Release 10 drivers.

Version

NVIDIA Date: April 13, 2001
$Id: //sw/main/docs/OpenGL/specs/GL_NV_texture_rectangle.txt#2 $

Number

229

Dependencies

Written based on the OpenGL 1.2.1 specification including
ARB_texture_cube_map wording.

IBM_mirrored_repeat affects the definition of this extension.

ARB_texture_border_clamp affects the definition of this extension.

EXT_paletted_texture affects the definition of this extension.

This extension affects the definition of the NV_texture_shader
extension.

Overview

OpenGL texturing is limited to images with power-of-two dimensions
and an optional 1-texel border. NV_texture_rectangle extension
adds a new texture target that supports 2D textures without requiring
power-of-two dimensions.

Non-power-of-two dimensioned textures are useful for storing
video images that do not have power-of-two dimensions. Re-sampling
artifacts are avoided and less texture memory may be required by using
non-power-of-two dimensioned textures. Non-power-of-two dimensioned
textures are also useful for shadow maps and window-space texturing.

However, non-power-of-two dimensioned (NPOTD) textures have

NVIDIA OpenGL Extension Specifications NV_texture_rectangle

 331

limitations that do not apply to power-of-two dimensioned (POT)
textures. NPOTD textures may not use mipmap filtering; POTD
textures support both mipmapped and non-mipmapped filtering.
NPOTD textures support only the GL_CLAMP, GL_CLAMP_TO_EDGE,
and GL_CLAMP_TO_BORDER_ARB wrap modes; POTD textures support
GL_CLAMP_TO_EDGE, GL_REPEAT, GL_CLAMP, GL_MIRRORED_REPEAT_IBM,
and GL_CLAMP_TO_BORDER. NPOTD textures do not support an optional
1-texel border; POTD textures do support an optional 1-texel border.

POTD textures are accessed by non-normalized texture coordinates.
So instead of thinking of the texture image lying in a [0..1]x[0..1]
range, the NPOTD texture image lies in a [0..w]x[0..h] range.

This extension adds a new texture target and related state (proxy,
binding, max texture size).

Issues

Should rectangular textures simply be an extension to the 2D texture
target that allows non-power-of-two widths and heights?

RESOLUTION: No. The rectangular texture is an entirely new texture
target type called GL_TEXTURE_RECTANGLE_NV. This is because while
the texture rectangle target relaxes the power-of-two dimensions
requirements of the texture 2D target, it also has limitations
such as the absence of both mipmapping and the GL_REPEAT and
GL_MIRRORED_REPEAT_IBM wrap modes. Additionally, rectangular
textures do not use [0..1] normalized texture coordinates.

How is the image of a rectangular texture specified?

RESOLUTION: Using the standard OpenGL API for specifying a 2D
texture image: glTexImage2D, glSubTexImage2D, glCopyTexImage2D,
and glCopySubTexImage2D. The target for these commands is
GL_TEXTURE_RECTANGLE_NV though.

This is similar to how the ARB_texture_cube_map extension uses
the 2D texture image specification API though with its own texture
target.

Should 3D textures be allowed to be NPOTD?

RESOLUTION: No. That should be left to another extension.

Should cube map textures be allowed to be NPOTD?

RESOLUTION: No. Probably not particularly interesting for
cube maps. If it becomes important, another extension should
provide NPOTD cube maps.

Should 1D textures be allowed to be NPOTD?

RESOLUTION: No. Rectangular textures are always considered 2D
by this extension. You can always simulate a 1D NPOTD textures
by using a 2D Wx1 or 1xH dimensioned rectangular texture.

Should anything be said about performance?

NV_texture_rectangle NVIDIA OpenGL Extension Specifications

 332

RESOLUTION: No, but developers should not be surprised if
conventional POTD textures will render slightly faster than NPOTD
textures. This is particularly likely to be true when NPOTD
textures are minified leading to texture cache thrashing.

How are rectangular textures enabled?

RESOLUTION: Since rectangular textures add a new texture target,
you enable rectangular textures by enabling this target. Example:

glEnable(GL_TEXTURE_RECTANGLE_NV);

What is the priority of the rectangular texture target enable relative to
existing texture enables?

RESOLUTION: The texture rectangle target is like a 2D texture in
many ways so its enable priority is just above GL_TEXTURE_2D. From
lowest priority to highest priority: GL_TEXTURE_1D, GL_TEXTURE_2D,
GL_TEXTURE_RECTANGLE_NV, GL_TEXTURE_3D, GL_TEXTURE_CUBE_MAP_ARB.

What is the default wrap state for a texture rectangle?

RESOLUTION: GL_CLAMP_TO_EDGE. The normal default wrap state is
GL_REPEAT, but that mode is not allowed for rectangular textures?

What is the default minification filter for a texture rectangle?

RESOLUTION: GL_LINEAR. The normal default minification filter
state is GL_NEAREST_MIPMAP_LINEAR, but that mode is not allowed
for rectangular textures because mipmapping is not supported.

Do paletted textures work with rectangular textures?

RESOLUTION: No. Similar (but not identical) functionality can
be accomplished using dependent texture shader operations (see
NV_texture_shader).

The difference between paletted texture accesses and dependent
texture accesses is that paletted texture lookups are
"pre-filtering" while dependent texture shader operations are
"post-filtering".

Can compressed texture images be specified for a rectangular texture?

RESOLUTION: The generic texture compression internal formats
introduced by ARB_texture_compression are supported for rectangular
textures because the image is not presented as compressed data and
the ARB_texture_compression extension always permits generic texture
compression internal formats to be stored in uncompressed form.
Implementations are free to support generic compression internal
formats for rectangular textures if supported but such support is
not required.

This extensions makes a blanket statement that specific compressed
internal formats for use with CompressedTexImage<n>DARB are NOT
supported for rectangular textures. This is because several

NVIDIA OpenGL Extension Specifications NV_texture_rectangle

 333

existing hardware implementations of texture compression formats
such as S3TC are not designed for compressing rectangular textures.
This does not preclude future texture compression extensions from
supporting compressed internal formats that do work with rectangular
extensions (by relaxing the current blanket error condition).

Does this extension work with SGIX_shadow-style shadow mapping?

RESOLUTION: Yes. The one non-obvious allowance to support
SGIX_shadow-style shadow mapping is that the R texture coordinate
wrap mode remains UNCHANGED for rectangular textures. Clamping of
the R texture coordinate for rectangular textures uses the standard
[0,1] interval rather than the [0,ws] or [0,hs] intervals as in
the case of S and T. This is because R represents a depth value
in the [0,1] range whether using a 2D or rectangular texture.

New Procedures and Functions

None

New Tokens

Accepted by the <cap> parameter of Enable, Disable, IsEnabled, and
by the <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv,
and GetDoublev, and by the <target> parameter of BindTexture,
GetTexParameterfv, GetTexParameteriv, TexParameterf, TexParameteri,
TexParameterfv, and TexParameteriv:

TEXTURE_RECTANGLE_NV 0x84F5

Accepted by the <pname> parameter of GetBooleanv, GetIntegerv,
GetFloatv, and GetDoublev:

TEXTURE_BINDING_RECTANGLE_NV 0x84F6

Accepted by the <target> parameter of GetTexImage,
GetTexLevelParameteriv, GetTexLevelParameterfv, TexImage2D,
CopyTexImage2D, TexSubImage2D, and CopySubTexImage2D:

TEXTURE_RECTANGLE_NV

Accepted by the <target> parameter of GetTexLevelParameteriv,
GetTexLevelParameterfv, GetTexParameteriv, and TexImage2D:

PROXY_TEXTURE_RECTANGLE_NV 0x84F7

Accepted by the <pname> parameter of GetBooleanv, GetDoublev,
GetIntegerv, and GetFloatv:

MAX_RECTANGLE_TEXTURE_SIZE_NV 0x84F8

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

None

NV_texture_rectangle NVIDIA OpenGL Extension Specifications

 334

Additions to Chapter 3 of the GL Specification (Rasterization)

-- Section 3.6.3 "Pixel Transfer Modes" under "Color Table
Specification" or the ColorTableEXT description in the
EXT_paletted_texture specification (rev 1.2)

Add the following statement after introducing ColorTableEXT:

"The error INVALID_ENUM is generated if the target to ColorTable (or
ColorTableEXT or the various ColorTable and ColorTableEXT alternative
commands) is TEXTURE_RECTANGLE_NV or PROXY_TEXTURE_RECTANGLE_NV."

-- Section 3.6.5 "Pixel Transfer Operations" under "Convolution"

Change this paragraph (page 103) to add TEXTURE_RECTANGLE_NV to
the list of targets so it reads say:

... "If CONVOLUTION_2D is enabled, the two-dimensional convolution
filter is applied only to the two-dimensional images passed to
DrawPixels, CopyPixels, ReadPixels, TexImage2D, TexSubImage2D,
CopyTexImage2D, CopyTexSubImage2D, and CopyTexSubImage3D, and
returned by GetTexImage with one of the targets TEXTURE_2D,
TEXTURE_RECTANGLE_NV, TEXTURE_CUBE_MAP_POSITIVE_X_ARB,
TEXTURE_CUBE_MAP_NEGATIVE_X_ARB, TEXTURE_CUBE_MAP_POSITIVE_Y_ARB,
TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB, TEXTURE_CUBE_MAP_POSITIVE_Z_ARB,
or TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB."

-- Section 3.8.1 "Texture Image Specification"

Change the second sentence through the rest of the paragraph
describing TexImage2D on page 116 to:

"<target> must be one of TEXTURE_2D for a 2D texture, or one
of TEXTURE_RECTANGLE_NV for a rectangle texture, or one of
TEXTURE_CUBE_MAP_POSITIVE_X_ARB, TEXTURE_CUBE_MAP_NEGATIVE_X_ARB,
TEXTURE_CUBE_MAP_POSITIVE_Y_ARB, TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB,
TEXTURE_CUBE_MAP_POSITIVE_Z_ARB, or TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB
for a cube map texture. Additionally, <target> can be either
PROXY_TEXTURE_2D for a 2D proxy texture or PROXY_TEXTURE_RECTANGLE_NV
for a rectangle proxy texture or PROXY_TEXTURE_CUBE_MAP_ARB for a
cube map proxy texture as discussed in section 3.8.7.
The other parameters match the corresponding parameters of TexImage3D."

Add a following paragraph reading:

"Rectangular textures do not support paletted formats. The error
INVALID_ENUM is generated if the target is TEXTURE_RECTANGLE_NV
or PROXY_TEXTURE_RECTANGLE_NV and the format is COLOR_INDEX or
the internalformat is COLOR_INDEX or one of the COLOR_INDEX<n>_EXT
internal formats."

Change the 14th paragraph (page 116) to read:

"In a similar fashion, the maximum allowable width of a rectangular
texture image, and the maximum allowable height of a rectangular
texture image, must be at least the implementation-dependent value
of MAX_RECTANGLE_TEXTURE_SIZE_NV."

NVIDIA OpenGL Extension Specifications NV_texture_rectangle

 335

Add the following paragraph after the paragraph introducing
TexImage2D (page 116):

"When the target is TEXTURE_RECTANGLE_NV, the INVALID_VALUE error is
generated if border is any value other than zero or the level is any
value other than zero. Also when the target is TEXTURE_RECTANGLE_NV,
the texture dimension restrictions specified by equations 3.11,
3.12, and 3.13 are ignored; however, if the width is less than zero or
the height is less than zero, the error INVALID_VALUE is generated.
In the case of a rectangular texture, ws and hs equal the specified
width and height respectively of the rectangular texture image
while ds is 1."

Amend the following paragraph that was added by the
ARB_texture_cube_map specification after the first paragraph on
page 117:

"A 2D texture consists of a single 2D texture image. A rectangle
texture consists of a single 2D texture image. A cube map texture
is a set of six 2D texture images. The six cube map texture
targets form a single cube map texture though each target names
a distinct face of the cube map. The TEXTURE_CUBE_MAP_*_ARB
targets listed above update their appropriate cube map face 2D
texture image. Note that the six cube map 2D image tokens such as
TEXTURE_CUBE_MAP_POSITIVE_X_ARB are used when specifying, updating,
or querying one of a cube map's six 2D image, but when enabling cube
map texturing or binding to a cube map texture object (that is when
the cube map is accessed as a whole as opposed to a particular 2D
image), the TEXTURE_CUBE_MAP_ARB target is specified."

Append to the end of the third to the last paragraph in the section
(page 118):

"A rectangular texture array has depth dt=1, with height ht and width
wt defined by the specified image height and width parameters."

-- Section 3.8.2 "Alternate Texture Image Specification Commands"

Add TEXTURE_RECTANGLE_NV to the second paragraph (page 120) to say:

... "Currently, <target> must be TEXTURE_2D,
TEXTURE_RECTANGLE_NV, TEXTURE_CUBE_MAP_POSITIVE_X_ARB,
TEXTURE_CUBE_MAP_NEGATIVE_X_ARB, TEXTURE_CUBE_MAP_POSITIVE_Y_ARB,
TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB, TEXTURE_CUBE_MAP_POSITIVE_Z_ARB,
or TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB." ...

Add TEXTURE_RECTANGLE_NV to the fourth paragraph (page 121) to say:

... "Currently the target arguments of TexSubImage1D and
CopyTexSubImage1D must be TEXTURE_1D, the <target> arguments of
TexSubImage2D and CopyTexSubImage2D must be one of TEXTURE_2D,
TEXTURE_RECTANGLE_NV, TEXTURE_CUBE_MAP_POSITIVE_X_ARB,
TEXTURE_CUBE_MAP_NEGATIVE_X_ARB, TEXTURE_CUBE_MAP_POSITIVE_Y_ARB,
TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB, TEXTURE_CUBE_MAP_POSITIVE_Z_ARB,
or TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB, and the <target> arguments of
TexSubImage3D and CopyTexSubImage3D must be TEXTURE_3D." ...

NV_texture_rectangle NVIDIA OpenGL Extension Specifications

 336

Also add to the end of the fourth paragraph (121):

"If target is TEXTURE_RECTANGLE_NV and level is not zero, the error
INVALID_VALUE is generated."

-- Section "Compressed Texture Images" in the ARB_texture_compression
specification

Add the following paragraph after introducing the
CompressedTexImage<n>DARB commands:

"The error INVALID_ENUM is generated if the target parameter to one
of the CompressedTexImage<n>DARB commands is TEXTURE_RECTANGLE_NV."

Add the following paragraph after introducing the
CompressedTexSubImage<n>DARB commands:

"The error INVALID_ENUM is generated if the target parameter
to one of the CompressedTexSubImage<n>DARB commands is
TEXTURE_RECTANGLE_NV."

-- Section 3.8.3 "Texture Parameters"

Add TEXTURE_RECTANGLE_NV to paragraph one (page 124) to say:

... "<target> is the target, either TEXTURE_1D, TEXTURE_2D,
TEXTURE_RECTANGLE_NV, TEXTURE_3D, or TEXTURE_CUBE_MAP_ARB." ...

Add the following paragraph to the end of the section (page 134):

"Certain texture parameter values may not be specified for textures
with a target of TEXTURE_RECTANGLE_NV. The error INVALID_ENUM
is generated if the target is TEXTURE_RECTANGLE_NV and the
TEXTURE_WRAP_S, TEXTURE_WRAP_T, or TEXTURE_WRAP_R parameter is set to
REPEAT or MIRRORED_REPEAT_IBM. The error INVALID_ENUM is generated
if the target is TEXTURE_RECTANGLE_NV and the TEXTURE_MIN_FILTER is
set to a value other than NEAREST or LINEAR (no mipmap filtering
is permitted). The error INVALID_ENUM is generated if the target
is TEXTURE_RECTANGLE_NV and TEXTURE_BASE_LEVEL is set to any value
other than zero."

-- Section 3.8.4 "Texture Wrap Modes"

Add this final additional paragraph:

"Texture coordinates are clamped differently for rectangular
textures. The r texture coordinate is wrapped as described above (as
required for shadow mapping to operate correctly). When the texture
target is TEXTURE_RECTANGLE_NV, the s and t coordinates are wrapped
as follows: CLAMP causes the s coordinate to be clamped to the range
[0,ws]. CLAMP causes the t coordinate to be clamped to the range
[0,hs]. CLAMP_TO_EDGE causes the s coordinate to be clamped to
the range [0.5,ws-0.5]. CLAMP_TO_EDGE causes the t coordinate
to be clamped to the range [0.5,hs-0.5]. CLAMP_TO_BORDER_ARB
causes the s coordinate to be clamped to the range [-0.5,ws+0.5].
CLAMP_TO_BORDER_ARB causes the t coordinate to be clamped to the

NVIDIA OpenGL Extension Specifications NV_texture_rectangle

 337

range [-0.5,hs+0.5]."

-- Section 3.8.5 "Texture Minification" under "Mipmapping"

Change the second full paragraph on page 126 to read:

"For non-rectangular textures, let u(x,y) = 2^n*s(x,y), v(x,y) =
2^m*t(x,y), and w(x,y) = 2^l*r(x,y), where n, m, and l are defined
by equations 3.11, 3.12, and 3.13 with ws, hs, and ds equal to
the width, height, and depth of the image array whose level is
TEXTURE_BASE_LEVEL. However, for rectangular textures let u(x,y)
= s(x,y), v(x,y) = t(x,y), and w(x,y) = r(x,y)."

Update the last sentence in the first full paragraph on page 127
to read:

"Depending on whether the texture's target is rectangular or
non-rectangular, this means the texel at location (i,j,k) becomes
the texture value, with i given by

/ floor(u), s < 1
/

i = { 2^n-1, s == 1, non-rectangular texture (3.17)
\
\ ws-1, s == 1, rectangular texture

(Recall that if TEXTURE_WRAP_S is REPEAT, then 0 <= s < 1.) Similarly,
j is found as

/ floor(v), t < 1
/

j = { 2^m-1, t == 1, non-rectangular texture (3.18)
\
\ hs-1, t == 1, rectangular texture

and k is found as

/ floor(w), r < 1
/

k = { 2^l-1, r == 1, non-rectangular texture (3.19)
\
\ 0, r == 1, rectangular texture"

Change the last sentence in the partial paragraph after equation
3.19 to read:

"For a two-dimensional or rectangular texture, k is irrelevant;
the texel at location (i,j) becomes the texture value."

Change the sentence preceding equation 3.20 (page 128) specifying
how to compute the value tau for a two-dimensional texture to:

"For a two-dimensional or rectangular texture,"

Follow the first full paragraph on page 130 with:

"Rectangular textures do not support mipmapping (it is an error to

NV_texture_rectangle NVIDIA OpenGL Extension Specifications

 338

specify a minification filter that requires mipmapping)."

-- Section 3.8.7 "Texture State and Proxy State"

Change the first sentence of the first paragraph (page 131) to say:

"The state necessary for texture can be divided into two categories.
First, there are the ten sets of mipmap arrays (one each for the
one-, two-, and three-dimensional texture targets, one for the
rectangular texture target (though the rectangular texture target
has only one mipmap level), and six for the cube map texture targets)
and their number." ...

Change the fourth and third to last sentences of the first paragraph
to say:

"In the initial state, the value assigned to TEXTURE_MIN_FILTER
is NEAREST_MIPMAP_LINEAR, except for rectangular textures where
the initial value is LINEAR, and the value for TEXTURE_MAG_FILTER
is LINEAR. s, t, and r warp modes are all set to REPEAT, except
for rectangular textures where the initial value is CLAMP_TO_EDGE."

Change the second paragraph (page 132) to say:

"In addition to the one-, two-, three-dimensional, rectangular, and
the six cube map sets of image arrays, the partially instantiated
one-, two-, and three-dimensional, rectangular, and one cube map
sets of proxy image arrays are maintained." ...

Change the third paragraph (page 132) to:

"One- and two-dimensional and rectangular proxy arrays are operated
on in the same way when TexImage1D is executed with target specified
as PROXY_TEXTURE_1D, or TexImage2D is executed with target specified
as PROXY_TEXTURE_2D or PROXY_TEXTURE_RECTANGLE_NV."

Change the second sentence of the fourth paragraph (page 132) to:

"Therefore PROXY_TEXTURE_1D, PROXY_TEXTURE_2D,
PROXY_TEXTURE_RECTANGLE_NV, PROXY_TEXTURE_3D, and
PROXY_TEXTURE_CUBE_MAP_ARB cannot be used as textures, and their
images must never be queried using GetTexImage." ...

-- Section 3.8.8 "Texture Objects"

Change the first sentence of the first paragraph (page 132) to say:

"In addition to the default textures TEXTURE_1D, TEXTURE_2D,
TEXTURE_RECTANGLE_NV, TEXTURE_3D, and TEXTURE_CUBE_MAP_ARB, named
one-dimensional, two-dimensional, rectangular, and three-dimensional
texture objects and cube map texture objects can be created and
operated on." ...

Change the second paragraph (page 132) to say:

"A texture object is created by binding an unused name to
TEXTURE_1D, TEXTURE_2D, TEXTURE_RECTANGLE_NV, TEXTURE_3D, or

NVIDIA OpenGL Extension Specifications NV_texture_rectangle

 339

TEXTURE_CUBE_MAP_ARB." ... "If the new texture object is bound
to TEXTURE_1D, TEXTURE_2D, TEXTURE_RECTANGLE_NV, TEXTURE_3D, or
TEXTURE_CUBE_MAP_ARB, it remains a one-dimensional, two-dimensional,
rectangular, three-dimensional, or cube map texture until it is
deleted."

Change the third paragraph (page 133) to say:

"BindTexture may also be used to bind an existing texture object
to either TEXTURE_1D, TEXTURE_2D, TEXTURE_RECTANGLE_NV, TEXTURE_3D,
or TEXTURE_CUBE_MAP_ARB."

Change paragraph five (page 133) to say:

"In the initial state, TEXTURE_1D, TEXTURE_2D, TEXTURE_RECTANGLE_NV,
TEXTURE_3D, and TEXTURE_CUBE_MAP have one-dimensional,
two-dimensional, rectangular, three-dimensional, and cube map state
vectors associated with them respectively." ... "The initial,
one-dimensional, two-dimensional, rectangular, three-dimensional, and
cube map texture is therefore operated upon, queried, and applied
as TEXTURE_1D, TEXTURE_2D, TEXTURE_RECTANGLE_NV, TEXTURE_3D,
and TEXTURE_CUBE_MAP_ARB respectively while 0 is bound to the
corresponding targets."

Change paragraph six (page 133) to say:

... "If a texture that is currently bound to one of the targets
TEXTURE_1D, TEXTURE_2D, TEXTURE_RECTANGLE_NV, TEXTURE_3D, or
TEXTURE_CUBE_MAP_ARB is deleted, it is as though BindTexture has
been executed with the same <target> and <texture> zero." ...

-- Section 3.8.10 "Texture Application"

Replace the beginning sentences of the first paragraph (page 138)
with:

"Texturing is enabled or disabled using the generic Enable and
Disable commands, respectively, with the symbolic constants
TEXTURE_1D, TEXTURE_2D, TEXTURE_RECTANGLE_NV, TEXTURE_3D,
or TEXTURE_CUBE_MAP_ARB to enable the one-dimensional,
two-dimensional, rectangular, three-dimensional, or cube map
texturing respectively. If both two- and one-dimensional textures
are enabled, the two-dimensional texture is used. If the rectangular
and either of the two- or one-dimensional textures is enabled, the
rectangular texture is used. If the three-dimensional and any of the
rectangular, two-dimensional, or one-dimensional textures is enabled,
the three-dimensional texture is used. If the cube map texture
and any of the three-dimensional, rectangular, two-dimensional,
or one-dimensional textures is enabled, then cube map texturing is
used.

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

None

NV_texture_rectangle NVIDIA OpenGL Extension Specifications

 340

Additions to Chapter 5 of the GL Specification (Special Functions)

-- Section 5.4 "Display Lists"

In the first paragraph (page 179), add PROXY_TEXTURE_RECTANGLE_NV
to the list of PROXY_* tokens.

Additions to Chapter 6 of the GL Specification (State and State Requests)

-- Section 6.1.3 "Enumerated Queries"

Change the fourth paragraph (page 183) to say:

"The GetTexParameter parameter <target> may be one of
TEXTURE_1D, TEXTURE_2D, TEXTURE_RECTANGLE_NV, TEXTURE_3D, or
TEXTURE_CUBE_MAP_ARB, indicating the currently bound one-dimensional,
two-dimensional, rectangular, three-dimensional, or cube map
texture object. For GetTexLevelParameter, <target> may be one
of TEXTURE_1D, TEXTURE_2D, TEXTURE_RECTANGLE_NV, TEXTURE_3D,
TEXTURE_CUBE_MAP_POSITIVE_X_ARB, TEXTURE_CUBE_MAP_NEGATIVE_X_ARB,
TEXTURE_CUBE_MAP_POSITIVE_Y_ARB, TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB,
TEXTURE_CUBE_MAP_POSITIVE_Z_ARB, TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB,
PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, PROXY_TEXTURE_RECTANGLE_NV,
PROXY_TEXTURE_3D, or PROXY_TEXTURE_CUBE_MAP_ARB, indicating the
one-dimensional texture object, two-dimensional texture object,
rectangular texture object, three-dimensional texture object, or one
of the six distinct 2D images making up the cube map texture object
or one-dimensional, two-dimensional, rectangular, three-dimensional,
or cube map proxy state vector. Note that TEXTURE_CUBE_MAP_ARB is
not a valid <target> parameter for GetTexLevelParameter because it
does not specify a particular cube map face."

-- Section 6.1.4 "Texture Queries"

Change the first paragraph (page 184) to read:

... "It is somewhat different from the other get commands; <tex> is a
symbolic value indicating which texture (or texture face in the case
of a cube map texture target name) is to be obtained. TEXTURE_1D
indicates a one-dimensional texture, TEXTURE_2D indicates a
two-dimensional texture, TEXTURE_RECTANGLE_NV indicates a rectangular
texture, TEXTURE_3D indicates a three-dimensional texture, and
TEXTURE_CUBE_MAP_POSITIVE_X_ARB, TEXTURE_CUBE_MAP_NEGATIVE_X_ARB,
TEXTURE_CUBE_MAP_POSITIVE_Y_ARB, TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB,
TEXTURE_CUBE_MAP_POSITIVE_Z_ARB, and TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB
indicate the respective face of a cube map texture."

Add a final sentence to the fourth paragraph:

"Calling GetTexImage with a lod not zero when the tex is
TEXTURE_RECTANGLE_NV causes the error INVALID_VALUE."

Additions to the GLX Specification

None

NVIDIA OpenGL Extension Specifications NV_texture_rectangle

 341

GLX Protocol

None

Dependencies on ARB_texture_border_clamp

If ARB_texture_border_clamp is not supported, references to the
CLAMP_TO_BORDER_ARB wrap mode in this document should be ignored.

Dependencies on IBM_mirrored_repeat

If IBM_mirrored_repeat is not supported, references to the
MIRRORED_REPEAT_IBM wrap mode in this document should be ignored.

Dependencies on EXT_paletted_texture

If EXT_paletted_texture is not supported, references to the
COLOR_INDEX, COLOR_INDEX<n>_EXT, ColorTable, and ColorTableEXT should
be ignored.

Dependencies on EXT_texture_compression_s3tc

If EXT_texture_compression_s3tc is not supported, references
to CompressedTexImage2DARB and CompressedTexSubImageARB and the
COMPRESSED_*_S3TC_DXT*_EXT enumerants should be ignored.

Errors

INVALID_ENUM is generated when ColorTable (or ColorTableEXT or the
various ColorTable and ColorTableEXT alternative commands) is called
and the target is TEXTURE_RECTANGLE_NV or PROXY_TEXTURE_RECTANGLE_NV.

INVALID_ENUM is generated when TexImage2D is called and the target
is TEXTURE_RECTANGLE_NV or PROXY_TEXTURE_RECTANGLE_NV and the format
is COLOR_INDEX or the internalformat is COLOR_INDEX or one of the
COLOR_INDEX<n>_EXT internal formats.

INVALID_VALUE is generated when TexImage2D is called when the target
is TEXTURE_RECTANGLE_NV if border is any value other than zero or
the level is any value other than zero.

INVALID_VALUE is generated when TexImage2D is called when the target
is TEXTURE_RECTANGLE_NV if the width is less than zero or the height
is less than zero.

INVALID_VALUE is generated when TexSubImage2D or CopyTexSubImage2D
is called when the target is TEXTURE_RECTANGLE_NV if the level is
any value other than zero.

INVALID_ENUM is generated when one of the CompressedTexImage<n>DARB
commands is called when the target parameter is TEXTURE_RECTANGLE_NV.

INVALID_ENUM is generated when one of the CompressedTexSubImage<n>DARB
commands is called when the target parameter is TEXTURE_RECTANGLE_NV.

INVALID_ENUM is generated when TexParameter is called with a
target of TEXTURE_RECTANGLE_NV and the TEXTURE_WRAP_S, TEXTURE_WRAP_T,

NV_texture_rectangle NVIDIA OpenGL Extension Specifications

 342

or TEXTURE_WRAP_R parameter is set to REPEAT or MIRRORED_REPEAT_IBM.

INVALID_ENUM is generated when TexParameter is called with a
target of TEXTURE_RECTANGLE_NV and the TEXTURE_MIN_FILTER is set to
a value other than NEAREST or LINEAR.

INVALID_VALUE is generated when TexParameter is called with a
target of TEXTURE_RECTANGLE_NV and the TEXTURE_BASE_LEVEL is set to
any value other than zero.

INVALID_VALUE is generated when GetTexImage is called with a lod
not zero when the tex is TEXTURE_RECTANGLE_NV.

New State

(table 6.12, p202) amend/add the following entries:

Get Value Type Get Command Initial Value Description Sec Attribute
---------------------------- ---- ----------- ------------- ----------- ------ --------------
TEXTURE_RECTANGULAR_NV B IsEnabled False True if rectangular 3.8.10 texture/enable

texturing is enabled
TEXTURE_BINDING_RECTANGLE_NV Z+ GetIntegerv 0 Texture object 3.8.8 texture

for TEXTURE_CUBE_MAP
TEXTURE_RECTANGLE_NV I GetTexImage see 3.8 rectangular texture 3.8 -

image for lod 0

(table 6.13, p203) amend/add the following entries:

Get Value Type Get Command Initial Value Description Sec Attribute
------------------- ----- --------------- --------------- ------------------- ------ --------------
TEXTURE_WRAP_S 5+xZ5 GetTexParameter REPEAT except Texture wrap mode S 3.8 texture

for rectangular
which is
CLAMP_TO_EDGE

TEXTURE_WRAP_T 5+xZ5 GetTexParameter REPEAT except Texture wrap mode T 3.8 texture
for rectangular
which is
CLAMP_TO_EDGE

TEXTURE_WRAP_R 5+xZ5 GetTexParameter REPEAT except Texture wrap mode R 3.8 texture
for rectangular
which is
CLAMP_TO_EDGE

New Implementation Dependent State

(table 6.24, p214) add the following entry:

Get Value Type Get Command Minimum Value Description Sec Attribute
--------- ---- ----------- ------------- ----------- ------ --------------
MAX_RECTANGLE_TEXTURE_SIZE_NV Z+ GetIntegerv 64 Maximum rectangular 3.8.1 -

texture image
dimension

Revision History

None

NVIDIA OpenGL Extension Specifications NV_texture_shader

 343

Name

NV_texture_shader

Name Strings

GL_NV_texture_shader

Notice

Copyright NVIDIA Corporation, 1999, 2000, 2001.

IP Status

NVIDIA Proprietary.

Version

NVIDIA Date: April 27, 2001
$Id: //sw/main/docs/OpenGL/specs/GL_NV_texture_shader.txt#8 $

Number

230

Dependencies

Written based on the wording of the OpenGL 1.2.1 specification.

Requires support for the ARB_multitexture extension.

Requires support for the ARB_texture_cube_map extension.

NV_register_combiners affects the definition of this extension.

EXT_texture_lod_bias trivially affects the definition of this
extension.

ARB_texture_env_combine and/or EXT_texture_env_combine affect the
definition of this extension.

NV_texture_env_combine4 affects the definition of this extension.

ARB_texture_env_add and/or EXT_texture_env_add affect the definition
of this extension.

NV_texture_rectangle affects the definition of this extension.

NV_texture_shader2 depends on the definition of this extension.

Overview

Standard OpenGL and the ARB_multitexture extension define a
straightforward direct mechanism for mapping sets of texture
coordinates to filtered colors. This extension provides a more
functional mechanism.

NV_texture_shader NVIDIA OpenGL Extension Specifications

 344

OpenGL's standard texturing mechanism defines a set of texture
targets. Each texture target defines how the texture image
is specified and accessed via a set of texture coordinates.
OpenGL 1.0 defines the 1D and 2D texture targets. OpenGL 1.2
(and/or the EXT_texture3D extension) defines the 3D texture target.
The ARB_texture_cube_map extension defines the cube map texture
target. Each texture unit's texture coordinate set is mapped to a
color using the unit's highest priority enabled texture target.

This extension introduces texture shader stages. A sequence of
texture shader stages provides a more flexible mechanism for mapping
sets of texture coordinates to texture unit RGBA results than standard
OpenGL.

When the texture shader enable is on, the extension replaces the
conventional OpenGL mechanism for mapping sets of texture coordinates
to filtered colors with this extension's sequence of texture shader
stages.

Each texture shader stage runs one of 21 canned texture shader
programs. These programs support conventional OpenGL texture
mapping but also support dependent texture accesses, dot product
texture programs, and special modes. (3D texture mapping
texture shader operations are NOT provided by this extension;
3D texture mapping texture shader operations are added by the
NV_texture_shader2 extension that is layered on this extension.
See the NV_texture_shader2 specification.)

To facilitate the new texture shader programs, this extension
introduces several new texture formats and variations on existing
formats. Existing color texture formats are extended by introducing
new signed variants. Two new types of texture formats (beyond colors)
are also introduced. Texture offset groups encode two signed offsets,
and optionally a magnitude or a magnitude and an intensity. The new
HILO (pronounced high-low) formats provide possibly signed, high
precision (16-bit) two-component textures.

Each program takes as input the stage's interpolated texture
coordinate set (s,t,r,q). Each program generates two results:
a shader stage result that may be used as an input to subsequent
shader stage programs, and a texture unit RGBA result that becomes the
texture color used by the texture unit's texture environment function
or becomes the initial value for the corresponding texture register
for register combiners. The texture unit RGBA result is always
an RGBA color, but the shader stage result may be one of an RGBA
color, a HILO value, a texture offset group, a floating-point value,
or an invalid result. When both results are RGBA colors, the shader
stage result and the texture unit RGBA result are usually identical
(though not in all cases).

Additionally, certain programs have a side-effect such as culling
the fragment or replacing the fragment's depth value.

NVIDIA OpenGL Extension Specifications NV_texture_shader

 345

The twenty-one programs are briefly described:

<none>

1. NONE - Always generates a (0,0,0,0) texture unit RGBA result.
Equivalent to disabling all texture targets in conventional
OpenGL.

<conventional textures>

2. TEXTURE_1D - Accesses a 1D texture via (s/q).

3. TEXTURE_2D - Accesses a 2D texture via (s/q,t/q).

4. TEXTURE_RECTANGLE_NV - Accesses a rectangular texture via (s/q,t/q).

5. TEXTURE_CUBE_MAP_ARB - Accesses a cube map texture via (s,t,r).

<special modes>

6. PASS_THROUGH_NV - Converts a texture coordinate (s,t,r,q)
directly to a [0,1] clamped (r,g,b,a) texture unit RGBA result.

7. CULL_FRAGMENT_NV - Culls the fragment based on the whether each
(s,t,r,q) is "greater than or equal to zero" or "less than zero".

<offset textures>

8. OFFSET_TEXTURE_2D_NV - Transforms the signed (ds,dt) components
of a previous texture unit by a 2x2 floating-point matrix and
then uses the result to offset the stage's texture coordinates
for a 2D non-projective texture.

9. OFFSET_TEXTURE_2D_SCALE_NV - Same as above except the magnitude
component of the previous texture unit result scales the red,
green, and blue components of the unsigned RGBA texture 2D
access.

10. OFFSET_TEXTURE_RECTANGLE_NV - Similar to OFFSET_TEXTURE_2D_NV
except that the texture access is into a rectangular
non-projective texture.

11. OFFSET_TEXTURE_RECTANGLE_SCALE_NV - Similar to
OFFSET_TEXTURE_2D_SCALE_NV except that the texture access is
into a rectangular non-projective texture.

<dependent textures>

12. DEPENDENT_AR_TEXTURE_2D_NV - Converts the alpha and red
components of a previous shader result into an (s,t) texture
coordinate set to access a 2D non-projective texture.

13. DEPENDENT_GB_TEXTURE_2D_NV - Converts the green and blue
components of a previous shader result into an (s,t) texture
coordinate set to access a 2D non-projective texture.

NV_texture_shader NVIDIA OpenGL Extension Specifications

 346

<dot product textures>

14. DOT_PRODUCT_NV - Computes the dot product of the texture
shader's texture coordinate set (s,t,r) with some mapping of the
components of a previous texture shader result. The component
mapping depends on the type (RGBA or HILO) and signedness of
the stage's previous texture input. Other dot product texture
programs use the result of this program to compose a texture
coordinate set for a dependent texture access. The color result
is undefined.

15. DOT_PRODUCT_TEXTURE_2D_NV - When preceded by a DOT_PRODUCT_NV
program in the previous texture shader stage, computes a second
similar dot product and composes the two dot products into (s,t)
texture coordinate set to access a 2D non-projective texture.

16. DOT_PRODUCT_TEXTURE_RECTANGLE_NV - Similar to
DOT_PRODUCT_TEXTURE_2D_NV except that the texture acces is into
a rectangular non-projective texture.

17. DOT_PRODUCT_TEXTURE_CUBE_MAP_NV - When preceded by two
DOT_PRODUCT_NV programs in the previous two texture shader
stages, computes a third similar dot product and composes the
three dot products into (s,t,r) texture coordinate set to access
a cube map texture.

18. DOT_PRODUCT_REFLECT_CUBE_MAP_NV - When preceded by two
DOT_PRODUCT_NV programs in the previous two texture shader
stages, computes a third similar dot product and composes the
three dot products into a normal vector (Nx,Ny,Nz). An eye
vector (Ex,Ey,Ez) is composed from the q texture coordinates of
the three stages. A reflection vector (Rx,Ry,Rz) is computed
based on the normal and eye vectors. The reflection vector
forms an (s,t,r) texture coordinate set to access a cube map
texture.

19. DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV - Operates like
DOT_PRODUCT_REFLECT_CUBE_MAP_NV except that the eye vector
(Ex,Ey,Ez) is a user-defined constant rather than composed from
the q coordinates of the three stages.

20. DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV - When used instead of the second
DOT_PRODUCT_NV program preceding
a DOT_PRODUCT_REFLECT_CUBE_MAP_NV or
DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV stage, the normal
vector forms an (s,t,r) texture coordinate set to access a
cube map texture.

<dot product depth replace>

21. DOT_PRODUCT_DEPTH_REPLACE_NV - When preceded by a DOT_PRODUCT_NV
program in the previous texture shader stage, computes a second
similar dot product and replaces the fragment's window-space
depth value with the first dot product results divided by
the second. The texture unit RGBA result is (0,0,0,0).

NVIDIA OpenGL Extension Specifications NV_texture_shader

 347

Issues

What should this extension be called? How does the functionality
compare with DirectX 8's pixel shaders?

RESOLUTION: This extension is called NV_texture_shader.

DirectX 8 refers to its similar functionality as "pixel shaders".
However, DirectX 8 lumps both the functionality described in this
extension and additional functionality similar to the functionality
in the NV_register_combiners extension together into what DirectX
8 calls pixel shaders. This is confusing in two ways.

1) Pixels are not being shaded. In fact, the DirectX 8 pixel
shaders functionality is, taken as a whole, shading only
fragments (though Direct3D tends not to make the same
clear distinction between fragments and pixels that OpenGL
consistently makes).

2) There are two very distinct tasks being performed.

First, there is the task of interpolated texture coordinate
mapping. This per-fragment task maps from interpolated
floating-point texture coordinate sets to (typically
fixed-point) texture unit RGBA results. In conventional OpenGL,
this mapping is performed by accessing the highest priority
enabled texture target using the fragment's corresponding
interpolated texture coordinate set. This NV_texture_shader
extension provides a significantly more powerful mechanism
for performing this mapping.

Second, there is the task of fragment coloring. Fragment
coloring is process of combining (typically fixed-point) RGBA
colors to generate a final fragment color that, assuming the
fragment is not discarded by subsequent per-fragment tests,
is used to update the fragment's corresponding pixel in the
frame buffer. In conventional OpenGL, fragment coloring is
performed by the enabled texture environment functions, fog, and
color sum operations. NVIDIA's register combiners functionality
(see the NV_register_combiners and NV_register_combiners2
extensions) provides a substantially more powerful alternative
to conventional OpenGL fragment coloring.

DirectX 8 has two types of opcodes for pixel shaders. Texture
address opcodes correspond to the first task listed above. Texture
register opcodes correspond to the second task listed above.

NVIDIA OpenGL extensions maintain a clear distinction between
these two tasks. The texture shaders functionality described in
this specification corresponds to the first task listed above.

Here is the conceptual framework that NVIDIA OpenGL extensions use
to describe shading: Shading is the process of assigning colors
to pixels, fragments, or texels. The texture shaders functionality
assigns colors to texture unit results (essentially texture
shading). These texture unit RGBA results can be used by fragment
coloring (fragment shading). The resulting fragments are used to

NV_texture_shader NVIDIA OpenGL Extension Specifications

 348

update pixels (pixel shading) possibly via blending and/or multiple
rendering passes.

The goal of these individual shading operations is per-pixel
shading. Per-pixel shading is accomplished by combining the
texture shading, fragment shading, and pixel shading operations,
possibly with multiple rendering passes.

Programmable shading is a style of per-pixel shading where the
shading operations are expressed in a higher level of abstraction
than "raw" OpenGL texture, fragment, and pixel shading operations.
In our view, programmable shading does not necessarily require a
"pixel program" to be downloaded and executed per-pixel by graphics
hardware. Indeed, there are many disadvantages to such an approach
in practice. An alternative view of programmable shading (the
one that we are promoting) treats the OpenGL primitive shading
operations as a SIMD machine and decomposes per-pixel shading
programs into one or more OpenGL rendering passes that map to "raw"
OpenGL shading operations. We believe that conventional OpenGL
combined with NV_register_combiners and NV_texture_shader (and
further augmented by programmable geometry via NV_vertex_program
and higher-order surfaces via NV_evaluators) can become the hardware
basis for a powerful programmable shading system.

The roughly equivalent functionality to DirectX 8's pixel
shaders in OpenGL is the combination of NV_texture_shader with
NV_register_combiners.

Is anyone working on programmable shading using the NV_texture_shader
functionality?

Yes. The Stanford Shading Group is actively working on
support for programmable shading using NV_texture_shader,
NV_register_combiners, and other extensions as the hardware basis
for such a system.

What terms are important to this specification?

texture shaders - A series of texture shader stages that map texture
coordinate sets to texture unit RGBA results. An alternative to
conventional OpenGL texturing.

texture coordinate set - The interpolated (s,t,r,q) value for a
particular texture unit of a particular fragment.

conventional OpenGL texturing - The conventional mechanism used by
OpenGL to map texture coordinate sets to texture unit RGBA results
whereby a given texture unit's texture coordinate set is used to
access the highest priority enabled texture target to generate
the texture unit's RGBA result. Conventional OpenGL texturing
supports 1D, 2D, 3D, and cube map texture targets. In conventional
OpenGL texturing each texture unit operates independently.

texture target type - One of the four texture target types: 1D, 2D,
3D, and cube map. (Note that NV_texture_shader does NOT provide
support for 3D textures; the NV_texture_shader2 extension adds
texture shader operations for 3D texture targets.)

NVIDIA OpenGL Extension Specifications NV_texture_shader

 349

texture internal format - The internal format of a particular
texture object. For example, GL_RGBA8, GL_SIGNED_RGBA8, or
GL_SIGNED_HILO16_NV.

texture format type - One of the three texture format types: RGBA,
HILO, or texture offset group.

texture component signedness - Whether or not a given component
of a texture's texture internal format is signed or not.
Signed components are clamped to the range [-1,1] while unsigned
components are clamped to the range [0,1].

texture shader enable - The OpenGL enable that determines whether
the texture shader functionality (if enabled) or conventional
OpenGL texturing functionality (if disabled) is used to map texture
coordinate sets to texture unit RGBA results. The enable's initial
state is disabled.

texture shader stage - Each texture unit has a corresponding texture
shader stage that can be loaded with one of 21 texture shader
operations. Depending on the stage's texture shader operation,
a texture shader stage uses the texture unit's corresponding
texture coordinate set and other state including the texture shader
results of previous texture shader stages to generate the stage's
particular texture shader result and texture unit RGBA result.

texture unit RGBA result - A (typically fixed-point) color result
generated by either a texture shader or conventional OpenGL
texturing. This is the color that becomes the texture unit's
texture environment function texture input or the initial value
of the texture unit's corresponding texture register in the case
of register combiners.

texture shader result - The result of a texture shader stage that
may be used as an input to a subsequent texture shader stage.
This result is distinct from the texture unit RGBA result.
The texture shader result may be one of four types: an RGBA
color value, a HILO value, a texture offset group value, or a
floating-point value. A few texture shader operations are defined
to always generate an invalid texture shader result.

texture shader result type - One of the four texture shader result
types: RGBA color, HILO, texture offset group, or floating-point.

texture shader operation - One of 21 fixed programs that maps a
texture unit's texture coordinate set to a texture shader result
and a texture unit RGBA result.

texture consistency - Whether or not the texture object for a
given texture target is consistent. The rules for determining
consistency depend on the texture target and the texture object's
filtering state. For example, a mipmapped texture is inconsistent
if its texture levels do not form a consistent mipmap pyramid.
Also, a cube map texture is inconsistent if its (filterable)
matching cube map faces do not have matching dimensions.

NV_texture_shader NVIDIA OpenGL Extension Specifications

 350

texture shader stage consistency - Whether or not a texture
shader stage is consistent or not. The rules for determining
texture shader stage consistency depend on the texture shader
stage operation and the inputs upon which the texture shader
operation depends. For example, texture shader operations that
depend on accessing a given texture target are not consistent
if the given texture target is not consistent. Also, a texture
shader operation that depends on a particular texture shader
result type for a previous texture shader result is not consistent
if the previous texture shader result type is not appropriate
or the previous texture shader stage itself is not consistent.
If a texture shader stage is not consistent, it operates as if
the operation is the GL_NONE operation.

previous texture input - Some texture shader operations depend
on a texture shader result from a specific previous texture input
designated by the GL_PREVIOUS_TEXTURE_INPUT_NV state.

What should the default state be?

RESOLUTION: Texture shaders disabled with all stages set to GL_NONE.

How is the mipmap lambda parameter computed for dependent texture fetches?

RESOLUTION: Very carefully. NVIDIA's implementation details are
NVIDIA proprietary, but mipmapping of dependent texture fetches
is supported.

Does this extension support so-called "bump environment mapping"?

Something similar to DirectX 6 so-called bump environment mapping
can be emulated with the GL_OFFSET_TEXTURE_2D_NV texture shader.

A more correct form of bump environment mapping can be implemented
by using the following texture shaders:

texture unit 0: GL_TEXTURE_2D
texture unit 1: GL_DOT_PRODUCT_NV
texture unit 2: GL_DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV
texture unit 3: GL_DOT_PRODUCT_REFLECT_CUBE_MAP_NV

Texture unit 0 should use a normal map for its 2D texture.
A GL_SIGNED_RGB texture can encode signed tangent-space normal
perturbations. Or for more precision, a GL_SIGNED_HILO_NV texture
can encode the normal perturbations in hemisphere fashion.

The tangent (Tx,Ty,Tz), binormal (Bx,By,Bz), and normal (Nx,Ny,Nz)
that together map tangent-space normals to cube map-space normals
should be sent as texture coordinates s1, t1, r1, s2, t2, r2, s3,
t3, and r3 respectively. Typically, cube map space is aligned to
match world space.

The (unnormalized) cube map-space eye vector (Ex,Ey,Ez) should be
sent as texture coordinates q1, q2, and q3 respectively.

A vertex programs (using the NV_vertex_program extension) can
compute and assign the required tangent, binormal, normal, and

NVIDIA OpenGL Extension Specifications NV_texture_shader

 351

eye vectors to the appropriate texture coordinates. Conventional
OpenGL evaluators (or the NV_evaluators extension) can be used to
evaluate the tangent and normal automatically for Bezier patches.
The binormal is the cross product of the normal and tangent.

Texture units 1, 2, and 3, should also all specify GL_TEXTURE0_ARB
(the texture unit accessing the normal map) for their
GL_PREVIOUS_TEXTURE_INPUT_NV parameter.

The three dot product texture shader operations performed by the
texture shaders for texture units 1, 2, and 3 form a 3x3 matrix
that transforms the tangent-space normal (the result of the texture
shader for texture unit 0). This rotates the tangent-space normal
into a cube map-space.

Texture unit 2's cube map texture should encode a pre-computed
diffuse lighting solution. Texture unit 3's cube map texture should
encode a pre-computed specular lighting solution. The specular
lighting solution can be an environment map.

Texture unit 2 is accessed using the cube map-space normal
vector resulting from the three dot product results
of the texture shaders for texture units 1, 2, and 3.
(While normally texture shader operations are executed
in order, preceding GL_DOT_PRODUCT_REFLECT_CUBE_MAP_NV by
GL_DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV is a special case where a dot
product result from texture unit 3 influences the cube map access
of texture unit 2.)

Texture unit 3 is accessed using the cube map-space reflection
vector computed using the cube map-space normal vector from the
three dot product results of the texture shaders for texture units
1, 2, and 3 and the cube-map space eye-vector (q1,q2,q3).

Note that using cube maps to access the diffuse and specular
illumination obviates the need for an explicit normalization of
the typically unnormalized cube map-space normal and reflection
vectors.

The register combiners (using the NV_register_combiners extension)
can combine the diffuse and specular contribution available in
the GL_TEXTURE2_ARB and GL_TEXTURE3_ARB registers respectively.
A constant ambient contribution can be stored in a register combiner
constant. The ambient contribution could also be folded into the
diffuse cube map.

If desired, the diffuse and ambient contribution can be modulated
by a diffuse material parameter encoded in the RGB components of
the primary color.

If desired, the specular contribution can be modulated by a specular
material parameter encoded in the RGB components of the secondary
color.

Yes, this is all quite complicated, but the result is a true
bump environment mapping technique with excellent accounting for
normalization and per-vertex interpolated diffuse and specular

NV_texture_shader NVIDIA OpenGL Extension Specifications

 352

materials. An environment and/or an arbitrary number of distant
or infinite lights can be encoded into the diffuse and specular
cube maps.

Why must GL_DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV be used only in
conjunction with GL_DOT_PRODUCT_REFLECT_CUBE_MAP_NV? Why does the
GL_DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV stage rely on a result computed
in the following stage?

Think of the GL_DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV and
GL_DOT_PRODUCT_REFLECT_CUBE_MAP_NV operations as forming a compound
operation. The idea is to generate two cube map accesses based
on a perturbed normal and reflection vector where the reflection
vector is a function of the perturbed normal vector. To minimize
the number of stages (three stages only) and reuse the internal
computations involved, this is treated as a compound operation.

Note that the GL_DOT_PRODUCT_REFLECT_CUBE_MAP_NV
vector can be preceded by two GL_DOT_PRODUCT_NV
operations instead of a GL_DOT_PRODUCT_NV operation then a
GL_DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV operation. This may be more
efficient when only the cube map access using the reflection vector
is required (a shiny object without any diffuse reflectance).

Also note that if only the diffuse reflectance cube map
access is required, this can be accomplished by simply using
the GL_DOT_PRODUCT_CUBE_MAP_NV operation preceded by two
GL_DOT_PRODUCT_NV operations.

How do texture shader stages map to register combiner texture registers?

RESOLUTION: If GL_TEXTURE_SHADER_NV is enabled, the texture unit
RGBA result for a each texture stage is used to initialize the
respective texture register in the register combiners.

So if a texture shader generates a texture unit RGBA result for
texture unit 2, use GL_TEXTURE2_ARB for the name of the register
value in register combiners.

Should the number of shader stages be settable?

RESOLUTION: No, unused stages can be set to GL_NONE.

How do signed RGBA texture components show up in the register
combiners texture registers?

RESOLUTION: As signed values. You can use GL_SIGNED_IDENTITY_NV
and get to the signed value directly.

How does the texture unit RGBA result of a
GL_NONE, GL_CULL_FRAGMENT_NV, DOT_PRODUCT_NV, or
GL_DOT_PRODUCT_DEPTH_REPLACE_NV texture shader operation show up in
the register combiners texture registers?

RESOLUTION: Always as the value (0,0,0,0).

How the texture RGBA result of the GL_NONE, GL_CULL_FRAGMENT_NV,

NVIDIA OpenGL Extension Specifications NV_texture_shader

 353

GL_DOT_PRODUCT_NV, and GL_DOT_PRODUCT_DEPTH_REPLACE_NV texture
shader operations shows up in the texture environment is not
an issue, because the texture environment operation is always
assumed to be GL_NONE when the corresponding texture shader
is one of GL_NONE, GL_CULL_FRAGMENT_NV, GL_DOT_PRODUCT_NV, or
GL_DOT_PRODUCT_DEPTH_REPLACE_NV when GL_TEXTURE_SHADER_NV is
enabled.

Why introduce new pixel groups (the HILO and texture offset groups)?

RESOLUTION: In core OpenGL, texture image data is transferred and
stored as sets of color components. Such color data can always
be promoted to RGBA data.

In addition to color components, there are other types of image
data in OpenGL including depth components, stencil components,
and color indices. Depth and stencil components can be used by
glReadPixels, glDrawPixels, and glCopyPixels, but are not useful
for storing texture data in core OpenGL. The EXT_paletted_texture
and EXT_index_texture extensions extend the contents of textures to
include indices (even though in the case of EXT_paletted_texture,
texel fetches are always eventually expanded into color components
by the texture palette).

However this these existing pixel groups are not sufficient for
all the texture shader operations introduced by this extension.
Certain texture shader operations require texture data that
is not merely a set of color components. The dot product
(GL_DOT_PRODUCT_NV, etc) operations both can
utilize high-precision hi and lo components. The
offset texture operations (GL_OFFSET_TEXTURE_2D_NV,
GL_OFFSET_TEXTURE_2D_SCALE_NV, GL_OFFSET_TEXTURE_RECTANGLE_NV,
and GL_OFFSET_TEXTURE_RECTANGLE_SCALE_NV) require
textures containing signed offsets used to displace
texture coordinates. The GL_OFFSET_TEXTURE_2D_SCALE_NV and
GL_OFFSET_TEXTURE_RECTANGLE_SCALE_NV also require an unsigned
magnitude for the scaling operation.

To facilitate these new texture representations, this extension
introduces several new (external) formats, pixel groups, and
internal texture formats. An (external) format is the external
representation used by an application to specify pixel data
for use by OpenGL. A pixel group is a grouping of components
that are transformed by OpenGL's pixel transfer mechanism is a
particular manner. For example, RGBA components for colors are
transformed differently than stencil components when passed through
OpenGL's pixel transfer mechanism. An internal texture format is
the representation of texture data within OpenGL. Note that the
(external) format used to specify the data by the application may
be different than the internal texture format used to store the
texture data internally to OpenGL. For example, core OpenGL permits
an application to specify data for a texture as GL_LUMINANCE_ALPHA
data stored in GLfloats even though the data is to be store in
a GL_RGBA8 texture. OpenGL's pixel unpacking and pixel transfer
operations perform an appropriate transformation of the data when
such a texture download is performed. Also note that data from
one pixel group (say stencil components) cannot be supplied as

NV_texture_shader NVIDIA OpenGL Extension Specifications

 354

data for a different pixel group (say RGBA components).

This extension introduces four new (external) formats for
texture data: GL_HILO_NV, GL_DSDT_NV, GL_DSDT_MAG_NV, and
GL_DSDT_MAG_VIB_NV.

GL_HILO_NV is for specifying high-precision hi and lo components.
The other three formats are used to specify texture offset groups.
These new formats can only be used for specifying textures (not
copying, reading, or writing pixels).

Each of these four pixel formats belong to one of two pixel groups.
Pixels specified with the GL_HILO_NV format are transformed as HILO
components. Pixels specified with the DSDT_NV, DSDT_MAG_NV, and
DSDT_MAG_VIB_NV formats are transformed as texture offset groups.

The HILO component and texture offset group pixel groups have
independent scale and bias operations for each component type.
Various pixel transfer operations that are performed on the RGBA
components pixel group are NOT performed on these two new pixel
groups. OpenGL's pixel map, color table, convolution, color matrix,
histogram, and min/max are NOT performed on the HILO components
or texture offset group pixel groups.

There are four internal texture formats for texture data specified
as HILO components: GL_HILO_NV, GL_HILO16_NV, GL_SIGNED_HILO_NV,
and GL_SIGNED_HILO16_NV. The HILO data can be stored as either
unsigned [0,1] value or [-1,1] signed values. There are also
enumerants for both explicitly sized component precision (16-bit
components) and unsized component precision. OpenGL implementations
are expected to keep HILO components are high precision even if
an unsized internal texture format is used.

The expectation with HILO textures is that applications will
specify HILO data using a type of GL_UNSIGNED_SHORT or GL_SHORT or
larger data types. Specifying HILO data with GL_UNSIGNED_BYTE or
GL_BYTE works but does not exploit the full available precision
of the HILO internal texture formats.

There are six internal texture formats for texture data
specified as texture offset groups: GL_DSDT_NV, GL_DSDT8_NV,
GL_DSDT_MAG_NV, GL_DSDT8_MAG8_NV, GL_DSDT_MAG_INTENSITY_NV and
GL_DSDT8_MAG8_INTENSITY8_NV. The GL_DSDT_NV formats specify two
signed [-1,1] components, ds and dt, used to offset s and t texture
coordinates. The GL_DSDT_MAG_NV formats specify an additional
third unsigned [0,1] component that is a magnitude to scale an
unsigned RGBA texture fetch by. The GL_DSDT_MAG_INTENSITY_NV
formats specify an additional fourth [0,1] unsigned component,
intensity, that becomes the intensity of the fetched texture for
use in the texture environment or register combiners. There are
also enumerants for both explicitly sized (8-bit components)
and unsized component precision.

Note that the vibrance (VIB) component of the
GL_DSDT_MAG_VIB_NV format becomes the intensity component of
the GL_DSDT_MAG_INTENSITY_NV internal texture format. Vibrance
becomes intensity in the GL_DSDT_MAG_INTENSITY_NV texture format.

NVIDIA OpenGL Extension Specifications NV_texture_shader

 355

The introduction of vibrance is because core OpenGL has no notion
of an intensity component in the pixel transfer mechanism or as
an external format (instead the red component of an RGBA value
becomes the intensity component of intensity textures).

How does the texture unit RGBA result of a texture shader that fetches
a texture with a base internal format of GL_HILO_NV, GL_DSDT_NV, or
GL_DSDT_MAG_NV show up in the register combiners texture registers?

RESOLUTION: Always as the value (0,0,0,0).

How the texture RGBA result of a texture shader that fetches a
texture with a base internal format of GL_HILO_NV, GL_DSDT_NV,
or GL_DSDT_MAG_NV the GL_DOT_PRODUCT_NV texture shader shows up
in the texture environment is not an issue, because the texture
environment operation is always assumed to be GL_NONE in this case
when GL_TEXTURE_SHADER_NV is enabled.

Does the GL_DOT_PRODUCT_DEPTH_REPLACE_NV program replace the
eye-distance Z or window-space depth?

RESOLUTION: Window-space depth. And if the window-space depth
value is outside of the near and far depth range values, the
fragment is rejected.

The GL_CULL_FRAGMENT_NV operation always compares against all four
texture coordinates. What if I want only one, two, or three
comparisons?

RESOLUTION: To compare against a single value, replicate that value
in all the coordinates and set the comparison for all components to
be identical. Or you can set uninteresting coordinates to zero and
use the GL_GEQUAL comparison which will never cull for the value zero.

What is GL_CULL_FRAGMENT_NV good for?

The GL_CULL_FRAGMENT_NV operation provides a mechanism to implement
per-fragment clip planes. If a texture coordinate is assigned a
signed distance to a plane, the cull fragment test can discard
fragments on the wrong side of the plane. Each texture shader
stage provides up to four such clip planes. An eye-space clip
plane can be established using the GL_EYE_LINEAR texture coordinate
generation mode where the clip plane equation is specified via
the GL_EYE_PLANE state.

Clip planes are one application for GL_CULL_FRAGMENT_NV, but
other clipping approaches are possible too. For example, by
computing and assigning appropriate texture coordinates (perhaps
with NV_vertex_program), fragments beyond a certain distance from
a point can be culled (assuming that it is acceptable to linearly
interpolate a distance between vertices).

The texture border color is supposed to be an RGBA value clamped to
the range [0,1]. How does the texture border color work in conjunction
with signed RGBA color components, HILO components, and texture offset
component groups?

NV_texture_shader NVIDIA OpenGL Extension Specifications

 356

RESOLUTION: The per-texture object GL_TEXTURE_BORDER_COLOR
is superceded by a GL_TEXTURE_BORDER_VALUES symbolic token.
The texture border values are four floats (not clamped to
[0,1] when specified). When a texture border is required for
a texture, the components for the border texel are determined
by the GL_TEXTURE_BORDER_VALUES state. For color components,
the GL_TEXTURE_BORDER_VALUES state is treated as a set of RGBA
color components. For HILO components, the first value is treated
as hi and the second value is treated as lo. For texture offset
components, the ds, dt, mag, and vib values correspond to the first,
second, third, and fourth texture border values respectively.
The particular texture border components are clamped to the range
of the component determined by the texture's internal format. So a
signed component is clamped to the [-1,1] range and an unsigned
component is clamped to the [0,1] range.

For backward compatibility, the GL_TEXTURE_BORDER_COLOR can
still be specified and queried. When specified, the values are
clamped to [0,1] and used to update the texture border values.
When GL_TEXTURE_BORDER_COLOR is queried, there is no clamping of
the returned values.

With signed texture components, does the texture environment function
discussion need to be amended?

RESOLUTION: Yes. We do not want texture environment results to
exceed the range [-1,1].

The GL_DECAL and GL_BLEND operations perform linear interpolations
of various components of the form

A * B + (1-A) * C

The value of A should not be allowed to be negative otherwise,
the value of (1-A) may exceed 1.0. These linear interpolations
should be written in the form

max(0,A) * B + (1-max(0,A)) * C

The GL_ADD operation clamps its result to 1.0, but if negative
components are permitted, the result should be clamped to the range
[-1,1].

The GL_COMBINE_ARB (and GL_COMBINE_EXT) and GL_COMBINE4_NV
operations do explicit clamping of all result to [0,1].
In addition, NV_texture_shader adds requirements to clamp
inputs to [0,1] too. This is because the GL_ONE_MINUS_SRC_COLOR
and GL_ONE_MINUS_SRC_ALPHA operands should really be computing
1-max(0,C). For completeness, GL_SRC_COLOR and GL_SRC_ALPHA should
be computing max(0,C).

With signed texture components, does the color sum discussion need
to be amended?

RESOLUTION: Yes. The primary and secondary color should both be
clamped to the range [0,1] before they are summed.

NVIDIA OpenGL Extension Specifications NV_texture_shader

 357

The unextended OpenGL 1.2 description of color sum does not
require a clamp of the primary and secondary colors to the [0,1]
range before they are summed. Before signed texture components,
the standard texture environment modes either could not generate
results outside the [0,1] range or explicitly clamped their
results to this range (as in the case of GL_ADD, GL_COMBINE_EXT,
and GL_COMBINE4_NV). Now with signed texture components, negative
values can be generated by texture environment functions.

We do not want to clamp the intermediate results of texture
environment stages since negative results may be useful in
subsequent stages, but clamping should be applied to the primary
color immediately before the color sum. For symmetry, clamping of
the secondary color is specified as well (though there is currently
no way to generate a negative secondary color).

Why vibrance?

Vibrance is the fourth component of the external representation of a
texture offset group. During pixel transfer, vibrance is scaled and
biased based on the GL_VIBRANCE_SCALE and GL_VIBRANCE_BIAS state.
Once transformed, the vibrance component becomes the intensity
component for textures with a DSDT_MAG_INTENSITY base internal
format. Vibrance is meaningful only when specifying texture images
with the DS_DT_MAG_VIB_NV external format (and is not supported
when reading, drawing, or copying pixels).

There are lots of reasons that a texture shader stage is inconsistent,
and in which case, the stage operates as if the operation is NONE.
For debugging sanity, is there a way to determine whether a particular
texture shader stage is consistent?

RESOLUTION: Yes. Query the shader consistency of a particular
texture unit with:

GLint consistent;

glActiveTextureARB(stage_to_check);
glGetTexEnviv(GL_TEXTURE_SHADER_NV, GL_SHADER_CONSISTENT_NV,

&consistent);

consistent is one or zero depending on whether the shader stage
is consistent or not.

Should there be signed components with sub 8-bit precision?

RESOLUTION: No.

Should packed pixel formats for texture offset groups be supported?

RESOLUTION: Yes, but they are limited to UNSIGNED_INT_S8_S8_8_8_NV
and UNSIGNED_INT_8_8_S8_S8_REV_NV for use with the DSDT_MAG_VIB_NV
format.

Note that these two new packed pixel formats are only for the
DSDT_MAG_VIB_NV and cannot be used with RGBA or BGRA formats.
Likewise, the RGBA and BGRA formats cannot be used with the new

NV_texture_shader NVIDIA OpenGL Extension Specifications

 358

UNSIGNED_INT_S8_S8_8_8_NV and UNSIGNED_INT_8_8_S8_S8_REV_NV types.

What should be said about signed fixed-point precision and range of
actual implementations?

RESOLUTION: The core OpenGL specification typically specifies
fixed-point numerical computations without regard to the specific
precision of the computations. This practice is intentional because
it permits implementations to vary in the degree of precision used
for internal OpenGL computations. When mapping unsigned fixed-point
values to a [0,1] range, the mapping is straightforward.

However, this extension supports signed texture components in
the range [-1,1]. This presents some awkward choices for how to
map [-1,1] to a fixed-point representation. Assuming a binary
fixed-point representation with an even distribution of precision,
there is no way to exactly represent -1, 0, and 1 and avoid
representing values outside the [-1,1] range.

This is not a unique issue for this extension. In core OpenGL,
table 2.6 describes mappings from unsigned integer types (GLbyte,
GLshort, and GLint) that preclude the exact specification of 0.0.
NV_register_combiners supports signed fixed-point values that have
similar representation issues.

NVIDIA's solution to this representation problem is to use 8-, 9-,
and 16-bit fixed-point representations for signed values in the
[-1,1] range such that

floating-point 8-bit fixed-point 9-bit fixed-point 16 bit fixed-point
-------------- ----------------- ----------------- ------------------
1.0 n/a 255 n/a
0.99996... n/a n/a 32767
0.99218... 127 n/a n/a
0.0 0 0 0

-1.0 -128 -255 -32768
-1.00392... n/a -256 n/a

The 8-bit and 16-bit signed fixed-point types are used for signed
internal texture formats, while the 9-bit signed fixed-point type
is used for register combiners computations.

The 9-bit signed fixed-point type has the disadvantage that a
number slightly more negative than -1 can be represented and this
particular value is different dependent on the number of bits of
fixed-point precision. The advantage of this approach is that 1,
0, and -1 can all be represented exactly.

The 8-bit and 16-bit signed fixed-point types have the disadvantage
that 1.0 cannot be exactly represented (though -1.0 and zero can
be exactly represented).

The specification however is written using the conventional
OpenGL practice (table 2.6) of mapping signed values evenly over
the range [-1,1] so that zero cannot be precisely represented.
This is done to keep this specification consistent with OpenGL's
existing conventions and to avoid the ugliness of specifying

NVIDIA OpenGL Extension Specifications NV_texture_shader

 359

a precision-dependent range. We expect leeway in how signed
fixed-point values are represented.

The spirit of this extension is that an implicit allowance is
made for signed fixed-point representations that cannot exactly
represent 1.0.

How should NV_texture_rectangle interact with NV_texture_shader?

NV_texture_rectangle introduces a new texture target similar
to GL_TEXTURE_2D but that supports non-power-of-two texture
dimensions and several usage restrictions (no mipmapping, etc).
Also the imaged texture coordinate range for rectangular textures
is [0,width]x[0,height] rather than [0,1]x[0,1].

Four texture shader operations will operate like their 2D texture
counter-parts, but will access the rectangular texture
target rather than the 2D texture target. These are:

GL_TEXTURE_RECTANGLE_NV
GL_OFFSET_TEXTURE_RECTANGLE_NV
GL_OFFSET_TEXTURE_RECTANGLE_SCALE_NV
GL_DOT_PRODUCT_TEXTURE_RECTANGLE_NV

A few 2D texture shader operations, namely
GL_DEPENDENT_AR_TEXTURE_2D_NV and GL_DEPENDENT_GB_TEXTURE_2D_NV,
do not support rectangular textures because turning colors in the
[0,1] range into texture coordinates would only access a single
corner texel in a rectangular texture. The offset and dot product
rectangular texture shader operations support scaling of the
dependent texture coordinates so these operations can access the
entire image of a rectangular texture. Note however that it is the
responsibility of the application to perform the proper scaling.

Note that the 2D and rectangular "offset texture" shaders both
use the same matrix, scale, and bias state.

New Procedures and Functions

None.

New Tokens

Accepted by the <cap> parameter of Enable, Disable, and IsEnabled,
and by the <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv,
and GetDoublev, and by the <target> parameter of TexEnvf, TexEnvfv,
TexEnvi, TexEnviv, GetTexEnvfv, and GetTexEnviv:

TEXTURE_SHADER_NV 0x86DE

NV_texture_shader NVIDIA OpenGL Extension Specifications

 360

When the <target> parameter of TexEnvf, TexEnvfv, TexEnvi, TexEnviv,
GetTexEnvfv, and GetTexEnviv is TEXTURE_SHADER_NV, then the value
of <pname> may be:

RGBA_UNSIGNED_DOT_PRODUCT_MAPPING_NV 0x86D9
SHADER_OPERATION_NV 0x86DF
CULL_MODES_NV 0x86E0
OFFSET_TEXTURE_MATRIX_NV 0x86E1
OFFSET_TEXTURE_SCALE_NV 0x86E2
OFFSET_TEXTURE_BIAS_NV 0x86E3
OFFSET_TEXTURE_2D_MATRIX_NV deprecated alias for OFFSET_TEXTURE_MATRIX_NV
OFFSET_TEXTURE_2D_SCALE_NV alias for OFFSET_TEXTURE_SCALE_NV
OFFSET_TEXTURE_2D_BIAS_NV deprecated alias for OFFSET_TEXTURE_BIAS_NV
PREVIOUS_TEXTURE_INPUT_NV 0x86E4
CONST_EYE_NV 0x86E5

When the <target> parameter GetTexEnvfv and GetTexEnviv is
TEXTURE_SHADER_NV, then the value of <pname> may be:

SHADER_CONSISTENT_NV 0x86DD

When the <target> and <pname> parameters of TexEnvf, TexEnvfv,
TexEnvi, and TexEnviv are TEXTURE_SHADER_NV and SHADER_OPERATION_NV
respectively, then the value of <param> or the value pointed to by
<params> may be:

NONE

TEXTURE_1D
TEXTURE_2D
TEXTURE_RECTANGLE_NV (see NV_texture_rectangle)
TEXTURE_CUBE_MAP_ARB (see ARB_texture_cube_map)

PASS_THROUGH_NV 0x86E6
CULL_FRAGMENT_NV 0x86E7

OFFSET_TEXTURE_2D_NV 0x86E8
OFFSET_TEXTURE_2D_SCALE_NV see above, note aliasing
OFFSET_TEXTURE_RECTANGLE_NV 0x864C
OFFSET_TEXTURE_RECTANGLE_SCALE_NV 0x864D
DEPENDENT_AR_TEXTURE_2D_NV 0x86E9
DEPENDENT_GB_TEXTURE_2D_NV 0x86EA

DOT_PRODUCT_NV 0x86EC
DOT_PRODUCT_DEPTH_REPLACE_NV 0x86ED
DOT_PRODUCT_TEXTURE_2D_NV 0x86EE
DOT_PRODUCT_TEXTURE_RECTANGLE_NV 0x864E
DOT_PRODUCT_TEXTURE_CUBE_MAP_NV 0x86F0
DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV 0x86F1
DOT_PRODUCT_REFLECT_CUBE_MAP_NV 0x86F2
DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV 0x86F3

When the <target> and <pname> parameters of TexEnvfv and TexEnviv
are TEXTURE_SHADER_NV and CULL_MODES_NV respectively, then the value
of <param> or the value pointed to by <params> may be:

LESS
GEQUAL

NVIDIA OpenGL Extension Specifications NV_texture_shader

 361

When the <target> and <pname> parameters of TexEnvf,
TexEnvfv, TexEnvi, and TexEnviv are TEXTURE_SHADER_NV and
RGBA_UNSIGNED_DOT_PRODUCT_MAPPING_NV respectively, then the value
of <param> or the value pointed to by <params> may be:

UNSIGNED_IDENTITY_NV (see NV_register_combiners)
EXPAND_NORMAL_NV (see NV_register_combiners)

When the <target> and <pname> parameters of TexEnvf,
TexEnvfv, TexEnvi, and TexEnviv are TEXTURE_SHADER_NV and
PREVIOUS_TEXTURE_INPUT_NV respectively, then the value of <param>
or the value pointed to by <params> may be:

TEXTURE0_ARB
TEXTURE1_ARB
TEXTURE2_ARB
TEXTURE3_ARB
TEXTURE4_ARB
TEXTURE5_ARB
TEXTURE6_ARB
TEXTURE7_ARB

Accepted by the <format> parameter of GetTexImage, TexImage1D,
TexImage2D, TexSubImage1D, and TexSubImage2D:

HILO_NV 0x86F4
DSDT_NV 0x86F5
DSDT_MAG_NV 0x86F6
DSDT_MAG_VIB_NV 0x86F7

Accepted by the <type> parameter of GetTexImage, TexImage1D,
TexImage2D, TexSubImage1D, and TexSubImage2D:

UNSIGNED_INT_S8_S8_8_8_NV 0x86DA
UNSIGNED_INT_8_8_S8_S8_REV_NV 0x86DB

Accepted by the <internalformat> parameter of CopyTexImage1D,
CopyTexImage2D, TexImage1D, and TexImage2D:

SIGNED_RGBA_NV 0x86FB
SIGNED_RGBA8_NV 0x86FC
SIGNED_RGB_NV 0x86FE
SIGNED_RGB8_NV 0x86FF
SIGNED_LUMINANCE_NV 0x8701
SIGNED_LUMINANCE8_NV 0x8702
SIGNED_LUMINANCE_ALPHA_NV 0x8703
SIGNED_LUMINANCE8_ALPHA8_NV 0x8704
SIGNED_ALPHA_NV 0x8705
SIGNED_ALPHA8_NV 0x8706
SIGNED_INTENSITY_NV 0x8707
SIGNED_INTENSITY8_NV 0x8708
SIGNED_RGB_UNSIGNED_ALPHA_NV 0x870C
SIGNED_RGB8_UNSIGNED_ALPHA8_NV 0x870D

NV_texture_shader NVIDIA OpenGL Extension Specifications

 362

Accepted by the <internalformat> parameter of TexImage1D and
TexImage2D:

HILO_NV
HILO16_NV 0x86F8
SIGNED_HILO_NV 0x86F9
SIGNED_HILO16_NV 0x86FA
DSDT_NV
DSDT8_NV 0x8709
DSDT_MAG_NV
DSDT8_MAG8_NV 0x870A
DSDT_MAG_INTENSITY_NV 0x86DC
DSDT8_MAG8_INTENSITY8_NV 0x870B

Accepted by the <pname> parameter of GetBooleanv, GetIntegerv,
GetFloatv, GetDoublev, PixelTransferf, and PixelTransferi:

HI_SCALE_NV 0x870E
LO_SCALE_NV 0x870F
DS_SCALE_NV 0x8710
DT_SCALE_NV 0x8711
MAGNITUDE_SCALE_NV 0x8712
VIBRANCE_SCALE_NV 0x8713
HI_BIAS_NV 0x8714
LO_BIAS_NV 0x8715
DS_BIAS_NV 0x8716
DT_BIAS_NV 0x8717
MAGNITUDE_BIAS_NV 0x8718
VIBRANCE_BIAS_NV 0x8719

Accepted by the <pname> parameter of TexParameteriv, TexParameterfv,
GetTexParameterfv and GetTexParameteriv:

TEXTURE_BORDER_VALUES_NV 0x871A

Accepted by the <pname> parameter of GetTexParameterfv
and GetTexParameteriv:

TEXTURE_HI_SIZE_NV 0x871B
TEXTURE_LO_SIZE_NV 0x871C
TEXTURE_DS_SIZE_NV 0x871D
TEXTURE_DT_SIZE_NV 0x871E
TEXTURE_MAG_SIZE_NV 0x871F

Additions to Chapter 2 of the 1.2 Specification (OpenGL Operation)

None

NVIDIA OpenGL Extension Specifications NV_texture_shader

 363

Additions to Chapter 3 of the 1.2 Specification (Rasterization)

-- Section 3.6 "Pixel Rectangles"

Add four new rows to table 3.2:

Parameter Name Type Initial Value Valid Range
------------------ ----- ------------- -----------
HI_SCALE_NV float 1.0 (-Inf,+Inf)
LO_SCALE_NV float 1.0 (-Inf,+Inf)
DS_SCALE_NV float 1.0 (-Inf,+Inf)
DT_SCALE_NV float 1.0 (-Inf,+Inf)
MAGNITUDE_SCALE_NV float 1.0 (-Inf,+Inf)
VIBRANCE_SCALE_NV float 1.0 (-Inf,+Inf)

HI_BIAS_NV float 0.0 (-Inf,+Inf)
LO_BIAS_NV float 0.0 (-Inf,+Inf)
DS_BIAS_NV float 0.0 (-Inf,+Inf)
DT_BIAS_NV float 0.0 (-Inf,+Inf)
MAGNITUDE_BIAS_NV float 0.0 (-Inf,+Inf)
VIBRANCE_BIAS_NV float 0.0 (-Inf,+Inf)

-- Section 3.6.4 "Rasterization of Pixel Rectangles"

Add before the subsection titled "Unpacking":

"The HILO_NV, DSDT_NV, DSDT_MAG_NV, and DSDT_MAG_VIB_NV formats
are described in this section and section 3.6.5 even though these
formats are supported only for texture images. Textures with
the HILO_NV format are intended for use with certain dot product
texture and dependent texture shader operations (see section 3.8.13).
Textures with the DSDT_NV, DSDT_MAG_NV, and DSDT_MAG_VIB_NV format
are intended for use with certain offset texture 2D texture shader
operations (see section 3.8.13).

The error INVALID_ENUM occurs if HILO_NV, DSDT_NV, DSDT_MAG_NV, or
DSDT_MAG_VIB_NV is used as the format for DrawPixels, ReadPixels,
or other commands that specify or query an image with a format and
type parameter though the image is not a texture image. The HILO_NV,
DSDT_NV, DSDT_MAG_NV, or DSDT_MAG_VIB_NV formats are intended for
use with the TexImage and TexSubImage commands.

The HILO_NV format consists of two components, hi and lo, in the hi
then lo order. The hi and lo components maintain at least 16 bits
of storage per component (at least 16 bits of magnitude for unsigned
components and at least 15 bits of magnitude for signed components).

The DSDT_NV format consists of two signed components ds and dt,
in the ds then dt order. The DSDT_MAG_NV format consists of
three components: the signed ds and dt components and an unsigned
magnitude component (mag for short), in the ds, then dt, then mag
order. The DSDT_MAG_VIB_NV format consists of four components:
the signed ds and dt components, an unsigned magnitude component
(mag for short), and an unsigned vibrance component (vib for short),
in the ds, then dt, then mag, then vib order."

NV_texture_shader NVIDIA OpenGL Extension Specifications

 364

Add a new row to table 3.8:

type Parameter GL Data Number of Matching
Token Name Type Components Pixel Formats
----------------------------- ------- ---------- ----------------
UNSIGNED_INT_S8_S8_8_8_NV uint 4 DSDT_MAG_VIB_NV
UNSIGNED_INT_8_8_S8_S8_REV_NV uint 4 DSDT_MAG_VIB_NV

Add to table 3.11:

UNSIGNED_INT_S8_S8_8_8_NV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+--+
| 1st component | 2nd | 3rd | 4th |
+--+

UNSIGNED_INT_8_8_S8_S8_REV_NV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+--+
| 4th | 3rd | 2nd | 1st component |
+--+

Replace the fifth paragraph in the subsection titled "Unpacking"
with the following:

"Calling DrawPixels with a type of UNSIGNED_BYTE_3_3_2,
UNSIGNED_BYTE_2_3_3_REV, UNSIGNED_SHORT_5_6_5,
UNSIGNED_SHORT_5_6_5_REV, UNSIGNED_SHORT_4_4_4_4,
UNSIGNED_SHORT_4_4_4_4_REV, UNSIGNED_SHORT_5_5_5_1,
UNSIGNED_SHORT_1_5_5_5_REV, UNSIGNED_INT_8_8_8_8,
UNSIGNED_INT_8_8_8_8_REV, UNSIGNED_INT_10_10_10_2, or
UNSIGNED_INT_2_10_10_10_REV is a special case in which all
the components of each group are packed into a single unsigned
byte, unsigned short, or unsigned int, depending on the type.
When packing or unpacking texture images (for example, using
TexImage2D or GetTexImage), the type parameter may also be either
UNSIGNED_INT_S8_S8_8_8_NV or UNSIGNED_INT_8_8_S8_S8_REV though
neither symbolic token is permitted for DrawPixels, ReadPixels,
or other commands that specify or query an image with a format
and type parameter though the image is not a texture image.
The error INVALID_ENUM occurs when UNSIGNED_INT_S8_S8_8_8_NV is
used when it is not permitted. When UNSIGNED_INT_S8_S8_8_8_NV
or UNSIGNED_INT_8_8_S8_S8_REV_NV is used, the first and second
components are treated as signed components. The number of
components per packed pixel is fixed by the type, and must match the
number of components per group indicated by the format parameter,
as listed in table 3.8. The format must also be one of the formats
listed in the Matching Pixel Formats column of table 3.8 for the
specified packed type. The error INVALID_OPERATION is generated
if a mismatch occurs. This constraint also holds for all other
functions that accept or return pixel data using type and format
parameters to define the type and format of the data."

Amend the second sentence in the sixth paragraph in the subsection
titled "Unpacking" to read:

"Each bitfield is interpreted as an unsigned integer value unless

NVIDIA OpenGL Extension Specifications NV_texture_shader

 365

it has been explicitly been stated that the bitfield contains a
signed component. Signed bitfields are treated as two's complement
numbers."

Add a new row to table 3.12:

First Second Third Fourth
Format Component Component Component Component
--------------- --------- --------- ---------- ---------
DSDT_MAG_VIB_NV ds dt magnitude vibrance

Change the last sentence in the first paragraph in the subsection
titled "Conversion to floating-point" to read:

"For packed pixel types, each unsigned element in the group is
converted by computing c / (2^N-1), where c is the unsigned integer
value of the bitfield containing the element and N is the number of
bits in the bitfield. In the case of signed elements of a packed
pixel type, the signed element is converted by computing 2*c+1 /
(2^N-1), where c is the signed integer value of the bitfield
containing the element and N is the number of bits in the bitfield."

Change the first sentence in the subsection "Final Expansion to RGBA"
to read:

"This step is performed only for groups other than HILO component,
depth component, and texture offset groups."

Add the following additional enumeration to the kind of pixel groups
in section 3.6.5:

"5. HILO component: Each group comprises two components: hi and lo.

6. Texture offset group: Each group comprises four components:
a ds and dt pair, a magnitude, and a vibrance."

Change the subsection "Arithmetic on Components" in section 3.6.5
to read:

"This step applies only to RGBA component, depth component, and HILO
component, and texture offset groups. Each component is multiplied
by an appropriate signed scale factor: RED_SCALE for an R component,
GREEN_SCALE for a G component, BLUE_SCALE for a B component,
ALPHA_SCALE, for an A component, HI_SCALE_NV for a HI component,
LO_SCALE_NV for a LO component, DS_SCALE_NV for a DS component,
DT_SCALE_NV for a DT component, MAGNITUDE_SCALE_NV for a MAG
component, VIBRANCE_SCALE_NV for a VIB component, or DEPTH_SCALE
for a depth component.

Then the result is added to the appropriate signed bias: RED_BIAS,
GREEN_BIAS, BLUE_BIAS, ALPHA_BIAS, HI_BIAS_NV, LO_BIAS_NV,
DS_BIAS_NV, DT_BIAS_NV, MAGNITUDE_BIAS_NV, VIBRANCE_BIAS_NV, or
DEPTH_BIAS."

NV_texture_shader NVIDIA OpenGL Extension Specifications

 366

-- Section 3.8 "Texturing"

Replace the first paragraph with the following:

"The GL provides two mechanisms for mapping sets of (s,t,r,q)
texture coordinates to RGBA colors: conventional texturing and
texture shaders.

Conventional texturing maps a portion of a specified image onto
each primitive for each enabled texture unit. Conventional
texture mapping is accomplished by using the color of an image
at the location indicated by a fragment's non-homogeneous (s,t,r)
coordinates for a given texture unit.

The alternative to conventional texturing is the texture shaders
mechanism. When texture shaders are enabled, each texture unit
uses one of twenty-one texture shader operations. Eighteen of the
twenty-one shader operations map an (s,t,r,q) texture coordinate
set to an RGBA color. Of these, three texture shader operations
directly correspond to the 1D, 2D, and cube map conventional
texturing operations. Depending on the texture shader operation,
the mapping from the (s,t,r,q) texture coordinate set to an RGBA
color may depend on the given texture unit's currently bound
texture object state and/or the results of previous texture
shader operations. The three remaining texture shader operations
respectively provide a fragment culling mechanism based on texture
coordinates, a means to replace the fragment depth value, and a dot
product operation that computes a floating-point value for use by
subsequent texture shaders. The specifics of each texture shader
operation are described in section 3.8.12.

Texture shading is enabled or disabled using the generic Enable
and Disable commands, respectively, with the symbolic constant
TEXTURE_SHADER_NV. When texture shading is disabled, conventional
texturing generates an RGBA color for each enabled textures unit
as described in Sections 3.8.10.

After RGBA colors are assigned to each texture unit, either by
conventional texturing or texture shaders, the GL proceeds with
fragment coloring, either using the texture environment, fog,
and color sum operations, or using register combiners extension if
supported.

Neither conventional texturing nor texture shaders affects the
secondary color."

-- Section 3.8.1 "Texture Image Specification"

Add the following sentence to the first paragraph:

"The formats HILO_NV, DSDT_NV, DSDT_MAG_NV, and DSDT_MAG_VIB_NV
are allowed for specifying texture images."

Replace the fourth paragraph with:

"The selected groups are processed exactly as for DrawPixels,
stopping just before conversion. Each R, G, B, A, HI, LO, DS, DT,

NVIDIA OpenGL Extension Specifications NV_texture_shader

 367

and MAG value so generated is clamped to [0,1] if the corresponding
component is unsigned, or if the corresponding component is signed,
is clamped to [-1,1]. The signedness of components depends on the
internal format (see table 3.16). The signedness of components
for unsized internal formats matches the signedness of components
for any respective sized version of the internal format."

Replace table 3.15 with the following table:

Base Internal Format Component Values Internal Components Format Type
--------------------- ------------------- ------------------- -------------------------
ALPHA A A RGBA
LUMINANCE R L RGBA
LUMINANCE_ALPHA R,A L,A RGBA
INTENSITY R I RGBA
RGB R,G,B R,G,B RGBA
RGBA R,G,B,A R,G,B,A RGBA
HILO_NV HI,LO HI,LO HILO
DSDT_NV DS,DT DS,DT texture offset group
DSDT_MAG_NV DS,DT,MAG DS,DT,MAG texture offset group
DSDT_MAG_INTENSITY_NV DS,DT,MAG,VIB DS,DT,MAG,I RGBA/texture offset group

Re-caption table 3.15 as:

"Conversion from RGBA, HILO, and texture offset pixel components to
internal texture table, or filter components. See section 3.8.9
for a description of the texture components R, G, B, A, L, and I.
See section 3.8.13 for an explanation of the handling of the texture
components HI, LO, DS, DT, MAG, and VIB."

Add five more columns to table 3.16 labeled "HI bits", "LO bits", "DS
bits", "DT bits", and "MAG bits". Existing table rows should have
these column entries blank. Add the following rows to the table:

Sized Base R G B A L I HI LO DS DT MAG
Internal Format Internal Format bits bits bits bits bits bits bits bits bits bits bits
------------------------------ --------------------- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
HILO16_NV HILO 16 16
SIGNED_HILO16_NV HILO 16* 16*
SIGNED_RGBA8_NV RGBA 8* 8* 8* 8*
SIGNED_RGB8_UNSIGNED_ALPHA8_NV RGBA 8* 8* 8* 8
SIGNED_RGB8_NV RGB 8* 8* 8*
SIGNED_LUMINANCE8_NV LUMINANCE 8*
SIGNED_LUMINANCE8_ALPHA8_NV LUMINANCE_ALPHA 8* 8*
SIGNED_ALPHA8_NV ALPHA 8*
SIGNED_INTENSITY8_NV INTENSITY 8*
DSDT8_NV DSDT_NV 8* 8*
DSDT8_MAG8_NV DSDT_MAG_NV 8* 8* 8
DSDT8_MAG8_INTENSITY8_NV DSDT_MAG_INTENSITY_NV 8 8* 8* 8

Add to the caption for table 3.16:

"An asterisk (*) following a component size indicates that the
corresponding component is signed (the sign bit is included in
specified component resolution size)."

Change the first sentences of the fifth paragraph to read:

"Components are then selected from the resulting R, G, B, A, HI, LO,
DS, DT, and MAG values to obtain a texture with the base internal
format specified by (or derived from) internalformat. Table 3.15
summarizes the mapping of R, G, B, A, HI, LO, DS, DT, and MAG values

NV_texture_shader NVIDIA OpenGL Extension Specifications

 368

to texture components, as a function of the base internal format of
the texture image. internalformat may be specified as one of the
ten base internal format symbolic constants listed in table 3.15,
or as one of the sized internal format symbolic constants listed
in table 3.16."

Add these sentences before the last sentence in the fifth paragraph:

"The error INVALID_OPERATION is generated if the format is
HILO_NV and the internalformat is not one of HILO_NV, HILO16_NV,
SIGNED_HILO_NV, SIGNED_HILO16_NV; or if the internalformat is one
of HILO_NV, HILO16_NV, SIGNED_HILO_NV, or SIGNED_HILO16_NV and the
format is not HILO_NV.

The error INVALID_OPERATION is generated if the format is DSDT_NV
and the internalformat is not either DSDT_NV or DSDT8_NV; or if
the internal format is either DSDT_NV or DSDT8_NV and the format
is not DSDT_NV.

The error INVALID_OPERATION is generated if the format is DSDT_MAG_NV
and the internalformat is not either DSDT_MAG_NV or DSDT8_MAG8_NV;
or if the internal format is either DSDT_MAG_NV or DSDT8_MAG8_NV
and the format is not DSDT_MAG_NV.

The error INVALID_OPERATION is generated if the format
is DSDT_MAG_VIB_NV and the internalformat is not either
DSDT_MAG_INTENSITY_NV or DSDT8_MAG8_INTENSITY8_NV; or if the internal
format is either DSDT_MAG_INTENSITY_NV or DSDT8_MAG8_INTENSITY8_NV
and the format is not DSDT_MAG_VIB_NV."

Change the first sentence of the sixth paragraph to read:

"The internal component resolution is the number of bits allocated
to each value in a texture image (and includes the sign bit if the
component is signed)."

Change the third sentence of the sixth paragraph to read:

"If a sized internal format is specified, the mapping of the R,
G, B, A, HI, LO, DS, DT, and MAG values to texture components
is equivalent to the mapping of the corresponding base internal
format's components, as specified in table 3.15, and the memory
allocations per texture component is assigned by the GL to match
the allocations listed in table 3.16 as closely as possible."

-- Section 3.8.2 "Alternate Texture Image Specification Commands"

In the second paragraph (describing CopyTexImage2D), change the
third to the last sentence to:

"Parameters level, internalformat, and border are specified using the
same values, with the same meanings, as the equivalent arguments of
TexImage2D, except that internalformat may not be specified as 1, 2,
3, 4, HILO_NV, HILO16_NV, SIGNED_HILO_NV, SIGNED_HILO16_NV, DSDT_NV,
DSDT8_NV, DSDT_MAG_NV, DSDT8_MAG8_NV, DSDT_MAG_INTENSITY_NV, or
DSDT8_MAG8_INTENSITY8_NV."

NVIDIA OpenGL Extension Specifications NV_texture_shader

 369

In the third paragraph (describing CopyTexImage1D), change the
second to the last sentence to:

"level, internalformat, and border are specified using the same
values, with the same meanings, as the equivalent arguments of
TexImage1D, except that internalformat may not be specified as 1, 2,
3, 4, HILO_NV, HILO16_NV, SIGNED_HILO_NV, SIGNED_HILO16_NV, DSDT_NV,
DSDT8_NV, DSDT_MAG_NV, DSDT8_MAG8_NV, DSDT_MAG_INTENSITY_NV, or
DSDT8_MAG8_INTENSITY8_NV."

Insert the following text after the six paragraph reading:

"CopyTexSubImage2D and CopyTexSubImage1D generate the error
INVALID_OPERATION if the internal format of the texture array to
which the pixels are to be copied is one of HILO_NV, HILO16_NV,
SIGNED_HILO_NV, SIGNED_HILO16_NV, DSDT_NV, DSDT8_NV, DSDT_MAG_NV,
DSDT8_MAG8_NV, DSDT_MAG_INTENSITY_NV, or DSDT8_MAG8_INTENSITY8_NV.

TexSubImage2D and TexSubImage1D generate the error INVALID_OPERATION
if the internal format of the texture array to which the texels are
to be copied has a different format type (according to table 3.15)
than the format type of the texels being specified. Specifically, if
the base internal format is not one of HILO_NV, DSDT_NV, DSDT_MAG_NV,
or DSDT_INTENSITY_NV, then the format parameter must be one of
COLOR_INDEX, RED, GREEN, BLUE, ALPHA, RGB, RGBA, LUMINANCE, or
LUMINANCE_ALPHA; if the base internal format is HILO_NV, then the
format parameter must be HILO_NV; if the base internal format is
DSDT_NV, then the format parameter must be DSDT_NV; if the base
internal format is DSDT_MAG_NV, then the format parameter must be
DSDT_MAG_NV; if the base internal format is DSDT_MAG_INTENSITY_NV,
the format parameter must be DSDT_MAG_VIB_NV."

-- Section 3.8.3 "Texture Parameters"

Change the TEXTURE_BORDER_COLOR line in table 3.17 to read:

Name Type Legal Values
------------------------ -------- ------------
TEXTURE_BORDER_VALUES 4 floats any value

Add the last two sentences to read:

"The TEXTURE_BORDER_VALUES state can also be specified with the
TEXTURE_BORDER_COLOR symbolic constant. When the state is specified
via TEXTURE_BORDER_COLOR, each of the four values specified are
first clamped to lie in [0,1]. However, if the texture border
values state is specified using TEXTURE_BORDER_VALUES, no clamping
occurs. In either case, if the values are specified as integers,
the conversion for signed integers from table 2.6 is applied to
convert the values to floating-point."

-- Section 3.8.5 "Texture Minification"

Change the last paragraph to read:

"If any of the selected tauijk, tauij, or taui in the above equations
refer to a border texel with i < -bs, j < bs, k < -bs, i >= ws-bs, j

NV_texture_shader NVIDIA OpenGL Extension Specifications

 370

>= hs-bs, or k >= ds-bs, then the border values given by the current
setting of TEXTURE_BORDER_VALUES is used instead of the unspecified
value or values. If the texture contains color components, the
components of the TEXTURE_BORDER_VALUES vector are interpreted as
an RGBA color to match the texture's internal format in a manner
consistent with table 3.15. If the texture contains HILO components,
the first and second components of the TEXTURE_BORDER_VALUES vector
are interpreted as the hi and lo components respectively. If the
texture contains texture offset group components, the first, second,
third, and fourth components of the TEXTURE_BORDER_VALUES vector
are interpreted as ds, dt, mag, and vib components respectively.
Additionally, the texture border values are clamped appropriately
depending on the signedness of each particular component. Unsigned
components are clamped to [0,1]; signed components are clamped to
[-1,1]."

-- Section 3.8.9 "Texture Environment and Texture Functions"

Augment the list of supported texture functions in the first
paragraph to read:

"TEXTURE_ENV_MODE may be set to one of REPLACE, MODULATE, DECAL,
BLEND, ADD, COMBINE_ARB (or COMBINE_EXT), COMBINE4_NV, or NONE;"

Insert this paragraph between the first and second paragraphs:

"When texture shaders are enabled (see section 3.8.13), a given
texture unit's texture shader result may be intended for use as
an input to another texture shader stage rather than generating
a texture unit RGBA result for use in the given texture unit's
texture environment function. Additionally, several texture shader
operations and texture format types are intended only to generate
texture shader results for subsequent texture shaders or perform a
side effect (such as culling the fragment or replacing the fragment's
depth value) rather than supplying a useful texture unit RGBA result
for use in the texture environment function. For this reason,
the NONE texture environment ignores the texture unit RGBA result
and passes through its input fragment color unchanged."

Change the third sentence of the second paragraph to read:

"If the TEXTURE_SHADER_NV mode is disabled, the precise form of
the texture environment function depends on the base internal
format of the texture object bound to the given texture unit's
highest-precedence enabled texture target. Otherwise if the
TEXTURE_SHADER_NV mode is enabled, then the form of the function
depends on the texture unit's texture shader operation.

If a texture shader operation requires fetching a filtered
texture color value (though not a HILO or texture offset value;
see the subsequent HILO and texture offset discussion), the texture
environment function depends on the base internal format of the
texture shader operation's respective texture target used for
fetching by the texture shader operation.

The PASS_THROUGH_NV texture shader operation does not fetch from any
texture target, but it generates an RGBA color and therefore always

NVIDIA OpenGL Extension Specifications NV_texture_shader

 371

operates as if the base internal format is RGBA for determining
what texture environment function to apply.

If the TEXTURE_SHADER_NV mode is enabled and the texture shader
operation for a given texture unit is one of NONE, CULL_FRAGMENT_NV,
DOT_PRODUCT_NV, or DOT_PRODUCT_DEPTH_REPLACE_NV, then the given
texture unit's texture function always operates as if the texture
function is NONE.

If the base internal format of the texture is HILO_NV, DSDT_NV,
or DSDT_MAG_NV (independent of whether or not the TEXTURE_SHADER_NV
mode is enabled or disabled), then corresponding the texture function
always operates as if the texture function is NONE.

If the base internal format of the texture is DSDT_MAG_INTENSITY_NV
(independent of whether or not the TEXTURE_SHADER_NV mode is enabled
or disabled), then the corresponding texture function operates
as if the base internal format is INTENSITY for the purposes of
determining the appropriate function using the vibrance component
as the intensity value."

Change the phrase in the fourth sentence of the second paragraph
describing how Rt, Gt, Bt, At, Lt, and It are assigned to:

"when TEXTURE_SHADER_NV is disabled, Rt, Gt, Bt, At, Lt, and It are
the filtered texture values; when TEXTURE_SHADER_NV is enabled, Rt,
Gt, Bt, and At are the respective components of the texture unit
RGBA result of the texture unit's texture shader stage, and Lt and
It are any red, green, or blue component of the texture unit RGBA
result (the three components should be the same);"

Change the second to last sentence of the second paragraph to read:

"The initial primary color and texture environment color component
values are in the range [0,1]. The filtered texture color and
texture function result color component values are in the range
[-1,1]. Negative filtered texture color component values are
generated by texture internal formats with signed components such
as SIGNED_RGBA."

NV_texture_shader NVIDIA OpenGL Extension Specifications

 372

Also amend tables 3.18 and 3.19 based on the following updated columns:

Base DECAL BLEND ADD
Internal Format Texture Function Texture Function Texture Function
================= ===================================== ===================================== ==========================
ALPHA Rv = Rf (no longer undefined) Rv = Rf Rv = Rf

Gv = Gf Gv = Gf Gv = Gf
Bv = Bf Bv = Bf Bv = Rf
Av = Af Av = Af*At Av = Af*Av = At

----------------- ------------------------------------- ------------------------------------- --------------------------
LUMINANCE Rv = Rf (no longer undefined) Rv = Rf*(1-max(0,Lt)) + Rc*max(0,Lt) Rv = max(-1,min(1,Rf+Lt))
(or 1) Gv = Gf Gv = Gf*(1-max(0,Lt)) + Gc*max(0,Lt) Gv = max(-1,min(1,Gf+Lt))

Bv = Bf Bv = Bf*(1-max(0,Lt)) + Bc*max(0,Lt) Bv = max(-1,min(1,Bf+Lt))
Av = Af Av = Af Av = Af

----------------- ------------------------------------- ------------------------------------- --------------------------
LUMINANCE_ALPHA Rv = Rf (no longer undefined) Rv = Rf*(1-max(0,Lt)) + Rc*max(0,Lt) Rv = max(-1,min(1,Rf+Lt))
(or 2) Gv = Gf Gv = Gf*(1-max(0,Lt)) + Gc*max(0,Lt) Gv = max(-1,min(1,Gf+Lt))

Bv = Bf Bv = Bf*(1-max(0,Lt)) + Bc*max(0,Lt) Bv = max(-1,min(1,Bf+Lt))
Av = Af Av = Af*At Av = Af*At

----------------- ------------------------------------- ------------------------------------- --------------------------
INTENSITY Rv = Rf (no longer undefined) Rv = Rf*(1-max(0,It)) + Rc*max(0,It) Rv = max(-1,min(1,Rf+It))

Gv = Gf Gv = Gf*(1-max(0,It)) + Gc*max(0,It) Gv = max(-1,min(1,Gf+It))
Bv = Bf Bv = Bf*(1-max(0,It)) + Bc*max(0,It) Bv = max(-1,min(1,Bf+It))
Av = Af Av = Af*(1-max(0,It)) + Ac*max(0,It) Av = max(-1,min(1,Af+It))

----------------- ------------------------------------- ------------------------------------- --------------------------
RGB Rv = Rt Rv = Rf*(1-max(0,Rt)) + Rc*max(0,Rt) Rv = max(-1,min(1,Rf+Rt))
(or 3) Gv = Gt Gv = Gf*(1-max(0,Gt)) + Gc*max(0,Gt) Gv = max(-1,min(1,Gf+Gt))

Bv = Bt Bv = Bf*(1-max(0,Bt)) + Bc*max(0,Bt) Bv = max(-1,min(1,Bf+Bt))
Av = Af Av = Af Av = Af

----------------- ------------------------------------- ------------------------------------- --------------------------
RGBA Rv = Rf*(1-max(0,At)) + Rt*max(0,At) Rv = Rf*(1-max(0,Rt)) + Rc*max(0,Rt) Rv = max(-1,min(1,Rf+Rt))
(or 4) Gv = Gf*(1-max(0,At)) + Gt*max(0,At) Gv = Gf*(1-max(0,Gt)) + Gc*max(0,Gt) Gv = max(-1,min(1,Gf+Gt))

Bv = Bf*(1-max(0,At)) + Bt*max(0,At) Bv = Bf*(1-max(0,Bt)) + Bc*max(0,Bt) Bv = max(-1,min(1,Bf+Bt))
Av = Af Av = Af*At Av = Af*At

----------------- ------------------------------------- ------------------------------------- --------------------------

NVIDIA OpenGL Extension Specifications NV_texture_shader

 373

Also augment table 3.18 or 3.19 with the following column:

Base NONE
Internal Format Texture Function
================= ================
ALPHA Rv = Rf

Gv = Gf
Bv = Bf
Av = Af

----------------- ----------------
LUMINANCE Rv = Rf
(or 1) Gv = Gf

Bv = Bf
Av = Af

----------------- ----------------
LUMINANCE_ALPHA Rv = Rf
(or 2) Gv = Gf

Bv = Bf
Av = Af

----------------- ----------------
INTENSITY Rv = Rf

Gv = Gf
Bv = Bf
Av = Af

----------------- ----------------
RGB Rv = Rf
(or 3) Gv = Gf

Bv = Bf
Av = Af

----------------- ----------------
RGBA Rv = Rf
(or 4) Gv = Gf

Bv = Bf
Av = Af

----------------- ----------------

NV_texture_shader NVIDIA OpenGL Extension Specifications

 374

Amend tables 3.21 and 3.22 in the ARB_texture_env_combine
specification (or EXT_texture_env_combine specification) to require
inputs to be clamped positive (the TEXTURE<n>_ARB entries apply
only if NV_texture_env_combine4 is supported):

SOURCE<n>_RGB_EXT OPERAND<n>_RGB_EXT Argument
----------------- -------------- --------
TEXTURE SRC_COLOR max(0,Ct)

ONE_MINUS_SRC_COLOR (1-max(0,Ct))
SRC_ALPHA max(0,At)
ONE_MINUS_SRC_ALPHA (1-max(0,At))

CONSTANT_EXT SRC_COLOR max(0,Cc
ONE_MINUS_SRC_COLOR (1-max(0,Cc)
SRC_ALPHA max(0,Ac
ONE_MINUS_SRC_ALPHA (1-max(0,Ac)

PRIMARY_COLOR_EXT SRC_COLOR max(0,Cf
ONE_MINUS_SRC_COLOR (1-max(0,Cf)
SRC_ALPHA max(0,Af
ONE_MINUS_SRC_ALPHA (1-max(0,Af)

PREVIOUS_EXT SRC_COLOR max(0,Cp
ONE_MINUS_SRC_COLOR (1-max(0,Cp)
SRC_ALPHA max(0,Ap
ONE_MINUS_SRC_ALPHA (1-max(0,Ap)

TEXTURE<n>_ARB SRC_COLOR max(0,Ct<n>)
ONE_MINUS_SRC_COLOR (1-max(0,Ct<n>))
SRC_ALPHA max(0,At<n>)
ONE_MINUS_SRC_ALPHA (1-max(0,At<n>))

Table 3.21: Arguments for COMBINE_RGB_ARB (or COMBINE_RGB_EXT)
functions

SOURCE<n>_ALPHA_EXT OPERAND<n>_ALPHA_EXT Argument
----------------- -------------- --------
TEXTURE SRC_ALPHA max(0,At)

ONE_MINUS_SRC_ALPHA (1-max(0,At))
CONSTANT_EXT SRC_ALPHA max(0,Ac)

ONE_MINUS_SRC_ALPHA (1-max(0,Ac))
PRIMARY_COLOR_EXT SRC_ALPHA max(0,Af)

ONE_MINUS_SRC_ALPHA (1-max(0,Af))
PREVIOUS_EXT SRC_ALPHA max(0,Ap)

ONE_MINUS_SRC_ALPHA (1-max(0,Ap))
TEXTURE<n>_ARB SRC_ALPHA max(0,At<n>)

ONE_MINUS_SRC_ALPHA (1-max(0,At<n>))

Table 3.22: Arguments for COMBINE_ALPHA_ARB (or COMBINE_ALPHA_EXT)
functions

-- Section 3.9 "Color Sum"

Update the first paragraph to read:

"At the beginning of color sum, a fragment has two RGBA colors: a
primary color cpri (which texturing, if enabled, may have modified)
and a secondary color csec. The components of these two colors are
clamped to [0,1] and then summed to produce a single post-texturing
RGBA color c. The components of c are then clamped to the range
[0,1]."

NVIDIA OpenGL Extension Specifications NV_texture_shader

 375

-- NEW Section 3.8.13 "Texture Shaders"

"Each texture unit is configured with one of twenty-one
texture shader operations. Several texture shader operations
require additional state. All per-texture shader stage state
is specified using the TexEnv commands with the target specified
as TEXTURE_SHADER_NV. The per-texture shader state is replicated
per texture unit so the texture unit selected by ActiveTextureARB
determines which texture unit's environment is modified by TexEnv
calls.

When calling TexEnv with a target of TEXTURE_SHADER_NV,
pname must be one of SHADER_OPERATION_NV, CULL_MODES_NV,
OFFSET_TEXTURE_MATRIX_NV, OFFSET_TEXTURE_SCALE_NV,
OFFSET_TEXTURE_BIAS_NV, PREVIOUS_TEXTURE_INPUT_NV, or CONST_EYE_NV.

When TexEnv is called with the target of TEXTURE_SHADER_NV,
SHADER_OPERATION_NV may be set to one of NONE,
TEXTURE_1D, TEXTURE_2D, TEXTURE_CUBE_MAP_ARB,
PASS_THROUGH_NV, CULL_FRAGMENT_NV, OFFSET_TEXTURE_2D_NV,
OFFSET_TEXTURE_2D_SCALE_NV, OFFSET_TEXTURE_RECTANGLE_NV,
OFFSET_TEXTURE_RECTANGLE_SCALE_NV, DEPENDENT_AR_TEXTURE_2D_NV,
DEPENDENT_GB_TEXTURE_2D_NV, DOT_PRODUCT_NV,
DOT_PRODUCT_DEPTH_REPLACE_NV, DOT_PRODUCT_TEXTURE_2D_NV,
DOT_PRODUCT_TEXTURE_RECTANGLE_NV, DOT_PRODUCT_TEXTURE_CUBE_MAP_NV,
DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV, or
DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV. The semantics of each of
these shader operations is described in section 3.8.13.1. Not every
operation is supported in every texture unit. The restrictions for
how these shader operations can be configured in various texture
units are described in section 3.8.13.2.

When TexEnv is called with the target of TEXTURE_SHADER_NV,
CULL_MODES_NV is set to a vector of four cull comparisons by
providing four symbolic tokens, each being either LESS or GEQUAL.
These cull modes are used by the CULL_FRAGMENT_NV operation (see
section 3.8.13.1.7).

When TexEnv is called with the target of TEXTURE_SHADER_NV,
RGBA_UNSIGNED_DOT_PRODUCT_MAPPING_NV may be set to either
UNSIGNED_IDENTITY_NV or EXPAND_NORMAL_NV. This RGBA unsigned dot
product mapping mode is used by the DOT_PRODUCT_NV operation (see
section 3.8.13.1.14) and other operations that compute dot products.

When TexEnv is called with the target of TEXTURE_SHADER_NV,
PREVIOUS_TEXTURE_INPUT_NV may be set to TEXTUREi_ARB where i is
between 0 and n-1 where n is the implementation-dependent number of
texture units supported. The INVALID_OPERATION error is generated
if i is greater than or equal to the current active texture unit.

NV_texture_shader NVIDIA OpenGL Extension Specifications

 376

When TexEnv is called with the target of TEXTURE_SHADER_NV,
OFFSET_TEXTURE_MATRIX_NV may be set to a 2x2 matrix of floating-point
values stored in column-major order as 4 consecutive floating-point
values, i.e. as:

[a1 a3]
[a2 a4]

This matrix is used by the OFFSET_TEXTURE_2D_NV,
OFFSET_TEXTURE_2D_SCALE_NV, OFFSET_TEXTURE_RECTANGLE_NV, and
OFFSET_TEXTURE_RECTANGLE_SCALE_NV operations (see sections 3.8.13.1.8
through 3.8.13.1.11).

When TexEnv is called with the target of TEXTURE_SHADER_NV,
OFFSET_TEXTURE_SCALE_NV may be set to a floating-point value.
When TexEnv is called with the target of TEXTURE_SHADER_NV,
OFFSET_TEXTURE_BIAS_NV may be set to a floating-point value. These
scale and bias values are used by the OFFSET_TEXTURE_2D_SCALE_NV
and OFFSET_TEXTURE_RECTANGLE_SCALE_NV operations (see section
3.8.13.1.9 and 3.8.13.1.11).

When TexEnv is called with the target of TEXTURE_SHADER_NV,
CONST_EYE_NV is set to a vector of three floating-point
values used as the constant eye vector in the
DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV texture shader (see
section 3.8.13.1.19).

3.8.13.1 Texture Shader Operations

The texture enables described in section 3.8.10 only affect
conventional texturing mode; these enables are ignored when
TEXTURE_SHADER_NV is enabled. Instead, the texture shader operation
determines how texture coordinates are mapped to filtered texture
values.

Tables 3.A, 3.B, 3.C, and 3.D specify inter-stage dependencies,
texture target dependencies, relevant inputs, and result types and
values respectively for each texture shader operation. Table 3.E
specifies how the components of an accessed texture are mapped to
the components of the texture unit RGBA result based on the base
internal format of the accessed texture. The following discussion
describes each possible texture shader operation in detail.

NVIDIA OpenGL Extension Specifications NV_texture_shader

 377

texture shader
texture shader operation i previous texture input texture shader operation i-1 operation i-2 texture shader operation i+1
================================= ========================= =============================== ================ ================================
NONE - - - -
--------------------------------- ------------------------- ------------------------------- ---------------- --------------------------------
TEXTURE_1D - - - -
TEXTURE_2D - - - -
TEXTURE_RECTANGLE_NV - - - -
TEXTURE_CUBE_MAP_ARB - - - -
--------------------------------- ------------------------- ------------------------------- ---------------- --------------------------------
PASS_THROUGH_NV - - - -
CULL_FRAGMENT_NV - - - -
--------------------------------- ------------------------- ------------------------------- ---------------- --------------------------------
OFFSET_TEXTURE_2D_NV base internal texture - - -

format must be one of
DSDT_NV, DSDT_MAG_NV, or
DSDT_MAG_INTENSITY_NV

OFFSET_TEXTURE_2D_SCALE_NV base internal texture - - -
format must be either
DSDT_MAG_NV or
DSDT_MAG_INTENSITY_NV

OFFSET_TEXTURE_RECTANGLE_NV base internal texture - - -
format must be one of
DSDT_NV, DSDT_MAG_NV, or
DSDT_MAG_INTENSITY_NV

OFFSET_TEXTURE_RECTANGLE_SCALE_NV base internal texture - - -
format must be either
DSDT_MAG_NV or
DSDT_MAG_INTENSITY_NV

--------------------------------- ------------------------- ------------------------------- ---------------- --------------------------------
DEPENDENT_AR_TEXTURE_2D_NV shader result type must - - -

all be unsigned RGBA
DEPENDENT_GB_TEXTURE_2D_NV shader result type must - - -

all be unsigned RGBA
--------------------------------- ------------------------- ------------------------------- ---------------- --------------------------------
DOT_PRODUCT_NV shader result type must - - -

be one of signed HILO,
unsigned HILO, all
signed RGBA, or all
unsigned RGBA

DOT_PRODUCT_TEXTURE_2D_NV shader result type must shader operation must be - -
be one of signed HILO, DOT_PRODUCT_NV
unsigned HILO, all
signed RGBA, or all
unsigned RGBA

DOT_PRODUCT_TEXTURE_RECTANGLE_NV shader result type must shader operation must be - -
be one of signed HILO, DOT_PRODUCT_NV
unsigned HILO, all
signed RGBA, all
unsigned RGBA

DOT_PRODUCT_TEXTURE_CUBE_MAP_NV shader result type must shader operation shader operation -
be one of signed HILO, must be must be
unsigned HILO, all DOT_PRODUCT_NV DOT_PRODUCT_NV
signed RGBA, or all
unsigned RGBA

DOT_PRODUCT_REFLECT_CUBE_MAP_NV shader result type must shader operation must be shader operation -
be one of signed HILO, DOT_PRODUCT_NV or must be
unsigned HILO, all DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV DOT_PRODUCT_NV
signed RGBA, or all
unsigned RGBA; previous
texture input must not
be unit i-1

DOT_PRODUCT_CONST_EYE_- shader result type must shader operation shader operation -
REFLECT_CUBE_MAP_NV be one of signed HILO, must be must be

unsigned HILO, all DOT_PRODUCT_NV or DOT_PRODUCT_NV
signed RGBA, or all DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV
unsigned RGBA

DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV shader result type must shader operation must be - shader operation must be
be one of signed HILO, DOT_PRODUCT_NV DOT_PRODUCT_REFLECT_CUBE_MAP_NV
unsigned HILO, all or DOT_PRODUCT_CONST_EYE_-
signed RGBA, or all REFLECT_CUBE_MAP_NV
unsigned RGBA

--------------------------------- ------------------------- ------------------------------- ---------------- --------------------------------
DOT_PRODUCT_DEPTH_REPLACE_NV shader result type must shader operation - -

be one of signed HILO, must be
unsigned HILO, all DOT_PRODUCT_NV
signed RGBA, or all
unsigned RGBA

--------------------------------- ------------------------- ------------------------------- ---------------- --------------------------------

Table 3.A: Texture shader inter-stage dependencies for each operation.
If any one of the dependencies listed above is not met, the texture
shader stage is considered inconsistent. Further texture shader target
dependencies are listed in table X.Y. Additionally, if any one of the
texture shader stages that a particular texture shader stage depends on is
inconsistent, then the dependent texture shader stage is also considered
inconsistent. When a texture shader stage is considered inconsistent,
the inconsistent stage operates as if the stage's operation is NONE.

NV_texture_shader NVIDIA OpenGL Extension Specifications

 378

texture shader operation i texture unit i
================================= =======================================
NONE -
--------------------------------- ---------------------------------------
TEXTURE_1D 1D target must be consistent
TEXTURE_2D 2D target must be consistent
TEXTURE_RECTANGLE_NV rectangle target must be consistent
TEXTURE_CUBE_MAP_ARB cube map target must be consistent
--------------------------------- ---------------------------------------
PASS_THROUGH_NV -
CULL_FRAGMENT_NV -
--------------------------------- ---------------------------------------
OFFSET_TEXTURE_2D_NV 2D target must be consistent
OFFSET_TEXTURE_2D_SCALE_NV 2D target must be consistent

and 2D texture target type must
be unsigned RGBA

OFFSET_TEXTURE_RECTANGLE_NV rectangle target must be consistent
OFFSET_TEXTURE_RECTANGLE_SCALE_NV rectangle target must be consistent

and rectangle texture target type must
be unsigned RGBA

--------------------------------- ---------------------------------------
DEPENDENT_AR_TEXTURE_2D_NV 2D target must be consistent
DEPENDENT_GB_TEXTURE_2D_NV 2D target must be consistent
--------------------------------- ---------------------------------------
DOT_PRODUCT_NV -
DOT_PRODUCT_TEXTURE_2D_NV 2D target must be consistent
DOT_PRODUCT_TEXTURE_RECTANGLE_NV rectangle target must be consistent
DOT_PRODUCT_TEXTURE_CUBE_MAP_NV cube map target must be consistent
DOT_PRODUCT_REFLECT_CUBE_MAP_NV cube map target must be consistent
DOT_PRODUCT_CONST_EYE_- cube map target must be consistent
REFLECT_CUBE_MAP_NV

DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV cube map target must be consistent
--------------------------------- ---------------------------------------
DOT_PRODUCT_DEPTH_REPLACE_NV -
--------------------------------- ---------------------------------------

Table 3.B: Texture shader target dependencies for each operation.
If the dependency listed above is not met, the texture shader stage is
considered inconsistent.

NVIDIA OpenGL Extension Specifications NV_texture_shader

 379

uses uses uses uses uses offset uses
texture stage stage stage previous uses offset texture const
coordinate texture result result result texture cull texture 2D scale eye

texture shader operation i set usage target i-1 i-2 i+1 input modes 2D matrix and bias vector
================================= ========== ========= ====== ====== ====== ======== ===== ========= ======== ======
NONE - - - - - - - - - -
--------------------------------- ---------- --------- ------ ------ ------ -------- ----- --------- -------- ------
TEXTURE_1D s,q 1D - - - - - - - -
TEXTURE_2D s,t,q 2D - - - - - - - -
TEXTURE_RECTANGLE_NV s,t,q rectangle - - - - - - - -
TEXTURE_CUBE_MAP_ARB s,t,r cube map - - - - - - - -
--------------------------------- ---------- --------- ------ ------ ------ -------- ----- --------- -------- ------
PASS_THROUGH_NV s,t,r,q - - - - - - - - -
CULL_FRAGMENT_NV s,t,r,q - - - - - y - - -
--------------------------------- ---------- --------- ------ ------ ------ -------- ----- --------- -------- ------
OFFSET_TEXTURE_2D_NV s,t 2D - - - - - y - -
OFFSET_TEXTURE_2D_SCALE_NV s,t 2D - - - - - y y -
OFFSET_TEXTURE_RECTANGLE_NV s,t rectangle - - - - - y - -
OFFSET_TEXTURE_RECTANGLE_SCALE_NV s,t rectangle - - - - - y y -
--------------------------------- ---------- --------- ------ ------ ------ -------- ----- --------- -------- ------
DEPENDENT_AR_TEXTURE_2D_NV - 2D - - - y - - - -
DEPENDENT_GB_TEXTURE_2D_NV - 2D - - - y - - - -
--------------------------------- ---------- --------- ------ ------ ------ -------- ----- --------- -------- ------
DOT_PRODUCT_NV s,t,r (q*) - - - - y - - - -
DOT_PRODUCT_TEXTURE_2D_NV s,t,r 2D y - - y - - - -
DOT_PRODUCT_TEXTURE_RECTANGLE_NV s,t,r rectangle y - - y - - - -
DOT_PRODUCT_TEXTURE_CUBE_MAP_NV s,t,r cube map y y - y - - - -
DOT_PRODUCT_REFLECT_CUBE_MAP_NV s,t,r,q cube map y y - y - - - -
DOT_PRODUCT_CONST_EYE_- s,t,r cube map y y - y - - - y
REFLECT_CUBE_MAP_NV
DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV s,t,r (q*) cube map y y y y - - - -
--------------------------------- ---------- --------- ------ ------ ------ -------- ----- --------- -------- ------
DOT_PRODUCT_DEPTH_REPLACE_NV s,t,r - y - - y - - - -
--------------------------------- ---------- --------- ------ ------ ------ -------- ----- --------- -------- ------

Table 3.C: Relevant texture shader computation inputs for each
operation. The (q*) for the texture coordinate set usage indicates
that the q texture coordinate is used only when the DOT_PRODUCT_NV and
DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV operations are used in conjunction with
DOT_PRODUCT_REFLECT_CUBE_MAP_NV.

NV_texture_shader NVIDIA OpenGL Extension Specifications

 380

texture shader operation i shader stage result type shader stage result texture unit RGBA color result
================================= ============================= =================================== ======================================
NONE RGBA invalid (0,0,0,0)
--------------------------------- ----------------------------- ----------------------------------- --------------------------------------
TEXTURE_1D matches 1D target type filtered 1D target texel if 1D target texture type is RGBA,

filtered 1D target texel,
else (0,0,0,0)

TEXTURE_2D matches 2D target type filtered 2D target texel if 2D target texture type is RGBA,
filtered 2D target texel,
else (0,0,0,0)

TEXTURE_RECTANGLE_NV matches rectangle target type filtered rectangle target texel if rectangle target texture type is
RGBA, filtered rectangle target
texel, else (0,0,0,0)

TEXTURE_CUBE_MAP_ARB matches cube map target type filtered cube map target texel if cube map target texture type is
RGBA, filtered cube map target
texel, else (0,0,0,0)

--------------------------------- ----------------------------- ----------------------------------- --------------------------------------
PASS_THROUGH_NV RGBA (max(0,min(1,s)), max(0,min(1,t)), (max(0,min(1,s)), max(0,min(1,t)),

max(0,min(1,r)), max(0,min(1,q))) max(0,min(1,r)), max(0,min(1,q)))
CULL_FRAGMENT_NV RGBA invalid (0,0,0,0)
--------------------------------- ----------------------------- ----------------------------------- --------------------------------------
OFFSET_TEXTURE_2D_NV matches 2D target type filtered 2D target texel if 2D target texture type is RGBA,

filtered 2D target texel,
else (0,0,0,0)

OFFSET_TEXTURE_2D_SCALE_NV RGBA filtered 2D target texel scaled filtered 2D target texel
OFFSET_TEXTURE_RECTANGLE_NV matches rectangle target type filtered rectangle target texel if rectangle target texture type is

RGBA, filtered rectangle target
texel, else (0,0,0,0)

OFFSET_TEXTURE_RECTANGLE_SCALE_NV RGBA filtered rectangle target texel scaled filtered rectangle target texel
--------------------------------- ----------------------------- ----------------------------------- --------------------------------------
DEPENDENT_AR_TEXTURE_2D_NV matches 2D target type filtered 2D target texel if 2D target texture type is RGBA,

filtered 2D target texel,
else (0,0,0,0)

DEPENDENT_GB_TEXTURE_2D_NV matches 2D target type filtered 2D target texel if 2D target texture type is RGBA,
filtered 2D target texel,
else (0,0,0,0)

--------------------------------- ----------------------------- ----------------------------------- --------------------------------------
DOT_PRODUCT_NV float dot product (0,0,0,0)
DOT_PRODUCT_TEXTURE_2D_NV matches 2D target type filtered 2D target texel if 2D target texture type is RGBA,

filtered 2D target texel,
else (0,0,0,0)

DOT_PRODUCT_TEXTURE_RECTANGLE_NV matches rectangle target type filtered rectangle target texel if rectangle target texture type is
RGBA, filtered rectangle target
texel, else (0,0,0,0)

DOT_PRODUCT_TEXTURE_CUBE_MAP_NV matches cube map target type filtered cube map target texel if cube map target texture type is
RGBA, filtered cube map target
texel, else (0,0,0,0)

DOT_PRODUCT_REFLECT_CUBE_MAP_NV matches cube map target type filtered cube map target texel if cube map target texture type is
RGBA, filtered cube map target
texel, else (0,0,0,0)

DOT_PRODUCT_CONST_EYE_- matches cube map target type filtered cube map target texel if cube map target texture type is
REFLECT_CUBE_MAP_NV RGBA, filtered cube map target

texel, else (0,0,0,0)
DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV matches cube map target type filtered cube map target texel if cube map target texture type is

RGBA, filtered cube map target
texel, else (0,0,0,0)

------------------------------- ----------------------------- ----------------------------------- --------------------------------------
DOT_PRODUCT_DEPTH_REPLACE_NV RGBA invalid (0,0,0,0)
------------------------------- ----------------------------- ----------------------------------- --------------------------------------

Table 3.D: Texture shader stage results for each operation.

Base internal format Red Green Blue Alpha
-------------------- --- ----- ---- -----
ALPHA 1 1 1 At
LUMINANCE Lt Lt Lt 1
INTENSITY It It It It
LUMINANCE_ALPHA Lt Lt Lt At
RGB Rt Gt Bt 1
RGBA Rt Gt Bt At

Table 3.E: How base internal formats components are mapped to RGBA values
for texture shaders (note that the mapping for ALPHA is different from
the mapping in Table 3.23 in the EXT_texture_env_combine extension).

NVIDIA OpenGL Extension Specifications NV_texture_shader

 381

3.8.13.1.1 None

The NONE texture shader operation ignores the texture unit's texture
coordinate set and always generates the texture unit RGBA result
(0,0,0,0) for its filtered texel value. The texture shader result
is invalid. This texture shader stage is always consistent.

When a texture unit is not needed while texture shaders are enabled,
it is most efficient to set the texture unit's texture shader
operation to NONE.

3.8.13.1.2 1D Projective Texturing

The TEXTURE_1D texture shader operation accesses the texture unit's
1D texture object (as described in sections 3.8.4, 3.8.5, and 3.8.6)
using (s/q) for the 1D texture coordinate where s and q are the
homogeneous texture coordinates for the texture unit. The result
of the texture access becomes both the shader result and texture
unit RGBA result (see table 3.E). The type of the shader result
depends on the format type of the accessed texture. This mode is
equivalent to conventional texturing's 1D texture target.

If the texture unit's 1D texture object is not consistent, then
this texture shader stage is not consistent.

If this texture shader stage is not consistent, it operates as if
it is the NONE operation.

3.8.13.1.3 2D Projective Texturing

The TEXTURE_2D texture shader operation accesses the texture unit's
2D texture object (as described in sections 3.8.4, 3.8.5, and
3.8.6) using (s/q,t/q) for the 2D texture coordinates where s, t,
and q are the homogeneous texture coordinates for the texture unit.
The result of the texture access becomes both the shader result and
texture unit RGBA result (see table 3.E). The type of the shader
result depends on the format type of the accessed texture. This mode
is equivalent to conventional texturing's 2D texture target.

If the texture unit's 2D texture object is not consistent, then
this texture shader stage is not consistent.

If this texture shader stage is not consistent, it operates as if
it is the NONE operation.

3.8.13.1.4 Rectangle Projective Texturing

The TEXTURE_RECTANGLE_NV texture shader operation accesses
the texture unit's rectangle texture object (as described in
sections 3.8.4, 3.8.5, and 3.8.6) using (s/q,t/q) for the 2D texture
coordinates where s, t, and q are the homogeneous texture coordinates
for the texture unit. The result of the texture access becomes both
the shader result and texture unit RGBA result (see table 3.E).
The type of the shader result depends on the format type of the
accessed texture. This mode is equivalent to NV_texture_rectangle's
rectangle texture target.

NV_texture_shader NVIDIA OpenGL Extension Specifications

 382

If the texture unit's rectangle texture object is not consistent,
then this texture shader stage is not consistent.

If this texture shader stage is not consistent, it operates as if
it is the NONE operation.

3.8.13.1.5 Cube Map Texturing

The TEXTURE_CUBE_MAP_ARB texture shader operation accesses
the texture unit's cube map texture object (as described in the
ARB_texture_cube_map specification) using (s,t,r) for the 3D texture
coordinate where s, t, and r are the homogeneous texture coordinates
for the texture unit. The result of the texture access becomes
both the shader result and texture unit RGBA result (see table
3.E). The type of the shader result depends on the format type
of the accessed texture. This mode is equivalent to conventional
texturing's cube map texture target.

If the texture unit's cube map texture object is not consistent, then
this texture shader stage is not consistent.

If this texture shader stage is not consistent, it operates as if
it is the NONE operation.

3.8.13.1.6 Pass Through

The PASS_THROUGH_NV texture shader operation converts an (s,t,r,q)
texture coordinate set in an RGBA color result (r,g,b,a).
Each texture coordinate is first clamped to [0,1] before being
mapped to its corresponding color component. The texture shader
result and texture unit RGBA result of this operation are both
assigned the clamped RGBA color result.

This operation in no way depends on any of the texture unit's
texture objects.

3.8.13.1.7 Cull Fragment

The CULL_FRAGMENT_NV texture shader operation compares each
component of the texture coordinate set (s,t,r,q) to zero based
on the texture shader's corresponding cull mode. For the LESS
cull mode to succeed, the corresponding component must be less
than zero; otherwise the comparison fails. For the GEQUAL cull
mode to succeed, the corresponding component must be greater or
equal to zero; otherwise the comparison fails. If any of the four
comparisons fails, the fragment is discarded.

The texture unit RGBA result generated is always (0,0,0,0).
The texture shader result is invalid. This texture shader stage
is always consistent.

This operation in no way depends on any of the texture unit's
texture objects.

NVIDIA OpenGL Extension Specifications NV_texture_shader

 383

3.8.13.1.8 Offset Texture 2D

The OFFSET_TEXTURE_2D_NV texture shader operation uses the
transformed result of a previous texture shader stage to perturb
the current texture shader stage's (s,t) texture coordinates
(without a projective division by q). The resulting perturbed
texture coordinates (s',t') are used to access the texture unit's 2D
texture object (as described in sections 3.8.4, 3.8.5, and 3.8.6).

The result of the texture access becomes both the shader result and
texture unit RGBA result (see table 3.E). The type of the shader
result depends on the format type of the accessed texture.

The perturbed texture coordinates s' and t' are computed with
floating-point math as follows:

s' = s + a1 * DSprev + a3 * DTprev
t' = t + a2 * DSprev + a4 * DTprev

where a1, a2, a3, and a4 are the texture shader stage's
OFFSET_TEXTURE_MATRIX_NV values, and DSprev and DTprev are the
(signed) DS and DT components of a previous texture shader unit's
texture shader result specified by the current texture shader
stage's PREVIOUS_TEXTURE_INPUT_NV value.

If the texture unit's 2D texture object is not consistent, then
this texture shader stage is not consistent.

If the previous texture input texture object specified by the
current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
has a base internalformat that is not one of DSDT_NV, DSDT_MAG_NV
or DSDT_MAG_INTENSITY_NV, then this texture shader stage is not
consistent.

If the previous texture input texture shader operation specified by
the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
is DOT_PRODUCT_NV, then this texture shader stage is not consistent.

If the previous texture input texture shader result specified by
the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
is invalid, then this texture shader stage is not consistent.

If the previous texture input shader stage specified by the current
texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value is not
consistent, then this texture shader stage is not consistent.

If this texture shader stage is not consistent, it operates as if
it is the NONE operation.

3.8.13.1.9 Offset Texture 2D and Scale

The OFFSET_TEXTURE_2D_SCALE_NV texture shader operation extends the
functionality of the OFFSET_TEXTURE_2D_NV texture shader operation.
The texture unit's 2D texture object is accessed by the same
perturbed s' and t' coordinates used by the OFFSET_TEXTURE_2D_NV
operation. The red, green, and blue components (but not alpha)
of the RGBA result of the texture access are further scaled by

NV_texture_shader NVIDIA OpenGL Extension Specifications

 384

the value Scale and clamped to the range [0,1]. This RGBA result
is this shader's texture unit RGBA result. This shader's texture
shader result is the RGBA result of the texture access prior to
scaling and clamping.

Scale is computed with floating-point math as follows:

Scale = textureOffsetBias + textureOffsetScale * MAGprev

where textureOffsetBias is the texture shader stage's
OFFSET_TEXTURE_BIAS_NV value, textureOffsetScale is the texture
shader stage's OFFSET_TEXTURE_SCALE_NV value, and MAGprev
is the magnitude component of the a previous texture shader
unit's result specified by the current texture shader stage's
PREVIOUS_TEXTURE_INPUT_NV value.

The texture unit RGBA result (red',green',blue',alpha') is computed
as follows:

red' = max(0.0, min(1.0, Scale * red))
green' = max(0.0, min(1.0, Scale * green))
blue' = max(0.0, min(1.0, Scale * blue))
alpha' = alpha

where red, green, blue, and alpha are the texture access components.

If the unit's 2D texture object has any signed components, then this
texture shader stage is not consistent.

If the texture unit's 2D texture object is has a format type other
than RGBA (the DSDT_MAG_INTENSITY_NV base internal format does not
count as an RGBA format type in this context), then this texture
shader stage is not consistent.

If the texture unit's 2D texture object is not consistent, then
this texture shader stage is not consistent.

If the previous texture input texture object specified by the
current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
has a base internalformat that is not either DSDT_MAG_NV
or DSDT_MAG_INTENSITY_NV, then this texture shader stage is not
consistent.

If the previous texture input texture shader operation specified by
the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
is DOT_PRODUCT_NV, then this texture shader stage is not consistent.

If the previous texture input texture shader result specified by
the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
is invalid, then this texture shader stage is not consistent.

If the previous texture input shader stage specified by the current
texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value is not
consistent, then this texture shader stage is not consistent.

If this texture shader stage is not consistent, it operates as if
it is the NONE operation.

NVIDIA OpenGL Extension Specifications NV_texture_shader

 385

3.8.13.1.10 Offset Texture Rectangle

The OFFSET_TEXTURE_RECTANGLE_NV shader operation operates
identically to the OFFSET_TEXTURE_2D_NV shader operation except
that the rectangle texture target is accessed rather than the 2D
texture target.

If the texture unit's rectangle texture object (rather than the 2D
texture object) is not consistent, then this texture shader stage
is not consistent.

3.8.13.1.11 Offset Texture Rectangle Scale

The OFFSET_TEXTURE_RECTANGLE_SCALE_NV shader operation operates
identically to the OFFSET_TEXTURE_2D_SCALE_NV shader operation
except that the rectangle texture target is accessed rather than
the 2D texture target.

If the texture unit's rectangle texture object (rather than the 2D
texture object) is not consistent, then this texture shader stage
is not consistent.

3.8.13.1.12 Dependent Alpha-Red Texturing

The DEPENDENT_AR_TEXTURE_2D_NV texture shader operation accesses
the texture unit's 2D texture object (as described in section 3.8.4,
3.8.5, and 3.8.6) using (Aprev, Rprev) for the 2D texture coordinates
where Aprev and Rprev are the are the alpha and red components of
a previous texture input's RGBA texture shader result specified by
the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value.
The result of the texture access becomes both the shader result and
texture unit RGBA result (see table 3.E). The type of the shader
result depends on the format type of the accessed texture.

If the texture unit's 2D texture object is not consistent, then
this texture shader stage is not consistent.

If the previous texture input's texture shader result specified
by the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV
value has a texture shader result type other than RGBA (the
DSDT_MAG_INTENSITY_NV base internal format does not count as an
RGBA format type in this context), then this texture shader stage
is not consistent.

If the previous texture input's texture shader result specified
by the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV
value has a texture shader result type of RGBA but any of the
RGBA components are signed, then this texture shader stage is not
consistent.

If the previous texture input texture shader operation specified by
the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
is DOT_PRODUCT_NV, then this texture shader stage is not consistent.

If the previous texture input texture shader result specified by
the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value

NV_texture_shader NVIDIA OpenGL Extension Specifications

 386

is invalid, then this texture shader stage is not consistent.

If the previous texture input shader stage specified by the current
texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value is not
consistent, then this texture shader stage is not consistent.

If this texture shader stage is not consistent, it operates as if
it is the NONE operation.

3.8.13.1.13 Dependent Green-Blue Texturing

The DEPENDENT_GB_TEXTURE_2D_NV texture shader operation accesses
the texture unit's 2D texture object (as described in section 3.8.4,
3.8.5, and 3.8.6) using (Gprev, Bprev) for the 2D texture coordinates
where Gprev and Bprev are the are the green and blue components
of a previous texture input's RGBA texture shader result specified by the
current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value.
The result of the texture access becomes both the shader result and
texture unit RGBA result (see table 3.E). The type of the shader
result depends on the format type of the accessed texture.

If the texture unit's 2D texture object is not consistent, then
this texture shader stage is not consistent.

If the previous texture input's texture shader result specified
by the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV
value has a texture shader result type other than RGBA (the
DSDT_MAG_INTENSITY_NV base internal format does not count as an
RGBA format type in this context), then this texture shader stage
is not consistent.

If the previous texture input's texture shader result specified
by the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV
value has a texture shader result type of RGBA but any of the
RGBA components are signed, then this texture shader stage is not
consistent.

If the previous texture input texture shader operation specified by
the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
is DOT_PRODUCT_NV, then this texture shader stage is not consistent.

If the previous texture input texture shader result specified by
the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
is invalid, then this texture shader stage is not consistent.

If the previous texture input shader stage specified by the current
texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value is not
consistent, then this texture shader stage is not consistent.

If this texture shader stage is not consistent, it operates as if
it is the NONE operation.

3.8.13.1.14 Dot Product

The DOT_PRODUCT_NV texture shader operation computes a
floating-point texture shader result. The texture shader result
is the floating-point dot product of the texture unit's (s,t,r)

NVIDIA OpenGL Extension Specifications NV_texture_shader

 387

texture coordinates and a remapped version of the RGBA or HILO
texture shader result from a specified previous texture shader stage.
The RGBA color result of this shader is always (0,0,0,0).

The re-mapping depends on the specified previous texture shader
stage's texture shader result type. Specifically, the re-mapping
depends on whether this texture shader result type has all signed
components or all unsigned components, and whether it has RGBA
components or HILO components, and, in the case of unsigned RGBA
texture shader results, the RGBA_UNSIGNED_DOT_PRODUCT_MAPPING_NV
state.

If the specified previous texture unit's texture shader result
type is HILO and all the type components are unsigned, then the
floating-point result is computed by

result = s * HI + t * LO + r

where HI and LO are the (unsigned) hi and lo components respectively
of the previous texture unit's HILO texture shader result.

If the specified previous texture unit's texture shader result
type is HILO and all the type components are signed, then the
floating-point result is computed by

result = s * HI + t * LO + r * sqrt(max(0, 1.0 - HI*HI - LO*LO))

where HI and LO are the (signed) hi and lo components respectively
of the previous texture unit's texture shader result.

If the specified previous texture unit's texture shader result
contains only signed RGBA components, then the floating-point result
is computed by

result = s * Rprev + t * Gprev + r * Bprev

where Rprev, Gprev, and Bprev are the (signed) red, green, and blue
components respectively of the previous texture unit's RGBA texture
shader result.

If the specified previous texture unit's texture shader result
contains only unsigned RGBA components, then the dot product
computation depends on the RGBA_UNSIGNED_DOT_PRODUCT_MAPPING_NV
state. When the RGBA_UNSIGNED_DOT_PRODUCT_MAPPING_NV is
UNSIGNED_IDENTITY_NV, then the floating-point result for unsigned
RGBA components is computed by

result = s * Rprev + t * Gprev + r * Bprev

where Rprev, Gprev, and Bprev are the (unsigned) red, green, and
blue components respectively of the previous texture unit's RGBA
texture shader result.

NV_texture_shader NVIDIA OpenGL Extension Specifications

 388

When the RGBA_UNSIGNED_DOT_PRODUCT_MAPPING_NV is EXPAND_NORMAL_NV,
then the floating-point result for unsigned RGBA components is
computed by

result = s * (2.0*Rprev-1.0) + t * (2.0*Gprev-1.0) + r * (2.0*Bprev-1.0)

where Rprev, Gprev, and Bprev are the (unsigned) red, green, and
blue components respectively of the previous texture unit's RGBA
texture shader result.

If the previous texture input texture object specified by the
current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value has
a format type other than RGBA or HILO (the DSDT_MAG_INTENSITY_NV
base internal format does not count as an RGBA format type in this
context), then this texture shader stage is not consistent.

If the components of the previous texture input texture
object specified by the current texture shader stage's
PREVIOUS_TEXTURE_INPUT_NV value have mixed signedness, then
this texture shader stage is not consistent. For example,
the SIGNED_RGB_UNSIGNED_ALPHA_NV base internal format has mixed
signedness.

If the previous texture input texture shader operation specified by
the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
is DOT_PRODUCT_NV, then this texture shader stage is not consistent.

If the previous texture input texture shader result specified by
the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
is invalid, then this texture shader stage is not consistent.

If the previous texture input shader stage specified by the current
texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value is not
consistent, then this texture shader stage is not consistent.

If this texture shader stage is not consistent, it operates as if
it is the NONE operation.

This operation in no way depends on any of the texture unit's
texture objects.

3.8.13.1.15 Dot Product Texture 2D

The DOT_PRODUCT_TEXTURE_2D_NV texture shader operation accesses the
texture unit's 2D texture object (as described in sections 3.8.4,
3.8.5, and 3.8.6) using (dotP,dotC) for the 2D texture coordinates.
The result of the texture access becomes both the shader result and
texture unit RGBA result (see table 3.E). The type of the shader
result depends on the format type of the accessed texture.

Assuming that i is the current texture shader stage, dotP is the
floating-point dot product result from the i-1 texture shader stage,
assuming the i-1 texture shader stage's operation is DOT_PRODUCT_NV.
dotC is the floating-point dot product result from the current
texture shader stage. dotC is computed in the identical manner
used to compute the floating-point result of the DOT_PRODUCT_NV
texture shader described in section 3.8.13.1.14.

NVIDIA OpenGL Extension Specifications NV_texture_shader

 389

If the previous texture input texture object specified by the
current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value has
a format type other than RGBA or HILO (the DSDT_MAG_INTENSITY_NV
base internal format does not count as an RGBA format type in this
context), then this texture shader stage is not consistent.

If the previous texture input texture shader operation specified by
the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
is DOT_PRODUCT_NV, then this texture shader stage is not consistent.

If the previous texture input texture shader result specified by
the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
is invalid, then this texture shader stage is not consistent.

If the previous texture input shader stage specified by the current
texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value is not
consistent, then this texture shader stage is not consistent.

If the i-1 texture shader stage operation is not DOT_PRODUCT_NV,
then this texture shader stage is not consistent.

If the i-1 texture shader stage is not consistent, then
this texture shader stage is not consistent.

If the texture unit's 2D texture object is not consistent, then
this texture shader stage is not consistent.

If this texture shader stage is not consistent, it operates as if
it is the NONE operation.

3.8.13.1.16 Dot Product Texture Rectangle Scale

The DOT_PRODUCT_TEXTURE_RECTANGLE_NV shader operation operates
identically to the DOT_PRODUCT_TEXTURE_2D_NV shader operation except
that the rectangle texture target is accessed rather than the 2D
texture target.

If the texture unit's rectangle texture object (rather than the 2D
texture object) is not consistent, then this texture shader stage
is not consistent.

3.8.13.1.17 Dot Product Texture Cube Map

The DOT_PRODUCT_TEXTURE_CUBE_MAP_NV texture shader operation
accesses the texture unit's cube map texture object (as described
in the ARB_texture_cube_map specification) using (dotPP,dotP,dotC)
for the 3D texture coordinates. The result of the texture access
becomes both the shader result and texture unit RGBA result (see
table 3.E). The type of the shader result depends on the format
type of the accessed texture.

Assuming that i is the current texture shader stage, dotPP is the
floating-point dot product texture shader result from the i-2
texture shader stage, assuming the i-2 texture shader stage's
operation is DOT_PRODUCT_NV. dotP is the floating-point dot
product texture shader result from the i-1 texture shader stage,

NV_texture_shader NVIDIA OpenGL Extension Specifications

 390

assuming the i-1 texture shader stage's operation is DOT_PRODUCT_NV.
dotC is the floating-point dot product result from the current
texture shader stage. dotC is computed in the identical manner
used to compute the floating-point result of the DOT_PRODUCT_NV
texture shader described in section 3.8.13.1.14.

If the previous texture input texture object specified by the
current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value has
a format type other than RGBA or HILO (the DSDT_MAG_INTENSITY_NV
base internal format does not count as an RGBA format type in this
context), then this texture shader stage is not consistent.

If the previous texture input texture shader operation specified by
the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
is DOT_PRODUCT_NV, then this texture shader stage is not consistent.

If the previous texture input texture shader result specified by
the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
is invalid, then this texture shader stage is not consistent.

If the previous texture input shader stage specified by the current
texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value is not
consistent, then this texture shader stage is not consistent.

If either the i-1 or i-2 texture shader stage operation is not
DOT_PRODUCT_NV, then this texture shader stage is not consistent.

If either the i-1 or i-2 texture shader stage is not consistent, then
this texture shader stage is not consistent.

If the texture unit's cube map texture object is not consistent,
then this texture shader stage is not consistent.

If this texture shader stage is not consistent, it operates as if
it is the NONE operation.

3.8.13.1.18 Dot Product Reflect Cube Map

The DOT_PRODUCT_REFLECT_CUBE_MAP_NV and
DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV (described in the section
3.8.13.1.20) texture shader operations are typically used together.

The DOT_PRODUCT_REFLECT_CUBE_MAP_NV texture shader operation
accesses the texture unit's cube map texture object (as described
in the ARB_texture_cube_map specification) using (rx,ry,rz) for
the 3D texture coordinates. The result of the texture access becomes
both the shader result and texture unit RGBA result (see table 3.E).
The type of the shader result depends on the format type of the
accessed texture.

Let R = (rx,ry,rz), N = (dotPP,dotP,dotC), and E = (qPP,qP,qC),
then

R = 2 * (N dot E) / (N dot N) * N - E

Assuming that i is the current texture shader stage, dotPP is
the floating-point dot product texture shader result from the

NVIDIA OpenGL Extension Specifications NV_texture_shader

 391

i-2 texture shader stage, assuming the i-2 texture shader stage's
operation is DOT_PRODUCT_NV. dotP is the floating-point dot product
texture shader result from the i-1 texture shader stage, assuming
the i-1 texture shader stage's operation is either DOT_PRODUCT_NV
or DOT_PRODUCT_DIFFUSE_NV. dotC is the floating-point dot product
result from the current texture shader stage. dotC is computed in
the identical manner used to compute the floating-point result of
the DOT_PRODUCT_NV texture shader described in section 3.8.13.1.14.

qPP is the q component of the i-2 texture shader stage's texture
coordinate set. qP is the q component of the i-1 texture shader
stage's texture coordinate set. qC is the q component of the
current texture shader stage's texture coordinate set.

If the previous texture input texture object specified by the
current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value has
a format type other than RGBA or HILO (the DSDT_MAG_INTENSITY_NV
base internal format does not count as an RGBA format type in this
context), then this texture shader stage is not consistent.

If the previous texture input texture shader operation specified by
the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
is DOT_PRODUCT_NV, then this texture shader stage is not consistent.

If the previous texture input texture shader result specified by
the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
is invalid, then this texture shader stage is not consistent.

If this texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
refers to texture unit i-2 or i-1, then this texture shader stage
is not consistent.

If the previous texture input shader stage specified by the current
texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value is not
consistent, then this texture shader stage is not consistent.

If the i-2 texture shader stage operation is not
DOT_PRODUCT_NV, then this texture shader stage is not consistent.

If the i-1 texture shader stage operation is not DOT_PRODUCT_NV or
DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV, then this texture shader stage is
not consistent.

If either the i-1 or i-2 texture shader stage is not consistent, then
this texture shader stage is not consistent.

If the texture unit's cube map texture object is not consistent,
then this texture shader stage is not consistent.

If this texture shader stage is not consistent, it operates as if
it is the NONE operation.

3.8.13.1.19 Dot Product Constant Eye Reflect Cube Map

The DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV texture shader
operation operates the same as the DOT_PRODUCT_REFLECT_CUBE_MAP_NV
operation except that the eye vector E is equal to the three

NV_texture_shader NVIDIA OpenGL Extension Specifications

 392

floating-point values assigned to the texture shader's eye
constant (rather than the three q components of the given texture
unit and the previous two texture units).

The DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV operation
has the same texture shader consistency rules as the
DOT_PRODUCT_REFLECT_CUBE_MAP_NV operation.

3.8.13.1.20 Dot Product Diffuse Cube Map

The DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV texture shader operation
accesses the texture unit's cube map texture object (as described
in the ARB_texture_cube_map specification) using (dotP,dotC,dotN)
for the 3D texture coordinates. The result of the texture access
becomes both the shader result and texture unit RGBA result (see
table 3.E). The type of the shader result depends on the format
type of the accessed texture.

Assuming that i is the current texture shader stage, dotP is the
floating-point dot product texture shader result from the i-1 texture
shader stage, assuming the i-1 texture shader stage's operation
is DOT_PRODUCT_NV. dotC is the floating-point dot product result
from the current texture shader stage. dotC is computed in the
identical manner used to compute the floating-point result of the
DOT_PRODUCT_NV texture shader described in section 3.8.13.1.14.
dotN is the floating-point dot product texture shader result from
the i+1 texture shader stage, assuming the next texture shader
stage's operation is either DOT_PRODUCT_REFLECT_CUBE_MAP_NV or
DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV.

If the texture unit's cube map texture object is not consistent,
then this operation operates as if it is the NONE operation.
If the previous texture unit's texture shader operation is
not DOT_PRODUCT_NV, then this operation operates as if it
is the NONE operation. If the next texture unit's texture
shader operation is neither DOT_PRODUCT_REFLECT_CUBE_MAP_NV nor
DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV, then this operation
operates as if it is the NONE operation. If the next texture unit's
texture shader operation is either DOT_PRODUCT_REFLECT_CUBE_MAP_NV
or DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV, but the next texture
unit operation is operating as if it is the NONE operation, then
this operation operates as if it is the NONE operation. If the
specified previous input texture unit is inconsistent or uses
the DOT_PRODUCT_NV texture shader operation, then this operation
operates as if it is the NONE operation.

If the previous texture input texture object specified by the
current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value has
a format type other than RGBA or HILO (the DSDT_MAG_INTENSITY_NV
base internal format does not count as an RGBA format type in this
context), then this texture shader stage is not consistent.

If the previous texture input texture shader operation specified by
the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
is DOT_PRODUCT_NV, then this texture shader stage is not consistent.

NVIDIA OpenGL Extension Specifications NV_texture_shader

 393

If the previous texture input texture shader result specified by
the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
is invalid, then this texture shader stage is not consistent.

If the previous texture input shader stage specified by the current
texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value is not
consistent, then this texture shader stage is not consistent.

If the i-1 texture shader stage operation is not
DOT_PRODUCT_NV, then this texture shader stage is not consistent.

If the i+1 texture shader stage operation
is not DOT_PRODUCT_REFLECT_CUBE_MAP_NV or
DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV, then this texture shader
stage is not consistent.

If either the i-1 or i+1 texture shader stage is not consistent,
then this texture shader stage is not consistent.

If the texture unit's cube map texture object is not consistent,
then this texture shader stage is not consistent.

If this texture shader stage is not consistent, it operates as if
it is the NONE operation.

3.8.13.1.21 Dot Product Depth Replace

The DOT_PRODUCT_DEPTH_REPLACE_NV texture shader operation replaces
the incoming fragments depth (in window coordinates, before
conversion to fixed-point, i.e. in the [0,1] range) with a new
depth value. The new depth is computed as follows:

depth = dotP / dotC

Assuming that i is the current texture shader stage, dotP is the
floating-point dot product texture shader result from the i-1 texture
shader stage, assuming the i-1 texture shader stage's operation
is DOT_PRODUCT_NV. dotC is the floating-point dot product result
from the current texture shader stage. dotC is computed in the
identical manner used to compute the floating-point result of the
DOT_PRODUCT_NV texture shader described in section 3.8.13.1.14.

If the new depth value is outside of the range of the near and far
depth range values, the fragment is rejected.

The texture unit RGBA result generated is always (0,0,0,0).
The texture shader result is invalid.

If the previous texture input texture object specified by the
current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value has
a format type other than RGBA or HILO (the DSDT_MAG_INTENSITY_NV
base internal format does not count as an RGBA format type in this
context), then this texture shader stage is not consistent.

If the previous texture input texture shader operation specified by
the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
is DOT_PRODUCT_NV, then this texture shader stage is not consistent.

NV_texture_shader NVIDIA OpenGL Extension Specifications

 394

If the previous texture input texture shader result specified by
the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
is invalid, then this texture shader stage is not consistent.

If the previous texture input shader stage specified by the current
texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value is not
consistent, then this texture shader stage is not consistent.

If the i-1 texture shader stage operation is not DOT_PRODUCT_NV,
then this texture shader stage is not consistent.

If the i-1 texture shader stage is not consistent, then
this texture shader stage is not consistent.

If this texture shader stage is not consistent, it operates as if
it is the NONE operation.

This operation in no way depends on any of the texture unit's
texture objects.

3.8.13.2 Texture Shader Restrictions

There are various restrictions on possible texture shader
configurations. These restrictions are described in this section.

The error INVALID_OPERATION occurs if the SHADER_OPERATION_NV
parameter for texture unit 0 is assigned one of OFFSET_TEXTURE_2D_NV,
OFFSET_TEXTURE_2D_SCALE_NV, OFFSET_TEXTURE_RECTANGLE_NV,
OFFSET_TEXTURE_RECTANGLE_SCALE_NV, DEPENDENT_AR_TEXTURE_2D_NV,
DEPENDENT_GB_TEXTURE_2D_NV, DOT_PRODUCT_NV,
DOT_PRODUCT_DEPTH_REPLACE_NV, DOT_PRODUCT_TEXTURE_2D_NV,
DOT_PRODUCT_TEXTURE_RECTANGLE_NV, DOT_PRODUCT_TEXTURE_CUBE_MAP_NV,
DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV,
or DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV. Each of these
texture shaders requires a previous texture shader result that
is not possible for texture unit 0. Therefore these shaders are
disallowed for texture unit 0.

The error INVALID_OPERATION occurs if the SHADER_OPERATION_NV
parameter for texture unit 1 is assigned one of
DOT_PRODUCT_DEPTH_REPLACE_NV, DOT_PRODUCT_TEXTURE_2D_NV,
DOT_PRODUCT_TEXTURE_RECTANGLE_NV, DOT_PRODUCT_TEXTURE_CUBE_MAP_NV,
DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV,
or DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV. Each of these texture
shaders requires either two previous texture shader results or
a dot product result that cannot be generated by texture unit 0.
Therefore these shaders are disallowed for texture unit 1.

The error INVALID_OPERATION occurs if the SHADER_OPERATION_NV
parameter for texture unit 2 is assigned one of
DOT_PRODUCT_TEXTURE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV,
DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV. Each of these texture
shaders requires three previous texture shader results. Therefore
these shaders are disallowed for texture unit 2.

NVIDIA OpenGL Extension Specifications NV_texture_shader

 395

The error INVALID_OPERATION occurs if the SHADER_OPERATION_NV
parameter for texture unit n-1 (where n is the number of
supported texture units) is assigned either DOT_PRODUCT_NV or
DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV. DOT_PRODUCT_NV is invalid for the
final texture shader stage because it is only useful as an input to
a successive texture shader stage. DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV
is invalid for the final texture shader stage because it must be
followed by the DOT_PRODUCT_REFLECT_CUBE_MAP_NV operation in the
immediately successive stage. Therefore these shaders are disallowed
for texture unit n-1.

3.8.13.3 Required State

The state required for texture shaders consists of a single bit to
indicate whether or not texture shaders are enabled, a vector of
three floating-point values for the constant eye vector, and n sets
of per-texture unit state where n is the implementation-dependent
number of supported texture units. The set of per-texture unit
texture shader state consists of the twenty-one-valued integer
indicating the texture shader operation, four two-valued integers
indicating the cull modes, an integer indicating the previous texture
unit input, a two-valued integer indicating the RGBA unsigned dot
product mapping mode, a 2x2 floating-point matrix indicating the
texture offset transform, a floating-point value indicating the
texture offset scale, a floating-point value indicating the texture
offset bias, and a bit to indicate whether or not the texture shader
stage is consistent.

In the initial state, the texture shaders state is set as follows:
the texture shaders enable is disabled; the constant eye vector
is (0,0,-1); all the texture shader operations are NONE; the RGBA
unsigned dot product mapping mode is UNSIGNED_IDENTITY_NV; all the
cull mode values are GEQUAL; all the previous texture units are
TEXTURE0_ARB; each texture offset matrix is an identity matrix;
all texture offset scales are 1.0; and all texture offset biases
are 0.0."

Additions to Chapter 4 of the 1.2 Specification (Per-Fragment Operations
and the Frame Buffer)

None

Additions to Chapter 5 of the 1.2 Specification (Special Functions)

None

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)

-- Section 6.1.3 "Texture Environments and Texture Functions"

Change the third sentence of the third paragraph to read:

"The env argument to GetTexEnv must be one of TEXTURE_ENV,
TEXTURE_FILTER_CONTROL_EXT, or TEXTURE_SHADER_NV."

NV_texture_shader NVIDIA OpenGL Extension Specifications

 396

Add to the end of the third paragraph:

"For GetTexEnv, when the target is TEXTURE_SHADER_NV, the texture
shader stage consistency can be queried with SHADER_CONSISTENT_NV."

Add the following to the end of the fourth paragraph:

"Queries of TEXTURE_BORDER_COLOR return the same values as the
TEXTURE_BORDER_VALUES query."

-- Section 6.1.4 "Texture Queries"

Add the following to the end of the fourth paragraph:

"Calling GetTexImage with a color format (one of RED, GREEN,
BLUE, ALPHA, RGB, RGBA, LUMINANCE, or LUMINANCE_ALPHA) when the
texture image is of a format type (see table 3.15) other than
RGBA (the DSDT_MAG_INTENSITY_NV base internal format does not
count as an RGBA format type in this context) causes the error
INVALID_OPERATION. Calling GetTexImage with a format of HILO when
the texture image is of a format type (see table 3.15) other than
HILO causes the error INVALID_OPERATION. Calling GetTexImage with
a format of DSDT_NV when the texture image is of a base internal
format other than DSDT_NV causes the error INVALID_OPERATION.
Calling GetTexImage with a format of DSDT_MAG_NV when the texture
image is of a base internal format other than DSDT_MAG_NV causes
the error INVALID_OPERATION. Calling GetTexImage with a format
of DSDT_MAG_VIB_NV when the texture image is of a base internal
format other than DSDT_MAG_INTENSITY_NV causes the error
INVALID_OPERATION."

Additions to the GLX Specification

None

Dependencies on ARB_texture_env_add or EXT_texture_env_add

If neither ARB_texture_env_add nor EXT_texture_env_add are
implemented, then the references to ADD are invalid and should be
ignored.

Dependencies on ARB_texture_env_combine or EXT_texture_env_combine

If neither ARB_texture_env_combine nor EXT_texture_env_combine are
implemented, then the references to COMBINE_ARB and COMBINE_EXT
are invalid and should be ignored.

Dependencies on EXT_texture_lod_bias

If EXT_texture_lod_bias is not implemented, then the references to
TEXTURE_FILTER_CONTROL_EXT are invalid and should be ignored.

Dependencies on NV_texture_env_combine4

If NV_texture_env_combine4 is not implemented, then the references
to COMBINE4_NV are invalid and should be ignored.

NVIDIA OpenGL Extension Specifications NV_texture_shader

 397

Dependencies on NV_texture_rectangle

If NV_texture_rectangle is not implemented, then the references
to TEXTURE_RECTANGLE_NV, OFFSET_TEXTURE_RECTANGLE_NV,
OFFSET_TEXTURE_RECTANGLE_SCALE_NV, and
DOT_PRODUCT_TEXTURE_RECTANGLE_NV are invalid and should be ignored.

Errors

INVALID_ENUM is generated if one of HILO_NV, DSDT_NV, DSDT_MAG_NV,
or DSDT_MAG_VIBRANCE_NV is used as the format for DrawPixels,
ReadPixels, ColorTable, ColorSubTable, ConvolutionFilter1D,
ConvolutionFilter2D, SeparableFilter2D, GetColorTable,
GetConvolutionFilter, GetSeparableFilter, GetHistogram, or
GetMinMax.

INVALID_ENUM is generated if either UNSIGNED_INT_S8_S8_8_8_NV or
UNSIGNED_INT_8_8_S8_S8_REV is used as the type for DrawPixels,
ReadPixels, ColorTable, ColorSubTable, ConvolutionFilter1D,
ConvolutionFilter2D, SeparableFilter2D, GetColorTable,
GetConvolutionFilter, GetSeparableFilter, GetHistogram, or
GetMinMax.

INVALID_OPERATION is generated if a packed pixel format type listed
in table 3.8 is used with DrawPixels, ReadPixels, ColorTable,
ColorSubTable, ConvolutionFilter1D, ConvolutionFilter2D,
SeparableFilter2D, GetColorTable, GetConvolutionFilter,
GetSeparableFilter, GetHistogram, GetMinMax, TexImage1D, TexImage2D,
TexSubImage1D, TexSubImage2D, TexSubImage3d, or
GetTexImage but the format parameter does not match on of the allowed
Matching Pixel Formats listed in table 3.8 for the specified packed
type parameter.

INVALID_OPERATION is generated when TexImage1D or TexImage2D are
called and the format is HILO_NV and the internalformat is not one
of HILO_NV, HILO16_NV, SIGNED_HILO_NV, SIGNED_HILO16_NV; or if the
internalformat is HILO_NV and the format is not one of HILO_NV,
HILO16_NV, SIGNED_HILO_NV, or SIGNED_HILO16_NV.

INVALID_OPERATION is generated when TexImage2D, or TexImage1D is
called and if the format is DSDT_NV and the internalformat is not
either DSDT_NV or DSDT8_NV; or if the internal format is either
DSDT_NV or DSDT8_NV and the format is not DSDT_NV.

INVALID_OPERATION is generated when TexImage2D, or TexImage1D is
called and if the format is DSDT_MAG_NV and the internalformat
is not either DSDT_MAG_NV or DSDT8_MAG8_NV; or if the internal
format is either DSDT_MAG_NV or DSDT8_MAG8_NV and the format is
not DSDT_MAG_NV.

INVALID_OPERATION is generated when TexImage2D or TexImage1D is
called and if the format is DSDT_MAG_VIB_NV and the internalformat
is not either DSDT_MAG_INTENSITY_NV or DSDT8_MAG8_INTENSITY8_NV;
or if the internal format is either DSDT_MAG_INTENSITY_NV or
DSDT8_MAG8_INTENSITY8_NV and the format is not DSDT_MAG_VIB_NV.

NV_texture_shader NVIDIA OpenGL Extension Specifications

 398

INVALID_OPERATION is generated when CopyTexImage2D,
CopyTexImage1D, CopyTexSubImage2D, or
CopyTexSubImage1D is called and the internal format of the texture
array to which the pixels are to be copied is one of HILO_NV,
HILO16_NV, SIGNED_HILO_NV, SIGNED_HILO16_NV, DSDT_NV, DSDT8_NV,
DSDT_MAG_NV, DSDT8_MAG8_NV, DSDT_MAG_INTENSITY_NV, or
DSDT8_MAG8_INTENSITY8_NV.

INVALID_OPERATION is generated when TexSubImage2D or
TexSubImage1D is called and the texture array's base internal format
is not one of HILO_NV, DSDT_NV, DSDT_MAG_NV, or DSDT_INTENSITY_NV,
and the format parameter is not one of COLOR_INDEX, RED,
GREEN, BLUE, ALPHA, RGB, RGBA, LUMINANCE, or
LUMINANCE_ALPHA

INVALID_OPERATION is generated when TexSubImage2D or
TexSubImage1D is called and the texture array's base internal format
is HILO_NV and the format parameter is not HILO_NV.

INVALID_OPERATION is generated when TexSubImage2D or
TexSubImage1D is called and the texture array's base internal format
is DSDT_NV and the format parameter is not DSDT_NV.

INVALID_OPERATION is generated when TexSubImage2D or
TexSubImage1D is called and the texture array's base internal format
is DSDT_MAG_NV and the format parameter is not DSDT_MAG_NV.

INVALID_OPERATION is generated when TexSubImage2D
or TexSubImage1D is called and the texture array's base internal
format is DSDT_MAG_INTENSITY_NV and the format parameter is not
DSDT_MAG_VIRBANCE_NV.

INVALID_OPERATION is generated when TexEnv is called and the
PREVIOUS_TEXTURE_INPUT_NV parameter for texture unit i is assigned
the value TEXTUREi_ARB where f i is greater than or equal to the
current active texture unit.

INVALID_OPERATION is generated when TexEnv is called and the
SHADER_OPERATION_NV parameter for texture unit 0 is assigned
one of OFFSET_TEXTURE_2D_NV, OFFSET_TEXTURE_2D_SCALE_NV,
OFFSET_TEXTURE_RECTANGLE_NV, OFFSET_TEXTURE_RECTANGLE_SCALE_NV,
DEPENDENT_AR_TEXTURE_2D_NV, DEPENDENT_GB_TEXTURE_2D_NV,
DOT_PRODUCT_NV, DOT_PRODUCT_DEPTH_REPLACE_NV,
DOT_PRODUCT_TEXTURE_2D_NV, DOT_PRODUCT_TEXTURE_RECTANGLE_NV,
DOT_PRODUCT_TEXTURE_CUBE_MAP_NV,
DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV.
or DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV.

INVALID_OPERATION is generated when TexEnv is called
and the SHADER_OPERATION_NV parameter for texture
unit 1 is assigned one of DOT_PRODUCT_DEPTH_REPLACE_NV,
DOT_PRODUCT_TEXTURE_2D_NV, DOT_PRODUCT_TEXTURE_RECTANGLE_NV,
DOT_PRODUCT_TEXTURE_CUBE_MAP_NV,
DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV,
or DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV.

NVIDIA OpenGL Extension Specifications NV_texture_shader

 399

INVALID_OPERATION is generated when TexEnv is called
and the SHADER_OPERATION_NV parameter for texture
unit 2 is assigned one of
DOT_PRODUCT_TEXTURE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV,
or DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV.

INVALID_OPERATION is generated when TexEnv is called and the
SHADER_OPERATION_NV parameter for texture unit n-1 (where n is the
number of supported texture units) is assigned either DOT_PRODUCT_NV
or DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV.

INVALID_OPERATION is generated when GetTexImage is called with a
color format (one of RED, GREEN, BLUE, ALPHA, RGB, RGBA, LUMINANCE,
or LUMINANCE_ALPHA) when the texture image is of a format type (see
table 3.15) other than RGBA (the DSDT_MAG_INTENSITY_NV base internal
format does not count as an RGBA format type in this context).

INVALID_OPERATION is generated when GetTexImage is called with
a format of HILO when the texture image is of a format type (see
table 3.15) other than HILO.

INVALID_OPERATION is generated when GetTexImage is called with a
format of DSDT_NV when the texture image is of a base internal
format other than DSDT_NV.

INVALID_OPERATION is generated when GetTexImage is called with a
format of DSDT_MAG_NV when the texture image is of a base internal
format other than DSDT_MAG_NV.

INVALID_OPERATION is generated when GetTexImage is called with a
format of DSDT_MAG_VIBRANCE_NV when the texture image is of a base
internal format other than DSDT_MAG_INTENSITY_NV causes the error
INVALID_OPERATION."

New State

Change the TEXTURE_BORDER_COLOR line in table 6.13 to read:

Get Value Type Get Command Initial Value Description Sec Attribute
-------------------- ------ --------------- ------------- --------------------- --- ---------
TEXTURE_BORDER_COLOR 4xR GetTexParameter (0,0,0,0) Texture border values 3.8 texture

NV_texture_shader NVIDIA OpenGL Extension Specifications

 400

Table 6.TextureShaders. Texture Shaders.

Get Value Type Get Command Initial Value Description Sec Attribute
--------------------------- ------ ----------- -------------------- ------------------- ------ --------------
HI_BIAS_NV R GetFloatv 0.0 Hi bias for HILO 3.6.3 pixel
LO_BIAS_NV R GetFloatv 0.0 Lo bias for HILO 3.6.3 pixel
DS_BIAS_NV R GetFloatv 0.0 Ds bias 3.6.3 pixel
DT_BIAS_NV R GetFloatv 0.0 Dt bias 3.6.3 pixel
MAGNITUDE_BIAS_NV R GetFloatv 0.0 Magnitude bias 3.6.3 pixel
VIBRANCE_BIAS_NV R GetFloatv 0.0 Vibrance bias 3.6.3 pixel
HI_SCALE_NV R GetFloatv 1.0 Hi scale 3.6.3 pixel
LO_SCALE_NV R GetFloatv 1.0 Lo scale 3.6.3 pixel
DS_SCALE_NV R GetFloatv 1.0 Ds scale 3.6.3 pixel
DT_SCALE_NV R GetFloatv 1.0 Dt scale 3.6.3 pixel
MAGNITUDE_SCALE_NV R GetFloatv 1.0 Magnitude scale 3.6.3 pixel
VIBRANCE_SCALE_NV R GetFloatv 1.0 Vibrance scale 3.6.3 pixel

TEXTURE_SHADER_NV B IsEnabled False Texture shaders 3.8 texture/enable
enable

SHADER_OPERATION_NV TxZ21 GetTexEnviv NONE Texture shader 3.8.13 texture
operation

CULL_MODES_NV Tx4xZ2 GetTexEnviv GEQUAL,GEQUAL, Texture shader 3.8.13 texture
GEQUAL,GEQUAL cull fragment modes

RGBA_UNSIGNED_- TxZ2 GetTexEnviv UNSIGNED_IDENTITY_NV Texture shader RGBA 3.8.13 texture
DOT_PRODUCT_MAPPING_NV dot product mapping

PREVIOUS_TEXTURE_INPUT_NV TxZn GetTexEnviv TEXTURE0_ARB Texture shader 3.8.13 texture
previous tex input

CONST_EYE_NV TxRx3 GetTexEnvfv (0,0,-1) Shader constant 3.8.13 texture
eye vector

OFFSET_TEXTURE_MATRIX_NV TxM2 GetTexEnvfv (1,0,0,1) 2x2 texture offset 3.8.13 texture
matrix

OFFSET_TEXTURE_SCALE_NV TxR GetTexEnvfv 1 Texture offset 3.8.13 texture
scale

OFFSET_TEXTURE_BIAS_NV TxR GetTexEnvfv 0 Texture offset 3.8.13 texture
bias

SHADER_CONSISTENT_NV TxB GetTexEnviv True Texture shader 3.8.13 texture
stage consistency

[The "Tx" type prefix means that the state is per-texture unit.]

[The "Zn" type is an n-valued integer where n is the
implementation-dependent number of texture units supported.]

New Implementation State

None

Revision History

March 29, 2001 - document that using signed HILO with a dot product
shader forces the square root to zero if the 1.0-HI*HI-LO*LO value
is negative.

NVIDIA OpenGL Extension Specifications NV_texture_shader2

 401

Name

NV_texture_shader2

Name Strings

GL_NV_texture_shader2

Notice

Copyright NVIDIA Corporation, 1999, 2000, 2001.

IP Status

NVIDIA Proprietary.

Version

NVIDIA Date: April 13, 2001
$Id: //sw/main/docs/OpenGL/specs/GL_NV_texture_shader2.txt#6 $

Number

231

Dependencies

Written based on the wording of the OpenGL 1.2.1 specification,
augmented by the NV_texture_shader extension specification.

Requires support for the NV_texture_shader extension.

Overview

This extension extends the NV_texture_shader functionality to
support texture shader operations for 3D textures.

See the NV_texture_shader extension for information about the
texture shader operational model.

The two new texture shader operations are:

<conventional textures>

22. TEXTURE_3D - Accesses a 3D texture via (s/q,t/q,r/q).

<dot product textures>

23. DOT_PRODUCT_TEXTURE_3D_NV - When preceded by two DOT_PRODUCT_NV
programs in the previous two texture shader stages, computes a
third similar dot product and composes the three dot products
into (s,t,r) texture coordinate set to access a 3D non-projective
texture.

NV_texture_shader2 NVIDIA OpenGL Extension Specifications

 402

Issues

Why a separate extension?

Not all implementations of NV_texture_shader will support 3D
textures in hardware.

Breaking this extension out into a distinct extension allows OpenGL
programs that only would use 3D textures if they are supported
in hardware to determine whether hardware support is available by
explicitly looking for the NV_texture_shader2 extension.

What if an implementation wanted to support NV_texture_shader2
operations within a software rasterizer?

Implementations should be free to implement the 3D texture texture
shader operations in software. In this case, the implementation
should NOT advertise the NV_texture_shader2 extension, but should
still accept the GL_TEXTURE_3D and GL_DOT_PRODUCT_TEXTURE_3D_NV
texture shader operations without an error. Likewise, the
glTexImage3D and glCopyTexImage3D commands should accept the
new internal texture formats, formats, and types allowed by this
extension should be accepted without an error.

When NV_texture_shader2 is not advertised in the GL_EXTENSIONS
string, but the extension functionality works without GL errors,
programs should expect that these two texture shader operations
are slow.

New Procedures and Functions

None.

New Tokens

When the <target> and <pname> parameters of TexEnvf, TexEnvfv,
TexEnvi, and TexEnviv are TEXTURE_SHADER_NV and SHADER_OPERATION_NV
respectively, then the value of <param> or the value pointed to by
<params> may be:

TEXTURE_3D
DOT_PRODUCT_TEXTURE_3D_NV 0x86EF

Accepted by the <format> parameter of TexImage3D and TexSubImage3D:

HILO_NV 0x86F4
DSDT_NV 0x86F5
DSDT_MAG_NV 0x86F6
DSDT_MAG_VIB_NV 0x86F7

Accepted by the <type> parameter of TexImage3D and TexSubImage3D:

UNSIGNED_INT_S8_S8_8_8_NV 0x86DA
UNSIGNED_INT_8_8_S8_S8_REV_NV 0x86DB

NVIDIA OpenGL Extension Specifications NV_texture_shader2

 403

Accepted by the <internalformat> parameter of TexImage3D:

SIGNED_RGBA_NV 0x86FB
SIGNED_RGBA8_NV 0x86FC
SIGNED_RGB_NV 0x86FE
SIGNED_RGB8_NV 0x86FF
SIGNED_LUMINANCE_NV 0x8701
SIGNED_LUMINANCE8_NV 0x8702
SIGNED_LUMINANCE_ALPHA_NV 0x8703
SIGNED_LUMINANCE8_ALPHA8_NV 0x8704
SIGNED_ALPHA_NV 0x8705
SIGNED_ALPHA8_NV 0x8706
SIGNED_INTENSITY_NV 0x8707
SIGNED_INTENSITY8_NV 0x8708
SIGNED_RGB_UNSIGNED_ALPHA_NV 0x870C
SIGNED_RGB8_UNSIGNED_ALPHA8_NV 0x870D

Accepted by the <internalformat> parameter of TexImage3D:

HILO_NV
HILO16_NV 0x86F8
SIGNED_HILO_NV 0x86F9
SIGNED_HILO16_NV 0x86FA
DSDT_NV
DSDT8_NV 0x8709
DSDT_MAG_NV
DSDT8_MAG8_NV 0x870A
DSDT_MAG_INTENSITY_NV 0x86DC
DSDT8_MAG8_INTENSITY8_NV 0x870B

Additions to Chapter 2 of the 1.2 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the 1.2 Specification (Rasterization)

-- Section 3.8 "Texturing"

Replace the third paragraph (amended by the NV_texture_shader
extension) with the following that includes 3D texture references:

"The alternative to conventional texturing is the texture shaders
mechanism. When texture shaders are enabled, each texture unit
uses one of twenty-three texture shader operations. Twenty of the
twenty-three shader operations map an (s,t,r,q) texture coordinate
set to an RGBA color. Of these, four texture shader operations
directly correspond to the 1D, 2D, 3D, and cube map conventional
texturing operations. Depending on the texture shader operation,
the mapping from the (s,t,r,q) texture coordinate set to an RGBA
color may depend on the given texture unit's currently bound
texture object state and/or the results of previous texture
shader operations. The three remaining texture shader operations
respectively provide a fragment culling mechanism based on texture
coordinates, a means to replace the fragment depth value, and a dot
product operation that computes a floating-point value for use by

NV_texture_shader2 NVIDIA OpenGL Extension Specifications

 404

subsequent texture shaders. The specifics of each texture shader
operation are described in section 3.8.12."

-- Section 3.8.2 "Alternate Texture Image Specification Commands"

Amend the following text inserted by NV_texture_shader after the
six paragraph to include 3D texture references:

"CopyTexSubImage3D, CopyTexSubImage2D, and CopyTexSubImage1D generate
the error INVALID_OPERATION if the internal format of the texture
array to which the pixels are to be copied is one of HILO_NV,
HILO16_NV, SIGNED_HILO_NV, SIGNED_HILO16_NV, DSDT_NV, DSDT8_NV,
DSDT_MAG_NV, DSDT8_MAG8_NV, DSDT_MAG_INTENSITY_NV, or
DSDT8_MAG8_INTENSITY8_NV.

TexSubImage3D, TexSubImage2D, and TexSubImage1D generate the error
INVALID_OPERATION if the internal format of the texture array
to which the texels are to be copied has a different format type
(according to table 3.15) than the format type of the texels being
specified. Specifically, if the base internal format is not one of
HILO_NV, DSDT_NV, DSDT_MAG_NV, or DSDT_INTENSITY_NV, then the format
parameter must be one of COLOR_INDEX, RED, GREEN, BLUE, ALPHA,
RGB, RGBA, LUMINANCE, or LUMINANCE_ALPHA; if the base internal
format is HILO_NV, then the format parameter must be HILO_NV;
if the base internal format is DSDT_NV, then the format parameter
must be DSDT_NV; if the base internal format is DSDT_MAG_NV, then
the format parameter must be DSDT_MAG_NV; if the base internal
format is DSDT_MAG_INTENSITY_NV, the format parameter must be
DSDT_MAG_VIB_NV."

-- Section 3.8.13 "Texture Shaders"

Amend the designated paragraphs of the NV_texture_shader
specification to include discussion of 3D textures.

1st paragraph:

"Each texture unit is configured with one of twenty-three
texture shader operations. Several texture shader operations
require additional state. All per-texture shader stage state
is specified using the TexEnv commands with the target specified
as TEXTURE_SHADER_NV. The per-texture shader state is replicated
per texture unit so the texture unit selected by ActiveTextureARB
determines which texture unit's environment is modified by TexEnv
calls."

3rd paragraph:

"When TexEnv is called with the target of TEXTURE_SHADER_NV,
SHADER_OPERATION_NV may be set to one of NONE, TEXTURE_1D,
TEXTURE_2D, TEXTURE_3D, TEXTURE_CUBE_MAP_ARB, PASS_THROUGH_NV,
CULL_FRAGMENT_NV, OFFSET_TEXTURE_2D_NV, OFFSET_TEXTURE_2D_SCALE_NV,
OFFSET_TEXTURE_RECTANGLE_NV, OFFSET_TEXTURE_RECTANGLE_SCALE_NV,
DEPENDENT_AR_TEXTURE_2D_NV, DEPENDENT_GB_TEXTURE_2D_NV,
DOT_PRODUCT_NV, DOT_PRODUCT_DEPTH_REPLACE_NV,
DOT_PRODUCT_TEXTURE_2D_NV, DOT_PRODUCT_TEXTURE_RECTANGLE_NV,
DOT_PRODUCT_TEXTURE_3D_NV, DOT_PRODUCT_TEXTURE_CUBE_MAP_NV,

NVIDIA OpenGL Extension Specifications NV_texture_shader2

 405

DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV, or
DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV. The semantics of each of
these shader operations is described in section 3.8.13.1. Not every
operation is supported in every texture unit. The restrictions for
how these shader operations can be configured in various texture
units are described in section 3.8.13.2."

3.8.13.1 Texture Shader Operations

Amend tables 3.A, 3.B, 3.C, and 3.D in the NV_texture_shader
specification to include entries for 3D texture operations:

Table 3.A:

texture shader
texture shader operation i previous texture input texture shader operation i-1 operation i-2 texture shader operation i+1
================================= ========================= =============================== ================ ================================
TEXTURE_3D - - - -
--------------------------------- ------------------------- ------------------------------- ---------------- --------------------------------
DOT_PRODUCT_TEXTURE_3D_NV shader result type must shader operation shader operation -

be one of signed HILO, must be must be
unsigned HILO, all DOT_PRODUCT_NV DOT_PRODUCT_NV
signed RGBA, all
unsigned RGBA

--------------------------------- ------------------------- ------------------------------- ---------------- --------------------------------

Table 3.B:

texture shader operation i texture unit i
================================= =======================================
TEXTURE_3D 3D target must be consistent
--------------------------------- ---------------------------------------
DOT_PRODUCT_TEXTURE_3D_NV 3D target must be consistent
--------------------------------- ---------------------------------------

Table 3.C:

uses uses uses uses uses offset uses
texture stage stage stage previous uses offset texture const
coordinate texture result result result texture cull texture 2D scale eye

texture shader operation i set usage target i-1 i-2 i+1 input modes 2D matrix and bias vector
================================= ========== ========= ====== ====== ====== ======== ===== ========= ======== ======
TEXTURE_3D s,t,r,q 3D - - - - - - - -
--------------------------------- ---------- --------- ------ ------ ------ -------- ----- --------- -------- ------
DOT_PRODUCT_TEXTURE_3D_NV s,t,r 3D y y - y - - - -
--------------------------------- ---------- --------- ------ ------ ------ -------- ----- --------- -------- ------

Table 3.D:

texture shader operation i shader stage result type shader stage result texture unit RGBA color result
================================= ============================= =================================== ======================================
TEXTURE_3D matches 3D target type filtered 3D target texel if 3D target texture type is RGBA,

filtered 3D target texel,
else (0,0,0,0)

--------------------------------- ----------------------------- ----------------------------------- --------------------------------------
DOT_PRODUCT_TEXTURE_3D_NV matches 3D target type filtered 3D target texel if 3D target texture type is RGBA,

filtered 3D target texel,
else (0,0,0,0)

------------------------------- ----------------------------- ----------------------------------- --------------------------------------

Add the following new sections specifying new 3D texture operations:

3.8.13.1.22 3D Projective Texturing

The TEXTURE_3D texture shader operation accesses the texture unit's

NV_texture_shader2 NVIDIA OpenGL Extension Specifications

 406

3D texture object (as described in sections 3.8.4, 3.8.5, and 3.8.6)
using (s/q,t/q,r/q) for the 3D texture coordinates where s, t, r,
and q are the homogeneous texture coordinates for the texture unit.
The result of the texture access becomes both the shader result and
texture unit RGBA result (see table 3.E). The type of the shader
result depends on the format type of the accessed texture. This mode
is equivalent to conventional texturing's 3D texture target.

If the texture unit's 3D texture object is not consistent, then
this texture shader stage is not consistent.

If this texture shader stage is not consistent, it operates as if
it is the NONE operation.

3.8.13.1.23 Dot Product Texture 3D

The DOT_PRODUCT_TEXTURE_3D_NV texture shader operation accesses the
texture unit's 3D texture object (as described in sections 3.8.4,
3.8.5, and 3.8.6) using (dotPP,dotP,dotC) for the 3D texture
coordinates. The result of the texture access becomes both
the shader result and texture unit RGBA result (see table 3.E).
The type of the shader result depends on the format type of the
accessed texture.

Assuming that i is the current texture shader stage, dotPP is the
floating-point dot product texture shader result from the i-2
texture shader stage, assuming the i-2 texture shader stage's
operation is DOT_PRODUCT_NV. dotP is the floating-point dot
product texture shader result from the i-1 texture shader stage,
assuming the i-1 texture shader stage's operation is DOT_PRODUCT_NV.
dotC is the floating-point dot product result from the current
texture shader stage. dotC is computed in the identical manner
used to compute the floating-point result of the DOT_PRODUCT_NV
texture shader described in section 3.8.13.1.14.

If the previous texture input texture object specified by the
current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value has
a format type other than RGBA or HILO (the DSDT_MAG_INTENSITY_NV
base internal format does not count as an RGBA format type in this
context), then this texture shader stage is not consistent.

If the previous texture input texture shader operation specified by
the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
is DOT_PRODUCT_NV, then this texture shader stage is not consistent.

If the previous texture input texture shader result specified by
the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
is invalid, then this texture shader stage is not consistent.

If the previous texture input shader stage specified by the current
texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value is not
consistent, then this texture shader stage is not consistent.

If either the i-1 or i-2 texture shader stage operation is not
DOT_PRODUCT_NV, then this texture shader stage is not consistent.

If either the i-1 or i-2 texture shader stage is not consistent, then

NVIDIA OpenGL Extension Specifications NV_texture_shader2

 407

this texture shader stage is not consistent.

If the texture unit's 3D texture object is not consistent, then
this texture shader stage is not consistent.

If this texture shader stage is not consistent, it operates as if
it is the NONE operation.

3.8.13.2 Texture Shader Restrictions

Amend the first four paragraphs in this section to include 3D
texture operations:

"There are various restrictions on possible texture shader
configurations. These restrictions are described in this section.

The error INVALID_OPERATION occurs if the SHADER_OPERATION_NV
parameter for texture unit 0 is assigned one of
OFFSET_TEXTURE_2D_NV, OFFSET_TEXTURE_2D_SCALE_NV,
OFFSET_TEXTURE_RECTANGLE_NV, OFFSET_TEXTURE_RECTANGLE_SCALE_NV,
DEPENDENT_AR_TEXTURE_2D_NV, DEPENDENT_GB_TEXTURE_2D_NV,
DOT_PRODUCT_NV, DOT_PRODUCT_DEPTH_REPLACE_NV,
DOT_PRODUCT_TEXTURE_2D_NV, DOT_PRODUCT_TEXTURE_RECTANGLE_NV,
DOT_PRODUCT_TEXTURE_3D_NV, DOT_PRODUCT_TEXTURE_CUBE_MAP_NV,
DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV,
or DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV. Each of these
texture shaders requires a previous texture shader result that
is not possible for texture unit 0. Therefore these shaders are
disallowed for texture unit 0.

The error INVALID_OPERATION occurs if the
SHADER_OPERATION_NV parameter for texture unit
1 is assigned one of DOT_PRODUCT_DEPTH_REPLACE_NV,
DOT_PRODUCT_TEXTURE_2D_NV, DOT_PRODUCT_TEXTURE_RECTANGLE_NV,
DOT_PRODUCT_TEXTURE_3D_NV, DOT_PRODUCT_TEXTURE_CUBE_MAP_NV,
DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV,
or DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV. Each of these texture
shaders requires either two previous texture shader results or
a dot product result that cannot be generated by texture unit 0.
Therefore these shaders are disallowed for texture unit 1.

The error INVALID_OPERATION occurs if the
SHADER_OPERATION_NV parameter for texture unit
2 is assigned one of DOT_PRODUCT_TEXTURE_3D_NV,
DOT_PRODUCT_TEXTURE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV,
DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV. Each of these texture
shaders requires three previous texture shader results. Therefore
these shaders are disallowed for texture unit 2."

3.8.13.3 Required State

Amend the first paragraph in this section to account for the 2 new
3D texture shader operations:

"The state required for texture shaders consists of a single bit to
indicate whether or not texture shaders are enabled, a vector of
three floating-point values for the constant eye vector, and n sets

NV_texture_shader2 NVIDIA OpenGL Extension Specifications

 408

of per-texture unit state where n is the implementation-dependent
number of supported texture units. The set of per-texture unit
texture shader state consists of the twenty-three-valued integer
indicating the texture shader operation, four two-valued integers
indicating the cull modes, an integer indicating the previous texture
unit input, a two-valued integer indicating the RGBA unsigned dot
product mapping mode, a 2x2 floating-point matrix indicating the
texture offset transform, a floating-point value indicating the
texture offset scale, a floating-point value indicating the texture
offset bias, and a bit to indicate whether or not the texture shader
stage is consistent."

Additions to Chapter 4 of the 1.2 Specification (Per-Fragment Operations
and the Frame Buffer)

None

Additions to Chapter 5 of the 1.2 Specification (Special Functions)

None

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)

None

Additions to the GLX Specification

None

Dependencies on other specifications

Same as the NV_texture_shader extension.

Errors

The following errors are updated to reflect 3D texture operations:

INVALID_OPERATION is generated if a packed pixel format type listed
in table 3.8 is used with DrawPixels, ReadPixels, ColorTable,
ColorSubTable, ConvolutionFilter1D, ConvolutionFilter2D,
SeparableFilter2D, GetColorTable, GetConvolutionFilter,
GetSeparableFilter, GetHistogram, GetMinMax, TexImage1D, TexImage2D,
TexImage3D, TexSubImage1D, TexSubImage2D, TexSubImage3d, or
GetTexImage but the format parameter does not match on of the allowed
Matching Pixel Formats listed in table 3.8 for the specified packed
type parameter.

INVALID_OPERATION is generated when TexImage1D, TexImage2D,
or TexImage3D are called and the format is HILO_NV and the
internalformat is not one of HILO_NV, HILO16_NV, SIGNED_HILO_NV,
SIGNED_HILO16_NV; or if the internalformat is HILO_NV and the
format is not one of HILO_NV, HILO16_NV, SIGNED_HILO_NV, or
SIGNED_HILO16_NV.

INVALID_OPERATION is generated when TexImage3D, TexImage2D,
or TexImage1D is called and if the format is DSDT_NV and the
internalformat is not either DSDT_NV or DSDT8_NV; or if the internal

NVIDIA OpenGL Extension Specifications NV_texture_shader2

 409

format is either DSDT_NV or DSDT8_NV and the format is not DSDT_NV.

INVALID_OPERATION is generated when TexImage3D, TexImage2D, or
TexImage1D is called and if the format is DSDT_MAG_NV and the
internalformat is not either DSDT_MAG_NV or DSDT8_MAG8_NV; or if
the internal format is either DSDT_MAG_NV or DSDT8_MAG8_NV and the
format is not DSDT_MAG_NV.

INVALID_OPERATION is generated when TexImage3D, TexImage2D,
or TexImage1D is called and if the format is DSDT_MAG_VIB_NV
and the internalformat is not either DSDT_MAG_INTENSITY_NV or
DSDT8_MAG8_INTENSITY8_NV; or if the internal format is either
DSDT_MAG_INTENSITY_NV or DSDT8_MAG8_INTENSITY8_NV and the format
is not DSDT_MAG_VIB_NV.

INVALID_OPERATION is generated when CopyTexImage3D, CopyTexImage2D,
CopyTexImage1D, CopyTexSubImage3D, CopyTexSubImage2D, or
CopyTexSubImage1D is called and the internal format of the texture
array to which the pixels are to be copied is one of HILO_NV,
HILO16_NV, SIGNED_HILO_NV, SIGNED_HILO16_NV, DSDT_NV, DSDT8_NV,
DSDT_MAG_NV, DSDT8_MAG8_NV, DSDT_MAG_INTENSITY_NV, or
DSDT8_MAG8_INTENSITY8_NV.

INVALID_OPERATION is generated when TexSubImage3D, TexSubImage2D, or
TexSubImage1D is called and the texture array's base internal format
is not one of HILO_NV, DSDT_NV, DSDT_MAG_NV, or DSDT_INTENSITY_NV,
and the format parameter is not one of COLOR_INDEX, RED,
GREEN, BLUE, ALPHA, RGB, RGBA, LUMINANCE, or
LUMINANCE_ALPHA

INVALID_OPERATION is generated when TexSubImage3D, TexSubImage2D, or
TexSubImage1D is called and the texture array's base internal format
is HILO_NV and the format parameter is not HILO_NV.

INVALID_OPERATION is generated when TexSubImage3D, TexSubImage2D, or
TexSubImage1D is called and the texture array's base internal format
is DSDT_NV and the format parameter is not DSDT_NV.

INVALID_OPERATION is generated when TexSubImage3D, TexSubImage2D, or
TexSubImage1D is called and the texture array's base internal format
is DSDT_MAG_NV and the format parameter is not DSDT_MAG_NV.

INVALID_OPERATION is generated when TexSubImage3D, TexSubImage2D,
or TexSubImage1D is called and the texture array's base internal
format is DSDT_MAG_INTENSITY_NV and the format parameter is not
DSDT_MAG_VIRBANCE_NV.

INVALID_OPERATION is generated when TexEnv is called and the
SHADER_OPERATION_NV parameter for texture unit 0 is assigned
one of OFFSET_TEXTURE_2D_NV, OFFSET_TEXTURE_2D_SCALE_NV,
OFFSET_TEXTURE_RECTANGLE_NV, OFFSET_TEXTURE_RECTANGLE_SCALE_NV,
DEPENDENT_AR_TEXTURE_2D_NV, DEPENDENT_GB_TEXTURE_2D_NV,
DOT_PRODUCT_NV, DOT_PRODUCT_DEPTH_REPLACE_NV,
DOT_PRODUCT_TEXTURE_2D_NV, DOT_PRODUCT_TEXTURE_RECTANGLE_NV,
DOT_PRODUCT_TEXTURE_3D_NV, DOT_PRODUCT_TEXTURE_CUBE_MAP_NV,
DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV.
or DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV.

NV_texture_shader2 NVIDIA OpenGL Extension Specifications

 410

INVALID_OPERATION is generated when TexEnv is called
and the SHADER_OPERATION_NV parameter for texture
unit 1 is assigned one of DOT_PRODUCT_DEPTH_REPLACE_NV,
DOT_PRODUCT_TEXTURE_2D_NV, DOT_PRODUCT_TEXTURE_RECTANGLE_NV,
DOT_PRODUCT_TEXTURE_3D_NV, DOT_PRODUCT_TEXTURE_CUBE_MAP_NV,
DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV,
or DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV.

INVALID_OPERATION is generated when TexEnv is called
and the SHADER_OPERATION_NV parameter for texture
unit 2 is assigned one of DOT_PRODUCT_TEXTURE_3D_NV,
DOT_PRODUCT_TEXTURE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV,
or DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV.

INVALID_OPERATION is generated when TexEnv is called and the
SHADER_OPERATION_NV parameter for texture unit n-1 (where n is the
number of supported texture units) is assigned either DOT_PRODUCT_NV
or DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV.

INVALID_OPERATION is generated when GetTexImage is called with a
color format (one of RED, GREEN, BLUE, ALPHA, RGB, RGBA, LUMINANCE,
or LUMINANCE_ALPHA) when the texture image is of a format type (see
table 3.15) other than RGBA (the DSDT_MAG_INTENSITY_NV base internal
format does not count as an RGBA format type in this context).

INVALID_OPERATION is generated when GetTexImage is called with
a format of HILO when the texture image is of a format type (see
table 3.15) other than HILO.

INVALID_OPERATION is generated when GetTexImage is called with a
format of DSDT_NV when the texture image is of a base internal
format other than DSDT_NV.

INVALID_OPERATION is generated when GetTexImage is called with a
format of DSDT_MAG_NV when the texture image is of a base internal
format other than DSDT_MAG_NV.

INVALID_OPERATION is generated when GetTexImage is called with a
format of DSDT_MAG_VIBRANCE_NV when the texture image is of a base
internal format other than DSDT_MAG_INTENSITY_NV causes the error
INVALID_OPERATION."

NVIDIA OpenGL Extension Specifications NV_texture_shader2

 411

New State

Table 6.TextureShaders. Texture Shaders.

Get Value Type Get Command Initial Value Description Sec Attribute
--------------------------- ------ ----------- -------------------- ------------------- ------ --------------
SHADER_OPERATION_NV TxZ23 GetTexEnviv NONE Texture shader 3.8.13 texture

operation

* Z21 in NV_texture_shader is now Z23 with NV_texture_shader2.

[The "Tx" type prefix means that the state is per-texture unit.]

[The "Zn" type is an n-valued integer where n is the
implementation-dependent number of texture units supported.]

New Implementation State

None

Revision History

None

NV_vertex_array_range NVIDIA OpenGL Extension Specifications

 412

Name

NV_vertex_array_range

Name Strings

GL_NV_vertex_array_range

Notice

Copyright NVIDIA Corporation, 1999, 2000, 2001.

IP Status

NVIDIA Proprietary.

Status

Existing functionality is augmented by NV_vertex_array_range2.

Version

NVIDIA Date: April 4, 2001 (version 1.1)
$Date$ $Revision$
$Id: //sw/main/docs/OpenGL/specs/GL_NV_vertex_array_range.txt#24 $

Number

190

Dependencies

None

Overview

The goal of this extension is to permit extremely high vertex
processing rates via OpenGL vertex arrays even when the CPU lacks
the necessary data movement bandwidth to keep up with the rate
at which the vertex engine can consume vertices. CPUs can keep
up if they can just pass vertex indices to the hardware and
let the hardware "pull" the actual vertex data via Direct Memory
Access (DMA). Unfortunately, the current OpenGL 1.1 vertex array
functionality has semantic constraints that make such an approach
hard. Hence, the vertex array range extension.

This extension provides a mechanism for deferring the pulling of
vertex array elements to facilitate DMAed pulling of vertices for
fast, efficient vertex array transfers. The OpenGL client need only
pass vertex indices to the hardware which can DMA the actual index's
vertex data directly out of the client address space.

The OpenGL 1.1 vertex array functionality specifies a fairly strict
coherency model for when OpenGL extracts vertex data from a vertex
array and when the application can update the in memory
vertex array data. The OpenGL 1.1 specification says "Changes
made to array data between the execution of Begin and the

NVIDIA OpenGL Extension Specifications NV_vertex_array_range

 413

corresponding execution of End may affect calls to ArrayElement
that are made within the same Begin/End period in non-sequential
ways. That is, a call to ArrayElement that precedes a change to
array data may access the changed data, and a call that follows
a change to array data may access the original data."

This means that by the time End returns (and DrawArrays and
DrawElements return since they have implicit Ends), the actual vertex
array data must be transferred to OpenGL. This strict coherency model
prevents us from simply passing vertex element indices to the hardware
and having the hardware "pull" the vertex data out (which is often
long after the End for the primitive has returned to the application).

Relaxing this coherency model and bounding the range from which
vertex array data can be pulled is key to making OpenGL vertex
array transfers faster and more efficient.

The first task of the vertex array range extension is to relax
the coherency model so that hardware can indeed "pull" vertex
data from the OpenGL client's address space long after the application
has completed sending the geometry primitives requiring the vertex
data.

The second problem with the OpenGL 1.1 vertex array functionality is
the lack of any guidance from the API about what region of memory
vertices can be pulled from. There is no size limit for OpenGL 1.1
vertex arrays. Any vertex index that points to valid data in all
enabled arrays is fair game. This makes it hard for a vertex DMA
engine to pull vertices since they can be potentially pulled from
anywhere in the OpenGL client address space.

The vertex array range extension specifies a range of the OpenGL
client's address space where vertices can be pulled. Vertex indices
that access any array elements outside the vertex array range
are specified to be undefined. This permits hardware to DMA from
finite regions of OpenGL client address space, making DMA engine
implementation tractable.

The extension is specified such that an (error free) OpenGL client
using the vertex array range functionality could no-op its vertex
array range commands and operate equivalently to using (if slower
than) the vertex array range functionality.

Because different memory types (local graphics memory, AGP memory)
have different DMA bandwidths and caching behavior, this extension
includes a window system dependent memory allocator to allocate
cleanly the most appropriate memory for constructing a vertex array
range. The memory allocator provided allows the application to
tradeoff the desired CPU read frequency, CPU write frequency, and
memory priority while still leaving it up to OpenGL implementation
the exact memory type to be allocated.

Issues

How does this extension interact with the compiled_vertex_array
extension?

NV_vertex_array_range NVIDIA OpenGL Extension Specifications

 414

I think they should be independent and not interfere with
each other. In practice, if you use NV_vertex_array_range,
you can surpass the performance of compiled_vertex_array

Should some explanation be added about what happens when an OpenGL
application updates its address space in regions overlapping with
the currently configured vertex array range?

RESOLUTION: I think the right thing is to say that you get
non-sequential results. In practice, you'll be using an old
context DMA pointing to the old pages.

If the application change's its address space within the
vertex array range, the application should call
glVertexArrayRangeNV again. That will re-make a new vertex
array range context DMA for the application's current address
space.

If we are falling back to software transformation, do we still need to
abide by leaving "undefined" vertices outside the vertex array range?
For example, pointers that are not 32-bit aligned would likely cause
a fall back.

RESOLUTION: No. The fact that vertex is "undefined" means we
can do anything we want (as long as we send a vertex and do not
crash) so it is perfectly fine for the software puller to
grab vertex information not available to the hardware puller.

Should we give a programmer a sense of how big a vertex array
range they can specify?

RESOLUTION: No. Just document it if there are limitations.
Probably very hardware and operating system dependent.

Is it clear enough that language about ArrayElement
also applies to DrawArrays and DrawElements?

Maybe not, but OpenGL 1.1 spec is clear that DrawArrays and
DrawElements are defined in terms of ArrayElement.

Should glFlush be the same as glVertexArrayRangeFlush?

RESOLUTION: No. A glFlush is cheaper than a glVertexArrayRangeFlush
though a glVertexArrayRangeFlushNV should do a flush.

If any the data for any enabled array for a given array element index
falls outside of the vertex array range, what happens?

RESOLUTION: An undefined vertex is generated.

What error is generated in this case?

I don't know yet. We should make sure the hardware really does
let us know when vertices are undefined.

Note that this is a little weird for OpenGL since most errors
in OpenGL result in the command being ignored. Not in this

NVIDIA OpenGL Extension Specifications NV_vertex_array_range

 415

case though.

Should this extension support an interface for allocating video
and AGP memory?

RESOLUTION: YES. It seems like we should be able to leave
the task of memory allocation to DirectDraw, but DirectDraw's
asynchronous unmapping behavior and having to hold locks to
update DirectDraw surfaces makes that mechanism to cumbersome.

Plus the API is a lot easier if we do it ourselves.

How do we decide what type of memory to allocate for the application?

RESOLUTION: Usage hints. The application rates the read
frequency (how often will they read the memory), the write
frequency (how often will they write the memory), and the
priority (how important is this memory relative to other
uses for the memory such as texturing) on a scale of 1.0
to 0.0. Using these hints and the size of the memory requsted,
the OpenGL implementation decides where to allocate the memory.

We try to not directly expose particular types of memory
(AGP, local memory, cached/uncached, etc) so future memory
types can be supported by merely updating the OpenGL
implementation.

Should the memory allocator functionality be available be a part
of the GL or window system dependent (GLX or WGL) APIs?

RESOLUTION: The window system dependent API.

The memory allocator should be considered a window system/
operating system dependent operation. This also permits
memory to be allocated when no OpenGL rendering contexts
exist yet.

New Procedures and Functions

void VertexArrayRangeNV(sizei length, void *pointer)
void FlushVertexArrayRangeNV(void)

New Tokens

Accepted by the <cap> parameter of EnableClientState,
DisableClientState, and IsEnabled:

VERTEX_ARRAY_RANGE_NV 0x851D

Accepted by the <pname> parameter of GetBooleanv, GetIntegerv,
GetFloatv, and GetDoublev:

VERTEX_ARRAY_RANGE_LENGTH_NV 0x851E
VERTEX_ARRAY_RANGE_VALID_NV 0x851F
MAX_VERTEX_ARRAY_RANGE_ELEMENT_NV 0x8520

NV_vertex_array_range NVIDIA OpenGL Extension Specifications

 416

Accepted by the <pname> parameter of GetPointerv:

VERTEX_ARRAY_RANGE_POINTER_NV 0x8521

Additions to Chapter 2 of the OpenGL 1.1 Specification (OpenGL Operation)

After the discussion of vertex arrays (Section 2.8) add a
description of the vertex array range:

"The command

void VertexArrayRangeNV(sizei length, void *pointer)

specifies the current vertex array range. When the vertex array
range is enabled and valid, vertex array vertex transfers from within
the vertex array range are potentially faster. The vertex array
range is a contiguous region of (virtual) address space for placing
vertex arrays. The "pointer" parameter is a pointer to the base of
the vertex array range. The "length" pointer is the length of the
vertex array range in basic machine units (typically unsigned bytes).

The vertex array range address space region extends from "pointer"
to "pointer + length - 1" inclusive. When specified and enabled,
vertex array vertex transfers from within the vertex array range
are potentially faster.

There is some system burden associated with establishing a vertex
array range (typically, the memory range must be locked down).
If either the vertex array range pointer or size is set to zero,
the previously established vertex array range is released (typically,
unlocking the memory).

The vertex array range may not be established for operating system
dependent reasons, and therefore, not valid. Reasons that a vertex
array range cannot be established include spanning different memory
types, the memory could not be locked down, alignment restrictions
are not met, etc.

The vertex array range is enabled or disabled by calling
EnableClientState or DisableClientState with the symbolic
constant VERTEX_ARRAY_RANGE_NV.

The vertex array range is either valid or invalid and this state can
be determined by querying VERTEX_ARRAY_RANGE_VALID_NV. The vertex
array range is valid when the following conditions are met:

o VERTEX_ARRAY_RANGE_NV is enabled.

o VERTEX_ARRAY is enabled.

o VertexArrayRangeNV has been called with a non-null pointer and
non-zero size.

o The vertex array range has been established.

NVIDIA OpenGL Extension Specifications NV_vertex_array_range

 417

o An implementation-dependent validity check based on the
pointer alignment, size, and underlying memory type of the
vertex array range region of memory.

o An implementation-dependent validity check based on
the current vertex array state including the strides, sizes,
types, and pointer alignments (but not pointer value) for
currently enabled vertex arrays.

o Other implementation-dependent validaity checks based on
other OpenGL rendering state.

Otherwise, the vertex array range is not valid. If the vertex array
range is not valid, vertex array transfers will not be faster.

When the vertex array range is valid, ArrayElement commands may
generate undefined vertices if and only if any indexed elements of
the enabled arrays are not within the vertex array range or if the
index is negative or greater or equal to the implementation-dependent
value of MAX_VERTEX_ARRAY_RANGE_ELEMENT_NV. If an undefined vertex
is generated, an INVALID_OPERATION error may or may not be generated.

The vertex array cohenecy model specifies when vertex data must be
be extracted from the vertex array memory. When the vertex array
range is not valid, (quoting the specification) `Changes made to
array data between the execution of Begin and the corresponding
execution of End may effect calls to ArrayElement that are made
within the same Begin/End period in non-sequential ways. That is,
a call to ArrayElement that precedes a change to array data may
access the changed data, and a call that follows a change to array
data may access the original data.'

When the vertex array range is valid, the vertex array coherency
model is relaxed so that changes made to array data until the next
"vertex array range flush" may affects calls to ArrayElement in
non-sequential ways. That is a call to ArrayElement that precedes
a change to array data (without an intervening "vertex array range
flush") may access the changed data, and a call that follows a change
(without an intervening "vertex array range flush") to array data
may access original data.

A 'vertex array range flush' occurs when one of the following
operations occur:

o Finish returns.

o FlushVertexArrayRangeNV returns.

o VertexArrayRangeNV returns.

o DisableClientState of VERTEX_ARRAY_RANGE_NV returns.

o EnableClientState of VERTEX_ARRAY_RANGE_NV returns.

o Another OpenGL context is made current.

NV_vertex_array_range NVIDIA OpenGL Extension Specifications

 418

The client state required to implement the vertex array range
consists of an enable bit, a memory pointer, an integer size,
and a valid bit.

If the memory mapping of pages within the vertex array range changes,
using the vertex array range may or may not result in undefined data
being fetched from the vertex arrays when the vertex array range is
enabled and valid. To ensure that the vertex array range reflects
the address space's current state, the application is responsible
for calling VertexArrayRange again after any memory mapping changes
within the vertex array range."llo

Additions to Chapter 5 of the OpenGL 1.1 Specification (Special Functions)

Add to the end of Section 5.4 "Display Lists"

"VertexArrayRangeNV and FlushVertexArrayRangeNV are not complied
into display lists but are executed immediately.

If a display list is compiled while VERTEX_ARRAY_RANGE_NV is
enabled, the commands ArrayElement, DrawArrays, DrawElements,
and DrawRangeElements are accumulated into a display list as
if VERTEX_ARRAY_RANGE_NV is disabled."

Additions to the WGL interface:

"When establishing a vertex array range, certain types of memory
may be more efficient than other types of memory. The commands

void *wglAllocateMemoryNV(sizei size,
float readFrequency,
float writeFrequency,
float priority)

void wglFreeMemoryNV(void *pointer)

allocate and free memory that may be more suitable for establishing
an efficient vertex array range than memory allocated by other means.
The wglAllocateMemoryNV command allocates <size> bytes of contiguous
memory.

The <readFrequency>, <writeFrequency>, and <priority> parameters are
usage hints that the OpenGL implementation can use to determine the
best type of memory to allocate. These parameters range from 0.0
to 1.0. A <readFrequency> of 1.0 indicates that the application
intends to frequently read the allocated memory; a <readFrequency>
of 0.0 indicates that the application will rarely or never read the
memory. A <writeFrequency> of 1.0 indicates that the application
intends to frequently write the allocated memory; a <writeFrequency>
of 0.0 indicates that the application will rarely write the memory.
A <priority> parameter of 1.0 indicates that memory type should be
the most efficient available memory, even at the expense of (for
example) available texture memory; a <priority> of 0.0 indicates that
the vertex array range does not require an efficient memory type
(for example, so that more efficient memory is available for other
purposes such as texture memory).

NVIDIA OpenGL Extension Specifications NV_vertex_array_range

 419

The OpenGL implementation is free to use the <size>, <readFrequency>,
<writeFrequency>, and <priority> parameters to determine what memory
type should be allocated. The memory types available and how the
memory type is determined is implementation dependent (and the
implementation is free to ignore any or all of the above parameters).

Possible memory types that could be allocated are uncached memory,
write-combined memory, graphics hardware memory, etc. The intent
of the wglAllocateMemoryNV command is to permit the allocation of
memory for efficient vertex array range usage. However, there is
no requirement that memory allocated by wglAllocateMemoryNV must be
used to allocate memory for vertex array ranges.

If the memory cannot be allocated, a NULL pointer is returned (and
no OpenGL error is generated). An implementation that does not
support this extension's memory allocation interface is free to
never allocate memory (always return NULL).

The wglFreeMemoryNV command frees memory allocated with
wglAllocateMemoryNV. The <pointer> should be a pointer returned by
wglAllocateMemoryNV and not previously freed. If a pointer is passed
to wglFreeMemoryNV that was not allocated via wglAllocateMemoryNV
or was previously freed (without being reallocated), the free is
ignored with no error reported.

The memory allocated by wglAllocateMemoryNV should be available to
all other threads in the address space where the memory is allocated
(the memory is not private to a single thread). Any thread in the
address space (not simply the thread that allocated the memory)
may use wglFreeMemoryNV to free memory allocated by itself or any
other thread.

Because wglAllocateMemoryNV and wglFreeMemoryNV are not OpenGL
rendering commands, these commands do not require a current context.
They operate normally even if called within a Begin/End or while
compiling a display list."

Additions to the GLX Specification

Same language as the "Additions to the WGL Specification" section
except all references to wglAllocateMemoryNV and wglFreeMemoryNV
should be replaced with glXAllocateMemoryNV and glXFreeMemoryNV
respectively.

Additional language:

"OpenGL implementations using GLX indirect rendering should fail
to set up the vertex array range (failing to set the vertex array
valid bit so the vertex array range functionality is not usable).
Additionally, glXAllocateMemoryNV always fails to allocate memory
(returns NULL) when used with an indirect rendering context."

GLX Protocol

None

NV_vertex_array_range NVIDIA OpenGL Extension Specifications

 420

Errors

INVALID_OPERATION is generated if VertexArrayRange or
FlushVertexArrayRange is called between the execution of Begin
and the corresponding execution of End.

INVALID_OPERATION may be generated if an undefined vertex is
generated.

New State

Initial
Get Value Get Command Type Value Attrib
--------- ----------- ---- ------- ------------
VERTEX_ARRAY_RANGE_NV IsEnabled B False vertex-array
VERTEX_ARRAY_RANGE_POINTER_NV GetPointerv Z+ 0 vertex-array
VERTEX_ARRAY_RANGE_LENGTH_NV GetIntegerv Z+ 0 vertex-array
VERTEX_ARRAY_RANGE_VALID_NV GetBooleanv B False vertex-array

New Implementation Dependent State

Get Value Get Command Type Minimum Value
--------- ----------- ----- -------------
MAX_VERTEX_ARRAY_RANGE_ELEMENT_NV GetIntegerv Z+ 65535

NV10 Implementation Details

This section describes implementation-defined limits for NV10:

The value of MAX_VERTEX_ARRAY_RANGE_ELEMENT_NV is 65535.

This section describes bugs in the NV10 vertex array range. These
bugs will be fixed in a future hardware release:

If VERTEX_ARRAY is enabled with a format of GL_SHORT and the
vertex array range is valid, a vertex array vertex with an X,
Y, Z, or W coordinate of -32768 is wrongly interpreted as zero.
Example: the X,Y coordinate (-32768,-32768) is incorrectly read
as (0,0) from the vertex array.

If TEXTURE_COORD_ARRAY is enabled with a format of GL_SHORT
and the vertex array range is valid, a vertex array texture
coord with an S, T, R, or Q coordinate of -32768 is wrongly
interpreted as zero. Example: the S,T coordinate (-32768,-32768)
is incorrectly read as (0,0) from the texture coord array.

This section describes the implementation-dependent validity
checks for NV10.

o For the NV10 implementation-dependent validity check for the
vertex array range region of memory to be true, all of the
following must be true:

1. The <pointer> must be 32-byte aligned.

NVIDIA OpenGL Extension Specifications NV_vertex_array_range

 421

2. The underlying memory types must all be the same (all
standard system memory -OR- all AGP memory -OR- all video
memory).

o For the NV10 implementation-dependent validity check for the
vertex array state to be true, all of the following must be
true:

1. (VERTEX_ARRAY must be enabled -AND-
The vertex array stride must be less than 256 -AND-
((The vertex array type must be FLOAT -AND-

The vertex array stride must be a multiple of 4 bytes -AND-
The vertex array pointer must be 4-byte aligned -AND-
The vertex array size must be 2, 3, or 4) -OR-

(The vertex array type must be SHORT -AND-
The vertex array stride must be a multiple of 4 bytes -AND-
The vertex array pointer must be 4-byte aligned. -AND-
The vertex array size must be 2) -OR-

(The vertex array type must be SHORT -AND-
The vertex array stride must be a multiple of 8 bytes -AND-
The vertex array pointer must be 8-byte aligned. -AND-
The vertex array size must be 4) -OR-

(The vertex array type must be SHORT -AND-
The vertex array stride must be a multiple of 8 bytes -AND-
The vertex array pointer must be 8-byte aligned.)
The vertex array stride must non-zero -AND-
The vertex array size must be 3)))

2. (NORMAL_ARRAY must be disabled.) -OR -
(NORMAL_ARRAY must be enabled -AND-
The normal array size must be 3 -AND-
The normal array stride must be less than 256 -AND-
((The normal array type must be FLOAT -AND-

The normal array stride must be a multiple of 4 bytes -AND-
The normal array pointer must be 4-byte aligned.) -OR-

(The normal array type must be SHORT -AND-
The normal array stride must be a multiple of 8 bytes -AND-
The normal array stride must non-zero -AND-
The normal array pointer must be 8-byte aligned.)))

3. (COLOR_ARRAY must be disabled.) -OR -
(COLOR_ARRAY must be enabled -AND-
The color array type must be FLOAT or UNSIGNED_BYTE -AND-
The color array stride must be a multiple of 4 bytes -AND-
The color array stride must be less than 256 -AND-
The color array pointer must be 4-byte aligned -AND-
((The color array size must be 3 -AND-

The color array stride must non-zero) -OR-
(The color array size must be 4))

4. (SECONDARY_COLOR_ARRAY must be disabled.) -OR -
(SECONDARY_COLOR_ARRAY must be enabled -AND-
The secondary color array type must be FLOAT or UNSIGNED_BYTE -AND-
The secondary color array stride must be a multiple of 4 bytes -AND-
The secondary color array stride must be less than 256 -AND-
The secondary color array pointer must be 4-byte aligned -AND-
((The secondary color array size must be 3 -AND-

The secondary color array stride must non-zero) -OR-
(The secondary color array size must be 4))

5. For texture units zero and one:

NV_vertex_array_range NVIDIA OpenGL Extension Specifications

 422

(TEXTURE_COORD_ARRAY must be disabled.) -OR -
(TEXTURE_COORD_ARRAY must be enabled -AND-
The texture coord array stride must be less than 256 -AND-
((The texture coord array type must be FLOAT -AND-

The texture coord array pointer must be 4-byte aligned.)
The texture coord array stride must be a multiple of 4 bytes -AND-
The texture coord array size must be 1, 2, 3, or 4) -OR-

(The texture coord array type must be SHORT -AND-
The texture coord array pointer must be 4-byte aligned.)
The texture coord array stride must be a multiple of 4 bytes -AND-
The texture coord array stride must non-zero -AND-
The texture coord array size must be 1) -OR-

(The texture coord array type must be SHORT -AND-
The texture coord array pointer must be 4-byte aligned.)
The texture coord array stride must be a multiple of 4 bytes -AND-
The texture coord array size must be 2) -OR-

(The texture coord array type must be SHORT -AND-
The texture coord array pointer must be 8-byte aligned.)
The texture coord array stride must be a multiple of 8 bytes -AND-
The texture coord array stride must non-zero -AND-
The texture coord array size must be 3) -OR-

(The texture coord array type must be SHORT -AND-
The texture coord array pointer must be 8-byte aligned.)
The texture coord array stride must be a multiple of 8 bytes -AND-
The texture coord array size must be 4)))

6. (EDGE_FLAG_ARRAY must be disabled.)

7. (VERTEX_WEIGHT_ARRAY_NV must be disabled.) -OR -
(VERTEX_WEIGHT_ARRAY_NV must be enabled. -AND -
The vertex weight array type must be FLOAT -AND-
The vertex weight array size must be 1 -AND-
The vertex weight array stride must be a multiple of 4 bytes -AND-
The vertex weight array stride must be less than 256 -AND-
The vertex weight array pointer must be 4-byte aligned)

8. (FOG_COORDINATE_ARRAY must be disabled.) -OR -
(FOG_COORDINATE_ARRAY must be enabled -AND-
The chip in use must be an NV11 or NV15, not NV10 -AND-
The fog coordinate array type must be FLOAT -AND-
The fog coordinate array size must be 1 -AND-
The fog coordinate array stride must be a multiple of 4 bytes -AND-
The fog coordinate array stride must be less than 256 -AND-
The fog coordinate array pointer must be 4-byte aligned)

o For the NV10 the implementation-dependent validity check based on
other OpenGL rendering state is FALSE if any of the following are true:

1. (COLOR_LOGIC_OP is enabled -AND-
The logic op is not COPY), except in the case of Quadro2

(Quadro2 Pro, Quadro2 MXR) products.

2. (LIGHT_MODEL_TWO_SIDE is true.)

3. Either texture unit is enabled and active with a texture
with a non-zero border.

4. VERTEX_PROGRAM_NV is enabled.

5. Several other obscure unspecified reasons.

NVIDIA OpenGL Extension Specifications NV_vertex_array_range

 423

NV20 Implementation Details

This section describes implementation-defined limits for NV20:

The value of MAX_VERTEX_ARRAY_RANGE_ELEMENT_NV is 1048575.

This section describes the implementation-dependent validity
checks for NV20.

o For the NV20 implementation-dependent validity check for the
vertex array range region of memory to be true, all of the
following must be true:

1. The <pointer> must be 32-byte aligned.

2. The underlying memory types must all be the same (all
standard system memory -OR- all AGP memory -OR- all video
memory).

o To determine whether the NV20 implementation-dependent validity
check for the vertex array state is true, the following algorithm
is used:

The currently enabled arrays and their pointers, strides, and
types are first determined using the value of VERTEX_PROGRAM_NV.
If VERTEX_PROGRAM_NV is disabled, the standard GL vertex arrays
are used. If VERTEX_PROGRAM_NV is enabled, the vertex attribute
arrays take precedence over the standard vertex arrays. The
following table, taken from the NV_vertex_program specification,
shows the aliasing between the standard and attribute arrays:

Vertex
Attribute Conventional Conventional
Register Per-vertex Conventional Component
Number Parameter Per-vertex Parameter Command Mapping
--------- --------------- ----------------------------------- ------------
0 vertex position Vertex x,y,z,w
1 vertex weights VertexWeightEXT w,0,0,1
2 normal Normal x,y,z,1
3 primary color Color r,g,b,a
4 secondary color SecondaryColorEXT r,g,b,1
5 fog coordinate FogCoordEXT fc,0,0,1
6 - - -
7 - - -
8 texture coord 0 MultiTexCoord(GL_TEXTURE0_ARB, ...) s,t,r,q
9 texture coord 1 MultiTexCoord(GL_TEXTURE1_ARB, ...) s,t,r,q
10 texture coord 2 MultiTexCoord(GL_TEXTURE2_ARB, ...) s,t,r,q
11 texture coord 3 MultiTexCoord(GL_TEXTURE3_ARB, ...) s,t,r,q
12 texture coord 4 MultiTexCoord(GL_TEXTURE4_ARB, ...) s,t,r,q
13 texture coord 5 MultiTexCoord(GL_TEXTURE5_ARB, ...) s,t,r,q
14 texture coord 6 MultiTexCoord(GL_TEXTURE6_ARB, ...) s,t,r,q
15 texture coord 7 MultiTexCoord(GL_TEXTURE7_ARB, ...) s,t,r,q

For the validity check to be TRUE, the following must all be
true:

1. Vertex attribute 0's array must be enabled.

NV_vertex_array_range NVIDIA OpenGL Extension Specifications

 424

2. EDGE_FLAG_ARRAY must be disabled.
3. For all enabled arrays, all of the following must be true:

- the pointer must be 4-byte aligned
- the stride must be less than 256
- the stride must be a multiple of 4
- the type must be FLOAT, SHORT, or UNSIGNED_BYTE

o For the NV20 the implementation-dependent validity check based on
other OpenGL rendering state is FALSE only for a few obscure and
unspecified reasons.

Revision History

January 10, 2001 - Added NV20 implementation details. Made several
corrections to the NV10 implementation details. Specifically, noted
that on the NV11 and NV15 architectures, the fog coordinate array may
be used, and updated the section on other state that may cause the
vertex array range to be invalid. Only drivers built after this date
will support fog coordinate arrays on NV11 and NV15. Also fixed a
few typos in the spec.

NVIDIA OpenGL Extension Specifications NV_vertex_array_range2

 425

Name

NV_vertex_array_range2

Name Strings

GL_NV_vertex_array_range2

Notice

Copyright NVIDIA Corporation, 2001.

IP Status

NVIDIA Proprietary.

Status

Complete

Version

NVIDIA Date: April 13, 2001
$Id: //sw/main/docs/OpenGL/specs/GL_NV_vertex_array_range2.txt#2 $

Number

232

Dependencies

Assumes support for the NV_vertex_array_range extension (version 1.1).

Support for NV_fence is recommended but not required.

Overview

Enabling and disabling the vertex array range is specified by the
original NV_vertex_array_range extension specification to flush the
vertex array range implicitly. In retrospect, this semantic is
extremely misconceived and creates terrible performance problems
for any application that wishes to mix conventional vertex arrays
with vertex arrange range-enabled vertex arrays.

This extension provides a new token for enabling/disabling the
vertex array range that does NOT perform an implicit vertex array
range flush when the enable/disable is performed.

NV_vertex_array_range2 NVIDIA OpenGL Extension Specifications

 426

Issues

Should this extension expose a new enable that enables/disables the
vertex array range enable/disable semantic of performing an implicit
'vertex array range flush' when GL_VERTEX_ARRAY_RANGE_NV is enabled
or disabled, OR should it add a new enable token that acts identically
to GL_VERTEX_ARRAY_RANGE_NV without the implicit flush?

RESOLUTION: The second option. Enabling/disabling
GL_VERTEX_ARRAY_RANGE_WITHOUT_FLUSH_NV acts identically to
enabling/disabling GL_VERTEX_ARRAY_RANGE_NV, just without the
implicit flush.

Should GL_VERTEX_ARRAY_RANGE_WITHOUT_FLUSH_NV work with glIsEnabled?

RESOLUTION: NO. There is still just a single state boolean to
query.

New Procedures and Functions

None

New Tokens

Accepted by the <cap> parameter of EnableClientState,
DisableClientState:

VERTEX_ARRAY_RANGE_WITHOUT_FLUSH_NV 0x8533

Additions to Chapter 2 of the OpenGL 1.1 Specification (OpenGL Operation)

Within the discussion of vertex arrays (Section 2.8) amended by
the NV_vertex_array_range extension specification, change the
discussion of enabling the vertex array range to:

The vertex array range is enabled or disabled by calling
EnableClientState or DisableClientState with the symbolic
constant VERTEX_ARRAY_RANGE_NV.

The vertex array range is also enabled or disabled by calling
EnableClientState or DisableClientState with the symbolic constant
VERTEX_ARRAY_RANGE_WITHOUT_FLUSH_NV. This second means to enable
and disable the vertex array range does not perform an implicit
vertex array range flush as described subsequently."

Within the discussion of vertex arrays (Section 2.8) amended by the
NV_vertex_array_range extension specification, change the discussion
of implicit vertex array range flushes to:

"A 'vertex array range flush' occurs when one of the following
operations occur:

o Finish returns.

o FlushVertexArrayRangeNV returns.

o VertexArrayRangeNV returns.

NVIDIA OpenGL Extension Specifications NV_vertex_array_range2

 427

o DisableClientState of VERTEX_ARRAY_RANGE_NV returns.

o EnableClientState of VERTEX_ARRAY_RANGE_NV returns.

o Another OpenGL context is made current.

However, use of VERTEX_ARRAY_RANGE_WITHOUT_FLUSH_NV with
DisableClientState or EnableClientState does NOT perform an implicit
vertex array range flush."

Additions to Chapter 5 of the OpenGL 1.1 Specification (Special Functions)

None

Additions to the WGL interface:

None

Additions to the GLX Specification

None

GLX Protocol

None

Errors

No new errors.

New State

None

New Implementation Dependent State

None

Revision History

4/13/2001 - token value for GL_VERTEX_ARRAY_RANGE_WITHOUT_FLUSH_NV
should be 0x8533 (was incorrectly typed as 0x8503)

NV_vertex_program NVIDIA OpenGL Extension Specifications

 428

Name

NV_vertex_program

Name Strings

GL_NV_vertex_program

Notice

Copyright NVIDIA Corporation, 2000, 2001.

IP Status

NVIDIA Proprietary.

Status

Version 1.3

Version

NVIDIA Date: April 13, 2001
$Id: //sw/main/docs/OpenGL/specs/GL_NV_vertex_program.txt#5 $

Number

233

Dependencies

Written based on the wording of the OpenGL 1.2.1 specification and
requires OpenGL 1.2.1.

Requires support for the ARB_multitexture extension with at least
two texture units.

EXT_point_parameters affects the definition of this extension.

EXT_secondary_color affects the definition of this extension.

EXT_fog_coord affects the definition of this extension.

EXT_vertex_weighting affects the definition of this extension.

ARB_imaging affects the definition of this extension.

Overview

Unextended OpenGL mandates a certain set of configurable per-vertex
computations defining vertex transformation, texture coordinate
generation and transformation, and lighting. Several extensions
have added further per-vertex computations to OpenGL. For example,
extensions have defined new texture coordinate generation modes
(ARB_texture_cube_map, NV_texgen_reflection, NV_texgen_emboss), new
vertex transformation modes (EXT_vertex_weighting), new lighting modes
(OpenGL 1.2's separate specular and rescale normal functionality),

NVIDIA OpenGL Extension Specifications NV_vertex_program

 429

several modes for fog distance generation (NV_fog_distance), and
eye-distance point size attenuation (EXT_point_parameters).

Each such extension adds a small set of relatively inflexible
per-vertex computations.

This inflexibility is in contrast to the typical flexibility provided
by the underlying programmable floating point engines (whether
micro-coded vertex engines, DSPs, or CPUs) that are traditionally used
to implement OpenGL's per-vertex computations. The purpose of this
extension is to expose to the OpenGL application writer a significant
degree of per-vertex programmability for computing vertex parameters.

For the purposes of discussing this extension, a vertex program is
a sequence of floating-point 4-component vector operations that
determines how a set of program parameters (defined outside of
OpenGL's begin/end pair) and an input set of per-vertex parameters
are transformed to a set of per-vertex output parameters.

The per-vertex computations for standard OpenGL given a particular
set of lighting and texture coordinate generation modes (along with
any state for extensions defining per-vertex computations) is, in
essence, a vertex program. However, the sequence of operations is
defined implicitly by the current OpenGL state settings rather than
defined explicitly as a sequence of instructions.

This extension provides an explicit mechanism for defining vertex
program instruction sequences for application-defined vertex programs.
In order to define such vertex programs, this extension defines
a vertex programming model including a floating-point 4-component
vector instruction set and a relatively large set of floating-point
4-component registers.

The extension's vertex programming model is designed for efficient
hardware implementation and to support a wide variety of vertex
programs. By design, the entire set of existing vertex programs
defined by existing OpenGL per-vertex computation extensions can be
implemented using the extension's vertex programming model.

Issues

What should this extension be called?

RESOLUTION: NV_vertex_program. DirectX 8 refers to its similar
functionality as "vertex shaders". This is a confusing term
because shaders are usually assumed to operate at the fragment or
pixel level, not the vertex level.

Conceptually, what the extension defines is an application-defined
program (admittedly limited by its sequential execution model) for
processing vertices so the "vertex program" term is more accurate.

Additionally, some of the API machinery in this extension for
describing programs could be useful for extending other OpenGL
operations with programs (though other types of programs would
likely look very different from vertex programs).

NV_vertex_program NVIDIA OpenGL Extension Specifications

 430

What terms are important to this specification?

vertex program mode - when vertex program mode is enabled, vertices
are transformed by an application-defined vertex program.

conventional GL vertex transform mode - when vertex program mode
is disabled (or the extension is not supported), vertices are
transformed by GL's conventional texgen, lighting, and transform
state.

provoke - the verb that denotes the beginning of vertex
transformation by either vertex program mode or conventional GL
vertex transform mode. Vertices are provoked when either glVertex
or glVertexAttribNV(0, ...) is called.

program target - a type or class of program. This extension
supports two program targets: the vertex program and the vertex
state program. Future extensions could add other program targets.

vertex program - an application-defined vertex program used to
transform vertices when vertex program mode is enabled.

vertex state program - a program similar to a vertex program.
Unlike a vertex program, a vertex state program runs outside of
a glBegin/glEnd pair. Vertex state programs do not transform
a vertex. They just update program parameters.

vertex attribute - one of 16 4-component per-vertex parameters
defined by this extension. These attributes alias with the
conventional per-vertex parameters.

per-vertex parameter - a vertex attribute or a conventional
per-vertex parameter such as set by glNormal3f or glColor3f.

program parameter - one of 96 4-component registers available
to vertex programs. The state of these registers is shared
among all vertex programs.

NVIDIA OpenGL Extension Specifications NV_vertex_program

 431

What part of OpenGL do vertex programs specifically bypass?

Vertex programs bypass the following OpenGL functionality:

o Normal transformation and normalization

o Color material

o Per-vertex lighting

o Texture coordinate generation

o The texture matrix

o The normalization of AUTO_NORMAL evaluated normals

o The modelview and projection matrix transforms

o The per-vertex processing in EXT_point_parameters

o The per-vertex processing in NV_fog_distance

o Raster position transformation

o Client-defined clip planes

Operations not subsumed by vertex programs

o The view frustum clip

o Perspective divide (division by w)

o The viewport transformation

o The depth range transformation

o Clamping the primary and secondary color to [0,1]

o Primitive assembly and subsequent operations

o Evaluator (except the AUTO_NORMAL normalization)

How specific should this specification be about precision?

RESOLUTION: Reasonable precision requirements are incorporated
into the specification beyond the often vague requirements of the
core OpenGL specification.

This extension essentially defines an instruction set and its
corresponding execution environment. The instruction set specified
may find applications beyond the traditional purposes of 3D vertex
transformation, lighting, and texture coordinate generation that
have fairly lax precision requirements. To facilitate such
possibly unexpected applications of this functionality, minimum
precision requirements are specified.

NV_vertex_program NVIDIA OpenGL Extension Specifications

 432

The minimum precision requirements in the specification are meant
to serve as a baseline so that application developers can write
vertex programs with minimal worries about precision issues.

What about when the "execution environment" involves support for
other extensions?

This extension assumes support for functionality that includes
a fog distance, secondary color, point parameters, and multiple
texture coordinates.

There is a trade-off between requiring support for these extensions
to guarantee a particular extended execution environment and
requiring lots of functionality that everyone might not support.

Application developers will desire a high baseline of functionality
so that OpenGL applications using vertex programs can work in
the full context of OpenGL. But if too much is required, the
implementation burden mandated by the extension may limit the
number of available implementations.

Clearly we do not want to require support for 8 texture units
even if the machinery is there for it. Still multitexture is a
common and important feature for using vertex programs effectively.
Requiring at least two texture units seems reasonable.

What do we say about the alpha component of the secondary color?

RESOLUTION: When vertex program mode is enabled, the alpha
component of csec used for the color sum state is assumed always
zero. Another downstream extension may actually make the alpha
component written into the COL1 (or BFC1) vertex result register
available.

Should client-defined clip planes operate when vertex program mode is
enabled?

RESOLUTION. No.

OpenGL's client-defined clip planes are specified in eye-space.
Vertex programs generate homogeneous clip space positions.
Unlike the conventional OpenGL vertex transformation mode, vertex
program mode requires no semantic equivalent to eye-space.

Applications that require client-defined clip planes can simulate
OpenGL-style client-defined clip planes by generating texture
coordinates and using alpha testing or other per-fragment tests
such as NV_texture_shader's CULL_FRAGMENT_NV program to discard
fragments. In many ways, these schemes provide a more flexible
mechanism for clipping than client-defined clip planes.

Unfortunately, vertex programs used in conjunction with selection
or feedback will not have a means to support client-defined clip
planes because the per-fragment culling mechanisms described in the
previous paragraph are not available in the selection or feedback
render modes. Oh well.

NVIDIA OpenGL Extension Specifications NV_vertex_program

 433

Finally, as a practical concern, client-defined clip planes
greatly complicate clipping for various hardware rasterization
architectures.

How are edge flags handled?

RESOLUTION: Passed through without the ability to be modified by
a vertex program. Applications are free to send edge flags when
vertex program mode is enabled.

Should vertex attributes alias with conventional per-vertex
parameters?

RESOLUTION. YES.

This aliasing should make it easy to use vertex programs with
existing OpenGL code that transfers per-vertex parameters using
conventional OpenGL per-vertex calls.

It also minimizes the number of per-vertex parameters that the
hardware must maintain.

See Table X.2 for the aliasing of vertex attributes and conventional
per-vertex parameters.

How should vertex attribute arrays interact with conventional vertex
arrays?

RESOLUTION: When vertex program mode is enabled, a particular
vertex attribute array will be used if enabled, but if disabled,
and the corresponding aliased conventional vertex array is enabled
(assuming that there is a corresponding aliased conventional vertex
array for the particular vertex array), the conventional vertex
array will be used.

This matches the way immediate mode per-vertex parameter aliasing
works.

This does slightly complicate vertex array validation in program
mode, but programmers using vertex arrays can simply enable vertex
program mode without reconfiguring their conventional vertex arrays
and get what they expect.

Note that this does create an asymmetry between immediate mode
and vertex arrays depending on whether vertex program mode is
enabled or not. The immediate mode vertex attribute commands
operate unchanged whether vertex program mode is enabled or not.
However the vertex attribute vertex arrays are used only when
vertex program mode is enabled.

Supporting vertex attribute vertex arrays when vertex program mode
is disabled would create a large implementation burden for existing
OpenGL implementations that have heavily optimized conventional
vertex arrays. For example, the normal array can be assumed to
always contain 3 and only 3 components in conventional OpenGL
vertex transform mode, but may contain 1, 2, 3, or 4 components
in vertex program mode.

NV_vertex_program NVIDIA OpenGL Extension Specifications

 434

There is not any additional functionality gained by supporting
vertex attribute arrays when vertex program mode is disabled, but
there is lots of implementation overhead. In any case, it does not
seem something worth encouraging so it is simply not supported.
So vertex attribute arrays are IGNORED when vertex program mode
is not enabled.

Ignoring VertexAttribute commands or treating VertexAttribute
commands as an error when vertex program mode is enabled
would likely add overhead for such a conditional check. The
implementation overhead for supporting VertexAttribute commands
when vertex program mode is disabled is not that significant.
Additionally, it is likely that setting persistent vertex attribute
state while vertex program mode is disabled may be useful to
applications. So vertex attribute immediate mode commands are
PERMITTED when vertex program mode is not enabled.

Colors and normals specified as ints, uints, shorts, ushorts, bytes,
and ubytes are converted to floating-point ranges when supplied to
core OpenGL as described in Table 2.6. Other per-vertex attributes
such as texture coordinates and positions are not converted.
How does this mix with vertex programs where all vertex attributes
are supposedly treated identically?

RESOLUTION: Vertex attributes specified as bytes and ubytes are
always converted as described in Table 2.6. All other formats are
not converted according to Table 2.6 but simply converted directly
to floating-point.

The ubyte type is converted because those types seem more useful
for passing colors in the [0,1] range.

If an application desires a conversion, the conversion can be
incorporated into the vertex program itself.

This also applies to vertex attribute arrays. However, by enabling
a color or normal vertex array and not enabling the corresponding
aliased vertex attribute array, programmers can get the conventional
conversions for color and normal arrays (but only for the vertex
attribute arrays that alias to the conventional color and normal
arrays and only with the sizes/types supported by these color and
normal arrays).

Should programs be C-style null-terminated strings?

RESOLUTION: No. Programs should be specified as an array of
GLubyte with an explicit length parameter. OpenGL has no precedent
for passing null-terminated strings into the API (though glGetString
returns null-terminated strings). Null-terminated strings are
problematic for some languages.

Should all existing OpenGL transform functionality and extensions
be implementable as vertex programs?

RESOLUTION: Yes. Vertex programs should be a complete superset
of what you can do with OpenGL 1.2 and existing vertex transform

NVIDIA OpenGL Extension Specifications NV_vertex_program

 435

extensions.

To implement EXT_point_parameters, the
GL_VERTEX_PROGRAM_POINT_SIZE_NV enable is introduced.

To implement two-sided lighting, the GL_VERTEX_PROGRAM_TWO_SIDE_NV
enable is introduced.

How does glPointSize work with vertex programs?

RESOLUTION: If GL_VERTEX_PROGRAM_POINT_SIZE_NV is disabled, the size
of points is determine by the glPointSize state. If enabled,
the point size is determined per-vertex by the clamped value of
the vertex result PSIZ register.

Can the currently bound vertex program id be deleted or reloaded?

RESOLUTION. Yes. When a vertex program id is deleted or reloaded
when it is the currently bound vertex program, it is as if a rebind
occurs after the deletion or reload.

In the case of a reload, the new vertex program will be used from
then on. In the case of a deletion, the current vertex program
will be treated as if it is nonexistent.

Should program objects have a mechanism for managing program
residency?

RESOLUTION: Yes. Vertex program instruction memory is a limited
hardware resource. glBindProgramNV will be faster if binding to
a resident program. Applications are likely to want to quickly
switch between a small collection of programs.

glAreProgramsResidentNV allows the residency status of a
group of programs to be queried. This mimics
glAreTexturesResident.

Instead of adopting the glPrioritizeTextures mechanism, a new
glRequestResidentProgramsNV command is specified instead.
Assigning priorities to textures has always been a problematic
endeavor and few OpenGL implementations implemented it effectively.
For the priority mechanism to work well, it requires the client
to routinely update the priorities of textures.

The glRequestResidentProgramsNV indicates to the GL that a
set of programs are intended for use together. Because all
the programs are requesting residency as a group, drivers
should be able to attempt to load all the requested programs
at once (and remove from residency programs not in the group if
necessary). Clients can use glAreProgramsResidentNV to query the
relative success of the request.

glRequestResidentProgramsNV should be superior to loading programs
on-demand because fragmentation can be avoided.

NV_vertex_program NVIDIA OpenGL Extension Specifications

 436

What happens when you execute a nonexistent or invalid program?

RESOLUTION: glBegin will fail with a GL_INVALID_OPERATION if the
currently bound vertex program is nonexistent or invalid. The same
applies to glRasterPos and any command that implies a glBegin.

Because the glVertex and glVertexAttribNV(0, ...) are ignored
outside of a glBegin/glEnd pair (without generating an error) it
is impossible to provoke a vertex program if the current vertex
program is nonexistent or invalid. Other per-vertex parameters
(for examples those set by glColor, glNormal, and glVertexAttribNV
when the attribute number is not zero) are recorded since they
are legal outside of a glBegin/glEnd.

For vertex state programs, the problem is simpler because
glExecuteProgramNV can immediately fail with a GL_INVALID_OPERATION
when the named vertex state program is nonexistent or invalid.

What happens when a matrix has been tracked into a set of program
parameters, but then glTrackMatrixNV(GL_VERTEX_PROGRAM_NV, addr,
GL_NONE, GL_IDENTITY_NV) is performed?

RESOLUTION: The specified program parameters stop tracking a
matrix, but they retain the values of the matrix they were last
tracking.

Can rows of tracked matrices be queried by querying the program
parameters that track them?

RESOLUTION: Yes.

Discussing matrices is confusing because of row-major versus
column-major issues. Can you give an example of how a matrix is
tracked?

GLfloat matrix[16] = { 1, 5, 9, 13,
2, 6, 10, 14,
3, 7, 11, 15,
4, 8, 12, 16 };

GLfloat row1[4], row2[4];

glMatrixMode(GL_MATRIX0_NV);
glLoadMatrixf(matrix);
glTrackMatrixNV(GL_VERTEX_PROGRAM_NV, 4, GL_MATRIX0_NV, GL_IDENTITY_NV);
glTrackMatrixNV(GL_VERTEX_PROGRAM_NV, 8, GL_MATRIX0_NV, GL_TRANSPOSE_NV);
glGetProgramParameterfvNV(GL_VERTEX_PROGRAM_NV, 5,

GL_PROGRAM_PARAMETER_NV, row1);
/* row1 is now [2 6 10 14] */
glGetProgramParameterfvNV(GL_VERTEX_PROGRAM_NV, 9,

GL_PROGRAM_PARAMETER_NV, row2);
/* row2 is now [5 6 7 8] because the tracked matrix is transposed */

Should evaluators be extended to evaluate arbitrary vertex
attributes?

RESOLUTION: Yes. We'll support 32 new maps (16 for MAP1 and 16
for MAP2) that take priority over the conventional maps that they

NVIDIA OpenGL Extension Specifications NV_vertex_program

 437

might alias to (only when vertex program mode is enabled).

These new maps always evaluate all four components. The rationale
for this is that if we supported 1, 2, 3, or 4 components, that
would add 128 (16*4*2) enumerants which is too many. In addition,
if you wanted to evaluate two 2-component vertex attributes, you
could instead generate one 4-component vertex attribute and use
the vertex program with swizzling to treat this as two-components.

Moreover, we are assuming 4-component vector instructions so less
than 4-component evaluations might not be any more efficient
than 4-component evaluations. Implementations that use vector
instructions such as Intel's SSE instructions will be easier to
implement since they can focus on optimizing just the 4-component
case.

How should GL_AUTO_NORMAL work with vertex programs?

RESOLUTION: GL_AUTO_NORMAL should NOT guarantee that the generated
analytical normal be normalized. In vertex program mode, the
current vertex program can easily normalize the normal if required.

This can lead to greater efficiency if the vertex program transforms
the normal to another coordinate system such as eye-space with a
transform that preserves vector length. Then a single normalize
after transform is more efficient than normalizing after evaluation
and also normalizing after transform.

Conceptually, the normalize mandated for AUTO_NORMAL in section
5.1 is just one of the many transformation operations subsumed by
vertex programs.

Should the new vertex program related enables push/pop with
GL_ENABLE_BIT?

RESOLUTION: Yes. Pushing and popping enable bits is easy.
This includes the 32 new evaluator map enable bits. These evaluator
enable bits are also pushed and popped using GL_EVAL_BIT.

Should all the vertex attribute state push/pop with GL_CURRENT_BIT?

RESOLUTION: Yes. The state is aliased with the conventional
per-vertex parameter state so it really should push/pop.

Should all the vertex attrib vertex array state push/pop with
GL_CLIENT_VERTEX_ARRAY_BIT?

RESOLUTION: Yes.

Should all the other vertex program-related state push/pop somehow?

RESOLUTION: No.

The other vertex program doesn't fit well with the existing bits.
To be clear, GL_ALL_ATTRIB_BITS does not push/pop vertex program
state other than enables.

NV_vertex_program NVIDIA OpenGL Extension Specifications

 438

Should we generate a GL_INVALID_OPERATION operation if updating
a vertex attribute greater than 15?

RESOLUTION: Yes.

The other option would be to mask or modulo the vertex attribute
index with 16. This is cheap, but it would make it difficult to
increase the number of vertex attributes in the future.

If we check for the error, it should be a well predicted branch
for immediate mode calls. For vertex arrays, the check is only
required at vertex array specification time.

Hopefully this will encourage people to use vertex arrays over
immediate mode.

Should writes to program parameter registers during a vertex program
be supported?

RESOLUTION. No.

Writes to program parameter registers from within a vertex program
would require the execution of vertex programs to be serialized
with respect to each other. This would create an unwarranted
implementation penalty for parallel vertex program execution
implementations.

However vertex state programs may write to program parameter
registers (that is the whole point of vertex state programs).

Should we support variously sized immediate mode byte and ubyte
commands? How about for vertex arrays?

RESOLUTION. Only support the 4ub mode.

There are simply too many glVertexAttribNV routines. Passing less
than 4 bytes at a time is inefficient. We expect the main use
for bytes to be for colors where these will be unsigned bytes.
So let's just support 4ub mode for bytes. This applies to
vertex arrays too.

Should we support integer, unsigned integer, and unsigned short
formats for vertex attributes?

RESOLUTION: No. It's just too many immediate mode entry points,
most of which are not that useful. Signed shorts are supported
however. We expect signed shorts to be useful for passing compact
texture coordinates.

Should we support doubles for vertex attributes?

RESOLUTION: Yes. Some implementation of the extension might
support double precision. Lots of math routines output double
precision.

NVIDIA OpenGL Extension Specifications NV_vertex_program

 439

Should there be a way to determine where in a loaded program
string the first parse error occurs?

RESOLUTION: Yes. You can query PROGRAM_ERROR_POSITION_NV.

Should program objects be shared among rendering contexts in the
same manner as display lists and texture objects?

RESOLUTION: Yes.

How should this extension interact with color material?

RESOLUTION: It should not. Color material is a conventional
OpenGL vertex transform mode. It does not have a place for vertex
programs. If you want to emulate color material with vertex
programs, you would simply write a program where the material
parameters feed from the color vertex attribute.

Should there be a glMatrixMode or glActiveTextureARB style selector
for vertex attributes?

RESOLUTION: No. While this would let us reduce a lot of
enumerants down, it would make programming a hassle in lots
of cases. Consider having to change the vertex attribute
mode to enable a set of vertex arrays.

How should gets for vertex attribute array pointers?

RESOLUTION: Add new get commands. Using the existing calls
would require adding 4 sets of 16 enumerants stride, type, size,
and pointer. That's too many gets.

Instead add glGetVertexAttribNV and glGetVertexAttribPointervNV.
glGetVertexAttribNV is also useful for querying the current vertex
attribute.

glGet and glGetPointerv will not return vertex attribute array
pointers.

Why is the address register numbered and why is it a vector
register?

In the future, A0.y and A0.z and A0.w may exist. For this
extension, only A0.x is useful. Also in the future, there may be
more than one address register.

There's a nice consistency in thinking about all the registers
as 4-component vectors even if the address register has only one
usable component.

Should vertex programs and vertex state programs be required to
have a header token and an end token?

RESOLUTION: Yes.

The "!!VP1.0" and "!!VSP1.0" tokens start vertex programs and
vertex state programs respectively. Both types of programs must

NV_vertex_program NVIDIA OpenGL Extension Specifications

 440

end with the "END" token.

The initial header token reminds the programmer what type of program
they are writing. If vertex programs and vertex state programs are
ever read from disk files, the header token can serve as a magic
number for identifying vertex programs and vertex state programs.

The target type for vertex programs and vertex state programs can be
distinguished based on their respective grammars independent of the
initial header tokens, but the initial header tokens will make it
easier for programmers to distinguish the two program target types.

We expect programs to often be generated by concatenation of
program fragments. The "END" token will hopefully reduce bugs
due to specifying an incorrectly concatenated program.

It's tempting to make these additional header and end tokens
optional, but if there is a sanity check value in header and end
tokens, that value is undermined if the tokens are optional.

What should be said about rendering invariances?

RESOLUTION: See the Appendix A additions below.

The justification for the two rules cited is to support multi-pass
rendering when using vertex programs. Different rendering passes
will likely use different programs so there must be some means of
guaranteeing that two different programs can generate particular
identical vertex results between different passes.

In practice, this does limit the type of vertex program
implementations that are possible.

For example, consider a limited hardware implementation of vertex
programs that uses a different floating-point implementation
than the CPU's floating-point implementation. If the limited
hardware implementation can only run small vertex programs (say
the hardware provides on 4 temporary registers instead of the
required 12), the implementation is incorrect and non-conformant
if programs that only require 4 temporary registers use the vertex
program hardware, but programs that require more than 4 temporary
registers are implemented by the CPU.

This is a very important practical requirement. Consider a
multi-pass rendering algorithm where one pass uses a vertex program
that uses only 4 temporary registers, but a different pass uses a
vertex program that uses 5 temporary registers. If two programs
have instruction sequences that given the same input state compute
identical resulting vertex positions, the multi-pass algorithm
should generate identically positioned primitives for each pass.
But given the non-conformant vertex program implementation described
above, this could not be guaranteed.

This does not mean that schemes for splitting vertex program
implementations between dedicated hardware and CPUs are impossible.
If the CPU and dedicated vertex program hardware used IDENTICAL
floating-point implementations and therefore generated exactly

NVIDIA OpenGL Extension Specifications NV_vertex_program

 441

identical results, the above described could work.

While these invariance rules are vital for vertex programs operating
correctly for multi-pass algorithms, there is no requirement that
conventional OpenGL vertex transform mode will be invariant with
vertex program mode. A multi-pass algorithm should not assume
that one pass using vertex program mode and another pass using
conventional GL vertex transform mode will generate identically
positioned primitives.

Consider that while the conventional OpenGL vertex program mode
is repeatable with itself, the exact procedure used to transform
vertices is not specified nor is the procedure's precision
specified. The GL specification indicates that vertex coordinates
are transformed by the modelview matrix and then transformed by the
projection matrix. Some implementations may perform this sequence
of transformations exactly, but other implementations may transform
vertex coordinates by the composite of the modelview and projection
matrices (one matrix transform instead of two matrix transforms
in sequence). Given this implementation flexibility, there is no
way for a vertex program author to exactly duplicate the precise
computations used by the conventional OpenGL vertex transform mode.

The guidance to OpenGL application programs is clear. If you are
going to implement multi-pass rendering algorithms that require
certain invariances between the multiple passes, choose either
vertex program mode or the conventional OpenGL vertex transform
mode for your rendering passes, but do not mix the two modes.

What range of relative addressing offsets should be allowed?

RESOLUTION: -64 to 63.

Negative offsets are useful for accessing a table centered at zero
without extra bias instructions. Having the offsets support much
larger magnitudes just seems to increase the required instruction
widths. The -64 to 63 range seems like a reasonable compromise.

When EXT_secondary_color is supported, how does the GL_COLOR_SUM_EXT
enable affect vertex program mode?

RESOLUTION: The GL_COLOR_SUM_EXT enable has no affect when vertex
program mode is enabled.

When vertex program mode is enabled, the color sum operation is
always in operation. A program can "avoid" the color sum operation
by not writing the COL1 (or BFC1 when GL_VERTEX_PROGRAM_TWO_SIDE_NV)
vertex result registers because the default values of all vertex
result registers is (0,0,0,1). For the color sum operation,
the alpha value is always assumed zero. So by not writing the
secondary color vertex result registers, the program assures that
zero is added as part of the color sum operation.

If there is a cost to the color sum operation, OpenGL
implementations may be smart enough to determine at program bind
time whether a secondary color vertex result is generated and
implicitly disable the color sum operation.

NV_vertex_program NVIDIA OpenGL Extension Specifications

 442

Why must RCP of 1.0 always be 1.0?

This is important for 3D graphics so that non-projective textures
and orthogonal projections work as expected. Basically when q or
w is 1.0, things should work as expected.

Stronger requirements such as "RCP of -1.0 must always be -1.0"
are encouraged, but there is no compelling reason to state such
requirements explicitly as is the case for "RCP of 1.0 must always
be 1.0".

What happens when the source scalar value for the ARL instruction
is an extremely positive or extremely negative floating-point value?
Is there a problem mapping the value to a constrained integer range?

RESOLUTION: It is not a problem. Relative addressing can by offset
by a limited range of offsets (-64 to 63). Relative addressing
that falls outside of the 0 to 95 range of program parameter
registers is automatically mapped to (0,0,0,0).

Clamping the source scalar value for ARL to the range -64 to 160
inclusive is sufficient to ensure that relative addressing is out
of range.

How do you perform a 3-component normalize in three instructions?

#
R1 = (nx,ny,nz)
#
R0.xyz = normalize(R1)
R0.w = 1/sqrt(nx*nx + ny*ny + nz*nz)
#
DP3 R0.w, R1, R1;
RSQ R0.w, R0.w;
MUL R0.xyz, R1, R0.w;

How do you perform a 3-component cross product in two instructions?

#
Cross product | i j k | into R2.
| R0.x R0.y R0.z |
| R1.x R1.y R1.z |
#
MUL R2, R0.zxyw, R1.yzxw;
MAD R2, R0.yzxw, R1.zxyw, -R2;

How do you perform a 4-component vector absolute value in one
instruction?

#
Absolute value is the maximum of the negative and positive
components of a vector.
#
R1 = abs(R0)
#
MAX R1, R0, -R0;

NVIDIA OpenGL Extension Specifications NV_vertex_program

 443

How do you compute the determinant of a 3x3 matrix in three
instructions?

#
Determinant of | R0.x R0.y R0.z | into R3
| R1.x R1.y R1.z |
| R2.x R2.y R2.z |
#
MUL R3, R1.zxyw, R2.yzxw;
MAD R3, R1.yzxw, R2.zxyw, -R3;
DP3 R3, R0, R3;

How do you transform a vertex position by a 4x4 matrix and then
perform a homogeneous divide?

#
c[20] = modelview row 0
c[21] = modelview row 1
c[22] = modelview row 2
c[23] = modelview row 3
#
result = R5
#
DP4 R5.w, v[OPOS], C[23];
DP4 R5.x, v[OPOS], C[20];
DP4 R5.y, v[OPOS], C[21];
DP4 R5.z, v[OPOS], C[22];
RCP R11, R5.w;
MUL R5,R5,R11;

How do you perform a vector weighting of two vectors using a single
weight?

#
c[45] = (1.0, 1.0, 1.0, 1.0)
#
R2 = vector 0
R3 = vector 1
v[WGHT].x = scalar weight to blend vectors 0 and 1
result = R4 * v[WGHT].x + R4 * (1-v[WGHT])
#
ADD R11, -v[WGHT].x, c[45]; # compute (1-v[WGHT])
MUL R4, R3, R11;
MAD R4, v[WGHT].x, R3, R4

How do you reduce a value to some fundamental period such as 2*PI?

#
C[36] = (1.0/(2*PI), 2*PI, 0.0, 0.0)
#
R1.x = input value
R2 = result
#
MUL R0, R1, c[36].x;
EXP R4, R0.x;
MUL R2, R4.y, c[36].y;

NV_vertex_program NVIDIA OpenGL Extension Specifications

 444

How do you implement a simple specular and diffuse lighting
computation with an eye-space normal?

!!VP1.0
#
c[0-3] = modelview projection (composite) matrix
c[4-7] = modelview inverse transpose
c[32] = normalized eye-space light direction (infinite light)
c[33] = normalized constant eye-space half-angle vector (infinite viewer)
c[35].x = pre-multiplied monochromatic diffuse light color & diffuse material
c[35].y = pre-multiplied monochromatic ambient light color & diffuse material
c[36] = specular color
c[38].x = specular power
#
outputs homogenous position and color
#
DP4 o[HPOS].x, c[0], v[OPOS];
DP4 o[HPOS].y, c[1], v[OPOS];
DP4 o[HPOS].z, c[2], v[OPOS];
DP4 o[HPOS].w, c[3], v[OPOS];
DP3 R0.x, c[4], v[NRML];
DP3 R0.y, c[5], v[NRML];
DP3 R0.z, c[6], v[NRML]; # R0 = n' = transformed normal
DP3 R1.x, c[32], R0; # R1.x = Lpos DOT n'
DP3 R1.y, c[33], R0; # R1.y = hHat DOT n'
MOV R1.w, c[38].x; # R1.w = specular power
LIT R2, R1; # Compute lighting values
MAD R3, c[35].x, R2.y, c[35].y; # diffuse + emissive
MAD o[COL0].xyz, c[36], R2.z, R3; # + specular
END

Can you perturb transformed vertex positions with a vertex program?

Yes. Here is an example that performs an object-space diffuse
lighting computations and perturbs the vertex position based on
this lighting result. Do not take this example too seriously.

!!VP1.0
#
c[0-3] = modelview projection (composite) matrix
c[32] = normalized light direction in object-space
c[35] = yellow diffuse material, (1.0, 1.0, 0.0, 1.0)
c[64].x = 0.0
c[64].z = 0.125, a scaling factor
#
outputs diffuse illumination for color and perturbed position
#
DP3 R0, c[32], v[NRML]; # light direction DOT normal
MUL o[COL0].xyz, R0, c[35];
MAX R0, c[64].x, R0;
MUL R0, R0, v[NRML];
MUL R0, R0, c[64].z;
ADD R1, v[OPOS], -R0; # perturb object space position
DP4 o[HPOS].x, c[0], R1;
DP4 o[HPOS].y, c[1], R1;
DP4 o[HPOS].z, c[2], R1;
DP4 o[HPOS].w, c[3], R1;
END

NVIDIA OpenGL Extension Specifications NV_vertex_program

 445

What if more exponential precision is needed than provided by the
builtin EXP instruction?

A sequence of vertex program instructions can be used refine
the initial EXP approximation. The pseudo-macro below shows an
example of how to refine the EXP approximation.

The psuedo-macro requires 10 instructions, 1 temp register,
and 2 constant locations.

CE0 = { 9.61597636e-03, -1.32823968e-03, 1.47491097e-04, -1.08635004e-05 };
CE1 = { 1.00000000e+00, -6.93147182e-01, 2.40226462e-01, -5.55036440e-02 };

/* Rt != Ro && Rt != Ri */
EXP_MACRO(Ro:vector, Ri:scalar, Rt:vector) {

EXP Rt, Ri.x; /* Use appropriate component of Ri */
MAD Rt.w, c[CE0].w, Rt.y, c[CE0].z;
MAD Rt.w, Rt.w,Rt.y, c[CE0].y;
MAD Rt.w, Rt.w,Rt.y, c[CE0].x;
MAD Rt.w, Rt.w,Rt.y, c[CE1].w;
MAD Rt.w, Rt.w,Rt.y, c[CE1].z;
MAD Rt.w, Rt.w,Rt.y, c[CE1].y;
MAD Rt.w, Rt.w,Rt.y, c[CE1].x;
RCP Rt.w, Rt.w;
MUL Ro, Rt.w, Rt.x; /* Apply user write mask to Ro */

}

Simulation gives |max abs error| < 3.77e-07 over the range (0.0
<= x < 1.0). Actual vertex program precision may be slightly
less accurate than this.

What if more exponential precision is needed than provided by the
builtin LOG instruction?

The pseudo-macro requires 10 instructions, 1 temp register,
and 3 constant locations.

CL0 = { 2.41873696e-01, -1.37531206e-01, 5.20646796e-02, -9.31049418e-03 };
CL1 = { 1.44268966e+00, -7.21165776e-01, 4.78684813e-01, -3.47305417e-01 };
CL2 = { 1.0, NA, NA, NA };

/* Rt != Ro && Rt != Ri */
LOG_MACRO(Ro:vector, Ri:scalar, Rt:vector) {

LOG Rt, Ri.x; /* Use appropriate component of Ri */
ADD Rt.y, Rt.y, -c[CL2].x;
MAD Rt.w, c[CL0].w, Rt.y, c[CL0].z;
MAD Rt.w, Rt.w, Rt.y,c[CL0].y;
MAD Rt.w, Rt.w, Rt.y,c[CL0].x;
MAD Rt.w, Rt.w, Rt.y,c[CL1].w;
MAD Rt.w, Rt.w, Rt.y,c[CL1].z;
MAD Rt.w, Rt.w, Rt.y,c[CL1].y;
MAD Rt.w, Rt.w, Rt.y,c[CL1].x;
MAD Ro, Rt.w, Rt.y, Rt.x; /* Apply user write mask to Ro */

}

Simulation gives |max abs error| < 1.79e-07 over the range (1.0
<= x < 2.0). Actual vertex program precision may be slightly
less accurate than this.

NV_vertex_program NVIDIA OpenGL Extension Specifications

 446

New Procedures and Functions

void BindProgramNV(enum target, uint id);

void DeleteProgramsNV(sizei n, const uint *ids);

void ExecuteProgramNV(enum target, uint id, const float *params);

void GenProgramsNV(sizei n, uint *ids);

boolean AreProgramsResidentNV(sizei n, const uint *ids,
boolean *residences);

void RequestResidentProgramsNV(sizei n, uint *ids);

void GetProgramParameterfvNV(enum target, uint index,
enum pname, float *params);

void GetProgramParameterdvNV(enum target, uint index,
enum pname, double *params);

void GetProgramivNV(uint id, enum pname, int *params);

void GetProgramStringNV(uint id, enum pname, ubyte *program);

void GetTrackMatrixivNV(enum target, uint address,
enum pname, int *params);

void GetVertexAttribdvNV(uint index, enum pname, double *params);
void GetVertexAttribfvNV(uint index, enum pname, float *params);
void GetVertexAttribivNV(uint index, enum pname, int *params);

void GetVertexAttribPointervNV(uint index, enum pname, void **pointer);

boolean IsProgramNV(uint id);

void LoadProgramNV(enum target, uint id, sizei len,
const ubyte *program);

void ProgramParameter4fNV(enum target, uint index,
float x, float y, float z, float w)

void ProgramParameter4dNV(enum target, uint index,
double x, double y, double z, double w)

void ProgramParameter4dvNV(enum target, uint index,
const double *params);

void ProgramParameter4fvNV(enum target, uint index,
const float *params);

void ProgramParameters4dvNV(enum target, uint index,
uint num, const double *params);

void ProgramParameters4fvNV(enum target, uint index,
uint num, const float *params);

void TrackMatrixNV(enum target, uint address,
enum matrix, enum transform);

NVIDIA OpenGL Extension Specifications NV_vertex_program

 447

void VertexAttribPointerNV(uint index, int size, enum type, sizei stride,
const void *pointer);

void VertexAttrib1sNV(uint index, short x);
void VertexAttrib1fNV(uint index, float x);
void VertexAttrib1dNV(uint index, double x);
void VertexAttrib2sNV(uint index, short x, short y);
void VertexAttrib2fNV(uint index, float x, float y);
void VertexAttrib2dNV(uint index, double x, double y);
void VertexAttrib3sNV(uint index, short x, short y, short z);
void VertexAttrib3fNV(uint index, float x, float y, float z);
void VertexAttrib3dNV(uint index, double x, double y, double z);
void VertexAttrib4sNV(uint index, short x, short y, short z, short w);
void VertexAttrib4fNV(uint index, float x, float y, float z, float w);
void VertexAttrib4dNV(uint index, double x, double y, double z, double w);
void VertexAttrib4ubNV(uint index, ubyte x, ubyte y, ubyte z, ubyte w);

void VertexAttrib1svNV(uint index, const short *v);
void VertexAttrib1fvNV(uint index, const float *v);
void VertexAttrib1dvNV(uint index, const double *v);
void VertexAttrib2svNV(uint index, const short *v);
void VertexAttrib2fvNV(uint index, const float *v);
void VertexAttrib2dvNV(uint index, const double *v);
void VertexAttrib3svNV(uint index, const short *v);
void VertexAttrib3fvNV(uint index, const float *v);
void VertexAttrib3dvNV(uint index, const double *v);
void VertexAttrib4svNV(uint index, const short *v);
void VertexAttrib4fvNV(uint index, const float *v);
void VertexAttrib4dvNV(uint index, const double *v);
void VertexAttrib4ubvNV(uint index, const ubyte *v);

void VertexAttribs1svNV(uint index, sizei n, const short *v);
void VertexAttribs1fvNV(uint index, sizei n, const float *v);
void VertexAttribs1dvNV(uint index, sizei n, const double *v);
void VertexAttribs2svNV(uint index, sizei n, const short *v);
void VertexAttribs2fvNV(uint index, sizei n, const float *v);
void VertexAttribs2dvNV(uint index, sizei n, const double *v);
void VertexAttribs3svNV(uint index, sizei n, const short *v);
void VertexAttribs3fvNV(uint index, sizei n, const float *v);
void VertexAttribs3dvNV(uint index, sizei n, const double *v);
void VertexAttribs4svNV(uint index, sizei n, const short *v);
void VertexAttribs4fvNV(uint index, sizei n, const float *v);
void VertexAttribs4dvNV(uint index, sizei n, const double *v);
void VertexAttribs4ubvNV(uint index, sizei n, const ubyte *v);

New Tokens

Accepted by the <cap> parameter of Disable, Enable, and IsEnabled,
and by the <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv,
and GetDoublev, and by the <target> parameter of BindProgramNV,
ExecuteProgramNV, GetProgramParameter[df]vNV, GetTrackMatrixivNV,
LoadProgramNV, ProgramParameter[s]4[df][v]NV, and TrackMatrixNV:

VERTEX_PROGRAM_NV 0x8620

NV_vertex_program NVIDIA OpenGL Extension Specifications

 448

Accepted by the <cap> parameter of Disable, Enable, and IsEnabled,
and by the <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv,
and GetDoublev:

VERTEX_PROGRAM_POINT_SIZE_NV 0x8642
VERTEX_PROGRAM_TWO_SIDE_NV 0x8643

Accepted by the <target> parameter of ExecuteProgramNV and
LoadProgramNV:

VERTEX_STATE_PROGRAM_NV 0x8621

Accepted by the <pname> parameter of GetVertexAttrib[dfi]vNV:

ATTRIB_ARRAY_SIZE_NV 0x8623
ATTRIB_ARRAY_STRIDE_NV 0x8624
ATTRIB_ARRAY_TYPE_NV 0x8625
CURRENT_ATTRIB_NV 0x8626

Accepted by the <pname> parameter of GetProgramParameterfvNV
and GetProgramParameterdvNV:

PROGRAM_PARAMETER_NV 0x8644

Accepted by the <pname> parameter of GetVertexAttribPointervNV:

ATTRIB_ARRAY_POINTER_NV 0x8645

Accepted by the <pname> parameter of GetProgramivNV:

PROGRAM_TARGET_NV 0x8646
PROGRAM_LENGTH_NV 0x8627
PROGRAM_RESIDENT_NV 0x8647

Accepted by the <pname> parameter of GetProgramStringNV:

PROGRAM_STRING_NV 0x8628

Accepted by the <pname> parameter of GetTrackMatrixivNV:

TRACK_MATRIX_NV 0x8648
TRACK_MATRIX_TRANSFORM_NV 0x8649

Accepted by the <pname> parameter of GetBooleanv, GetIntegerv,
GetFloatv, and GetDoublev:

MAX_TRACK_MATRIX_STACK_DEPTH_NV 0x862E
MAX_TRACK_MATRICES_NV 0x862F
CURRENT_MATRIX_STACK_DEPTH_NV 0x8640
CURRENT_MATRIX_NV 0x8641
VERTEX_PROGRAM_BINDING_NV 0x864A
PROGRAM_ERROR_POSITION_NV 0x864B

NVIDIA OpenGL Extension Specifications NV_vertex_program

 449

Accepted by the <matrix> parameter of TrackMatrixNV:

NONE
MODELVIEW
PROJECTION
TEXTURE
COLOR (if ARB_imaging is supported)
MODELVIEW_PROJECTION_NV 0x8629

Accepted by the <matrix> parameter of TrackMatrixNV and by the
<mode> parameter of MatrixMode:

MATRIX0_NV 0x8630
MATRIX1_NV 0x8631
MATRIX2_NV 0x8632
MATRIX3_NV 0x8633
MATRIX4_NV 0x8634
MATRIX5_NV 0x8635
MATRIX6_NV 0x8636
MATRIX7_NV 0x8637

(Enumerants 0x8638 through 0x863F are reserved for further matrix
enumerants 8 through 15.)

Accepted by the <transform> parameter of TrackMatrixNV:

IDENTITY_NV 0x862A
INVERSE_NV 0x862B
TRANSPOSE_NV 0x862C
INVERSE_TRANSPOSE_NV 0x862D

Accepted by the <array> parameter of EnableClientState and
DisableClientState, by the <cap> parameter of IsEnabled, and by
the <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv, and
GetDoublev:

VERTEX_ATTRIB_ARRAY0_NV 0x8650
VERTEX_ATTRIB_ARRAY1_NV 0x8651
VERTEX_ATTRIB_ARRAY2_NV 0x8652
VERTEX_ATTRIB_ARRAY3_NV 0x8653
VERTEX_ATTRIB_ARRAY4_NV 0x8654
VERTEX_ATTRIB_ARRAY5_NV 0x8655
VERTEX_ATTRIB_ARRAY6_NV 0x8656
VERTEX_ATTRIB_ARRAY7_NV 0x8657
VERTEX_ATTRIB_ARRAY8_NV 0x8658
VERTEX_ATTRIB_ARRAY9_NV 0x8659
VERTEX_ATTRIB_ARRAY10_NV 0x865A
VERTEX_ATTRIB_ARRAY11_NV 0x865B
VERTEX_ATTRIB_ARRAY12_NV 0x865C
VERTEX_ATTRIB_ARRAY13_NV 0x865D
VERTEX_ATTRIB_ARRAY14_NV 0x865E
VERTEX_ATTRIB_ARRAY15_NV 0x865F

NV_vertex_program NVIDIA OpenGL Extension Specifications

 450

Accepted by the <target> parameter of GetMapdv, GetMapfv, GetMapiv,
Map1d and Map1f and by the <cap> parameter of Enable, Disable, and
IsEnabled, and by the <pname> parameter of GetBooleanv, GetIntegerv,
GetFloatv, and GetDoublev:

MAP1_VERTEX_ATTRIB0_4_NV 0x8660
MAP1_VERTEX_ATTRIB1_4_NV 0x8661
MAP1_VERTEX_ATTRIB2_4_NV 0x8662
MAP1_VERTEX_ATTRIB3_4_NV 0x8663
MAP1_VERTEX_ATTRIB4_4_NV 0x8664
MAP1_VERTEX_ATTRIB5_4_NV 0x8665
MAP1_VERTEX_ATTRIB6_4_NV 0x8666
MAP1_VERTEX_ATTRIB7_4_NV 0x8667
MAP1_VERTEX_ATTRIB8_4_NV 0x8668
MAP1_VERTEX_ATTRIB9_4_NV 0x8669
MAP1_VERTEX_ATTRIB10_4_NV 0x866A
MAP1_VERTEX_ATTRIB11_4_NV 0x866B
MAP1_VERTEX_ATTRIB12_4_NV 0x866C
MAP1_VERTEX_ATTRIB13_4_NV 0x866D
MAP1_VERTEX_ATTRIB14_4_NV 0x866E
MAP1_VERTEX_ATTRIB15_4_NV 0x866F

Accepted by the <target> parameter of GetMapdv, GetMapfv, GetMapiv,
Map2d and Map2f and by the <cap> parameter of Enable, Disable, and
IsEnabled, and by the <pname> parameter of GetBooleanv, GetIntegerv,
GetFloatv, and GetDoublev:

MAP2_VERTEX_ATTRIB0_4_NV 0x8670
MAP2_VERTEX_ATTRIB1_4_NV 0x8671
MAP2_VERTEX_ATTRIB2_4_NV 0x8672
MAP2_VERTEX_ATTRIB3_4_NV 0x8673
MAP2_VERTEX_ATTRIB4_4_NV 0x8674
MAP2_VERTEX_ATTRIB5_4_NV 0x8675
MAP2_VERTEX_ATTRIB6_4_NV 0x8676
MAP2_VERTEX_ATTRIB7_4_NV 0x8677
MAP2_VERTEX_ATTRIB8_4_NV 0x8678
MAP2_VERTEX_ATTRIB9_4_NV 0x8679
MAP2_VERTEX_ATTRIB10_4_NV 0x867A
MAP2_VERTEX_ATTRIB11_4_NV 0x867B
MAP2_VERTEX_ATTRIB12_4_NV 0x867C
MAP2_VERTEX_ATTRIB13_4_NV 0x867D
MAP2_VERTEX_ATTRIB14_4_NV 0x867E
MAP2_VERTEX_ATTRIB15_4_NV 0x867F

Additions to Chapter 2 of the OpenGL 1.2.1 Specification (OpenGL Operation)

-- Section 2.10 "Coordinate Transformations"

Add this initial discussion:

"Per-vertex parameters are transformed before the transformation
results are used to generate primitives for rasterization, establish
a raster position, or generate vertices for selection or feedback.

Each vertex's per-vertex parameters are transformed by one of
two vertex transformation modes. The first vertex transformation mode
is GL's conventional vertex transformation model. The second mode,

NVIDIA OpenGL Extension Specifications NV_vertex_program

 451

known as 'vertex program' mode, transforms the vertex's per-vertex
parameters by an application-supplied vertex program.

Vertex program mode is enabled and disabled, respectively, by

void Enable(enum target);

and

void Disable(enum target);

with target equal to VERTEX_PROGRAM_NV. When vertex program mode
is enabled, vertices are transformed by the currently bound vertex
program as discussed in section 2.14."

Update the original initial paragraph in the section to read:

"When vertex program mode is disabled, vertices, normals, and texture
coordinates are transformed before their coordinates are used to
produce an image in the framebuffer. We begin with a description
of how vertex coordinates are transformed and how the transformation
is controlled in the case when vertex program mode is disabled. The
discussion that continues through section 2.13 applies when vertex
program mode is disabled."

-- Section 2.10.2 "Matrices"

Change the first paragraph to read:

"The projection matrix and model-view matrix are set and modified
with a variety of commands. The affected matrix is determined by
the current matrix mode. The current matrix mode is set with

void MatrixMode(enum mode);

which takes one of the pre-defined constants TEXTURE, MODELVIEW,
COLOR, PROJECTION, or MATRIXi_NV as the argument. In the case
of MATRIXi_NV, i is an integer between 0 and n-1 indicating one
of n tracking matrices where n is the value of the implementation
defined constant MAX_TRACK_MATRICES_NV. TEXTURE is described
later in section 2.10.2, and COLOR is described in section 3.6.3.
The tracking matrices of the form MATRIXi_NV are described in
section 2.14.5. If the current matrix mode is MODELVIEW, then
matrix operations apply to the model-view matrix; if PROJECTION,
then they apply to the projection matrix."

Change the last paragraph to read:

"The state required to implement transformations consists of a n-value
integer indicating the current matrix mode (where n is 4 + the number
of tracking matrices supported), a stack of at least two 4x4 matrices
for each of COLOR, PROJECTION, and TEXTURE with associated stack
pointers, n stacks (where n is at least 8) of at least one 4x4 matrix
for each MATRIXi_NV with associated stack pointers, and a stack of at
least 32 4x4 matrices with an associated stack pointer for MODELVIEW.
Initially, there is only one matrix on each stack, and all matrices
are set to the identity. The initial matrix mode is MODELVIEW."

NV_vertex_program NVIDIA OpenGL Extension Specifications

 452

-- NEW Section 2.14 "Vertex Programs"

"The conventional GL vertex transformation model described
in sections 2.10 through 2.13 is a configurable but essentially
hard-wired sequence of per-vertex computations based on a canonical
set of per-vertex parameters and vertex transformation related
state such as transformation matrices, lighting parameters, and
texture coordinate generation parameters.

The general success and utility of the conventional GL vertex
transformation model reflects its basic correspondence to the
typical vertex transformation requirements of 3D applications.

However when the conventional GL vertex transformation model
is not sufficient, the vertex program mode provides a substantially
more flexible model for vertex transformation. The vertex program
mode permits applications to define their own vertex programs.

2.14.1 The Vertex Program Execution Model

A vertex program is a sequence of floating-point 4-component vector
operations that operate on per-vertex attributes and program
parameters. Vertex programs execute on a per-vertex basis and
operate on each vertex completely independently from the processing
of other vertices. Vertex programs execute a finite fixed sequence
of instructions with no branching or looping. Vertex programs
execute without data hazards so results computed in one operation can
be used immediately afterwards. The result of a vertex program is
a set of vertex result vectors that becomes the transformed vertex
parameters used by primitive assembly.

Vertex programs use a specific well-defined instruction set, register
set, and operational model defined in the following sections.

The vertex program register set consists of five types of registers
described in the following five sections.

2.14.1.1 The Vertex Attribute Registers

The Vertex Attribute Registers are sixteen 4-component
vector floating-point registers containing the current vertex's
per-vertex attributes. These registers are numbered 0 through 15.
These registers are private to each vertex program invocation and are
initialized at each vertex program invocation by the current vertex
attribute state specified with VertexAttribNV commands. These registers
are read-only during vertex program execution. The VertexAttribNV
commands used to update the vertex attribute registers can be issued
both outside and inside of Begin/End pairs. Vertex program execution
is provoked by updating vertex attribute zero. Updating vertex
attribute zero outside of a Begin/End pair is ignored without
generating any error (identical to the Vertex command operation).

The commands

void VertexAttrib{1234}{sfd}NV(uint index, T coords);
void VertexAttrib{1234}{sfd}vNV(uint index, T coords);

NVIDIA OpenGL Extension Specifications NV_vertex_program

 453

void VertexAttrib4ubNV(uint index, T coords);
void VertexAttrib4ubvNV(uint index, T coords);

specify the particular current vertex attribute indicated by index.
The coordinates for each vertex attribute are named x, y, z, and w.
The VertexAttrib1NV family of commands sets the x coordinate to the
provided single argument while setting y and z to 0 and w to 1.
Similarly, VertexAttrib2NV sets x and y to the specified values,
z to 0 and w to 1; VertexAttrib3NV sets x, y, and z, with w set
to 1, and VertexAttrib4NV sets all four coordinates. The error
INVALID_VALUE is generated if index is greater than 15.

No conversions are applied to the vertex attributes specified as type
short, int, float, or double. However, vertex attributes specified
as type ubyte are converted as described by Table 2.6.

The commands

void VertexAttribs{1234}{sfd}vNV(uint index, sizei n, T coords[]);
void VertexAttribs4ubvNV(uint index, sizei n, GLubyte coords[]);

specify a contiguous set of n vertex attributes. The effect of

VertexAttribs{1234}{sfd}vNV(index, n, coords)

is the same as the command sequence

#define NUM k /* where k is 1, 2, 3, or 4 components */
int i;
for (i=n-1; i>=0; i--) {

VertexAttrib{NUM}{sfd}vNV(i+index, &coords[i*NUM]);
}

VertexAttribs4ubvNV behaves similarly.

The VertexAttribNV calls equivalent to VertexAttribsNV are issued in
reverse order so that vertex program execution is provoked when index
is zero only after all the other vertex attributes have first been
specified.

2.14.1.2 The Program Parameter Registers

The Program Parameter Registers are ninety-six 4-component
floating-point vector registers containing the vertex program
parameters. These registers are numbered 0 through 95. This
relatively large set of registers is intended to hold parameters
such as matrices, lighting parameters, and constants required by
vertex programs. Vertex program parameter registers can be updated
in one of two ways: by the ProgramParameterNV commands outside
of a Begin/End pair or by a vertex state program executed outside
of a Begin/End pair (vertex state programs are discussed in section
2.14.3).

NV_vertex_program NVIDIA OpenGL Extension Specifications

 454

The commands

void ProgramParameter4fNV(enum target, uint index,
float x, float y, float z, float w)

void ProgramParameter4dNV(enum target, uint index,
double x, double y, double z, double w)

specify the particular program parameter indicated by index.
The coordinates values x, y, and z are assigned to the respective
components of the particular program parameter. target must
be VERTEX_PROGRAM_NV.

The commands

void ProgramParameter4dvNV(enum target, uint index, double *params);
void ProgramParameter4fvNV(enum target, uint index, float *params);

operate identically to ProgramParameter4fNV and ProgramParameter4dNV
respectively except that the program parameters are passed as an
array of four components.

The commands

void ProgramParameters4dvNV(enum target, uint index,
uint num, double *params);

void ProgramParameters4fvNV(enum target, uint index,
uint num, float *params);

specify a contiguous set of num program parameters. The effect is
the same as

for (i=index; i<index+num; i++) {
ProgramParameter4{fd}vNV(i, params + i*4);

}

The program parameter registers are shared to all vertex program
invocations within a rendering context. ProgramParameterNV command
updates and vertex state program executions are serialized with
respect to vertex program invocations and other vertex state program
executions.

Writes to the program parameter registers during vertex state program
execution can be maskable on a per-component basis.

The error INVALID_VALUE is generated if any ProgramParameterNV has
an index is greater than 95.

The initial value of all ninety-six program parameter registers is
(0,0,0,0).

2.14.1.3 The Address Register

The Address Register is a single 4-component vector signed 32-bit
integer register though only the x component of the vector is
accessible. The register is private to each vertex program invocation
and is initialized to (0,0,0,0) at every vertex program invocation.
This register can be written during vertex program execution (but

NVIDIA OpenGL Extension Specifications NV_vertex_program

 455

not read) and its value can be used for as a relative offset for
reading vertex program parameter registers. Only the vertex program
parameter registers can be read using relative addressing (writes
using relative addressing are not supported).

See the discussion of relative addressing of program parameters
in section 2.14.1.9 and the discussion of the ARL instruction in
section 2.14.1.10.1.

2.14.1.4 The Temporary Registers

The Temporary Registers are twelve 4-component floating-point vector
registers used to hold temporary results during vertex program
execution. These registers are numbered 0 through 11. These
registers are private to each vertex program invocation and
initialized to (0,0,0,0) at every vertex program invocation. These
registers can be read and written during vertex program execution.
Writes to these registers can be maskable on a per-component basis.

2.14.1.5 The Vertex Result Register Set

The Vertex Result Registers are fifteen 4-component floating-point
vector registers used to write the results of a vertex program.
Each register value is initialized to (0,0,0,1) at the invocation
of each vertex program. Writes to the vertex result registers can
be maskable on a per-component basis. These registers are named in
Table X.1 and further discussed below.

Vertex Result Component
Register Name Description Interpretation
-------------- --------------------------------- --------------
HPOS Homogeneous clip space position (x,y,z,w)
COL0 Primary color (front-facing) (r,g,b,a)
COL1 Secondary color (front-facing) (r,g,b,a)
BFC0 Back-facing primary color (r,g,b,a)
BFC1 Back-facing secondary color (r,g,b,a)
FOGC Fog coordinate (f,*,*,*)
PSIZ Point size (p,*,*,*)
TEX0 Texture coordinate set 0 (s,t,r,q)
TEX1 Texture coordinate set 1 (s,t,r,q)
TEX2 Texture coordinate set 2 (s,t,r,q)
TEX3 Texture coordinate set 3 (s,t,r,q)
TEX4 Texture coordinate set 4 (s,t,r,q)
TEX5 Texture coordinate set 5 (s,t,r,q)
TEX6 Texture coordinate set 6 (s,t,r,q)
TEX7 Texture coordinate set 7 (s,t,r,q)

Table X.1: Vertex Result Registers.

HPOS is the transformed vertex's homogeneous clip space position.
The vertex's homogeneous clip space position is converted to
normalized device coordinates and transformed to window coordinates
as described at the end of section 2.10 and in section 2.11.
Further processing (subsequent to vertex program termination)
is responsible for clipping primitives assembled from vertex
program-generated vertices as described in section 2.10 but all

NV_vertex_program NVIDIA OpenGL Extension Specifications

 456

client-defined clip planes are treated as if they are disabled when
vertex program mode is enabled.

Four distinct color results can be generated for each vertex.
COL0 is the transformed vertex's front-facing primary color.
COL1 is the transformed vertex's front-facing secondary color.
BFC0 is the transformed vertex's back-facing primary color. BFC1 is
the transformed vertex's back-facing secondary color.

Primitive coloring may operate in two-sided color mode. This behavior
is enabled and disabled by calling Enable or Disable with the
symbolic value VERTEX_PROGRAM_TWO_SIDE_NV. The selection between
the back-facing colors and the front-facing colors depends on the
primitive of which the vertex is a part. If the primitive is a
point or a line segment, the front-facing colors are always selected.
If the primitive is a polygon and two-sided color mode is disabled,
the front-facing colors are selected. If it is a polygon and
two-sided color mode is enabled, then the selection is based on the
sign of the (clipped or unclipped) polygon's signed area computed in
window coordinates. This facingness determination is identical to
the two-sided lighting facingness determination described in section
2.13.1.

The selected primary and secondary colors for each primitive are
clamped to the range [0,1] and then interpolated across the assembled
primitive during rasterization with at least 8-bit accuracy for each
color component.

FOGC is the transformed vertex's fog coordinate. The register's
first floating-point component is interpolated across the assembled
primitive during rasterization and used as the fog distance to
compute per-fragment the fog factor when fog is enabled. However,
if both fog and vertex program mode are enabled, but the FOG vertex
result register is not written, the fog factor is overridden to 1.0.
The register's other three components are ignored.

Point size determination may operate in program-specified point
size mode. This behavior is enabled and disabled by calling Enable
or Disable with the symbolic value VERTEX_PROGRAM_POINT_SIZE_NV.
If the vertex is for a point primitive and the mode is enabled
and the PSIZ vertex result is written, the point primitive's size
is determined by the clamped x component of the PSIZ register.
Otherwise (because vertex program mode is disabled, program-specified
point size mode is disabled, or because the vertex program did not
write PSIZ), the point primitive's size is determined by the point
size state (the state specified using the PointSize command).

The PSIZ register's x component is clamped to the range zero through
either the hi value of ALIASED_POINT_SIZE_RANGE if point smoothing
is disabled or the hi value of the SMOOTH_POINT_SIZE_RANGE if
point smoothing is enabled. The register's other three components
are ignored.

If the vertex is not for a point primitive, the value of the
PSIZ vertex result register is ignored.

TEX0 through TEX7 are the transformed vertex's texture coordinate

NVIDIA OpenGL Extension Specifications NV_vertex_program

 457

sets for texture units 0 through 7. These floating-point coordinates
are interpolated across the assembled primitive during rasterization
and used for accessing textures. If the number of texture units
supported is less than eight, the values of vertex result registers
that do not correspond to existent texture units are ignored.

2.14.1.6 Semantic Meaning for Vertex Attributes and Program Parameters

One important distinction between the conventional GL vertex
transformation mode and the vertex program mode is that per-vertex
parameters and other state parameters in vertex program mode do
not have dedicated semantic interpretations the way that they do
with the conventional GL vertex transformation mode.

For example, in the conventional GL vertex transformation mode,
the Normal command specifies a per-vertex normal. The semantic that
the Normal command supplies a normal for lighting is established because
that is how the per-vertex attribute supplied by the Normal command
is used by the conventional GL vertex transformation mode.
Similarly, other state parameters such as a light source position have
semantic interpretations based on how the conventional GL vertex
transformation model uses each particular parameter.

In contrast, vertex attributes and program parameters for vertex
programs have no pre-defined semantic meanings. The meaning of
a vertex attribute or program parameter in vertex program mode is
defined by how the vertex attribute or program parameter is used by
the current vertex program to compute and write values to the Vertex
Result Registers. This is the reason that per-vertex attributes and
program parameters for vertex programs are numbered instead of named.

For convenience however, the existing per-vertex parameters for the
conventional GL vertex transformation mode (vertices, normals,
colors, fog coordinates, vertex weights, and texture coordinates) are
aliased to numbered vertex attributes. This aliasing is specified in
Table X.2. The table includes how the various conventional components
map to the 4-component vertex attribute components.

NV_vertex_program NVIDIA OpenGL Extension Specifications

 458

Vertex
Attribute Conventional Conventional
Register Per-vertex Conventional Component
Number Parameter Per-vertex Parameter Command Mapping
--------- --------------- ----------------------------------- ------------
0 vertex position Vertex x,y,z,w
1 vertex weights VertexWeightEXT w,0,0,1
2 normal Normal x,y,z,1
3 primary color Color r,g,b,a
4 secondary color SecondaryColorEXT r,g,b,1
5 fog coordinate FogCoordEXT fc,0,0,1
6 - - -
7 - - -
8 texture coord 0 MultiTexCoord(GL_TEXTURE0_ARB, ...) s,t,r,q
9 texture coord 1 MultiTexCoord(GL_TEXTURE1_ARB, ...) s,t,r,q
10 texture coord 2 MultiTexCoord(GL_TEXTURE2_ARB, ...) s,t,r,q
11 texture coord 3 MultiTexCoord(GL_TEXTURE3_ARB, ...) s,t,r,q
12 texture coord 4 MultiTexCoord(GL_TEXTURE4_ARB, ...) s,t,r,q
13 texture coord 5 MultiTexCoord(GL_TEXTURE5_ARB, ...) s,t,r,q
14 texture coord 6 MultiTexCoord(GL_TEXTURE6_ARB, ...) s,t,r,q
15 texture coord 7 MultiTexCoord(GL_TEXTURE7_ARB, ...) s,t,r,q

Table X.2: Aliasing of vertex attributes with conventional per-vertex
parameters.

Only vertex attribute zero is treated specially because it is
the attribute that provokes the execution of the vertex program;
this is the attribute that aliases to the Vertex command's vertex
coordinates.

The result of a vertex program is the set of post-transformation
vertex parameters written to the Vertex Result Registers.
All vertex programs must write a homogeneous clip space position, but
the other Vertex Result Registers can be optionally written.

Clipping and culling are not the responsibility of vertex programs
because these operations assume the assembly of multiple vertices
into a primitive. View frustum clipping is performed subsequent to
vertex program execution. Clip planes are not supported in vertex
program mode.

2.14.1.7 Vertex Program Specification

Vertex programs are specified as an array of ubytes. The array is
a string of ASCII characters encoding the program.

The command

LoadProgramNV(enum target, uint id, sizei len,
const ubyte *program);

loads a vertex program when the target parameter is VERTEX_PROGRAM_NV.
Multiple programs can be loaded with different names. id names the
program to load. The name space for programs is the positive integers
(zero is reserved). The error INVALID_VALUE occurs if a program is
loaded with an id of zero. The error INVALID_OPERATION is generated
if a program is loaded for an id that is currently loaded with a

NVIDIA OpenGL Extension Specifications NV_vertex_program

 459

program of a different program target. Managing the program name
space and binding to vertex programs is discussed later in section
2.14.1.8.

program is a pointer to an array of ubytes that represents the
program being loaded. The length of the array is indicated by len.

A second program target type known as vertex state programs is
discussed in 2.14.4.

At program load time, the program is parsed into a set of tokens
possibly separated by white space. Spaces, tabs, newlines, carriage
returns, and comments are considered whitespace. Comments begin with
the character "#" and are terminated by a newline, a carriage return,
or the end of the program array.

The Backus-Naur Form (BNF) grammar below specifies the syntactically
valid sequences for vertex programs. The set of valid tokens can be
inferred from the grammar. The token "" represents an empty string
and is used to indicate optional rules. A program is invalid if it
contains any undefined tokens or characters.

<program> ::= "!!VP1.0" <instructionSequence> "END"

<instructionSequence> ::= <instructionSequence> <instructionLine>
| <instructionLine>

<instructionLine> ::= <instruction> ";"

<instruction> ::= <ARL-instruction>
| <VECTORop-instruction>
| <SCALARop-instruction>
| <BINop-instruction>
| <TRIop-instruction>

<ARL-instruction> ::= "ARL" <addrReg> "," <scalarSrcReg>

<VECTORop-instruction> ::= <VECTORop> <maskedDstReg> "," <swizzleSrcReg>

<SCALARop-instruction> ::= <SCALARop> <maskedDstReg> "," <scalarSrcReg>

<BINop-instruction> ::= <BINop> <maskedDstReg> ","
<swizzleSrcReg> "," <swizzleSrcReg>

<TRIop-instruction> ::= <TRIop> <maskedDstReg> ","
<swizzleSrcReg> "," <swizzleSrcReg> ","
<swizzleSrcReg>

<VECTORop> ::= "MOV"
| "LIT"

<SCALARop> ::= "RCP"
| "RSQ"
| "EXP"
| "LOG"

NV_vertex_program NVIDIA OpenGL Extension Specifications

 460

<BINop> ::= "MUL"
| "ADD"
| "DP3"
| "DP4"
| "DST"
| "MIN"
| "MAX"
| "SLT"
| "SGE"

<TRIop> ::= "MAD"

<scalarSrcReg> ::= <optionalSign> <srcReg> <scalarSuffix>

<swizzleSrcReg> ::= <optionalSign> <srcReg> <swizzleSuffix>

<maskedDstReg> ::= <dstReg> <optionalMask>

<optionalMask> ::= ""
| "." "x"
| "." "y"
| "." "x" "y"
| "." "z"
| "." "x" "z"
| "." "y" "z"
| "." "x" "y" "z"
| "." "w"
| "." "x" "w"
| "." "y" "w"
| "." "x" "y" "w"
| "." "z" "w"
| "." "x" "z" "w"
| "." "y" "z" "w"
| "." "x" "y" "z" "w"

<optionalSign> ::= "-"
| ""

<srcReg> ::= <vertexAttribReg>
| <progParamReg>
| <temporaryReg>

<dstReg> ::= <temporaryReg>
| <vertexResultReg>

<vertexAttribReg> ::= "v" "[" vertexAttribRegNum "]"

NVIDIA OpenGL Extension Specifications NV_vertex_program

 461

<vertexAttribRegNum> ::= decimal integer from 0 to 15 inclusive
| "OPOS"
| "WGHT"
| "NRML"
| "COL0"
| "COL1"
| "FOGC"
| "TEX0"
| "TEX1"
| "TEX2"
| "TEX3"
| "TEX4"
| "TEX5"
| "TEX6"
| "TEX7"

<progParamReg> ::= <absProgParamReg>
| <relProgParamReg>

<absProgParamReg> ::= "c" "[" <progParamRegNum> "]"

<progParamRegNum> ::= decimal integer from 0 to 95 inclusive

<relProgParamReg> ::= "c" "[" <addrReg> "]"
| "c" "[" <addrReg> "+" <progParamPosOffset> "]"
| "c" "[" <addrReg> "-" <progParamNegOffset> "]"

<progParamPosOffset> ::= decimal integer from 0 to 63 inclusive

<progParamNegOffset> ::= decimal integer from 0 to 64 inclusive

<addrReg> ::= "A0" "." "x"

<temporaryReg> ::= "R0"
| "R1"
| "R2"
| "R3"
| "R4"
| "R5"
| "R6"
| "R7"
| "R8"
| "R9"
| "R10"
| "R11"

<vertexResultReg> ::= "o" "[" vertexResultRegName "]"

NV_vertex_program NVIDIA OpenGL Extension Specifications

 462

<vertexResultRegName> ::= "HPOS"
| "COL0"
| "COL1"
| "BFC0"
| "BFC1"
| "FOGC"
| "PSIZ"
| "TEX0"
| "TEX1"
| "TEX2"
| "TEX3"
| "TEX4"
| "TEX5"
| "TEX6"
| "TEX7"

<scalarSuffix> ::= "." <component>

<swizzleSuffix> ::= ""
| "." <component>
| "." <component> <component>

<component> <component>

<component> ::= "x"
| "y"
| "z"
| "w"

The <vertexAttribRegNum> rule matches both register numbers 0 through
15 and a set of mnemonics that abbreviate the aliasing of conventional
the per-vertex parameters to vertex attribute register numbers.
Table X.3 shows the mapping from mnemonic to vertex attribute register
number and what the mnemonic abbreviates.

Vertex Attribute
Mnemonic Register Number Meaning
-------- ---------------- --------------------
"OPOS" 0 object position
"WGHT" 1 vertex weight
"NRML" 2 normal
"COL0" 3 primary color
"COL1" 4 secondary color
"FOGC" 5 fog coordinate
"TEX0" 8 texture coordinate 0
"TEX1" 9 texture coordinate 1
"TEX2" 10 texture coordinate 2
"TEX3" 11 texture coordinate 3
"TEX4" 12 texture coordinate 4
"TEX5" 13 texture coordinate 5
"TEX6" 14 texture coordinate 6
"TEX7" 15 texture coordinate 7

Table X.3: The mapping between vertex attribute register numbers,
mnemonics, and meanings.

A vertex programs fails to load if it does not write at least one
component of the HPOS register.

NVIDIA OpenGL Extension Specifications NV_vertex_program

 463

A vertex program fails to load if it contains more than 128
instructions.

A vertex program fails to load if any instruction sources more than
one unique program parameter register.

A vertex program fails to load if any instruction sources more than
one unique vertex attribute register.

The error INVALID_OPERATION is generated if a vertex program fails
to load because it is not syntactically correct or for one of the
semantic restrictions listed above.

The error INVALID_OPERATION is generated if a program is loaded for
id when id is currently loaded with a program of a different target.

A successfully loaded vertex program is parsed into a sequence of
instructions. Each instruction is identified by its tokenized name.
The operation of these instructions when executed is defined in
section 2.14.1.10.

A successfully loaded program replaces the program previously assigned
to the name specified by id. If the OUT_OF_MEMORY error is generated
by LoadProgramNV, no change is made to the previous contents of the
named program.

Querying the value of PROGRAM_ERROR_POSITION_NV returns a ubyte
offset into the last loaded program string indicating where the first
error in the program. If the program fails to load because of a
semantic restriction that cannot be determined until the program
is fully scanned, the error position will be len, the length of
the program. If the program loads successfully, the value of
PROGRAM_ERROR_POSITION_NV is assigned the value negative one.

2.14.1.8 Vertex Program Binding and Program Management

The current vertex program is invoked whenever vertex attribute
zero is updated (whether by a VertexAttributeNV or Vertex command).
The current vertex program is updated by

BindProgramNV(enum target, uint id);

where target must be VERTEX_PROGRAM_NV. This binds the vertex program
named by id as the current vertex program. The error INVALID_OPERATION
is generated if id names a program that is not a vertex program
(for example, if id names a vertex state program as described in
section 2.14.4).

Binding to a nonexistent program id does not generate an error.
In particular, binding to program id zero does not generate an error.
However, because program zero cannot be loaded, program zero is
always nonexistent. If a program id is successfully loaded with a
new vertex program and id is also the currently bound vertex program,
the new program is considered the currently bound vertex program.

The INVALID_OPERATION error is generated when both vertex program

NV_vertex_program NVIDIA OpenGL Extension Specifications

 464

mode is enabled and Begin is called (or when a command that performs
an implicit Begin is called) if the current vertex program is
nonexistent or not valid. A vertex program may not be valid for
reasons explained in section 2.14.5.

Programs are deleted by calling

void DeleteProgramsNV(sizei n, const uint *ids);

ids contains n names of programs to be deleted. After a program
is deleted, it becomes nonexistent, and its name is again unused.
If a program that is currently bound is deleted, it is as though
BindProgramNV has been executed with the same target as the deleted
program and program zero. Unused names in ids are silently ignored,
as is the value zero.

The command

void GenProgramsNV(sizei n, uint *ids);

returns n previously unused program names in ids. These names
are marked as used, for the purposes of GenProgramsNV only,
but they become existent programs only when the are first loaded
using LoadProgramNV. The error INVALID_VALUE is generated if n
is negative.

An implementation may choose to establish a working set of programs on
which binding and ExecuteProgramNV operations (execute programs are
explained in section 2.14.4) are performed with higher performance.
A program that is currently part of this working set is said to
be resident.

The command

boolean AreProgramsResidentNV(sizei n, const uint *ids,
boolean *residences);

returns TRUE if all of the n programs named in ids are resident,
or if the implementation does not distinguish a working set. If at
least one of the programs named in ids is not resident, then FALSE is
returned, and the residence of each program is returned in residences.
Otherwise the contents of residences are not changed. If any of
the names in ids are nonexistent or zero, FALSE is returned, the
error INVALID_VALUE is generated, and the contents of residences
are indeterminate. The residence status of a single named program
can also be queried by calling GetProgramivNV with id set to the
name of the program and pname set to PROGRAM_RESIDENT_NV.

AreProgramsResidentNV indicates only whether a program is
currently resident, not whether it could not be made resident.
An implementation may choose to make a program resident only on
first use, for example. The client may guide the GL implementation
in determining which programs should be resident by requesting a
set of programs to make resident.

NVIDIA OpenGL Extension Specifications NV_vertex_program

 465

The command

void RequestResidentProgramsNV(sizei n, const uint *ids);

requests that the n programs named in ids should be made resident.
While all the programs are not guaranteed to become resident,
the implementation should make a best effort to make as many of
the programs resident as possible. As a result of making the
requested programs resident, program names not among the requested
programs may become non-resident. Higher priority for residency
should be given to programs listed earlier in the ids array.
RequestResidentProgramsNV silently ignores attempts to make resident
nonexistent program names or zero. AreProgramsResidentNV can be
called after RequestResidentProgramsNV to determine which programs
actually became resident.

2.14.1.9 Vertex Program Register Accesses

There are 17 vertex program instructions. The instructions and their
respective input and output parameters are summarized in Table X.4.

Output
Inputs (vector or

Opcode (scalar or vector) replicated scalar) Operation
------ ------------------ ------------------ --------------------------
ARL s address register address register load
MOV v v move
MUL v,v v multiply
ADD v,v v add
MAD v,v,v v multiply and add
RCP s ssss reciprocal
RSQ s ssss reciprocal square root
DP3 v,v ssss 3-component dot product
DP4 v,v ssss 4-component dot product
DST v,v v distance vector
MIN v,v v minimum
MAX v,v v maximum
SLT v,v v set on less than
SGE v,v v set on greater equal than
EXP s v exponential base 2
LOG s v logarithm base 2
LIT v v light coefficients

Table X.4: Summary of vertex program instructions. "v" indicates a
vector input or output, "s" indicates a scalar input, and "ssss" indicates
a scalar output replicated across a 4-component vector.

Instructions use either scalar source values or swizzled source
values, indicated in the grammar (see section 2.14.1.7) by the rules
<scalarSrcReg> and <swizzleSrcReg> respectively. Either type of
source value is negated when the <optionalSign> rule matches "-".

Scalar source register values select one of the source register's
four components based on the <component> of the <scalarSuffix> rule.
The characters "x", "y", "z", and "w" match the x, y, z, and
w components respectively. The indicated component is used as a
scalar for the particular source value.

NV_vertex_program NVIDIA OpenGL Extension Specifications

 466

Swizzled source register values may arbitrarily swizzle the source
register's components based on the <swizzleSuffix> rule. In the case
where the <swizzleSuffix> matches (ignoring whitespace) the pattern
".????" where each question mark is one of "x", "y", "z", or "w",
this indicates the ith component of the source register value should
come from the component named by the ith component in the sequence.
For example, if the swizzle suffix is ".yzzx" and the source register
contains [2.0, 8.0, 9.0, 0.0] the swizzled source register value
used by the instruction is [8.0, 9.0, 9.0, 2.0].

If the <swizzleSuffix> rule matches "", this is treated the same as
".xyzw". If the <swizzleSuffix> rule matches (ignoring whitespace)
".x", ".y", ".z", or ".w", these are treated the same as ".xxxx",
".yyyy", ".zzzz", and ".wwww" respectively.

The register sourced for either a scalar source register value or a
swizzled source register value is indicated in the grammar by the rule
<srcReg>. The <vertexAttribReg>, <progParamReg>, and <temporaryReg>
sub-rules correspond to one of the vertex attribute registers,
program parameter registers, or temporary register respectively.

The vertex attribute and temporary registers are accessed absolutely
based on the numbered register. In the case of vertex attribute
registers, if the <vertexAttribRegNum> corresponds to a mnemonic,
the corresponding register number from Table X.3 is used.

Either absolute or relative addressing can be used to access the
program parameter registers. Absolute addressing is indicated by
the grammar by the <absProgParamReg> rule. Absolute addressing
accesses the numbered program parameter register indicated by the
<progParamRegNum> rule. Relative addressing accesses the numbered
program parameter register plus an offset. The offset is the positive
value of <progParamPosOffset> if the <progParamPosOffset> rule is
matched, or the offset is the negative value of <progParamNegOffset>
if the <progParamNegOffset> rule is matched, or otherwise the offset
is zero. Relative addressing is available only for program parameter
registers and only for reads (not writes). Relative addressing
reads outside of the 0 to 95 inclusive range always read the value
(0,0,0,0).

The result of all instructions except ARL is written back to a
masked destination register, indicated in the grammar by the rule
<maskedDstReg>.

Writes to each component of the destination register can be masked,
indicated in the grammar by the <optionalMask> rule. If the optional
mask is "", all components are written. Otherwise, the optional
mask names particular components to write. The characters "x",
"y", "z", and "w" match the x, y, z, and w components respectively.
For example, an optional mask of ".xzw" indicates that the x, z,
and w components should be written but not the y component.
The grammar requires that the destination register mask components
must be listed in "xyzw" order.

The actual destination register is indicated in the grammar by
the rule <dstReg>. The <temporaryReg> and <vertexResultReg>

NVIDIA OpenGL Extension Specifications NV_vertex_program

 467

sub-rules correspond to either the temporary registers or vertex
result registers. The temporary registers are determined and accessed
as described earlier.

The vertex result registers are accessed absolutely based on the
named register. The <vertexResultRegName> rule corresponds to
registers named in Table X.1.

2.14.1.10 Vertex Program Instruction Set Operations

The operation of the 17 vertex program instructions are described in
this section. After the textual description of each instruction's
operation, a register transfer level description is also presented.

The following conventions are used in each instruction's register
transfer level description. The 4-component vector variables "t",
"u", and "v" are assigned intermediate results. The destination
register is called "destination". The three possible source registers
are called "source0", "source1", and "source2" respectively.

The x, y, z, and w vector components are referred to with the suffixes
".x", ".y", ".z", and ".w" respectively. The suffix ".c" is used for
scalar source register values and c represents the particular source
register's selected scalar component. Swizzling of components is
indicated with the suffixes ".c***", ".*c**", ".**c*", and ".***c"
where c is meant to indicate the x, y, z, or w component selected for
the particular source operand swizzle configuration. For example:

t.x = source0.c***;
t.y = source0.*c**;
t.z = source0.**c*;
t.w = source0.***c;

This example indicates that t should be assigned the swizzled
version of the source0 operand based on the source0 operand's swizzle
configuration.

The variables "negate0", "negate1", and "negate2" are booleans
that are true when the respective source value should be negated.
The variables "xmask", "ymask", "zmask", and "wmask" are booleans
that are true when the destination write mask for the respective
component is enabled for writing.

Otherwise, the register transfer level descriptions mimic ANSI C
syntax.

The idiom "IEEE(expression)" represents the s23e8 single-precision
result of the expression if evaluated using IEEE single-precision
floating point operations. The IEEE idiom is used to specify the
maximum allowed deviation from IEEE single-precision floating-point
arithmetic results.

NV_vertex_program NVIDIA OpenGL Extension Specifications

 468

The following abbreviations are also used:

+Inf floating-point representation of positive infinity
-Inf floating-point representation of negative infinity
+NaN floating-point representation of positive not a number
-NaN floating-point representation of negative not a number
NA not applicable or not used

2.14.1.10.1 ARL: Address Register Load

The ARL instruction moves value of the source scalar into the address
register. Conceptually, the address register load instruction is
a 4-component vector signed integer register, but the only valid
address register component for writing and indexing is the x
component. The only use for A0.x is as a base address for program
parameter reads. The source value is a float that is truncated
towards negative infinity into a signed integer.

t.x = source0.c;
if (negate0) t.x = -t.x;
A0.x = floor(t.x);

2.14.1.10.2 MOV: Move

The MOV instruction moves the value of the source vector into the
destination register.

t.x = source0.c***;
t.y = source0.*c**;
t.z = source0.**c*;
t.w = source0.***c;
if (negate0) {

t.x = -t.x;
t.y = -t.y;
t.z = -t.z;
t.w = -t.w;

}
if (xmask) destination.x = t.x;
if (ymask) destination.y = t.y;
if (zmask) destination.z = t.z;
if (wmask) destination.w = t.w;

NVIDIA OpenGL Extension Specifications NV_vertex_program

 469

2.14.1.10.3 MUL: Multiply

The MUL instruction multiplies the values of the two source vectors
into the destination register.

t.x = source0.c***;
t.y = source0.*c**;
t.z = source0.**c*;
t.w = source0.***c;
if (negate0) {

t.x = -t.x;
t.y = -t.y;
t.z = -t.z;
t.w = -t.w;

}
u.x = source1.c***;
u.y = source1.*c**;
u.z = source1.**c*;
u.w = source1.***c;
if (negate1) {

u.x = -u.x;
u.y = -u.y;
u.z = -u.z;
u.w = -u.w;

}
if (xmask) destination.x = t.x * u.x;
if (ymask) destination.y = t.y * u.y;
if (zmask) destination.z = t.z * u.z;
if (wmask) destination.w = t.w * u.w;

NV_vertex_program NVIDIA OpenGL Extension Specifications

 470

2.14.1.10.4 ADD: Add

The ADD instruction adds the values of the two source vectors into
the destination register.

t.x = source0.c***;
t.y = source0.*c**;
t.z = source0.**c*;
t.w = source0.***c;
if (negate0) {

t.x = -t.x;
t.y = -t.y;
t.z = -t.z;
t.w = -t.w;

}
u.x = source1.c***;
u.y = source1.*c**;
u.z = source1.**c*;
u.w = source1.***c;
if (negate1) {

u.x = -u.x;
u.y = -u.y;
u.z = -u.z;
u.w = -u.w;

}
if (xmask) destination.x = t.x + u.x;
if (ymask) destination.y = t.y + u.y;
if (zmask) destination.z = t.z + u.z;
if (wmask) destination.w = t.w + u.w;

NVIDIA OpenGL Extension Specifications NV_vertex_program

 471

2.14.1.10.5 MAD: Multiply and Add

The MAD instruction adds the value of the third source vector to the
product of the values of the first and second two source vectors,
writing the result to the destination register.

t.x = source0.c***;
t.y = source0.*c**;
t.z = source0.**c*;
t.w = source0.***c;
if (negate0) {

t.x = -t.x;
t.y = -t.y;
t.z = -t.z;
t.w = -t.w;

}
u.x = source1.c***;
u.y = source1.*c**;
u.z = source1.**c*;
u.w = source1.***c;
if (negate1) {

u.x = -u.x;
u.y = -u.y;
u.z = -u.z;
u.w = -u.w;

}
v.x = source2.c***;
v.y = source2.*c**;
v.z = source2.**c*;
v.w = source2.***c;
if (negate2) {

v.x = -v.x;
v.y = -v.y;
v.z = -v.z;
v.w = -v.w;

}
if (xmask) destination.x = t.x * u.x + v.x;
if (ymask) destination.y = t.y * u.y + v.y;
if (zmask) destination.z = t.z * u.z + v.z;
if (wmask) destination.w = t.w * u.w + v.w;

NV_vertex_program NVIDIA OpenGL Extension Specifications

 472

2.14.1.10.6 RCP: Reciprocal

The RCP instruction inverts the value of the source scalar into
the destination register. The reciprocal of exactly 1.0 must be
exactly 1.0.

Additionally the reciprocal of negative infinity gives [-0.0, -0.0,
-0.0, -0.0]; the reciprocal of negative zero gives [-Inf, -Inf, -Inf,
-Inf]; the reciprocal of positive zero gives [+Inf, +Inf, +Inf, +Inf];
and the reciprocal of positive infinity gives [0.0, 0.0, 0.0, 0.0].

t.x = source0.c;
if (negate0) {

t.x = -t.x;
}
if (t.x == 1.0f) {

u.x = 1.0f;
} else {

u.x = 1.0f / t.x;
}
if (xmask) destination.x = u.x;
if (ymask) destination.y = u.x;
if (zmask) destination.z = u.x;
if (wmask) destination.w = u.x;

where

| u.x - IEEE(1.0f/t.x) | < 1.0f/(2^22)

for 1.0f <= t.x <= 2.0f. The intent of this precision requirement is
that this amount of relative precision apply over all values of t.x.

2.14.1.10.7 RSQ: Reciprocal Square Root

The RSQ instruction assigns the inverse square root of the
absolute value of the source scalar into the destination register.

Additionally, RSQ(0.0) gives [+Inf, +Inf, +Inf, +Inf]; and both
RSQ(+Inf) and RSQ(-Inf) give [0.0, 0.0, 0.0, 0.0];

t.x = source0.c;
if (negate0) {

t.x = -t.x;
}
u.x = 1.0f / sqrt(fabs(t.x));
if (xmask) destination.x = u.x;
if (ymask) destination.y = u.x;
if (zmask) destination.z = u.x;
if (wmask) destination.w = u.x;

where

| u.x - IEEE(1.0f/sqrt(fabs(t.x))) | < 1.0f/(2^22)

for 1.0f <= t.x <= 4.0f. The intent of this precision requirement is
that this amount of relative precision apply over all values of t.x.

NVIDIA OpenGL Extension Specifications NV_vertex_program

 473

2.14.1.10.8 DP3: Three-Component Dot Product

The DP3 instruction assigns the three-component dot product of the
two source vectors into the destination register.

t.x = source0.c***;
t.y = source0.*c**;
t.z = source0.**c*;
if (negate0) {

t.x = -t.x;
t.y = -t.y;
t.z = -t.z;

}
u.x = source1.c***;
u.y = source1.*c**;
u.z = source1.**c*;
if (negate1) {

u.x = -u.x;
u.y = -u.y;
u.z = -u.z;

}
v.x = t.x * u.x + t.y * u.y + t.z * u.z;
if (xmask) destination.x = v.x;
if (ymask) destination.y = v.x;
if (zmask) destination.z = v.x;
if (wmask) destination.w = v.x;

2.14.1.10.9 DP4: Four-Component Dot Product

The DP4 instruction assigns the four-component dot product of the
two source vectors into the destination register.

t.x = source0.c***;
t.y = source0.*c**;
t.z = source0.**c*;
t.w = source0.***c;
if (negate0) {

t.x = -t.x;
t.y = -t.y;
t.z = -t.z;
t.w = -t.w;

}
u.x = source1.c***;
u.y = source1.*c**;
u.z = source1.**c*;
u.w = source1.***c;
if (negate1) {

u.x = -u.x;
u.y = -u.y;
u.z = -u.z;
u.w = -u.w;

}
v.x = t.x * u.x + t.y * u.y + t.z * u.z + t.w * u.w;
if (xmask) destination.x = v.x;
if (ymask) destination.y = v.x;
if (zmask) destination.z = v.x;
if (wmask) destination.w = v.x;

NV_vertex_program NVIDIA OpenGL Extension Specifications

 474

2.14.1.10.10 DST: Distance Vector

The DST instructions calculates a distance vector for the values
of two source vectors. The first vector is assumed to be [NA, d*d,
d*d, NA] and the second source vector is assumed to be [NA, 1.0/d,
NA, 1.0/d], where the value of a component labeled NA is undefined.
The destination vector is then assigned [1,d,d*d,1.0/d].

t.y = source0.*c**;
t.z = source0.**c*;
if (negate0) {

t.y = -t.y;
t.z = -t.z;

}
u.y = source1.*c**;
u.w = source1.***c;
if (negate1) {

u.y = -u.y;
u.w = -u.w;

}
if (xmask) destination.x = 1.0;
if (ymask) destination.y = t.y*u.y;
if (zmask) destination.z = t.z;
if (wmask) destination.w = u.w;

2.14.1.10.11 MIN: Minimum

The MIN instruction assigns the component-wise minimum of the two
source vectors into the destination register.

t.x = source0.c***;
t.y = source0.*c**;
t.z = source0.**c*;
t.w = source0.***c;
if (negate0) {

t.x = -t.x;
t.y = -t.y;
t.z = -t.z;
t.w = -t.w;

}
u.x = source1.c***;
u.y = source1.*c**;
u.z = source1.**c*;
u.w = source1.***c;
if (negate1) {

u.x = -u.x;
u.y = -u.y;
u.z = -u.z;
u.w = -u.w;

}
if (xmask) destination.x = (t.x < u.x) ? t.x : u.x;
if (ymask) destination.y = (t.y < u.y) ? t.y : u.y;
if (zmask) destination.z = (t.z < u.z) ? t.z : u.z;
if (wmask) destination.w = (t.w < u.w) ? t.w : u.w;

NVIDIA OpenGL Extension Specifications NV_vertex_program

 475

2.14.1.10.12 MAX: Maximum

The MAX instruction assigns the component-wise maximum of the two
source vectors into the destination register.

t.x = source0.c***;
t.y = source0.*c**;
t.z = source0.**c*;
t.w = source0.***c;
if (negate0) {

t.x = -t.x;
t.y = -t.y;
t.z = -t.z;
t.w = -t.w;

}
u.x = source1.c***;
u.y = source1.*c**;
u.z = source1.**c*;
u.w = source1.***c;
if (negate1) {

u.x = -u.x;
u.y = -u.y;
u.z = -u.z;
u.w = -u.w;

}
if (xmask) destination.x = (t.x >= u.x) ? t.x : u.x;
if (ymask) destination.y = (t.y >= u.y) ? t.y : u.y;
if (zmask) destination.z = (t.z >= u.z) ? t.z : u.z;
if (wmask) destination.w = (t.w >= u.w) ? t.w : u.w;

NV_vertex_program NVIDIA OpenGL Extension Specifications

 476

2.14.1.10.13 SLT: Set On Less Than

The SLT instruction performs a component-wise assignment of either
1.0 or 0.0 into the destination register. 1.0 is assigned if the
value of the first source vector is less than the value of the second
source vector; otherwise, 0.0 is assigned.

t.x = source0.c***;
t.y = source0.*c**;
t.z = source0.**c*;
t.w = source0.***c;
if (negate0) {

t.x = -t.x;
t.y = -t.y;
t.z = -t.z;
t.w = -t.w;

}
u.x = source1.c***;
u.y = source1.*c**;
u.z = source1.**c*;
u.w = source1.***c;
if (negate1) {

u.x = -u.x;
u.y = -u.y;
u.z = -u.z;
u.w = -u.w;

}
if (xmask) destination.x = (t.x < u.x) ? 1.0 : 0.0;
if (ymask) destination.y = (t.y < u.y) ? 1.0 : 0.0;
if (zmask) destination.z = (t.z < u.z) ? 1.0 : 0.0;
if (wmask) destination.w = (t.w < u.w) ? 1.0 : 0.0;

NVIDIA OpenGL Extension Specifications NV_vertex_program

 477

2.14.1.10.14 SGE: Set On Greater or Equal Than

The SGE instruction performs a component-wise assignment of either
1.0 or 0.0 into the destination register. 1.0 is assigned if the
value of the first source vector is greater than or equal the value
of the second source vector; otherwise, 0.0 is assigned.

t.x = source0.c***;
t.y = source0.*c**;
t.z = source0.**c*;
t.w = source0.***c;
if (negate0) {

t.x = -t.x;
t.y = -t.y;
t.z = -t.z;
t.w = -t.w;

}
u.x = source1.c***;
u.y = source1.*c**;
u.z = source1.**c*;
u.w = source1.***c;
if (negate1) {

u.x = -u.x;
u.y = -u.y;
u.z = -u.z;
u.w = -u.w;

}
if (xmask) destination.x = (t.x >= u.x) ? 1.0 : 0.0;
if (ymask) destination.y = (t.y >= u.y) ? 1.0 : 0.0;
if (zmask) destination.z = (t.z >= u.z) ? 1.0 : 0.0;
if (wmask) destination.w = (t.w >= u.w) ? 1.0 : 0.0;

NV_vertex_program NVIDIA OpenGL Extension Specifications

 478

2.14.1.10.15 EXP: Exponential Base 2

The EXP instruction generates an approximation of the exponential base
2 for the value of a source scalar. This approximation is assigned
to the z component of the destination register. Additionally,
the x and y components of the destination register are assigned
values useful for determining a more accurate approximation. The
exponential base 2 of the source scalar can be better approximated
by destination.x*FUNC(destination.y) where FUNC is some user
approximation (presumably implemented by subsequent instructions in
the vertex program) to 2^destination.y where 0.0 <= destination.y <
1.0.

Additionally, EXP(-Inf) or if the exponential result underflows
gives [0.0, 0.0, 0.0, 0.0]; and EXP(+Inf) or if the exponential result
overflows gives [+Inf, 0.0, +Inf, 1.0].

t.x = source0.c;
if (negate0) {

t.x = -t.x;
}
q.x = 2^floor(t.x);
q.y = t.x - floor(t.x);
q.z = q.x * APPX(q.y);
if (xmask) destination.x = q.x;
if (ymask) destination.y = q.y;
if (zmask) destination.z = q.z;
if (wmask) destination.w = 1.0;

where APPX is an implementation dependent approximation of exponential
base 2 such that

| exp(q.y*log(2.0))-APPX(q.y) | < 1/(2^11)

for all 0 <= q.y < 1.0.

The expression "2^floor(t.x)" should overflow to +Inf and underflow
to zero.

NVIDIA OpenGL Extension Specifications NV_vertex_program

 479

2.14.1.10.16 LOG: Logarithm Base 2

The LOG instruction generates an approximation of the logarithm base
2 for the absolute value of a source scalar. This approximation
is assigned to the z component of the destination register.
Additionally, the x and y components of the destination register are
assigned values useful for determining a more accurate approximation.
The logarithm base 2 of the absolute value of the source scalar
can be better approximated by destination.x+FUNC(destination.y)
where FUNC is some user approximation (presumably implemented by
subsequent instructions in the vertex program) of log2(destination.y)
where 1.0 <= destination.y < 2.0.

Additionally, LOG(0.0) gives [-Inf, 1.0, -Inf, 1.0]; and both
LOG(+Inf) and LOG(-Inf) give [+Inf, 1.0, +Inf, 1.0].

t.x = source0.c;
if (negate0) {

t.x = -t.x;
}
if (fabs(t.x) != 0.0f) {

if (fabs(t.x) == +Inf) {
q.x = +Inf;
q.y = 1.0;
q.z = +Inf;

} else {
q.x = Exponent(t.x);
q.y = Mantissa(t.x);
q.z = q.x + APPX(q.y);

}
} else {

q.x = -Inf;
q.y = 1.0;
q.z = -Inf;

}
if (xmask) destination.x = q.x;
if (ymask) destination.y = q.y;
if (zmask) destination.z = q.z;
if (wmask) destination.w = 1.0;

where APPX is an implementation dependent approximation of logarithm
base 2 such that

| log(q.y)/log(2.0) - APPX(q.y) | < 1/(2^11)

for all 1.0 <= q.y < 2.0.

The "Exponent(t.x)" function returns the unbiased exponent between
-126 and 127. For example, "Exponent(1.0)" equals 0.0. (Note that
the IEEE floating-point representation maintains the exponent as a
biased value.) Larger or smaller exponents should generate +Inf or
-Inf respectively. The "Mantissa(t.x)" function returns a value
in the range [1.0f, 2.0). The intent of these functions is that
fabs(t.x) is approximately "Mantissa(t.x)*2^Exponent(t.x)".

NV_vertex_program NVIDIA OpenGL Extension Specifications

 480

2.14.1.10.17 LIT: Light Coefficients

The LIT instruction is intended to compute ambient, diffuse,
and specular lighting coefficients from a diffuse dot product,
a specular dot product, and a specular power that is clamped to
(-128,128) exclusive. The x component of the source vector is
assumed to contain a diffuse dot product (unit normal vector dotted
with a unit light vector). The y component of the source vector is
assumed to contain a Blinn specular dot product (unit normal vector
dotted with a unit half-angle vector). The w component is assumed
to contain a specular power.

An implementation must support at least 8 fraction bits in the
specular power. Note that because 0.0 times anything must be 0.0,
taking any base to the power of 0.0 will yield 1.0.

t.x = source0.c***;
t.y = source0.*c**;
t.w = source0.***c;
if (negate0) {

t.x = -t.x;
t.y = -t.y;
t.w = -t.w;

}
if (t.w < -(128.0-epsilon)) t.w = -(128.0-epsilon);
else if (t.w > 128-epsilon) t.w = 128-epsilon;
if (t.x < 0.0) t.x = 0.0;
if (t.y < 0.0) t.y = 0.0;
if (xmask) destination.x = 1.0;
if (ymask) destination.y = t.x;
if (zmask) destination.z = (t.x > 0.0) ? EXP(t.w*LOG(t.y)) : 0.0;
if (wmask) destination.w = 1.0;

where EXP and LOG are functions that approximate the exponential base
2 and logarithm base 2 with the identical accuracy and special case
requirements of the EXP and LOG instructions. epsilon is 1.0/256.0
or approximately 0.0039 which would correspond to representing the
specular power with a s8.8 representation.

2.14.1.11 Vertex Program Floating Point Requirements

All vertex program calculations are assumed to use IEEE single
precision floating-point math with a format of s1e8m23 (one signed
bit, 8 bits of exponent, 23 bits of magnitude) or better and the
round-to-zero rounding mode. The only exceptions to this are the RCP,
RSQ, LOG, EXP, and LIT instructions.

Note that (positive or negative) 0.0 times anything is (positive)
0.0.

The RCP and RSQ instructions deliver results accurate to 1.0/(2^22)
and the approximate output (the z component) of the EXP and LOG
instructions only has to be accurate to 1.0/(2^11). The LIT
instruction specular output (the z component) is allowed an error
equivalent to the combination of the EXP and LOG combination to
implement a power function.

NVIDIA OpenGL Extension Specifications NV_vertex_program

 481

The floor operations used by the ARL and EXP instructions must
operate identically. Specifically, the EXP instruction's floor(t.x)
intermediate result must exactly match the integer stored in the
address register by the ARL instruction.

Since distance is calculated as (d^2)*(1/sqrt(d^2)), 0.0 multiplied
by anything must be 0.0. This affects the MUL, MAD, DP3, DP4, DST,
and LIT instructions.

Because if/then/else conditional evaluation is done by multiplying
by 1.0 or 0.0 and adding, the floating point computations require:

0.0 * x = 0.0 for all x (including +Inf, -Inf, +NaN, and -NaN)
1.0 * x = x for all x (including +Inf and -Inf)
0.0 + x = x for all x (including +Inf and -Inf)

Including +Inf, -Inf, +NaN, and -NaN when applying the above three
rules is recommended but not required. (The recommended inclusion
of +Inf, -Inf, +NaN, and -NaN when applying the first rule is
inconsistent with IEEE floating-point requirements.)

For the purpose of comparisons performed by the SGE and SLT
instructions, -0.0 is less than +0.0. (This is inconsistent with
IEEE floating-point requirements).

No floating-point exceptions or interrupts are generated. Denorms
are not supported; if a denorm is input, it is treated as 0.0 (ie,
denorms are flushed to zero).

Computations involving +NaN or -NaN generate +NaN, except for the
requirement that zero times +NaN or -NaN must always be zero. (This
exception is inconsistent with IEEE floating-point requirements).

2.14.2 Vertex Program Update for the Current Raster Position

When vertex programs are enabled, the raster position is determined
by the current vertex program. The raster position specified by
RasterPos is treated as if they were specified in a Vertex command.
The contents of vertex result register set is used to update respective
raster position state.

Assuming an existent program, the homogeneous clip-space coordinates
are passed to clipping as if they represented a point and assuming no
client-defined clip planes are enabled. If the point is not culled,
then the projection to window coordinates is computed (section 2.10)
and saved as the current raster position and the valid bit is set.
If the current vertex program is nonexistent or the "point" is
culled, the current raster position and its associated data become
indeterminate and the raster position valid bit is cleared.

2.14.3 Vertex Arrays for Vertex Attributes

Data for vertex attributes in vertex program mode may be specified
using vertex array commands. The client may specify and enable any
of sixteen vertex attribute arrays.

NV_vertex_program NVIDIA OpenGL Extension Specifications

 482

The vertex attribute arrays are ignored when vertex program mode
is disabled. When vertex program mode is enabled, vertex attribute
arrays are used.

The command

void VertexAttribPointerNV(uint index, int size, enum type,
sizei stride, const void *pointer);

describes the locations and organizations of the sixteen vertex
attribute arrays. index specifies the particular vertex attribute
to be described. size indicates the number of values per vertex
that are stored in the array; size must be one of 1, 2, 3, or 4.
type specifies the data type of the values stored in the array.
type must be one of SHORT, FLOAT, DOUBLE, or UNSIGNED_BYTE and these
values correspond to the array types short, int, float, double, and
ubyte respectively. The INVALID_OPERATION error is generated if
type is UNSIGNED_BYTE and size is not 4. The INVALID_VALUE error
is generated if index is greater than 15. The INVALID_VALUE error
is generated if stride is negative.

The one, two, three, or four values in an array that correspond to a
single vertex attribute comprise an array element. The values within
each array element at stored sequentially in memory. If the stride
is specified as zero, then array elements are stored sequentially
as well. Otherwise points to the ith and (i+1)st elements of an array
differ by stride basic machine units (typically unsigned bytes),
the pointer to the (i+1)st element being greater. pointer specifies
the location in memory of the first value of the first element of
the array being specified.

Vertex attribute arrays are enabled with the EnableClientState command
and disabled with the DisableClientState command. The value of the
argument to either command is VERTEX_ATTRIB_ARRAYi_NV where i is an
integer between 0 and 15; specifying a value of i enables or
disables the vertex attribute array with index i. The constants
obey VERTEX_ATTRIB_ARRAYi_NV = VERTEX_ATTRIB_ARRAY0_NV + i.

When vertex program mode is enabled, the ArrayElement command operates
as described in this section in contrast to the behavior described
in section 2.8. Likewise, any vertex array transfer commands that
are defined in terms of ArrayElement (DrawArrays, DrawElements, and
DrawRangeElements) assume the operation of ArrayElement described
in this section when vertex program mode is enabled.

When vertex program mode is enabled, the ArrayElement command
transfers the ith element of particular enabled vertex arrays as
described below. For each enabled vertex attribute array, it is
as though the corresponding command from section 2.14.1.1 were
called with a pointer to element i. For each vertex attribute,
the corresponding command is VertexAttrib[size][type]v, where size
is one of [1,2,3,4], and type is one of [s,f,d,ub], corresponding
to the array types short, int, float, double, and ubyte respectively.

However, if a given vertex attribute array is disabled, but its
corresponding aliased conventional per-vertex parameter's vertex
array (as described in section 2.14.1.6) is enabled, then it is

NVIDIA OpenGL Extension Specifications NV_vertex_program

 483

as though the corresponding command from section 2.7 or section
2.6.2 were called with a pointer to element i. In this case, the
corresponding command is determined as described in section 2.8's
description of ArrayElement.

If the vertex attribute array 0 is enabled, it is as though
VertexAttrib[size][type]v(0, ...) is executed last, after the
executions of other corresponding commands. If the vertex attribute
array 0 is disabled but the vertex array is enabled, it is as though
Vertex[size][type]v is executed last, after the executions of other
corresponding commands.

2.14.4 Vertex State Programs

Vertex state programs share the same instruction set as and a similar
execution model to vertex programs. While vertex program are executed
implicitly when a vertex transformation is provoked, vertex state
programs are executed explicitly, independently of any vertices.
Vertex state programs can write program parameter registers, but
may not write vertex result registers.

The purpose of a vertex state program is to update program parameter
registers by means of an application-defined program. Typically,
an application will load a set of program parameters and then execute
a vertex state program that reads and updates the program parameter
registers. For example, a vertex state program might normalize a
set of unnormalized vectors previously loaded as program parameters.
The expectation is that subsequently executed vertex programs would
use the normalized program parameters.

Vertex state programs are loaded with the same LoadProgramNV command
(see section 2.14.1.7) used to load vertex programs except that the
target must be VERTEX_STATE_PROGRAM_NV when loading a vertex state
program.

Vertex state programs must conform to a more limited grammar than
the grammar for vertex programs. The vertex state program grammar
for syntactically valid sequences is the same as the grammar defined
in section 2.14.1.7 with the following modified rules:

<program> ::= "!!VSP1.0" <instructionSequence> "END"

<dstReg> ::= <absProgParamReg>
| <temporaryReg>

<vertexAttribReg> ::= "v" "[" "0" "]"

A vertex state program fails to load if it does not write at least
one program parameter register.

A vertex state program fails to load if it contains more than 128
instructions.

A vertex state program fails to load if any instruction sources more
than one unique program parameter register.

NV_vertex_program NVIDIA OpenGL Extension Specifications

 484

A vertex state program fails to load if any instruction sources
more than one unique vertex attribute register (this is necessarily
true because only vertex attribute 0 is available in vertex state
programs).

The error INVALID_OPERATION is generated if a vertex state program
fails to load because it is not syntactically correct or for one
of the other reasons listed above.

A successfully loaded vertex state program is parsed into a sequence
of instructions. Each instruction is identified by its tokenized
name. The operation of these instructions when executed is defined
in section 2.14.1.10.

Executing vertex state programs is legal only outside a Begin/End
pair. A vertex state program may not read any vertex attribute
register other than register zero. A vertex state program may not
write any vertex result register.

The command

ExecuteProgramNV(enum target, uint id, const float *params);

executes the vertex state program named by id. The target must be
VERTEX_STATE_PROGRAM_NV and the id must be the name of program loaded
with a target type of VERTEX_STATE_PROGRAM_NV. params points to
an array of four floating-point values that are loaded into vertex
attribute register zero (the only vertex attribute readable from a
vertex state program).

The INVALID_OPERATION error is generated if the named program is
nonexistent, is invalid, or the program is not a vertex state
program. A vertex state program may not be valid for reasons
explained in section 2.14.5.

2.14.5 Tracking Matrices

As a convenience to applications, standard GL matrix state can be
tracked into program parameter vectors. This permits vertex programs
to access matrices specified through GL matrix commands.

In addition to GL's conventional matrices, several additional matrices
are available for tracking. These matrices have names of the form
MATRIXi_NV where i is between zero and n-1 where n is the value
of the MAX_TRACK_MATRICES_NV implementation dependent constant.
The MATRIXi_NV constants obey MATRIXi_NV = MATRIX0_NV + i. The value
of MAX_TRACK_MATRICES_NV must be at least eight. The maximum
stack depth for tracking matrices is defined by the
MAX_TRACK_MATRIX_STACK_DEPTH_NV and must be at least 1.

The command

TrackMatrixNV(enum target, uint address, enum matrix, enum transform);

tracks a given transformed version of a particular matrix into
a contiguous sequence of four vertex program parameter registers
beginning at address. target must be VERTEX_PROGRAM_NV (though

NVIDIA OpenGL Extension Specifications NV_vertex_program

 485

tracked matrices apply to vertex state programs as well because
both vertex state programs and vertex programs shared the same
program parameter registers). matrix must be one of NONE, MODELVIEW,
PROJECTION, TEXTURE, COLOR (if the ARB_imaging subset is supported),
MODELVIEW_PROJECTION_NV, or MATRIXi_NV. transform must be one of
IDENTITY_NV, INVERSE_NV, TRANSPOSE_NV, or INVERSE_TRANSPOSE_NV.
The INVALID_VALUE error is generated if address is not a multiple
of four.

The MODELVIEW_PROJECTION_NV matrix represents the concatenation of
the current modelview and projection matrices. If M is the current
modelview matrix and P is the current projection matrix, then the
MODELVIEW_PROJECTION_NV matrix is C and computed as

C = P M

Matrix tracking for the specified program parameter register and the
next consecutive three registers is disabled when NONE is supplied
for matrix. When tracking is disabled the previously tracked program
parameter registers retain the state of their last tracked values.
Otherwise, the specified transformed version of matrix is tracked into
the specified program parameter register and the next three registers.
Whenever the matrix changes, the transformed version of the matrix
is updated in the specified range of program parameter registers.
If TEXTURE is specified for matrix, the texture matrix for the
current active texture unit is tracked.

Matrices are tracked row-wise meaning that the top row of the
transformed matrix is loaded into the program parameter address,
the second from the top row of the transformed matrix is loaded into
the program parameter address+1, the third from the top row of the
transformed matrix is loaded into the program parameter address+2,
and the bottom row of the transformed matrix is loaded into the
program parameter address+3. The transformed matrix may be identical
to the specified matrix, the inverse of the specified matrix, the
transpose of the specified matrix, or the inverse transpose of the
specified matrix, depending on the value of transform.

When matrix tracking is enabled for a particular program parameter
register sequence, updates to the program parameter using
ProgramParameterNV commands, a vertex program, or a vertex state
program are not possible. The INVALID_OPERATION error is generated
if a ProgramParameterNV command is used to update a program parameter
register currently tracking a matrix.

When a vertex program that writes a program parameter register with
tracking enabled is bound using BindProgramNV, the vertex program
is considered invalid. As described in section 2.14.1.8, the
INVALID_OPERATION error is generated by Begin, RasterPos, or a command
that does an implicit Begin operation when the current vertex program
is invalid.

The INVALID_OPERATION error is generated by ExecuteProgramNV when
the vertex state program requested for execution writes to a program
parameter register that is currently tracking a matrix because the
program is considered invalid.

NV_vertex_program NVIDIA OpenGL Extension Specifications

 486

2.14.6 Required Vertex Program State

The state required for vertex programs consists of:

a bit indicating whether or not program mode is enabled;

a bit indicating whether or not two-sided color mode is enabled;

a bit indicating whether or not program-specified point size mode
is enabled;

96 4-component floating-point program parameter registers;

16 4-component vertex attribute registers (though this state is
aliased with the current normal, primary color, secondary color,
fog coordinate, weights, and texture coordinate sets);

24 sets of matrix tracking state for each set of four sequential
program parameter registers, consisting of a n-valued integer
indicated the tracked matrix or GL_NONE (where n is 5 + the number
of texture units supported + the number of tracking matrices
supported) and a four-valued integer indicating the transformation
of the tracked matrix;

an unsigned integer naming the currently bound vertex program

and the state must be maintained to indicate which integers
are currently in use as program names.

Each existent program object consists of a target, a boolean indicating
whether the program is resident, an array of type ubyte containing the
program string, and the length of the program string array. Initially,
no program objects exist.

Program mode, two-sided color mode, and program-specified point size
mode are all initially disabled.

The initial state of all 96 program parameter registers is (0,0,0,0).

The initial state of the 16 vertex attribute registers is (0,0,0,1)
except in cases where a vertex attribute register aliases to a
conventional GL transform mode vertex parameter in which case
the initial state is the initial state of the respective aliased
conventional vertex parameter.

The initial state of the 24 sets of matrix tracking state is NONE
for the tracked matrix and IDENTITY_NV for the transformation of the
tracked matrix.

The initial currently bound program is zero.

The client state required to implement the 16 vertex attribute
arrays consists of 16 boolean values, 16 memory pointers, 16 integer
stride values, 16 symbolic constants representing array types,
and 16 integers representing values per element. Initially, the
boolean values are each disabled, the memory pointers are each null,
the strides are each zero, the array types are each FLOAT, and the

NVIDIA OpenGL Extension Specifications NV_vertex_program

 487

integers representing values per element are each four."

Additions to Chapter 3 of the OpenGL 1.2.1 Specification (Rasterization)

-- Section 3.3 "Points"

Change the first paragraph to read:

"When program vertex mode is disabled, the point size for rasterizing
points is controlled with

void PointSize(float size);

size specifies the width or diameter of a point. The initial point size
value is 1.0. A value less than or equal to zero results in the error
INVALID_VALUE. When vertex program mode is enabled, the point size for
rasterizing points is determined as described in section 2.14.1.5."

-- Section 3.9 "Color Sum"

Change the first paragraph to read:

"At the beginning of color sum, a fragment has two RGBA colors: a
primary color cpri (which texturing, if enabled, may have modified)
and a secondary color csec. If vertex program mode is disabled, csec
is defined by the lighting equations in section 2.13.1. If vertex
program mode is enabled, csec is the fragment's secondary color,
obtained by interpolating the COL1 (or BFC1 if the primitive is a
polygon, the vertex program two-sided color mode is enabled, and the
polygon is back-facing) vertex result register RGB components for the
vertices making up the primitive; the alpha component of csec when
program mode is enabled is always zero. The components of these two
colors are summed to produce a single post-texturing RGBA color c.
The components of c are then clamped to the range [0,1]."

-- Section 3.10 "Fog"

Change the initial sentences in the second paragraph to read:

"This factor f may be computed according to one of three equations:

f = exp(-d*c) (3.24)
f = exp(-(d*c)^2) (3.25)
f = (e-c)/(e-s) (3.26)

If vertex program mode is enabled, then c is the fragment's fog
coordinate, obtained by interpolating the FOGC vertex result register
values for the vertices making up the primitive. When vertex program
mode is disabled, the c is the eye-coordinate distance from the eye,
(0,0,0,1) in eye-coordinates, to the fragment center." ...

Additions to Chapter 4 of the OpenGL 1.2.1 Specification (Per-Fragment
Operations and the Framebuffer)

None

NV_vertex_program NVIDIA OpenGL Extension Specifications

 488

Additions to Chapter 5 of the OpenGL 1.2.1 Specification (Special Functions)

-- Section 5.1 "Evaluators"

Add the following lines to the end of table 5.1 (page 165):

target k values
------------------------- --- ------------------------------
MAP1_VERTEX_ATTRIB0_4_NV 4 x, y, z, w vertex attribute 0
MAP1_VERTEX_ATTRIB1_4_NV 4 x, y, z, w vertex attribute 1
MAP1_VERTEX_ATTRIB2_4_NV 4 x, y, z, w vertex attribute 2
MAP1_VERTEX_ATTRIB3_4_NV 4 x, y, z, w vertex attribute 3
MAP1_VERTEX_ATTRIB4_4_NV 4 x, y, z, w vertex attribute 4
MAP1_VERTEX_ATTRIB5_4_NV 4 x, y, z, w vertex attribute 5
MAP1_VERTEX_ATTRIB6_4_NV 4 x, y, z, w vertex attribute 6
MAP1_VERTEX_ATTRIB7_4_NV 4 x, y, z, w vertex attribute 7
MAP1_VERTEX_ATTRIB8_4_NV 4 x, y, z, w vertex attribute 8
MAP1_VERTEX_ATTRIB9_4_NV 4 x, y, z, w vertex attribute 9
MAP1_VERTEX_ATTRIB10_4_NV 4 x, y, z, w vertex attribute 10
MAP1_VERTEX_ATTRIB11_4_NV 4 x, y, z, w vertex attribute 11
MAP1_VERTEX_ATTRIB12_4_NV 4 x, y, z, w vertex attribute 12
MAP1_VERTEX_ATTRIB13_4_NV 4 x, y, z, w vertex attribute 13
MAP1_VERTEX_ATTRIB14_4_NV 4 x, y, z, w vertex attribute 14
MAP1_VERTEX_ATTRIB15_4_NV 4 x, y, z, w vertex attribute 15

Replace the four paragraphs on pages 167-168 that explain the
operation of EvalCoord:

"EvalCoord operates differently depending on whether vertex program
mode is enabled or not. We first discuss how EvalCoord operates when
vertex program mode is disabled.

When one of the EvalCoord commands is issued and vertex program
mode is disabled, all currently enabled maps (excluding the
maps that correspond to vertex attributes, i.e. maps of the form
MAPx_VERTEX_ATTRIBn_4_NV). ..."

Add a paragraph before the initial paragraph discussing AUTO_NORMAL:

"When one of the EvalCoord commands is issued and vertex program mode
is enabled, the evaluation and the issuing of per-vertex parameter commands
matches the discussion above, except that if any vertex attribute
maps are enabled, the corresponding VertexAttribNV call for each enabled
vertex attribute map is issued with the map's evaluated coordinates
and the corresponding aliased per-vertex parameter map is ignored
if it is also enabled, with one important difference. As is the case when
vertex program mode is disabled, the GL uses evaluated values
instead of current values for those evaluations that are enabled
(otherwise the current values are used). The order of the effective
commands is immaterial, except that Vertex or VertexAttribNV(0,
...) (the commands that issue provoke vertex program execution)
must be issued last. Use of evaluators has no effect on the current
vertex attributes or conventional per-vertex parameters. If a
vertex attribute map is disabled, but its corresponding conventional
per-vertex parameter map is enabled, the conventional per-vertex
parameter map is evaluated and issued as when vertex program mode
is not enabled."

NVIDIA OpenGL Extension Specifications NV_vertex_program

 489

Replace the two paragraphs discussing AUTO_NORMAL with:

"Finally, if either MAP2_VERTEX_3 or MAP2_VERTEX_4 is enabled or if
both MAP2_VERTEX_ATTRIB0_4_NV and vertex program mode are enabled,
then the normal to the surface is computed. Analytic computation,
which sometimes yields normals of length zero, is one method which
may be used. If automatic normal generation is enabled, then this
computed normal is used as the normal associated with a generated
vertex (when program mode is disabled) or as vertex attribute 2
(when vertex program mode is enabled). Automatic normal generation
is controlled with Enable and Disable with the symbolic constant
AUTO_NORMAL. If automatic normal generation is disabled and vertex
program mode is enabled, then vertex attribute 2 is evaluated
as usual. If automatic normal generation and vertex program mode
are disabled, then a corresponding normal map, if enabled, is used
to produce a normal. If neither automatic normal generation nor
a map corresponding to the normal per-vertex parameter (or vertex
attribute 2 in program mode) are enabled, then no normal is sent with
a vertex resulting from an evaluation (the effect is that the current
normal is used). For MAP_VERTEX3, let q=p. For MAP_VERTEX_4 or
MAP2_VERTEX_ATTRBI0_4_NV, let q = (x/w, y/w, z/w) where (x,y,z,w)=p.
Then let

m = (partial q / partial u) cross (partial q / partial v)

Then when vertex program mode is disabled, the generated analytic
normal, n, is given by n=m/||m||. However, when vertex program mode
is enabled, the generated analytic normal used for vertex attribute
2 is simply (mx,my,mz,1). In vertex program mode, the normalization
of the generated analytic normal can be performed by the current
vertex program."

Change the respective sentences of the last paragraph discussing
required evaluator state to read:

"The state required for evaluators potentially consists of 9
conventional one-dimensional map specifications, 16 vertex attribute
one-dimensional map specifications, 9 conventional two-dimensional
map specifications, and 16 vertex attribute two-dimensional map
specifications indicating which are enabled. ... All vertex
coordinate maps produce the coordinates (0,0,0,1) (or the appropriate
subset); all normal coordinate maps produce (0,0,1); RGBA maps produce
(1,1,1,1); color index maps produce 1.0; texture coordinate maps
produce (0,0,0,1); and vertex attribute maps produce (0,0,0,1). ...
If any evaluation command is issued when none of MAPn_VERTEX_3,
MAPn_VERTEX_4, or MAPn_VERTEX_ATTRIB0_NV (where n is the map dimension
being evaluated) are enabled, nothing happens."

-- Section 5.4 "Display Lists"

Add to the list of commands not compiled into display lists in the
third to the last paragraph:

"AreProgramsResidentNV, IsProgramNV, GenProgramsNV, DeleteProgramsNV,
VertexAttribPointerNV"

NV_vertex_program NVIDIA OpenGL Extension Specifications

 490

Additions to Chapter 6 of the OpenGL 1.2.1 Specification (State and
State Requests)

-- Section 6.1.12 "Saving and Restoring State"

Only the enables and vertex array state introduced by this extension
can be pushed and popped.

See the attribute column in table X.5 for determining what vertex
program state can be pushed and popped with PushAttrib, PopAttrib,
PushClientAttrib, and PopClientAttrib.

The new evaluator enables in table 6.22 can also be pushed and
popped.

-- NEW Section 6.1.13 "Vertex Program Queries"

"The commands

void GetProgramParameterfvNV(enum target, uint index,
enum pname, float *params);

void GetProgramParameterdvNV(enum target, uint index,
enum pname, double *params);

obtain the current program parameters for the given program
target and parameter index into the array params. target must
be VERTEX_PROGRAM_NV. pname must be PROGRAM_PARAMETER_NV.
The INVALID_VALUE error is generated if index is greater than 95.
Each program parameter is an array of four values.

The command

void GetProgramivNV(uint id, enum pname, int *params);

obtains program state named by pname for the program named id
in the array params. pname must be one of PROGRAM_TARGET_NV,
PROGRAM_LENGTH_NV, or PROGRAM_RESIDENT_NV. The INVALID_OPERATION
error is generated if the program named id does not exist.

The command

void GetProgramStringNV(uint id, enum pname,
ubyte *program);

obtains the program string for program id. pname must be
PROGRAM_STRING_NV. n ubytes are returned into the array program
where n is the length of the program in ubytes. GetProgramivNV with
PROGRAM_LENGTH_NV can be used to query the length of a program's
string. The INVALID_OPERATION error is generated if the program
named id does not exist.

The command

void GetTrackMatrixivNV(enum target, uint address,
enum pname, int *params);

obtains the matrix tracking state named by pname for the specified

NVIDIA OpenGL Extension Specifications NV_vertex_program

 491

address in the array params. target must be VERTEX_PROGRAM_NV. pname
must be either TRACK_MATRIX_NV or TRACK_MATRIX_TRANSFORM_NV.
The INVALID_VALUE error is generated if address is not divisible
by four and is not less than 96.

The commands

void GetVertexAttribdvNV(uint index, enum pname, double *params);
void GetVertexAttribfvNV(uint index, enum pname, float *params);
void GetVertexAttribivNV(uint index, enum pname, int *params);

obtain the vertex attribute state named by pname for the vertex
attribute numbered index. pname must be one of ATTRIB_ARRAY_SIZE_NV,
ATTRIB_ARRAY_STRIDE_NV, ATTRIB_ARRAY_TYPE_NV, or CURRENT_ATTRIB_NV.
Note that all the queries except CURRENT_ATTRIB_NV return client
state. The INVALID_VALUE error is generated if index greater than 15
or equal to zero.

The command

void GetVertexAttribPointervNV(uint index,
enum pname, void **pointer);

obtains the pointer named pname in the array params for vertex
attribute numbered index. pname must be ATTRIB_ARRAY_POINTER_NV.
The INVALID_VALUE error is generated if index greater than 15.

The command

boolean IsProgramNV(uint id);

returns TRUE if program is the name of a program object. If program
is zero or is a non-zero value that is not the name of a program
object, or if an error condition occurs, IsProgramNV returns FALSE.
A name returned by GenProgramsNV but not yet loaded with a program
is not the name of a program object."

-- NEW Section 6.1.14 "Querying Current Matrix State"

"Instead of providing distinct symbolic tokens for querying each
matrix and matrix stack depth, the symbolic tokens CURRENT_MATRIX_NV
and CURRENT_MATRIX_STACK_DEPTH_NV in conjunction with the GetBooleanv,
GetIntegerv, GetFloatv, and GetDoublev return the respective state
of the current matrix given the current matrix mode.

Querying CURRENT_MATRIX_NV and CURRENT_MATRIX_STACK_DEPTH_NV is
the only means for querying the matrix and matrix stack depth of
the tracking matrices described in section 2.14.5."

Additions to Appendix A of the OpenGL 1.2.1 Specification (Invariance)

Add the following rule:

"Rule X Vertex program and vertex state program instructions not
relevant to the calculation of any result must have no effect on
that result.

NV_vertex_program NVIDIA OpenGL Extension Specifications

 492

Rules X+1 Vertex program and vertex state program instructions
relevant to the calculation of any result must always produce the
identical result. In particular, the same instruction with the same
source inputs must produce the identical result whether executed by
a vertex program or a vertex state program.

Instructions relevant to the calculation of a result are any
instructions in a sequence of instructions that eventually determine
the source values for the calculation under consideration.

There is no guaranteed invariance between vertices transformed by
conventional GL vertex transform mode and vertices transformed by
vertex program mode. Multi-pass rendering algorithms that require
rendering invariances to operate correctly should not mix conventional
GL vertex transform mode with vertex program mode for different
rendering passes. However such algorithms will operate correctly
if the algorithms limit themselves to a single mode of vertex
transformation."

Additions to the AGL/GLX/WGL Specifications

Program objects are shared between AGL/GLX/WGL rendering contexts if
and only if the rendering contexts share display lists. No change
is made to the AGL/GLX/WGL API.

Dependencies on EXT_vertex_weighting

If the EXT_vertex_weighting extension is not supported, there is no
aliasing between vertex attribute 1 and the current vertex weight.
Replace the contents of the last three columns in row 5 of table
X.2 with dashes.

Dependencies on EXT_point_parameters

When EXT_point_parameters is supported, the amended discussion
of point size determination should be further amended with the
language from the EXT_point_parameters specification though the point
parameters functionality only applies when vertex program mode is
disabled.

Even if the EXT_point_parameters extension is not supported, the
PSIZ vertex result register must operate as specified.

Dependencies on ARB_multitexture

ARB_multitexture is required to support NV_vertex_program and the
value of MAX_TEXTURE_UNITS_ARB must be at least 2. If more than 8
texture units are supported, only the first 8 texture units can be
assigned texture coordinates when vertex program mode is enabled.
Texture units beyond 8 are implicitly disabled when vertex program
mode is enabled.

Dependencies on EXT_fog_coord

If the EXT_fog_coord extension is not supported, there is no
aliasing between vertex attribute 5 and the current fog coordinate.
Replace the contents of the last three columns in row 5 of table

NVIDIA OpenGL Extension Specifications NV_vertex_program

 493

X.2 with dashes.

Even if the EXT_fog_coord extension is not supported, the FOGC
vertex result register must operate as specified. Note that the
FOGC vertex result register behaves identically to the EXT_fog_coord
extension's FOG_COORDINATE_SOURCE_EXT being FOG_COORDINATE_EXT.
This means that the functionality of EXT_fog_coord is required to
implement NV_vertex_program even if the EXT_fog_coord extension is
not supported.

If the EXT_fog_coord extension is supported, the state of
FOG_COORDINATE_SOURCE_EXT only applies when vertex program mode is
disabled and the discussion in section 3.10 is further amended by
the discussion of FOG_COORDINATE_SOURCE_EXT in the EXT_fog_coord
specification.

Dependencies on EXT_secondary_color

If the EXT_secondary_color extension is not supported, there is no
aliasing between vertex attribute 4 and the current secondary color.
Replace the contents of the last three columns in row 4 of table
X.2 with dashes.

Even if the EXT_secondary_color extension is not supported, the COL1
and BFC1 vertex result registers must operate as specified.
These vertex result registers are required to implement OpenGL 1.2's
separate specular mode within a vertex program.

GLX Protocol

Forty-five new GL commands are added.

The following thirty-five rendering commands are sent to the sever
as part of a glXRender request:

BindProgramNV
2 12 rendering command length
2 ???? rendering command opcode
4 ENUM target
4 CARD32 id

ExecuteProgramNV
2 12+4*n rendering command length
2 ???? rendering command opcode
4 ENUM target

0x8621 n=4 GL_VERTEX_STATE_PROGRAM_NV
else n=0 command is erroneous

4 CARD32 id
4*n LISTofFLOAT32 params

RequestResidentProgramsNV
2 8+4*n rendering command length
2 ???? rendering command opcode
4 INT32 n
n*4 CARD32 programs

NV_vertex_program NVIDIA OpenGL Extension Specifications

 494

LoadProgramNV
2 16+n+p rendering command length
2 ???? rendering command opcode
4 ENUM target
4 CARD32 id
4 INT32 len
n LISTofCARD8 n
p unused, p=pad(n)

ProgramParameter4fvNV
2 32 rendering command length
2 ???? rendering command opcode
4 ENUM target
4 CARD32 index
4 FLOAT32 params[0]
4 FLOAT32 params[1]
4 FLOAT32 params[2]
4 FLOAT32 params[3]

ProgramParameter4dvNV
2 44 rendering command length
2 ???? rendering command opcode
4 ENUM target
4 CARD32 index
8 FLOAT64 params[0]
8 FLOAT64 params[1]
8 FLOAT64 params[2]
8 FLOAT64 params[3]

ProgramParameters4fvNV
2 16+16*n rendering command length
2 ???? rendering command opcode
4 ENUM target
4 CARD32 index
4 CARD32 n
16*n FLOAT32 params

ProgramParameters4dvNV
2 16+32*n rendering command length
2 ???? rendering command opcode
4 ENUM target
4 CARD32 index
4 CARD32 n
32*n FLOAT64 params

TrackMatrixNV
2 20 rendering command length
2 ???? rendering command opcode
4 ENUM target
4 CARD32 address
4 ENUM matrix
4 ENUM transform

VertexAttribPointerNV is an entirely client-side command

VertexAttrib1svNV
2 12 rendering command length
2 ???? rendering command opcode
4 CARD32 index
2 INT16 v[0]
2 unused

VertexAttrib2svNV
2 12 rendering command length
2 ???? rendering command opcode
4 CARD32 index
2 INT16 v[0]
2 INT16 v[1]

NVIDIA OpenGL Extension Specifications NV_vertex_program

 495

VertexAttrib3svNV
2 12 rendering command length
2 ???? rendering command opcode
4 CARD32 index
2 INT16 v[0]
2 INT16 v[1]
2 INT16 v[2]
2 unused

VertexAttrib4svNV
2 12 rendering command length
2 ???? rendering command opcode
4 CARD32 index
2 INT16 v[0]
2 INT16 v[1]
2 INT16 v[2]
2 INT16 v[3]

VertexAttrib1fvNV
2 12 rendering command length
2 ???? rendering command opcode
4 CARD32 index
4 FLOAT32 v[0]

VertexAttrib2fvNV
2 16 rendering command length
2 ???? rendering command opcode
4 CARD32 index
4 FLOAT32 v[0]
4 FLOAT32 v[1]

VertexAttrib3fvNV
2 20 rendering command length
2 ???? rendering command opcode
4 CARD32 index
4 FLOAT32 v[0]
4 FLOAT32 v[1]
4 FLOAT32 v[2]

VertexAttrib4fvNV
2 24 rendering command length
2 ???? rendering command opcode
4 CARD32 index
4 FLOAT32 v[0]
4 FLOAT32 v[1]
4 FLOAT32 v[2]
4 FLOAT32 v[3]

VertexAttrib1dvNV
2 16 rendering command length
2 ???? rendering command opcode
4 CARD32 index
8 FLOAT64 v[0]

VertexAttrib2dvNV
2 24 rendering command length
2 ???? rendering command opcode
4 CARD32 index
8 FLOAT64 v[0]
8 FLOAT64 v[1]

VertexAttrib3dvNV
2 32 rendering command length
2 ???? rendering command opcode
4 CARD32 index
8 FLOAT64 v[0]
8 FLOAT64 v[1]
8 FLOAT64 v[2]

NV_vertex_program NVIDIA OpenGL Extension Specifications

 496

VertexAttrib4dvNV
2 40 rendering command length
2 ???? rendering command opcode
4 CARD32 index
8 FLOAT64 v[0]
8 FLOAT64 v[1]
8 FLOAT64 v[2]
8 FLOAT64 v[3]

VertexAttrib4ubvNV
2 12 rendering command length
2 ???? rendering command opcode
4 CARD32 index
1 CARD8 v[0]
1 CARD8 v[1]
1 CARD8 v[2]
1 CARD8 v[3]

VertexAttribs1svNV
2 12+2*n+p rendering command length
2 ???? rendering command opcode
4 CARD32 index
4 CARD32 n
2*n INT16 v
p unused, p=pad(2*n)

VertexAttribs2svNV
2 12+4*n rendering command length
2 ???? rendering command opcode
4 CARD32 index
4 CARD32 n
4*n INT16 v

VertexAttribs3svNV
2 12+6*n+p rendering command length
2 ???? rendering command opcode
4 CARD32 index
4 CARD32 n
6*n INT16 v
p unused, p=pad(6*n)

VertexAttribs4svNV
2 12+8*n rendering command length
2 ???? rendering command opcode
4 CARD32 index
4 CARD32 n
8*n INT16 v

VertexAttribs1fvNV
2 12+4*n rendering command length
2 ???? rendering command opcode
4 CARD32 index
4 CARD32 n
4*n FLOAT32 v

VertexAttribs2fvNV
2 12+8*n rendering command length
2 ???? rendering command opcode
4 CARD32 index
4 CARD32 n
8*n FLOAT32 v

VertexAttribs3fvNV
2 12+12*n rendering command length
2 ???? rendering command opcode
4 CARD32 index
4 CARD32 n
12*n FLOAT32 v

NVIDIA OpenGL Extension Specifications NV_vertex_program

 497

VertexAttribs4fvNV
2 12+16*n rendering command length
2 ???? rendering command opcode
4 CARD32 index
4 CARD32 n
16*n FLOAT32 v

VertexAttribs1dvNV
2 12+8*n rendering command length
2 ???? rendering command opcode
4 CARD32 index
4 CARD32 n
8*n FLOAT64 v

VertexAttribs2dvNV
2 12+16*n rendering command length
2 ???? rendering command opcode
4 CARD32 index
4 CARD32 n
16*n FLOAT64 v

VertexAttribs3dvNV
2 12+24*n rendering command length
2 ???? rendering command opcode
4 CARD32 index
4 CARD32 n
24*n FLOAT64 v

VertexAttribs4dvNV
2 12+32*n rendering command length
2 ???? rendering command opcode
4 CARD32 index
4 CARD32 n
32*n FLOAT64 v

VertexAttribs4ubvNV
2 12+4*n rendering command length
2 ???? rendering command opcode
4 CARD32 index
4 CARD32 n
4*n CARD8 v

The remaining twelve commands are non-rendering commands. These commands
are sent separately (i.e., not as part of a glXRender or glXRenderLarge
request), using the glXVendorPrivateWithReply request:

AreProgramsResidentNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 4+n request length
4 ???? vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 INT32 n
n*4 LISTofCARD32 programs

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 (n+p)/4 reply length
4 BOOL32 return value
20 unused
n LISTofBOOL programs
p unused, p=pad(n)

NV_vertex_program NVIDIA OpenGL Extension Specifications

 498

DeleteProgramsNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 4+n request length
4 ???? vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 INT32 n
n*4 LISTofCARD32 programs

GenProgramsNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 4 request length
4 ???? vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 INT32 n

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 n reply length
24 unused
n*4 LISTofCARD322 programs

GetProgramParameterfvNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 6 request length
4 ???? vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 ENUM target
4 CARD32 index
4 ENUM pname

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 m reply length, m=(n==1?0:n)
4 unused
4 CARD32 n

if (n=1) this follows:

4 FLOAT32 params
12 unused

otherwise this follows:

16 unused
n*4 LISTofFLOAT32 params

NVIDIA OpenGL Extension Specifications NV_vertex_program

 499

GetProgramParameterdvNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 6 request length
4 ???? vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 ENUM target
4 CARD32 index
4 ENUM pname

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 m reply length, m=(n==1?0:n*2)
4 unused
4 CARD32 n

if (n=1) this follows:

8 FLOAT64 params
8 unused

otherwise this follows:

16 unused
n*8 LISTofFLOAT64 params

GetProgramivNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 5 request length
4 ???? vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 CARD32 id
4 ENUM pname

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 m reply length, m=(n==1?0:n)
4 unused
4 CARD32 n

if (n=1) this follows:

4 INT32 params
12 unused

otherwise this follows:

16 unused
n*4 LISTofINT32 params

GetProgramStringNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 5 request length
4 ???? vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 CARD32 id
4 ENUM pname

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 (n+p)/4 reply length
4 unused
4 CARD32 n
16 unused
n STRING program
p unused, p=pad(n)

NV_vertex_program NVIDIA OpenGL Extension Specifications

 500

GetTrackMatrixivNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 6 request length
4 ???? vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 ENUM target
4 CARD32 address
4 ENUM pname

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 m reply length, m=(n==1?0:n)
4 unused
4 CARD32 n

if (n=1) this follows:

4 INT32 params
12 unused

otherwise this follows:

16 unused
n*4 LISTofINT32 params

Note that ATTRIB_ARRAY_SIZE_NV, ATTRIB_ARRAY_STRIDE_NV, and
ATTRIB_ARRAY_TYPE_NV may be queried by GetVertexAttribNV but
return client-side state.

GetVertexAttribdvNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 5 request length
4 ???? vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 INT32 index
4 ENUM pname

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 m reply length, m=(n==1?0:n*2)
4 unused
4 CARD32 n

if (n=1) this follows:

8 FLOAT64 params
8 unused

otherwise this follows:

16 unused
n*8 LISTofFLOAT64 params

NVIDIA OpenGL Extension Specifications NV_vertex_program

 501

GetVertexAttribfvNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 5 request length
4 ???? vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 INT32 index
4 ENUM pname

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 m reply length, m=(n==1?0:n)
4 unused
4 CARD32 n

if (n=1) this follows:

4 FLOAT32 params
12 unused

otherwise this follows:

16 unused
n*4 LISTofFLOAT32 params

GetVertexAttribivNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 5 request length
4 ???? vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 INT32 index
4 ENUM pname

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 m reply length, m=(n==1?0:n)
4 unused
4 CARD32 n

if (n=1) this follows:

4 INT32 params
12 unused

otherwise this follows:

16 unused
n*4 LISTofINT32 params

GetVertexAttribPointervNV is an entirely client-side command

IsProgramNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 4 request length
4 ???? vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 INT32 n

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 0 reply length
4 BOOL32 return value
20 unused

NV_vertex_program NVIDIA OpenGL Extension Specifications

 502

Errors

The error INVALID_VALUE is generated if VertexAttribNV is called
where index is greater than 15.

The error INVALID_VALUE is generated if any ProgramParameterNV has
an index is greater than 95.

The error INVALID_VALUE is generated if VertexAttribPointerNV
is called where index is greater than 15.

The error INVALID_VALUE is generated if VertexAttribPointerNV
is called where size is not one of 1, 2, 3, or 4.

The error INVALID_VALUE is generated if VertexAttribPointerNV
is called where stride is negative.

The error INVALID_OPERATION is generated if VertexAttribPointerNV
is called where type is UNSIGNED_BYTE and size is not 4.

The error INVALID_VALUE is generated if LoadProgramNV is used to load a
program with an id of zero.

The error INVALID_OPERATION is generated if LoadProgramNV is used
to load an id that is currently loaded with a program of a different
program target.

The error INVALID_OPERATION is generated if the program passed to
LoadProgramNV fails to load because it is not syntactically correct
based on the specified target. The value of PROGRAM_ERROR_POSITION_NV
is still updated when this error is generated.

The error INVALID_OPERATION is generated if LoadProgramNV has a
target of VERTEX_PROGRAM_NV and the specified program fails to
load because it does not write the HPOS register at least once.
The value of PROGRAM_ERROR_POSITION_NV is still updated when this
error is generated.

The error INVALID_OPERATION is generated if LoadProgramNV has a target
of VERTEX_STATE_PROGRAM_NV and the specified program fails to load
because it does not write at least one program parameter register.
The value of PROGRAM_ERROR_POSITION_NV is still updated when this
error is generated.

The error INVALID_OPERATION is generated if the vertex program
or vertex state program passed to LoadProgramNV fails to load
because it contains more than 128 instructions. The value of
PROGRAM_ERROR_POSITION_NV is still updated when this error is
generated.

The error INVALID_OPERATION is generated if a program is loaded with
LoadProgramNV for id when id is currently loaded with a program of
a different target.

The error INVALID_OPERATION is generated if BindProgramNV attempts
to bind to a program name that is not a vertex program (for example,
if the program is a vertex state program).

NVIDIA OpenGL Extension Specifications NV_vertex_program

 503

The error INVALID_VALUE is generated if GenProgramsNV is called
where n is negative.

The error INVALID_VALUE is generated if AreProgramsResidentNV is
called and any of the queried programs are zero or do not exist.

The error INVALID_OPERATION is generated if ExecuteProgramNV executes
a program that does not exist.

The error INVALID_OPERATION is generated if ExecuteProgramNV executes
a program that is not a vertex state program.

The error INVALID_OPERATION is generated if Begin, RasterPos, or a
command that performs an explicit Begin is called when vertex program
mode is enabled and the currently bound vertex program writes program
parameters that are currently being tracked.

The error INVALID_OPERATION is generated if ExecuteProgramNV is called
and the vertex state program to execute writes program parameters
that are currently being tracked.

The error INVALID_VALUE is generated if TrackMatrixNV has a target
of VERTEX_PROGRAM_NV and attempts to track an address is not a
multiple of four.

The error INVALID_VALUE is generated if GetProgramParameterNV is
called to query an index greater than 95.

The error INVALID_VALUE is generated if GetVertexAttribNV is called
to query an index greater than 15 or equal to zero.

The error INVALID_VALUE is generated if GetVertexAttribPointervNV
is called to query an index greater than 15.

The error INVALID_OPERATION is generated if GetProgramivNV is called
and the program named id does not exist.

The error INVALID_OPERATION is generated if GetProgramStringNV is called
and the program named id does not exist.

The error INVALID_VALUE is generated if GetTrackMatrixivNV is called
with an address that is not divisible by four and not less than 96.

The error INVALID_VALUE is generated if AreProgramsResidentNV,
DeleteProgramsNV, GenProgramsNV, or RequestResidentProgramsNV are
called where n is negative.

The error INVALID_VALUE is generated if LoadProgramNV is called
where len is negative.

The error INVALID_VALUE is generated if ProgramParameters4dvNV or
ProgramParameters4fvNV are called where count is negative.

The error INVALID_VALUE is generated if
VertexAttribs{1,2,3,4}{d,f,s}vNV is called where count is negative.

NV_vertex_program NVIDIA OpenGL Extension Specifications

 504

New State

update table 6.22 (page 212) so that all the "9"s are "25"s because there
are 9 conventional map targets and 16 vertex attribute map targets making
a total of 25.

Get Value Type Get Command Initial Value Description Sec Attribute
---------------------------- ------ --------------------------- ------------- ------------------ -------- ------------
VERTEX_PROGRAM_NV B IsEnabled False vertex program 2.10 enable

enable
VERTEX_PROGRAM_POINT_SIZE_NV B IsEnabled False program-specified 2.14.1.5 enable

point size mode
VERTEX_PROGRAM_TWO_SIDE_NV B IsEnabled False two-sided color 2.14.1.5 enable

mode
PROGRAM_ERROR_POSITION_NV Z GetIntegerv -1 last program 2.14.1.7 -

error position
PROGRAM_PARAMETER_NV 96xR4 GetProgramParameterNV (0,0,0,0) program parameters 2.14.1.2 -
CURRENT_ATTRIB_NV 16xR4 GetVertexAttribNV see 2.14.6 vertex attributes 2.14.1.1 current

but zero cannot be queried,
aliased with per-vertex
parameters

TRACK_MATRIX_NV 24xZ8+ GetTrackMatrixivNV NONE track matrix 2.14.5 -
TRACK_MATRIX_TRANSFORM_NV 24xZ8+ GetTrackMatrixivNV IDENTITY_NV track matrix 2.14.5 -

transform
VERTEX_PROGRAM_BINDING_NV Z+ GetIntegerv 0 bound vertex 2.14.1.8 -

program
VERTEX_ATTRIB_ARRAYn_NV 16xB IsEnabled False vertex attrib 2.14.3 vertex-array

array enable
ATTRIB_ARRAY_SIZE_NV 16xZ GetVertexAttribNV 4 vertex attrib 2.14.3 vertex-array

array size
ATTRIB_ARRAY_STRIDE_NV 16xZ+ GetVertexAttribNV 0 vertex attrib 2.14.3 vertex-array

array stride
ATTRIB_ARRAY_TYPE_NV 16xZ6 GetVertexAttribNV FLOAT vertex attrib 2.14.3 vertex-array

array type

Table X.5. New State Introduced by NV_vertex_program.

Get Value Type Get Command Initial Value Description Sec
Attribute
------------------- ------ ------------------ ------------- ------------------ -------- -----

PROGRAM_TARGET_NV Z2 GetProgramivNV 0 program target 6.1.13 -
PROGRAM_LENGTH_NV Z+ GetProgramivNV 0 program length 6.1.13 -
PROGRAM_RESIDENT_NV Z2 GetProgramivNV False program residency 6.1.13 -
PROGRAM_STRING_NV ubxn GetProgramStringNV "" program string 6.1.13 -

Table X.6. Program Object State.

Get Value Type Get Command Initial Value Description Sec Attribute
--------- ------ ----------- ------------- ----------------------- -------- ---------
- 12xR4 - (0,0,0,0) temporary registers 2.14.1.4 -
- 15xR4 - (0,0,0,1) vertex result registers 2.14.1.4 -

Z4 - (0,0,0,0) vertex program 2.14.1.3 -
address register

Table X.7. Vertex Program Per-vertex Execution State.

NVIDIA OpenGL Extension Specifications NV_vertex_program

 505

Get Value Type Get Command Initial Value Description Sec Attribute
----------------------------- -------- -------------- ------------- ------------------- ------- ---------
CURRENT_MATRIX_STACK_DEPTH_NV m*Z+ GetIntegerv 1 current stack depth 6.1.14 -
CURRENT_MATRIX_NV m*n*xM̂ 4 GetFloatv Identity current matrix 6.1.14 -

Table X.8. Current matrix state where m is the total number of matrices
including texture matrices and tracking matrices and n is the number of
matrices on each particular matrix stack. Note that this state is
aliased with existing matrix state.

New Implementation Dependent State
Minimum

Get Value Type Get Command Value Description Sec
Attribute
-------------------------------- ---- ----------- ---------- ------------------ ------ ----
MAX_TRACK_MATRIX_STACK_DEPTH_NV Z+ GetIntegerv 1 maximum tracking 2.14.5 -

matrix stack depth
MAX_TRACK_MATRICES_NV Z+ GetIntegerv 8 (not to maximum number of 2.14.5 -

exceed 32) tracking matrices

Table X.9. New Implementation-Dependent Values Introduced by NV_vertex_program.

Revision History

Version 1.1:

Added normalization example to Issues.

Fix explanation of EXP and ARL floor equivalence.

Clarify that vertex state programs fail if they load more than
one vertex attribute (though only one is possible).

Version 1.2

Add GLX protocol for VertexAttrib4ubvNV and VertexAttribs4ubvNV

Add issue about TrackMatrixNV transform behavior with example

Fix the C code specifying VertexAttribsvNV

Version 1.3

Dropped support for INT typed vertex attrib arrays.

Clarify that when ArrayElement is executed and vertex program
mode is enabled and the vertex attrib 0 array is enabled, the
vertex attrib 0 array command is executed last. However when
ArrayElement is executed and vertex program mode is enabled and the
vertex attrib 0 array is disabled and the vertex array is enabled,
the vertex array command is executed last.

SGIS_generate_mipmap NVIDIA OpenGL Extension Specifications

 506

Name

SGIS_generate_mipmap

Name Strings

GL_SGIS_generate_mipmap

Version

SGI Date: 1997/02/26 03:36:30 SGI Revision: 1.6
$Id: //sw/main/docs/OpenGL/specs/GL_SGIS_generate_mipmap.txt#2 $

Number

32

Dependencies

EXT_texture is required
EXT_texture3D affects the definition of this extension
EXT_texture_object affects the definition of this extension
SGIS_texture_lod affects the definition of this extension

Overview

This extension defines a mechanism by which OpenGL can derive the
entire set of mipmap arrays when provided with only the base level
array. Automatic mipmap generation is particularly useful when
texture images are being provided as a video stream.

Issues

* How are edges handled?

New Procedures and Functions

None

New Tokens

Accepted by the <pname> parameter of TexParameteri, TexParameterf,
TexParameteriv, TexParameterfv, GetTexParameteriv, and GetTexParameterfv:

GENERATE_MIPMAP_SGIS 0x8191

Accepted by the <target> parameter of Hint, and by the <pname>
parameter of GetBooleanv, GetIntegerv, GetFloatv, and GetDoublev:

GENERATE_MIPMAP_HINT_SGIS 0x8192

Additions to Chapter 2 of the 1.0 Specification (OpenGL Operation)

None

NVIDIA OpenGL Extension Specifications SGIS_generate_mipmap

 507

Additions to Chapter 3 of the 1.0 Specification (Rasterization)

GL Specification Table 3.7 is updated as follows:

Name Type Legal Values
---- ---- ------------
TEXTURE_WRAP_S integer CLAMP, REPEAT
TEXTURE_WRAP_T integer CLAMP, REPEAT
TEXTURE_WRAP_R_EXT integer CLAMP, REPEAT
TEXTURE_MIN_FILTER integer NEAREST, LINEAR,

NEAREST_MIPMAP_NEAREST,
NEAREST_MIPMAP_LINEAR,
LINEAR_MIPMAP_NEAREST,
LINEAR_MIPMAP_LINEAR,
FILTER4_SGIS

TEXTURE_MAG_FILTER integer NEAREST, LINEAR,
FILTER4_SGIS,
LINEAR_DETAIL_SGIS,
LINEAR_DETAIL_ALPHA_SGIS,
LINEAR_DETAIL_COLOR_SGIS,
LINEAR_SHARPEN_SGIS,
LINEAR_SHARPEN_ALPHA_SGIS,
LINEAR_SHARPEN_COLOR_SGIS

TEXTURE_BORDER_COLOR 4 floats any 4 values in [0,1]
DETAIL_TEXTURE_LEVEL_SGIS integer any non-negative integer
DETAIL_TEXTURE_MODE_SGIS integer ADD, MODULATE
TEXTURE_MIN_LOD_SGIS float any value
TEXTURE_MAX_LOD_SGIS float any value
TEXTURE_BASE_LEVEL_SGIS integer any non-negative integer
TEXTURE_MAX_LEVEL_SGIS integer any non-negative integer
GENERATE_MIPMAP_SGIS boolean TRUE or FALSE

Table 3.7: Texture parameters and their values.

This extension introduces a side effect to the modification of the
base level mipmap array. The side effect is enabled on a per-texture
basis by calling TexParameteri, TexParameterf, TexParameteriv, or
TexParameterfv with <target> set to TEXTURE_1D, TEXTURE_2D, or
TEXTURE_3D_EXT, <pname> set to GENERATE_MIPMAP_SGIS, and <param>
set to TRUE (or <params> pointing to TRUE). It is disabled using the
same call, with <param> set to FALSE, or <params> pointing to FALSE.
If SGIS_texture_lod is supported, the base level array is the array
number TEXTURE_BASE_LEVEL_SGIS. Otherwise the base level array is
array zero.

If GENERATE_MIPMAP_SGIS is enabled, the side effect occurs whenever
any change is made to the interior or edge image values of the base
level texture array. The side effect is computation of a complete
set of mipmap arrays, all derived from the modified base level array.
Array levels BASE+1 through BASE+p are replaced with derived arrays,
regardless of their previous contents. All other texture arrays,
including the base array, are left unchanged by this mipmap computation.

The internal formats and border widths of the derived mipmap arrays
all match those of the base array, and the dimensions of the derived
arrays follow the requirements described in the Mipmapping section of
the GL Specification. The result is that the set of mipmap arrays is

SGIS_generate_mipmap NVIDIA OpenGL Extension Specifications

 508

complete as defined by the GL Specification. The contents of the
derived image arrays are computed by repeated, filtered reduction of
the base level image array. This specification does not require any
particular filter algorithm, though a simple 2x2 box filter is
recommended as the default filter. Hint variable
GENERATE_MIPMAP_HINT_SGIS can be changed from its default value of
DONT_CARE to either FASTEST or NICEST, indicating to the implementation
that either the fastest or highest quality filter operation is desired.
These operations are not defined by this specification, however. The
single hint value controls the filtering of all the textures, and is
evaluated when the filtering operation takes place.

Automatic mipmap generation is available for texture targets TEXTURE_1D,
TEXTURE_2D, and TEXTURE_3D_EXT only.

Additions to Chapter 4 of the 1.0 Specification (Per-Fragment Operations
and the Frame Buffer)

None

Additions to Chapter 5 of the 1.0 Specification (Special Functions)

None

Additions to Chapter 6 of the 1.0 Specification (State and State Requests)

None

Additions to the GLX Specification

None

Dependencies on EXT_texture

EXT_texture is required.

Dependencies on EXT_texture3D

If EXT_texture3D is not supported, references to 3D texture mapping and
to TEXTURE_3D_EXT in this document are invalid and should be ignored.

Dependencies on EXT_texture_object

If EXT_texture_object is implemented, the state value named

GENERATE_MIPMAP_SGIS

is added to the state vector of each texture object. When an attribute
set that includes texture information is popped, the bindings and
enables are first restored to their pushed values, then the bound
textures have their GENERATE_MIPMAP_SGIS parameters restored to their
pushed values.

Dependencies on SGIS_texture_lod

If SGIS_texture_lod is not supported, the base array level is always
level zero. References in this document to TEXTURE_BASE_LEVEL_SGIS

NVIDIA OpenGL Extension Specifications SGIS_generate_mipmap

 509

should be ignored.

Errors

None

New State

Initial
Get Value Get Command Type Value Attrib
--------- ----------- ---- ------- ------
GENERATE_MIPMAP_SGIS GetTexParameteriv B FALSE texture
GENERATE_MIPMAP_HINT_SGIS GetIntegerv Z3 DONT_CARE hint

New Implementation Dependent State

None

SGIS_texture_lod NVIDIA OpenGL Extension Specifications

510

Name

SGIS_texture_lod

Name Strings

GL_SGIS_texture_lod

Version

$Date: 1997/05/30 01:34:44 $ $Revision: 1.8 $

Number

24

Dependencies

EXT_texture is required
EXT_texture3D affects the definition of this extension
EXT_texture_object affects the definition of this extension
SGI_detail_texture affects the definition of this extension
SGI_sharpen_texture affects the definition of this extension

Overview

This extension imposes two constraints related to the texture level of
detail parameter LOD, which is represented by the Greek character lambda
in the GL Specification. One constraint clamps LOD to a specified
floating point range. The other limits the selection of mipmap image
arrays to a subset of the arrays that would otherwise be considered.

Together these constraints allow a large texture to be loaded and
used initially at low resolution, and to have its resolution raised
gradually as more resolution is desired or available. Image array
specification is necessarily integral, rather than continuous. By
providing separate, continuous clamping of the LOD parameter, it is
possible to avoid "popping" artifacts when higher resolution images
are provided.

Note: because the shape of the mipmap array is always determined by
the dimensions of the level 0 array, this array must be loaded for
mipmapping to be active. If the level 0 array is specified with a
null image pointer, however, no actual data transfer will take
place. And a sufficiently tuned implementation might not even
allocate space for a level 0 array so specified until true image
data were presented.

Issues

* Should detail and sharpen texture operate when the level 0 image
is not being used?

A: Sharpen yes, detail no.

* Should the shape of the mipmap array be determined by the
dimensions of the level 0 array, regardless of the base level?

NVIDIA OpenGL Extension Specifications SGIS_texture_lod

 511

A: Yes, this is the better solution. Driving everything from
the base level breaks the proxy query process, and allows
mipmap arrays to be placed arbitrarily. The issues of
requiring a level 0 array are partially overcome by the use
of null-point loads, which avoid data transfer and,
potentially, data storage allocation.

* With the arithmetic as it is, a linear filter might access an
array past the limit specified by MAX_LEVEL or p. But the
results of this access are not significant, because the blend
will weight them as zero.

New Procedures and Functions

None

New Tokens

Accepted by the <pname> parameter of TexParameteri, TexParameterf,
TexParameteriv, TexParameterfv, GetTexParameteriv, and GetTexParameterfv:

TEXTURE_MIN_LOD_SGIS 0x813A
TEXTURE_MAX_LOD_SGIS 0x813B
TEXTURE_BASE_LEVEL_SGIS 0x813C
TEXTURE_MAX_LEVEL_SGIS 0x813D

Additions to Chapter 2 of the 1.0 Specification (OpenGL Operation)

None

SGIS_texture_lod NVIDIA OpenGL Extension Specifications

 512

Additions to Chapter 3 of the 1.0 Specification (Rasterization)

GL Specification Table 3.7 is updated as follows:

Name Type Legal Values
---- ---- ------------
TEXTURE_WRAP_S integer CLAMP, REPEAT
TEXTURE_WRAP_T integer CLAMP, REPEAT
TEXTURE_WRAP_R_EXT integer CLAMP, REPEAT
TEXTURE_MIN_FILTER integer NEAREST, LINEAR,

NEAREST_MIPMAP_NEAREST,
NEAREST_MIPMAP_LINEAR,
LINEAR_MIPMAP_NEAREST,
LINEAR_MIPMAP_LINEAR,
FILTER4_SGIS

TEXTURE_MAG_FILTER integer NEAREST, LINEAR,
FILTER4_SGIS,
LINEAR_DETAIL_SGIS,
LINEAR_DETAIL_ALPHA_SGIS,
LINEAR_DETAIL_COLOR_SGIS,
LINEAR_SHARPEN_SGIS,
LINEAR_SHARPEN_ALPHA_SGIS,
LINEAR_SHARPEN_COLOR_SGIS

TEXTURE_BORDER_COLOR 4 floats any 4 values in [0,1]
DETAIL_TEXTURE_LEVEL_SGIS integer any non-negative integer
DETAIL_TEXTURE_MODE_SGIS integer ADD, MODULATE
TEXTURE_MIN_LOD_SGIS float any value
TEXTURE_MAX_LOD_SGIS float any value
TEXTURE_BASE_LEVEL_SGIS integer any non-negative integer
TEXTURE_MAX_LEVEL_SGIS integer any non-negative integer

Table 3.7: Texture parameters and their values.

Base Array

Although it is not explicitly stated, it is the clear intention
of the OpenGL specification that texture minification filters
NEAREST and LINEAR, and all texture magnification filters, be
applied to image array zero. This extension introduces a
parameter, BASE_LEVEL, that explicitly specifies which array
level is used for these filter operations. Base level is specified
for a specific texture by calling TexParameteri, TexParameterf,
TexParameteriv, or TexParameterfv with <target> set to TEXTURE_1D,
TEXTURE_2D, or TEXTURE_3D_EXT, <pname> set to TEXTURE_BASE_LEVEL_SGIS,
and <param> set to (or <params> pointing to) the desired value. The
error INVALID_VALUE is generated if the specified BASE_LEVEL is
negative.

Level of Detail Clamping

The level of detail parameter LOD is defined in the first paragraph
of Section 3.8.1 (Texture Minification) of the GL Specification, where
it is represented by the Greek character lambda. This extension
redefines the definition of LOD as follows:

NVIDIA OpenGL Extension Specifications SGIS_texture_lod

 513

LOD'(x,y) = log_base_2 (Q(x,y))

/ MAX_LOD LOD' > MAX_LOD
LOD = (LOD' LOD' >= MIN_LOD and LOD' <= MAX_LOD

\ MIN_LOD LOD' < MIN_LOD
\ undefined MIN_LOD > MAX_LOD

The variable Q in this definition represents the Greek character rho,
as it is used in the OpenGL Specification. (Recall that Q is computed
based on the dimensions of the BASE_LEVEL image array.) MIN_LOD is the
value of the per-texture variable TEXTURE_MIN_LOD_SGIS, and MAX_LOD is
the value of the per-texture variable TEXTURE_MAX_LOD_SGIS.

Initially TEXTURE_MIN_LOD_SGIS and TEXTURE_MAX_LOD_SGIS are -1000 and
1000 respectively, so they do not interfere with the normal operation of
texture mapping. These values are respecified for a specific texture
by calling TexParameteri, TexParemeterf, TexParameteriv, or
TexParameterfv with <target> set to TEXTURE_1D, TEXTURE_2D, or
TEXTURE_3D_EXT, <pname> set to TEXTURE_MIN_LOD_SGIS or
TEXTURE_MAX_LOD_SGIS, and <param> set to (or <params> pointing to) the
new value. It is not an error to specify a maximum LOD value that is
less than the minimum LOD value, but the resulting LOD values are
not defined.

LOD is clamped to the specified range prior to any use. Specifically,
the mipmap image array selection described in the Mipmapping Subsection
of the GL Specification is based on the clamped LOD value. Also, the
determination of whether the minification or magnification filter is
used is based on the clamped LOD.

Mipmap Completeness

The GL Specification describes a "complete" set of mipmap image arrays
as array levels 0 through p, where p is a well defined function of the
dimensions of the level 0 image. This extension modifies the notion
of completeness: instead of requiring that all arrays 0 through p
meet the requirements, only arrays 0 and arrays BASE_LEVEL through
MAX_LEVEL (or p, whichever is smaller) must meet these requirements.
The specification of BASE_LEVEL was described above. MAX_LEVEL is
specified by calling TexParameteri, TexParemeterf, TexParameteriv, or
TexParameterfv with <target> set to TEXTURE_1D, TEXTURE_2D, or
TEXTURE_3D_EXT, <pname> set to TEXTURE_MAX_LEVEL_SGIS, and <param> set
to (or <params> pointing to) the desired value. The error
INVALID_VALUE is generated if the specified MAX_LEVEL is negative.
If MAX_LEVEL is smaller than BASE_LEVEL, or if BASE_LEVEL is greater
than p, the set of arrays is incomplete.

Array Selection

Magnification and non-mipmapped minification are always performed
using only the BASE_LEVEL image array. If the minification filter
is one that requires mipmapping, one or two array levels are
selected using the equations in the table below, and the LOD value
is clamped to a maximum value that insures that no array beyond

SGIS_texture_lod NVIDIA OpenGL Extension Specifications

 514

the limits specified by MAX_LEVEL and p is accessed.

Minification Filter Maximum LOD Array level(s)
------------------- ----------- --------------
NEAREST_MIPMAP_NEAREST M + 0.4999 floor(B + 0.5)
LINEAR_MIPMAP_NEAREST M + 0.4999 floor(B + 0.5)
NEAREST_MIPMAP_LINEAR M floor(B), floor(B)+1
LINEAR_MIPMAP_LINEAR M floor(B), floor(B)+1

where:

M = min(MAX_LEVEL,p) - BASE_LEVEL
B = BASE_LEVEL + LOD

For NEAREST_MIPMAP_NEAREST and LINEAR_MIPMAP_NEAREST the specified
image array is filtered according to the rules for NEAREST or
LINEAR respectively. For NEAREST_MIPMAP_LINEAR and
LINEAR_MIPMAP_LINEAR both selected arrays are filtered according to
the rules for NEAREST or LINEAR, respectively. The resulting values
are then blended as described in the Mipmapping section of the
OpenGL specification.

Additional Filters

Sharpen filters (described in SGIS_sharpen_texture) operate on array
levels BASE_LEVEL and BASE_LEVEL+1. If the minimum of MAX_LEVEL and p
is not greater than BASE_LEVEL, then sharpen texture reverts to a
LINEAR magnification filter. Detail filters (described in
SGIS_detail_texture) operate only when BASE_LEVEL is zero.

Texture Capacity

In Section 3.8 the OpenGL specification states:

"In order to allow the client to meaningfully query the maximum
image array sizes that are supported, an implementation must not
allow an image array of level one or greater to be created if a
`complete' set of image arrays consistent with the requested
array could not be supported."

Given this extension's redefinition of completeness, the above
paragraph should be rewritten to indicate that all levels of the
`complete' set of arrays must be supportable. E.g.

"In order to allow the client to meaningfully query the maximum
image array sizes that are supported, an implementation must not
allow an image array of level one or greater to be created if a
`complete' set of image arrays (all levels 0 through p) consistent
with the requested array could not be supported."

Additions to Chapter 4 of the 1.0 Specification (Per-Fragment Operations
and the Frame Buffer)

None

NVIDIA OpenGL Extension Specifications SGIS_texture_lod

 515

Additions to Chapter 5 of the 1.0 Specification (Special Functions)

None

Additions to Chapter 6 of the 1.0 Specification (State and State Requests)

None

Additions to the GLX Specification

None

Dependencies on EXT_texture

EXT_texture is required.

Dependencies on EXT_texture3D

If EXT_texture3D is not supported, references to 3D texture mapping and
to TEXTURE_3D_EXT in this document are invalid and should be ignored.

Dependencies on EXT_texture_object

If EXT_texture_object is implemented, the state values named

TEXTURE_MIN_LOD_SGIS
TEXTURE_MAX_LOD_SGIS
TEXTURE_BASE_LEVEL_SGIS
TEXTURE_MAX_LEVEL_SGIS

are added to the state vector of each texture object. When an attribute
set that includes texture information is popped, the bindings and
enables are first restored to their pushed values, then the bound
textures have their LOD and LEVEL parameters restored to their pushed
values.

Dependencies on SGIS_detail_texture

If SGIS_detail_texture is not supported, references to detail texture
mapping in this document are invalid and should be ignored.

Dependencies on SGIS_sharpen_texture

If SGIS_sharpen_texture is not supported, references to sharpen texture
mapping in this document are invalid and should be ignored.

Errors

INVALID_VALUE is generated if an attempt is made to set
TEXTURE_BASE_LEVEL_SGIS or TEXTURE_MAX_LEVEL_SGIS to a negative value.

SGIS_texture_lod NVIDIA OpenGL Extension Specifications

 516

New State

Initial
Get Value Get Command Type Value Attrib
--------- ----------- ---- ------ ------
TEXTURE_MIN_LOD_SGIS GetTexParameterfv n x R -1000 texture
TEXTURE_MAX_LOD_SGIS GetTexParameterfv n x R 1000 texture
TEXTURE_BASE_LEVEL_SGIS GetTexParameteriv n x R 0 texture
TEXTURE_MAX_LEVEL_SGIS GetTexParameteriv n x R 1000 texture

New Implementation Dependent State

None

NVIDIA OpenGL Extension Specifications SGIX_depth_texture

 517

Name

SGIX_depth_texture

Name Strings

GL_SGIX_depth_texture

Version

$Date: 1997/02/26 03:36:29 $ $Revision: 1.5 $
$Id: //sw/main/docs/OpenGL/specs/GL_SGIX_depth_texture.txt#3 $

Number

63

Dependencies

EXT_texture is required
EXT_subtexture affects the definition of this extension
EXT_copy_texture affects the definition of this extension

Overview

This extension defines a new depth texture format. An important
application of depth texture images is shadow casting, but separating
this from the shadow extension allows for the potential use of
depth textures in other applications such as image-based rendering
or displacement mapping. This extension does not define new
depth-texture environment functions, such as filtering or applying
the depth values computed from a texture, but leaves this to other
extensions, such as the shadow extension.

New Procedures and Functions

None

New Tokens

Accepted by the <components> parameters of TexImage1D and
TexImage2D, and by the <internalformat> parameters of TexImage3DEXT,
CopyTexImage1DEXT, and CopyTexImage2DEXT:

DEPTH_COMPONENT16_SGIX 0x81A5
DEPTH_COMPONENT24_SGIX 0x81A6
DEPTH_COMPONENT32_SGIX 0x81A7

Additions to Chapter 2 of the 1.0 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the 1.0 Specification (Rasterization)

XXX - lots

Notes:

SGIX_depth_texture NVIDIA OpenGL Extension Specifications

 518

* Defines DEPTH_COMPONENT as a new base internal format for
textures. Defines 16, 24, and 32 bit specific internal formats
for texture. Just as for the specific color internal formats,
an implementation can choose whether to implement them or not.

* Texture commands that accept images from memory now allow the
internal format to be DEPTH_COMPONENT or DEPTH_COMPONENT*_SGIX
when the format of the image data is DEPTH_COMPONENT. Depth,
not color pixel transfer operations are applied to depth images.

* Texture commands that accept images from the framebuffer now
take their data from the depth buffer when the internal format is
DEPTH_COMPONENT or DEPTH_COMPONENT*_SGIX, or when no internal
format is specified, and the internal format of the target
texture is DEPTH_COMPONENT or DEPTH_COMPONENT*_SGIX.

Additions to Chapter 4 of the 1.0 Specification (Per-Fragment Operations
and the Frame Buffer)

None

Additions to Chapter 5 of the 1.0 Specification (Special Functions)

None

Additions to Chapter 6 of the 1.0 Specification (State and State Requests)

None

Additions to the GLX Specification

None

Dependencies on EXT_texture

EXT_texture is required.

Dependencies on EXT_texture3D

EXT_texture3D is not required, but if it is not supported, the
implementation must compute the R texture coordinate as if it were.
If EXT_texture3D is not supported, references to TexImage3DEXT and
TexSubImage3DEXT in this document are invalid and should be ignored.

Dependencies on EXT_subtexture

If EXT_subtexture is not supported, references to TexSubImage1DEXT,
TexSubImage2DEXT, and TexSubImage3DEXT in this document are invalid
and should be ignored. If EXT_subtexture is supported, the operations
of these three commands are affected by this extension.

Dependencies on EXT_copy_texture

If EXT_copy_texture is not supported, references to CopyTexImage1DEXT
and CopyTexImage2DEXT in this document are invalid and should be
ignored. If EXT_copy_texture is supported, the operations of these

NVIDIA OpenGL Extension Specifications SGIX_depth_texture

 519

two commands, and of CopyTexSubImage1DEXT, CopyTexSubImage2DEXT,
and CopyTexSubImage3DEXT are affected by this extension.

Errors

INVALID_OPERATION is generated if TexImage1D or TexImage2D parameter
<format> is DEPTH_COMPONENT and parameter <components> is not
DEPTH_COMPONENT, DEPTH_COMPONENT16_SGI, DEPTH_COMPONENT24_SGI,
or DEPTH_COMPONENT32_SGI.

INVALID_OPERATION is generated if TexImage3DEXT parameter
<format> is DEPTH_COMPONENT and parameter <internalformat> is not
DEPTH_COMPONENT, DEPTH_COMPONENT16_SGI, DEPTH_COMPONENT24_SGI,
or DEPTH_COMPONENT32_SGI.

INVALID_OPERATION is generated if CopyTexImage1DEXT
or CopyTexImage2DEXT parameter <internalformat> is
DEPTH_COMPONENT, DEPTH_COMPONENT16_SGI, DEPTH_COMPONENT24_SGI,
or DEPTH_COMPONENT32_SGI, and there is no depth buffer.

New State

None

New Implementation Dependent State

None

SGIX_shadow NVIDIA OpenGL Extension Specifications

 520

Name

SGIX_shadow

Name Strings

GL_SGIX_shadow

Version

$Date: 1997/08/27 19:54:45 $ $Revision: 1.15 $
$Id: //sw/main/docs/OpenGL/specs/GL_SGIX_shadow.txt#4 $

Number

34

Dependencies

None.

Overview

This extension defines two new operations to be performed
on texture values before they are passed on to the filtering
subsystem. These operations perform either a <= or >= test
on the value from texture memory and the iterated R value,
and return 1.0 or 0.0 if the test passes or fails, respectively.

New Procedures and Functions

None

New Tokens

Accepted by the <pname> parameter of TexParameterf, TexParameteri,
TexParameterfv, TexParameteriv, GetTexParameterfv, and
GetTexParameteriv, with the <pname> parameter of TRUE or FALSE:

TEXTURE_COMPARE_SGIX

Accepted by the <pname> parameter of TexParameterf, TexParameteri,
TexParameterfv, TexParameteriv, GetTexParameterfv, and
GetTexParameteriv:

TEXTURE_COMPARE_OPERATOR_SGIX

Accepted by the <param> parameter of TexParameterf and
TexParameteri, and by the <params> parameter of TexParameterfv
and TexParameteriv, when their <pname> parameter is
TEXTURE_COMPARE_OPERATOR_SGIX:

TEXTURE_LEQUAL_R_SGIX
TEXTURE_GEQUAL_R_SGIX

NVIDIA OpenGL Extension Specifications SGIX_shadow

 521

Additions to Chapter 2 of the 1.0 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the 1.0 Specification (Rasterization)

XXX - lots

GL Specification Table 3.8 is updated as follows:

Name Type Legal Values
---- ---- ------------
TEXTURE_WRAP_S integer CLAMP, REPEAT
TEXTURE_WRAP_T integer CLAMP, REPEAT
TEXTURE_WRAP_R_EXT integer CLAMP, REPEAT
TEXTURE_MIN_FILTER integer NEAREST, LINEAR,

NEAREST_MIPMAP_NEAREST,
NEAREST_MIPMAP_LINEAR,
LINEAR_MIPMAP_NEAREST,
LINEAR_MIPMAP_LINEAR,
FILTER4_SGIS,
LINEAR_CLIPMAP_LINEAR_SGIX

TEXTURE_MAG_FILTER integer NEAREST, LINEAR,
FILTER4_SGIS,
LINEAR_DETAIL_SGIS,
LINEAR_DETAIL_ALPHA_SGIS,
LINEAR_DETAIL_COLOR_SGIS,
LINEAR_SHARPEN_SGIS,
LINEAR_SHARPEN_ALPHA_SGIS,
LINEAR_SHARPEN_COLOR_SGIS,

TEXTURE_BORDER_COLOR 4 floats any 4 values in [0,1]
DETAIL_TEXTURE_LEVEL_SGIS integer any non-negative integer
DETAIL_TEXTURE_MODE_SGIS integer ADD, MODULATE
TEXTURE_MIN_LOD_SGIS float any value
TEXTURE_MAX_LOD_SGIS float any value
TEXTURE_BASE_LEVEL_SGIS integer any non-negative integer
TEXTURE_MAX_LEVEL_SGIS integer any non-negative integer
GENERATE_MIPMAP_SGIS boolean TRUE or FALSE
TEXTURE_CLIPMAP_OFFSET_SGIX 2 floats any 2 values
TEXTURE_COMPARE_SGIX boolean TRUE or FALSE
TEXTURE_COMPARE_OPERATOR_SGIX integer TEXTURE_LEQUAL_R_SGIX,

TEXTURE_GEQUAL_R_SGIX

Table 3.8: Texture parameters and their values.

Notes:

* Two new texture operators are defined which alter the sampled
texture values before they are filtered. These operators are
defined only for textures with internal format DEPTH_COMPONENT
or DEPTH_COMPONENTS*_SGI.

* The new operators compare the sample texel value to the value
of the third texture coordinate, R. The texture components are
treated as though they range from 0.0 through 1.0. The value
of the test is zero if the test fails, and one if it passes.

* The test for operator TEXTURE_LEQUAL_R_SGIX passes if the texel
value is less than or equal to R. The test for operator

SGIX_shadow NVIDIA OpenGL Extension Specifications

 522

TEXTURE_GEQUAL_R_SGIX passes if the texel value is greater than
or equal to R.

* The modified texels (with value 0.0 or 1.0 depending on the
test result) are treated as if the texture internal format were
LUMINANCE.

Additions to Chapter 4 of the 1.0 Specification (Per-Fragment Operations
and the Frame Buffer)

None

Additions to Chapter 5 of the 1.0 Specification (Special Functions)

None

Additions to Chapter 6 of the 1.0 Specification (State and State Requests)

The texture compare operator is queried by calling GetTexParameteriv
and GetTexParameterfv with <pname> set to
TEXTURE_COMPARE_OPERATOR_SGIX. Texture compare enable/disable state
is queried by calling GetTexParameteriv or GetTexParameterif with
<pname> TEXTURE_COMPARE_SGIX.

Additions to the GLX Specification

None

Errors

INVALID_OPERATION is generated if TexParameter[if] parameter <pname>
is TEXTURE_COMPARE_OPERATOR_SGIX and parameter <param> is not
TEXTURE_LEQUAL_R_SGIX,or TEXTURE_GEQUAL_R_SGIX.

New State

Get Value Get Command Type Initial Value Attribute
--------- ----------- ---- ------------- ---------
TEXTURE_COMPARE_SGIX GetTexParameter[if]v B False texture
TEXTURE_COMPARE_OPERATOR_SGIX GetTexParameter[if]v Z_2 TEXTURE_LEQUAL_R_SGIX texture

New Implementation Dependent State

None

NVIDIA Implementation Details

The specification is unclear if the R texture coordinate is
clamped to the range [0,1]. NVIDIA hardware supporting this
extension does clamp the R texture coordinate to the range [0,1]
on a per-fragment basis.

The behavior of the NV_register_combiners SIGNED_NEGATE_NV mapping
mode is undefined when used to map the initial value of a texture
register corresponding to an enabled texture with a base internal
format of GL_DEPTH_COMPONENT and a true TEXTURE_COMPARE_SGIX
mode when multiple enabled textures have different values for
TEXTURE_COMPARE_OPERATOR_SGIX. . Values subsequently assigned

NVIDIA OpenGL Extension Specifications SGIX_shadow

 523

to such registers and then mapped with SIGNED_NEGATIE_NV operate
as expected.

WGL_ARB_buffer_region NVIDIA OpenGL Extension Specifications

 524

Name

WGL_ARB_buffer_region

Name Strings

WGL_ARB_buffer_region

Status

Complete. Approved by ARB on 12/8/1999

Version

Last Modified Date: December 10, 2000
Intergraph Revision 1.0

Number

ARB Extension #4

Dependencies

The extension is written against the OpenGL 1.2.1 Specification
although it should work on any previous OpenGL specification.

The WGL_EXT_extensions_string extension is required.

Overview

The buffer region extension is a mechanism that allows an area of
an OpenGL window to be saved in off-screen memory for quick
restores. The off-screen memory can either be frame buffer memory
or system memory, although frame buffer memory might offer optimal
performance.

A buffer region can be created for the front color, back color,
depth, and/or stencil buffer. Multiple buffer regions for the same
buffer type can exist.

IP Status

None

Issues

1. Do we need the glBufferRegionEnabled call that is in the
Kinetix extensions?

The reason behind this function was so that a single driver
could be used on adapters with various amounts of memory -- the
extension would always be present but its use would depend on a
separate call. The same functionality could be achieved by not
advertising this extension or always returning a value of NULL
from wglCreateBufferRegionARB.

NVIDIA OpenGL Extension Specifications WGL_ARB_buffer_region

 525

2. Should the width/height be specified on the create.

Because applications create regions that are not used, it would
be better to leave the size as a parameter on the save.

3. Should information be added to the create to allow for layer
support?

Layer support has been added.

4. Which DC gets used for buffer region operations?

The DC that was allocated on the CreateBufferRegionARB call is
saved and used for subsequent save and restore operations. It
must remain valid during the life of the buffer region. This is
analogous to the RC method for handling the DC.

5. Does the driver do a flush before the save and restore?

In keeping with the same paradigm as SwapBuffers, a flush will
be made by the driver for the RC bound to the calling thread
before the save and restore operations.

6. Which coordinate system is used?

The KTX_buffer_region and WIN_swap_hint extensions specify the
(x,y) origin as the lower left corner of the rectangle. This
extension adopts the same philosophy.

New Procedures and Functions

HANDLE wglCreateBufferRegionARB(HDC hDC,
int iLayerPlane,
UINT uType)

VOID wglDeleteBufferRegionARB(HANDLE hRegion)

BOOL wglSaveBufferRegionARB(HANDLE hRegion,
int x,
int y,
int width,
int height)

BOOL wglRestoreBufferRegionARB(HANDLE hRegion,
int x,
int y,
int width,
int height,
int xSrc,
int ySrc)

WGL_ARB_buffer_region NVIDIA OpenGL Extension Specifications

 526

New Tokens

Accepted by the <uType> parameter of wglCreateBufferRegionARB is the
bitwise OR of any of the following values:

WGL_FRONT_COLOR_BUFFER_BIT_ARB 0x00000001
WGL_BACK_COLOR_BUFFER_BIT_ARB 0x00000002
WGL_DEPTH_BUFFER_BIT_ARB 0x00000004
WGL_STENCIL_BUFFER_BIT_ARB 0x00000008

Additions to Chapter 2 of the OpenGL 1.2.1 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the OpenGL 1.2.1 Specification (Rasterization)

None

Additions to Chapter 4 of the OpenGL 1.2.1 Specification (Per-Fragment
Operations and the Frame Buffer)

None

Additions to Chapter 5 of the OpenGL 1.2.1 Specification (Special Functions)

None

Additions to Chapter 6 of the OpenGL 1.2.1 Specification (State and
State Requests)

None

Additions to Appendix A of the OpenGL 1.2.1 Specification (Invariance)

None

Additions to the GLX Specification

None

GLX Protocol

None

Additions to the WGL Specification

A buffer region can be created with wglCreateBufferRegionARB
which returns a handle associated with the buffer region.

HANDLE wglCreateBufferRegionARB(HDC hDC,
INT iLayerPlane,
UINT uType)

<hDC> specifies a device context for the device on which the buffer
region is created. <iLayerPlane> specifies the layer. Positive
values identify overlay planes, negative values identify underlay
planes. A value of 0 identifies the main plane.

NVIDIA OpenGL Extension Specifications WGL_ARB_buffer_region

 527

<uType> is a bitwise OR of any of the following values indicating
which buffers can be saved or restored. Multiple bits can be set
and may result in better performance if multiple buffers are saved
or restored.

WGL_FRONT_COLOR_BUFFER_BIT_ARB
WGL_BACK_COLOR_BUFFER_BIT_ARB
WGL_DEPTH_BUFFER_BIT_ARB
WGL_STENCIL_BUFFER_BIT_ARB

For stereo windows, WGL_FRONT_COLOR_BUFFER_BIT_ARB implies both the
left and right front buffers, and WGL_BACK_COLOR_BUFFER_BIT_ARB
implies both the left and right back buffers.

When wglCreateBufferRegionARB fails to create a buffer region, a
value of NULL is returned. To get extended error information, call
GetLastError.

Image, depth, and stencil data can be saved into the buffer region
by calling wglSaveBufferRegionARB.

BOOL wglSaveBufferRegionARB(HANDLE hRegion,
int x,
int y,
int width,
int height)

<hRegion> is a handle to a buffer region previously created with
wglCreateBufferRegionARB. The DC specified when the region was
created is used as the device context specifying the window.

<x> and <y> specify the window position for the source rectangle.
<width> and <height> specify the width and height of the source
rectangle. Data outside the window for the specified rectangle is
undefined. The OpenGL coordinate system is used for specifying the
rectangle (<x> and <y> specify the lower-left corner of the
rectangle).

If an RC is current to the calling thread, a flush will occur
before the save operation.

The saved buffer region area can be freed by calling
wglSaveBufferRegionARB with <width> or <height> set to a value
of 0.

If the call to wglSaveBufferRegionARB is successful, a value of
TRUE is returned. Otherwise, a value of FALSE is returned. To
get extended error information, call GetLastError.

WGL_ARB_buffer_region NVIDIA OpenGL Extension Specifications

 528

A previously saved region can be restored (multiple times) with
the wglRestoreBufferRegionARB function.

BOOL wglRestoreBufferRegionARB(HANDLE hRegion,
int x,
int y,
int width,
int height,
int xSrc,
int ySrc)

<hRegion> is a handle to a buffer region previously created with
wglCreateBufferRegionARB. The DC specified when the region was
created is used as the device context specifying the window.

<x> and <y> specify the window position for the destination
rectangle. <width> and <height> specify the width and height of
the destination rectangle. The OpenGL coordinate system is used
for specifying the rectangle (<x> and <y> specify the lower-left
corner of the rectangle).

<xSrc> and <ySrc> specify the position in the buffer region for
the source of the data. Any portion of the rectangle outside of
the saved region is ignored.

If an RC is current to the calling thread, a flush will occur
before the restore operation.

If the call to wglRestoreBufferRegionARB is successful, a value of
TRUE is returned. Otherwise, a value of FALSE is returned. To
get extended error information, call GetLastError.

The buffer region can be deleted with wglDeleteBufferRegionARB.

VOID wglDeleteBufferRegionARB(HANDLE hRegion)

<hRegion> is a handle to a buffer region previously created with
wglCreateBufferRegionARB. Any saved data associated with <hRegion>
is discarded. The DC used to create the region must still be valid
for the delete to work.

Dependencies on WGL_EXT_extensions_string

Because there is no way to extend wgl, these calls are defined in
the ICD and can be called by obtaining the address with
wglGetProcAddress. Because this extension is a WGL extension, it
is not included in the GL_EXTENSIONS string. Its existence can be
determined with the WGL_EXT_extensions_string extension.

Errors

ERROR_NO_SYSTEM_RESOURCES is generated if memory cannot be
allocated for storing the saved data.

ERROR_INVALID_HANDLE is generated if <hRegion> is not a valid
handle that was previously returned by wglCreateBufferRegionARB.

NVIDIA OpenGL Extension Specifications WGL_ARB_buffer_region

 529

ERROR_INVALID_DATA is generated if <uType> is zero or includes
an undefined bit.

ERROR_INVALID_DATA is generated if <width> or <height> is negative.

New State

None

New Implementation Dependent State

None

Conformance Test

1. Clear the window to blue.
2. Save an area of the window using wglSaveBufferRegionARB.
3. Clear the window to red.
4. Restore the area of the window using wglRestoreBufferRegionARB.
5. Verify that the area was restored.
6. Repeat for the depth buffer.
7. Repeat for the stencil buffer.
8. Repeat for image and depth buffer.

Revision History

12/10/99 1.0 ARB extension - based on the wgl_buffer_region
extension.

WGL_ARB_extensions_string NVIDIA OpenGL Extension Specifications

 530

Name

WGL_ARB_extensions_string

Name Strings

WGL_ARB_extensions_string

Status

Complete. Approved by ARB on March 15, 2000

Version

Last Modified Date: March 22, 2000
Author Revision: 1.0

Number

ARB Extension #8

Dependencies

None

Overview

This extension provides a way for applications to determine which
WGL extensions are supported by a device. This is the foundation
upon which other WGL extensions are built.

IP Status

No issues.

Issues

1. Note that extensions that were previously advertised via
glGetString (e.g., the swap interval extension) should continue to
be advertised there so existing applications don't break. They
should also be advertised via wglGetExtensionsStringARB so new
applications can make one call to find out which WGL extensions are
supported.

2. Should this function take an hdc? It seems like a good idea. At
some point MS may want to incorporate this into OpenGL32. If they
do this and and they want to support more than one ICD, then an HDC
would be needed.

New Procedures and Functions

const char *wglGetExtensionsStringARB(HDC hdc);

New Tokens

None

NVIDIA OpenGL Extension Specifications WGL_ARB_extensions_string

 531

Additions to Chapter 2 of the 1.2 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the 1.2 Specification (Rasterization)

None

Additions to Chapter 4 of the 1.2 Specification (Per-Fragment Operations
and the Frame buffer)

None

Additions to Chapter 5 of the 1.2 Specification (Special Functions)

None

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)

None

Additions to the WGL Specification

Advertising WGL Extensions

Applications should call wglGetProcAddress to see whether or not
wglGetExtensionsStringARB is supported. If it is supported then it
can be used to determine which WGL extensions are supported by the
device.

const char *wglGetExtensionsStringARB(HDC hdc);

<hdc> device context to query extensions for

If the function succeeds, it returns a list of supported extensions
to WGL. Although the contents of the string is implementation
specific, the string will be NULL terminated and will contain a
space-separated list of extension names. (The extension names
themselves do not contain spaces.) If there are no extensions then
the empty string is returned.

If <hdc> does not indicate a valid device context then the function
fails and the error ERROR_DC_NOT_FOUND is generated. If the function
fails, the return value is NULL. To get extended error information,
call GetLastError.

New State

None

New Implementation Dependent State

None

WGL_ARB_extensions_string NVIDIA OpenGL Extension Specifications

 532

Revision History

Changes from EXT_extension_string:

Added hdc parameter to facilitate moving this function into OPENGL32
Added WGL to name to avoid name collisions with GL and GLX

NVIDIA OpenGL Extension Specifications WGL_ARB_pbuffer

 533

Name

WGL_ARB_pbuffer

Name Strings

WGL_ARB_pbuffer

Status

Complete. Approved by ARB on March 15, 2000

Version

Last Modified Date: 03/22/2000
Author Revision: 1.0

Based on: WGL_EXT_pbuffer specification
Date: 4/21/1999 Version 1.8

Number

ARB Extension #11

Dependencies

WGL_ARB_extensions_string is required.
WGL_ARB_pixel_format is required.
WGL_ARB_make_current_read affects the definition of this extension.

Overview

This extension defines pixel buffers (pbuffer for short). Pbuffers
are additional non-visible rendering buffers for an OpenGL
renderer. Pbuffers are equivalent to a window that has the same
pixel format descriptor with the following exceptions:

1. There is no rendering to a pbuffer by GDI.

2. The pixel format descriptors used for a pbuffer can only be
those that are supported by the ICD. Generic formats are not
valid.

3. The allocation of a pbuffer can fail if there are insufficient
resources (i.e., all the pbuffer memory has been allocated).

4. The pixel buffer might be lost if a display mode change occurs.
A query is provided that can be called after a display mode
change to determine the state of the pixel buffer.

The intent of the pbuffer semantics is to enable implementations to
allocate pbuffers in non-visible frame buffer memory. These
pbuffers are intended to be "static" resources in that a program
will typically allocate them only once rather than as a part of its
rendering loop. (Pbuffers should be deallocated when the program
is no longer using them -- for example, if the program is
iconified.)

WGL_ARB_pbuffer NVIDIA OpenGL Extension Specifications

 534

The frame buffer resources that are associated with a pbuffer are
also static and are deallocated when the pbuffer is destroyed or
possibly when a display mode change occurs.

IP Status

TBD

Issues

1. Should the OPTIMUM width and heights and PBUFFER_LARGEST_ARB be
taken out of the spec since they may be misleading or hard for
some implementations to support?

PBUFFER_LARGEST_ARB has been left in the extension. It was
originally requested by an application. The OPTIMUM queries
have been removed to match the GLX pixel buffer specification.

New Procedures and Functions

DECLARE_HANDLE(HPBUFFERARB);

HPBUFFERARB wglCreatePbufferARB(HDC hDC,
int iPixelFormat,
int iWidth,
int iHeight,
const int *piAttribList);

HDC wglGetPbufferDCARB(HPBUFFERARB hPbuffer);

int wglReleasePbufferDCARB(HPBUFFERARB hPbuffer,
HDC hDC);

BOOL wglDestroyPbufferARB(HPBUFFERARB hPbuffer);

BOOL wglQueryPbufferARB(HPBUFFERARB hPbuffer,
int iAttribute,
int *piValue);

New Tokens

Accepted by the <attribute> parameter of wglChoosePixelFormatEXT:

WGL_DRAW_TO_PBUFFER_ARB 0x202D

Accepted by the <attribute> parameter of
wglGetPixelFormatAttribivEXT, and wglGetPixelFormatAttribfvEXT:

WGL_DRAW_TO_PBUFFER_ARB 0x202D
WGL_MAX_PBUFFER_PIXELS_ARB 0x202E
WGL_MAX_PBUFFER_WIDTH_ARB 0x202F
WGL_MAX_PBUFFER_HEIGHT_ARB 0x2030

NVIDIA OpenGL Extension Specifications WGL_ARB_pbuffer

 535

Accepted by the <piAttribList> parameter of wglCreatePbufferARB:

WGL_PBUFFER_LARGEST_ARB 0x2033

Accepted by the <iAttribute> parameter of wglQueryPbufferARB:

WGL_PBUFFER_WIDTH_ARB 0x2034
WGL_PBUFFER_HEIGHT_ARB 0x2035
WGL_PBUFFER_LOST_ARB 0x2036

Additions to Chapter 2 of the 1.2 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the 1.2 Specification (Rasterization)

None

Additions to Chapter 4 of the 1.2 Specification (Per-Fragment Operations
and the Frame buffer)

None

Additions to Chapter 5 of the 1.2 Specification (Special Functions)

None

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)

None

Additions to the GLX Specification

This specification is written for WGL.

GLX Protocol

This specification is written for WGL.

Additions to the WGL Specification

A pixel buffer (pbuffer) can be created with wglCreatePbufferARB
which returns a handle associated with the pbuffer.

HPBUFFERARB wglCreatePbufferARB(HDC hDC,
int iPixelFormat,
int iWidth,
int iHeight,
const int *piAttribList);

<hDC> specifies a device context for the device on which the
pbuffer is created. <iPixelFormat> specifies a non-generic pixel
format descriptor index. Support for pbuffers may be restricted
to specific pixel formats. Use wglGetPixelFormatAttribivEXT or
wglGetPixelFormatAttribfvEXT to query the WGL_DRAW_TO_PBUFFER_ARB
attribute to determine which pixel formats support the creation of
pbuffers.

WGL_ARB_pbuffer NVIDIA OpenGL Extension Specifications

 536

<iWidth> and <iHeight> specify the pixel width and height of the
rectangular pbuffer.

<piAttribList> is a list of attributes {type, value} pairs
containing integer attribute values. All of the attributes in the
<piAttribList> are followed by the corresponding required value.
The list is terminated with a value of 0.

The following attributes are supported by wglCreatePbufferARB:

WGL_PBUFFER_LARGEST_ARB If this attribute is set to a
non-zero value, the largest
available pbuffer is allocated
when the allocation of the pbuffer
would otherwise fail due to
insufficient resources. The width
or height of the allocated pbuffer
never exceeds <iWidth> and <iHeight>,
respectively. Use wglQueryPbufferARB
to retrieve the dimensions of the
allocated pbuffer.

The resulting pbuffer will contain color buffers and ancillary
buffers as specified by <iPixelFormat>. Note that pbuffers use
framebuffer resources so applications should consider deallocating
them when they are not in use.

It is possible to create a pbuffer with back buffers and to swap
the front and back buffers by calling wglSwapLayerBuffers. The
contents of the back buffers after the swap depends on the
<iPixelFormat>. (Pbuffers are the same as windows in this respect.)

When wglCreatePbufferARB fails to create a pbuffer, NULL is
returned. To get extended error information, call GetLastError.
Possible errors are as follows:

ERROR_INVALID_PIXEL_FORMAT Pixel format is not valid.

ERROR_NO_SYSTEM_RESOURCES Insufficient resources exist.

ERROR_INVALID_DATA <iWidth> or <iHeight> is negative
or zero.

ERROR_INVALID_DATA <piAttribList> is not a valid
attribute.

To create a device context for the pbuffer, call

HDC wglGetPbufferDCARB(HPBUFFERARB hPbuffer);

where <hPbuffer> is a handle returned from a previous call to
wglCreatePbufferARB. A device context is returned by
wglGetPbufferDCARB which can be used to associate a rendering
context with the pbuffer. Any rendering context created with
a wglCreateContext that is "compatible" with the <iPixelFormat> may
be used to render into the pbuffer. (See the description of

NVIDIA OpenGL Extension Specifications WGL_ARB_pbuffer

 537

wglCreateContext, wglMakeCurrent, and wglMakeCurrentReadEXT for a
definition of "compatible".)

When wglGetPbufferDCARB fails, NULL is returned. To get extended
error information, call GetLastError. Possible errors are as
follows:

ERROR_INVALID_HANDLE <hPbuffer> is not a valid handle.

To release a device context obtained from a previous call to
wglGetPbufferDCARB, call

int wglReleasePbufferDCARB(HPBUFFERARB hPbuffer,
HDC hDC);

If the return value is a value of 1, the device context was released.
If the device context was not released, the return value is 0. To
get extended error information, call GetLastError. Possible errors
are as follows:

ERROR_INVALID_HANDLE <hPbuffer> is not a valid handle.
ERROR_DC_NOT_FOUND <hDC> is not a valid DC.

A pbuffer is destroyed by calling

BOOL wglDestroyPbufferARB(HPBUFFERARB hPbuffer);

The pbuffer is destroyed once it is no longer current to any
rendering context. When a pbuffer is destroyed, any memory
resources that are attached to it are freed and its handle is no
longer valid.

If wglDestroyPbufferARB fails, FALSE is returned. To get extended
error information, call GetLastError. Possible errors are as
follows:

ERROR_INVALID_HANDLE <hPbuffer> is not a valid handle.

To query the maximum width, height, or number of pixels in any
given pbuffer for a specific pixel format, use
wglGetPixelFormatAttribivEXT or wglGetPixelFormatAttribfvEXT with
<attribute> set to one of WGL_MAX_PBUFFER_WIDTH_ARB,
WGL_MAX_PBUFFER_HEIGHT_ARB, or WGL_MAX_PBUFFER_PIXELS_ARB.

WGL_MAX_PBUFFER_WIDTH_ARB and WGL_MAX_PBUFFER_HEIGHT_ARB indicate
the maximum width and height that can be passed into
wglCreatePbufferARB and WGL_MAX_PBUFFER_PIXELS_ARB indicates the
maximum number of pixels (width x height) for a pbuffer. Note
that an implementation may return a value for
WGL_MAX_PBUFFER_PIXELS_ARB that is less than the maximum width
times the maximum height. Also, the value for
WGL_MAX_PBUFFER_PIXELS_ARB is static and assumes that no other
pbuffers are contending for the framebuffer memory. Thus it may
not be possible to allocate a pbuffer of the size given by
WGL_MAX_PBUFFER_PIXELS_ARB.

WGL_ARB_pbuffer NVIDIA OpenGL Extension Specifications

 538

To query an attribute associated with a specific pbuffer, call

BOOL wglQueryPbufferARB(HPBUFFERARB hPbuffer,
int iAttribute,
int *piValue);

with <hPbuffer> set to a previously returned pbuffer handle.
<iAttribute> must be set to one of WGL_PBUFFER_WIDTH_ARB,
WGL_PBUFFER_HEIGHT_ARB, or WGL_PBUFFER_LOST_ARB.

The WGL_PBUFFER_LOST_ARB query can be used to determine if the
pixel buffer memory was lost due to a display mode change. A value
of TRUE is returned in <iAttribute> if the display mode change lost
the memory for the pixel buffer. It is not an error to render to
a pixel buffer in this state, but the effect of rendering to it is
the same as if the pixel buffer was destroyed: the context state
will be updated, but the values of the returned pixels are
undefined. The pixel buffer must be destroyed and recreated if
the pixel buffer memory has been lost. A value of FALSE is
returned to indicate that the contents of the pixel buffer are
unaffected by the display mode change.

If wglQueryPbufferARB fails, FALSE is returned. To get extended
error information, call GetLastError. Possible errors are as
follows:

ERROR_INVALID_HANDLE <hPbuffer> is not a valid handle.
ERROR_INVALID_DATA <iAttribute> is not a valid attribute.

Dependencies on WGL_ARB_pixel_format

The WGL_ARB_pixel_format extension must be used to determine a
pixel format that can be used to create the pixel buffer.

Dependencies on WGL_ARB_extensions_string

Because there is no way to extend wgl, these calls are defined in
the ICD and can be called by obtaining the address with
wglGetProcAddress. Because this extension is a WGL extension, it
is not included in the GL_EXTENSIONS string. Its existence can be
determined with the WGL_ARB_extensions_string extension.

New State

None

New Implementation Dependent State

None

Conformance Testing

All of the current conformance tests can be run on a pixel buffer
to validate its conformance. The only change to the conformance
tests would be to create a context for the pixel buffer.

NVIDIA OpenGL Extension Specifications WGL_ARB_pbuffer

 539

Revision History

12/16/1999 0.1
- First ARB draft based on the EXT specification.

02/28/2000 0.2
- Added a query for a damaged pixel buffer due to a display

mode change.

03/15/2000 0.3
- Changed the lost definition of a pixel buffer.
- Removed the OPTIMAL size queries.
- Added a dependency on WGL_ARB_pixel_format.

03/22/2000 1.0
- Changed "mode change" to "display mode change".
- Added the condition that the resources associated with a

pbuffer may be lost due to a display mode change.
- Fixed issue 1 to address the OPTIMUM values.
- Added the declaration of HPBUFFERARB in the Procedures and

Functions section.
- Changed the wording of "undamaged" to "unaffected"
- Approved by ARB: 10-0-0.

WGL_ARB_pixel_format NVIDIA OpenGL Extension Specifications

 540

Name

WGL_ARB_pixel_format

Name Strings

WGL_ARB_pixel_format

Status

Complete. Approved by ARB on 3/15/2000.

Version

Last Modified Date: March 22, 2000
Author Revision: 1.0

Number

ARB Extension #9

Dependencies

WGL_ARB_extensions_string is required.

Overview

This extension adds functions to query pixel format attributes and
to choose from the list of supported pixel formats.

These functions treat pixel formats as opaque types: attributes are
specified by name rather than by accessing them directly as fields
in a structure. Thus the list of attributes can be easily extended.

Attribute names are defined which correspond to all of the values in
the PIXELFORMATDESCRIPTOR and LAYERPLANEDESCRIPTOR data structures.
Additionally this interface allows pixel formats to be supported
which have attributes that cannot be represented using the standard
pixel format functions, i.e. DescribePixelFormat,
DescribeLayerPlane, ChoosePixelFormat, SetPixelFormat, and
GetPixelFormat.

IP Status

No issues.

Issues and Notes

1. No provision is made to support extended pixel format attributes in
metafiles.

2. Should the transparent value pixel format attribute have separate red,
green and blue values? Yes.

3. What data type should the transparent value be? This is no longer an
issue since the transparent value is no longer a packed pixel value (it
has separate r,g,b,a and index values).

4. Should we add DONT_CARE values for some of the pixel format attributes?
No we should just ignore attributes that aren't specified in the list

NVIDIA OpenGL Extension Specifications WGL_ARB_pixel_format

 541

passed to wglChoosePixelFormatARB.
5. Should wglGetPixelFormatAttrib*vARB ignore the <iLayerPlane> parameter

when the attribute specified only applies to the main planes (e.g.,
when the attribute is set to WGL_NUMBER_OVERLAYS) or should it require
<iLayerPlane> to be set to zero? It will just ignore the parameter.
This allows these attributes to be queried at the same time as
attributes of the overlay planes.

6. Should wglGetPixelFormatAttribivARB convert floating point values to
fixed point? No, wglChoosePixelFormatARB needs a way to accept floating
point values. pfAttribFList accomplishes this.

7. Should wglChoosePixelFormatARB take an <iLayerPlane> parameter?
Typically <iLayerPlane> would be set to zero and a pixel format would
be selected based on the attributes of the main plane, so there is no
<iLayerPlane> parameter. This should be OK; applications won't
typically select a pixel format on the basis of overlay attributes.
They can always call wglGetPixelFormatAttrib*vARB to get a pixel format
that has the desired overlay values.

8. Application programmers must check to see if a particular extension is
supported before using any pixel format attributes associated with the
extension. For example, if WGL_ARB_pbuffer is not supported then it is
an error to specify WGL_DRAW_TO_PBUFFER_ARB in the attribute list to
wglGetPixelFormatAttrib*vARB or wglChoosePixelFormatARB.

9. Should WGLChoosePixelFormatARB consider pixel formats at other display
depths? It would be useful to have an argument to
WGLChoosePixelFormatARB indicating what display depth should be used.
However, there is no good way to implement this in the ICD since pixel
format handles are sequential indices and the pixel format for index n
differs depending on the display mode.

10. Should we allow non-displayable pixel formats for pbuffers? Yes,
although many (most?) implementations will use displayable pixel
formats for pbuffers, this is a useful feature and the spec should
allow for it.

11. Should we create all new calls for pixel formats, specifically should
we introduce SetPixelFormatARB? No, this doesn't offer any value over
the existing SetPixelFormat call.

12. Should we add support for triple buffering? No, triple buffering needs
to be covered by a separate extension.

New Procedures and Functions

BOOL wglGetPixelFormatAttribivARB(HDC hdc,
int iPixelFormat,
int iLayerPlane,
UINT nAttributes,
const int *piAttributes,
int *piValues);

BOOL wglGetPixelFormatAttribfvARB(HDC hdc,
int iPixelFormat,
int iLayerPlane,
UINT nAttributes,
const int *piAttributes,
FLOAT *pfValues);

BOOL wglChoosePixelFormatARB(HDC hdc,
const int *piAttribIList,
const FLOAT *pfAttribFList,

WGL_ARB_pixel_format NVIDIA OpenGL Extension Specifications

 542

UINT nMaxFormats,
int *piFormats,
UINT *nNumFormats);

New Tokens

Accepted in the <piAttributes> parameter array of
wglGetPixelFormatAttribivARB, and wglGetPixelFormatAttribfvARB, and
as a type in the <piAttribIList> and <pfAttribFList> parameter
arrays of wglChoosePixelFormatARB:

WGL_NUMBER_PIXEL_FORMATS_ARB 0x2000
WGL_DRAW_TO_WINDOW_ARB 0x2001
WGL_DRAW_TO_BITMAP_ARB 0x2002
WGL_ACCELERATION_ARB 0x2003
WGL_NEED_PALETTE_ARB 0x2004
WGL_NEED_SYSTEM_PALETTE_ARB 0x2005
WGL_SWAP_LAYER_BUFFERS_ARB 0x2006
WGL_SWAP_METHOD_ARB 0x2007
WGL_NUMBER_OVERLAYS_ARB 0x2008
WGL_NUMBER_UNDERLAYS_ARB 0x2009
WGL_TRANSPARENT_ARB 0x200A
WGL_TRANSPARENT_RED_VALUE_ARB 0x2037
WGL_TRANSPARENT_GREEN_VALUE_ARB 0x2038
WGL_TRANSPARENT_BLUE_VALUE_ARB 0x2039
WGL_TRANSPARENT_ALPHA_VALUE_ARB 0x203A
WGL_TRANSPARENT_INDEX_VALUE_ARB 0x203B
WGL_SHARE_DEPTH_ARB 0x200C
WGL_SHARE_STENCIL_ARB 0x200D
WGL_SHARE_ACCUM_ARB 0x200E
WGL_SUPPORT_GDI_ARB 0x200F
WGL_SUPPORT_OPENGL_ARB 0x2010
WGL_DOUBLE_BUFFER_ARB 0x2011
WGL_STEREO_ARB 0x2012
WGL_PIXEL_TYPE_ARB 0x2013
WGL_COLOR_BITS_ARB 0x2014
WGL_RED_BITS_ARB 0x2015
WGL_RED_SHIFT_ARB 0x2016
WGL_GREEN_BITS_ARB 0x2017
WGL_GREEN_SHIFT_ARB 0x2018
WGL_BLUE_BITS_ARB 0x2019
WGL_BLUE_SHIFT_ARB 0x201A
WGL_ALPHA_BITS_ARB 0x201B
WGL_ALPHA_SHIFT_ARB 0x201C
WGL_ACCUM_BITS_ARB 0x201D
WGL_ACCUM_RED_BITS_ARB 0x201E
WGL_ACCUM_GREEN_BITS_ARB 0x201F
WGL_ACCUM_BLUE_BITS_ARB 0x2020
WGL_ACCUM_ALPHA_BITS_ARB 0x2021
WGL_DEPTH_BITS_ARB 0x2022
WGL_STENCIL_BITS_ARB 0x2023
WGL_AUX_BUFFERS_ARB 0x2024

Accepted as a value in the <piAttribIList> and <pfAttribFList>
parameter arrays of wglChoosePixelFormatARB, and returned in the
<piValues> parameter array of wglGetPixelFormatAttribivARB, and the
<pfValues> parameter array of wglGetPixelFormatAttribfvARB:

NVIDIA OpenGL Extension Specifications WGL_ARB_pixel_format

 543

WGL_NO_ACCELERATION_ARB 0x2025
WGL_GENERIC_ACCELERATION_ARB 0x2026
WGL_FULL_ACCELERATION_ARB 0x2027

WGL_SWAP_EXCHANGE_ARB 0x2028
WGL_SWAP_COPY_ARB 0x2029
WGL_SWAP_UNDEFINED_ARB 0x202A

WGL_TYPE_RGBA_ARB 0x202B
WGL_TYPE_COLORINDEX_ARB 0x202C

Additions to Chapter 2 of the 1.2 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the 1.2 Specification (Rasterization)

None

Additions to Chapter 4 of the 1.2 Specification (Per-Fragment Operations and
the Frame buffer)

None

Additions to Chapter 5 of the 1.2 Specification (Special Functions)

None

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)

None

Additions to the WGL Specification

Pixel Formats

WGL uses pixel format indices to refer to the pixel formats
supported by a device. The standard pixel format functions
DescribePixelFormat, DescribeLayerPlane, ChoosePixelFormat,
SetPixelFormat, and GetPixelFormat specify pixel format attributes
using the PIXELFORMATDESCRIPTOR and LAYERPLANEDESCRIPTOR data
structures.

An additional set of functions may be used to query and specify
pixel format attributes by name.

Querying Pixel Format Attributes

The following two functions can be used to query pixel format
attributes by specifying a list of attributes to be queried and
providing a buffer in which to receive the results from the query.
These functions can be used to query the attributes of both the main
plane and layer planes of a given pixel format.

BOOL wglGetPixelFormatAttribivARB(HDC hdc,
int iPixelFormat,

WGL_ARB_pixel_format NVIDIA OpenGL Extension Specifications

 544

int iLayerPlane,
UINT nAttributes,
const int *piAttributes,
int *piValues);

<hdc> specifies the device context on which the pixel format is
supported.

<iPixelFormat> is an index that specifies the pixel format. The
pixel formats that a device context supports are identified by
positive one-based integer indexes.

<iLayerPlane> specifies which plane is being queried. Positive
values of <iLayerPlane> identify overlay planes, where 1 is the
first overlay plane over the main plane, 2 is the second overlay
plane over the first overlay plane, and so on. Negative values
identify underlay planes, where -1 is the first underlay plane under
the main plane, -2 is the second underlay plane under the first
underlay plane and so on. Use zero for the main plane.

<nAttributes> number of attributes being queried.

<piAttributes> list containing an array of pixel format attribute
identifiers which specify the attributes to be queried. The
following values are accepted:

WGL_NUMBER_PIXEL_FORMATS_ARB
The number of pixel formats for the device context. The
<iLayerPlane> and <iPixelFormat> parameters are ignored if this
attribute is specified.

WGL_DRAW_TO_WINDOW_ARB
True if the pixel format can be used with a window. The
<iLayerPlane> parameter is ignored if this attribute is
specified.

WGL_DRAW_TO_BITMAP_ARB
True if the pixel format can be used with a memory bitmap. The
<iLayerPlane> parameter is ignored if this attribute is
specified.

WGL_ACCELERATION_ARB
Indicates whether the pixel format is supported by the driver.
If this is set to WGL_NO_ACCELERATION_ARB then only the software
renderer supports this pixel format; if this is set to
WGL_GENERIC_ACCELERATION_ARB then the pixel format is supported
by an MCD driver; if this is set to WGL_FULL_ACCELERATION_ARB
then the pixel format is supported by an ICD driver.

WGL_NEED_PALETTE_ARB
A logical palette is required to achieve the best results for
this pixel format. The <iLayerPlane> parameter is ignored if
this attribute is specified.

WGL_NEED_SYSTEM_PALETTE_ARB
The hardware supports one hardware palette in 256-color mode
only. The <iLayerPlane> parameter is ignored if this attribute

NVIDIA OpenGL Extension Specifications WGL_ARB_pixel_format

 545

is specified.

WGL_SWAP_LAYER_BUFFERS_ARB
True if the pixel format supports swapping layer planes
independently of the main planes. If the pixel format does not
support a back buffer then this is set to FALSE. The
<iLayerPlane> parameter is ignored if this attribute is
specified.

WGL_SWAP_METHOD_ARB
If the pixel format supports a back buffer, then this indicates
how they are swapped. If this attribute is set to
WGL_SWAP_EXCHANGE_ARB then swapping exchanges the front and back
buffer contents; if it is set to WGL_SWAP_COPY_ARB then swapping
copies the back buffer contents to the front buffer; if it is
set to WGL_SWAP_UNDEFINED_ARB then the back buffer contents are
copied to the front buffer but the back buffer contents are
undefined after the operation. If the pixel format does not
support a back buffer then this parameter is set to
WGL_SWAP_UNDEFINED_ARB. The <iLayerPlane> parameter is ignored
if this attribute is specified.

WGL_NUMBER_OVERLAYS_ARB
The number of overlay planes. The <iLayerPlane> parameter is
ignored if this attribute is specified.

WGL_NUMBER_UNDERLAYS_ARB
The number of underlay planes. The <iLayerPlane> parameter is
ignored if this attribute is specified.

WGL_TRANSPARENT_ARB
True if transparency is supported.

WGL_TRANSPARENT_RED_VALUE_ARB
Specifies the transparent red color value. Typically this value
is the same for all layer planes. This value is undefined if
transparency is not supported.

WGL_TRANSPARENT_GREEN_VALUE_ARB
Specifies the transparent green value. Typically this value is
the same for all layer planes. This value is undefined if
transparency is not supported.

WGL_TRANSPARENT_BLUE_VALUE_ARB
Specifies the transparent blue color value. Typically this value
is the same for all layer planes. This value is undefined if
transparency is not supported.

WGL_TRANSPARENT_ALPHA_VALUE_ARB
Specifies the transparent alpha value. This is reserved for
future use.

WGL_TRANSPARENT_INDEX_VALUE_ARB
Specifies the transparent color index value. Typically this
value is the same for all layer planes. This value is undefined
if transparency is not supported.

WGL_ARB_pixel_format NVIDIA OpenGL Extension Specifications

 546

WGL_SHARE_DEPTH_ARB
True if the layer plane shares the depth buffer with the main
planes. If <iLayerPlane> is zero, this is always true.

WGL_SHARE_STENCIL_ARB
True if the layer plane shares the stencil buffer with the main
planes. If <iLayerPlane> is zero, this is always true.

WGL_SHARE_ACCUM_ARB
True if the layer plane shares the accumulation buffer with the
main planes. If <iLayerPlane> is zero, this is always true.

WGL_SUPPORT_GDI_ARB
True if GDI rendering is supported.

WGL_SUPPORT_OPENGL_ARB
True if OpenGL is supported.

WGL_DOUBLE_BUFFER_ARB
True if the color buffer has back/front pairs.

WGL_STEREO_ARB
True if the color buffer has left/right pairs.

WGL_PIXEL_TYPE_ARB
The type of pixel data. This can be set to WGL_TYPE_RGBA_ARB or
WGL_TYPE_COLORINDEX_ARB.

WGL_COLOR_BITS_ARB
The number of color bitplanes in each color buffer. For RGBA
pixel types, it is the size of the color buffer, excluding the
alpha bitplanes. For color-index pixels, it is the size of the
color index buffer.

WGL_RED_BITS_ARB
The number of red bitplanes in each RGBA color buffer.

WGL_RED_SHIFT_ARB
The shift count for red bitplanes in each RGBA color buffer.

WGL_GREEN_BITS_ARB
The number of green bitplanes in each RGBA color buffer.

WGL_GREEN_SHIFT_ARB
The shift count for green bitplanes in each RGBA color buffer.

WGL_BLUE_BITS_ARB
The number of blue bitplanes in each RGBA color buffer.

WGL_BLUE_SHIFT_ARB
The shift count for blue bitplanes in each RGBA color buffer.

WGL_ALPHA_BITS_ARB
The number of alpha bitplanes in each RGBA color buffer.

WGL_ALPHA_SHIFT_ARB
The shift count for alpha bitplanes in each RGBA color buffer.

NVIDIA OpenGL Extension Specifications WGL_ARB_pixel_format

 547

WGL_ACCUM_BITS_ARB
The total number of bitplanes in the accumulation buffer.

WGL_ACCUM_RED_BITS_ARB
The number of red bitplanes in the accumulation buffer.

WGL_ACCUM_GREEN_BITS_ARB
The number of green bitplanes in the accumulation buffer.

WGL_ACCUM_BLUE_BITS_ARB
The number of blue bitplanes in the accumulation buffer.

WGL_ACCUM_ALPHA_BITS_ARB
The number of alpha bitplanes in the accumulation buffer.

WGL_DEPTH_BITS_ARB
The depth of the depth (z-axis) buffer.

WGL_STENCIL_BITS_ARB
The depth of the stencil buffer.

WGL_AUX_BUFFERS_ARB
The number of auxiliary buffers.

<piValues> points to a buffer into which the results of the query
will be placed. Floating point attribute values are rounded to the
nearest integer value. The caller must allocate this array and it
must have at least <nattributes> entries.

If the function succeeds, the return value is TRUE. If the function
fails, the return value is FALSE. To get extended error information,
call GetLastError.

An error is generated if <piAttributes> contains an invalid
attribute, if <iPixelFormat> is not a positive integer or is larger
than the number of pixel formats, if <iLayerPlane> doesn't refer to
an existing layer plane, or if <hdc> is invalid.

If FALSE is returned, the contents of <piValues> are undefined.

BOOL wglGetPixelFormatAttribfvARB(HDC hdc,
int iPixelFormat,
int iLayerPlane,
UINT nAttributes,
const int *piAttributes,
FLOAT *pfValues);

<hdc> specifies the device context on which the pixel format is
supported.

<iPixelFormat> is an index that specifies the pixel format. The
pixel formats that a device context supports are identified by
positive one-based integer indexes.

<iLayerPlane> specifies which plane is being queried. Positive
values of <iLayerPlane> identify overlay planes, where 1 is the

WGL_ARB_pixel_format NVIDIA OpenGL Extension Specifications

 548

first overlay plane over the main plane, 2 is the second overlay
plane over the first overlay plane, and so on. Negative values
identify underlay planes, where -1 is the first underlay plane under
the main plane, -2 is the second underlay plane under the first
underlay plane and so on. Use zero for the main plane.

<nAttributes> number of attributes being queried.

<piAttributes> list containing an array of pixel format attribute
identifiers which specify the attributes to be queried. The values
accepted are the same as for wglGetPixelFormatAttribivARB.

<pfValues> is a pointer to a buffer into which the results of the
query will be placed. Integer attribute values are converted
floating point The caller must allocate this array and it must have
at least at least <nAttributes> entries.

If the function succeeds, the return value is TRUE. If the function
fails, the return value is FALSE. To get extended error information,
call GetLastError.

An error is generated if <piAttributes> contains an invalid
attribute, if <iPixelFormat> is not a positive integer or is larger
than the number of pixel formats, if <iLayerPlane> doesn't refer to
an existing layer plane, or if <hdc> is invalid.

If FALSE is returned, the contents of <pfValues> are undefined.

Supported Pixel Formats

The maximum index of the pixel formats which can be referenced by
the standard pixel format functions is returned by a successful call
to DescribePixelFormat. This may be less than the maximum index of
the pixel formats which can be referenced by
wglGetPixelFormatAttribivARB and wglGetPixelFormatAttribfvARB.
(determined by querying WGL_NUMBER_PIXEL_FORMATS_ARB).

The pixel format of a "displayable" object (e.g. window, bitmap) is
specified by passing its index to SetPixelFormat. Therefore, pixel
formats which cannot be referenced by the standard pixel format
functions are "non displayable".

Indices are assigned to pixel formats in the following order:

1. Accelerated pixel formats that are displayable

2. Accelerated pixel formats that are displayable and which have
extended attributes

3. Generic pixel formats

4. Accelerated pixel formats that are non displayable

ChoosePixelFormat will never select pixel formats from either group
2 or group 4. Each pixel format in group 2 is required to appear
identical to some pixel format in group 1 when queried by
DescribePixelFormat. Consequently, ChoosePixelFormat will always

NVIDIA OpenGL Extension Specifications WGL_ARB_pixel_format

 549

select a format from group 1 when it might otherwise have selected a
format from group 2. Pixel formats in group 4 cannot be accessed by
ChoosePixelFormat at all.

SetPixelFormat and DescribePixelFormat will only accept pixel
formats from groups 1-3. If a non-displayable pixel format is
specified to SetPixelFormat or DescribePixelFormat an error will
result. These pixel formats are only for use with WGL extensions,
such as WGLCreatePbufferARB.

The following function may be used to select from among all of the
available pixel formats (including both accelerated and generic
formats and non-displayable formats). This function accepts
attributes for the main planes. A list of pixel formats that match
the specified attributes is returned with the "best" pixel formats
at the start of the list (order is device dependent).

BOOL wglChoosePixelFormatARB(HDC hdc,
const int *piAttribIList,
const FLOAT *pfAttribFList,
UINT nMaxFormats,
int *piFormats,
UINT *nNumFormats);

<hdc> specifies the device context.

<piAttribIList> specifies a list of attribute {type, value} pairs
containing integer attribute values. All the attributes in
<piAttribIList> are followed by the corresponding desired value. The
list is terminated with 0. If <piAttribList> is NULL then the result
is the same as if <piAttribList> was empty.

<pfAttribFList> specifies a list of attribute {type, value} pairs
containing floating point attribute values. All the attributes in
<pfAttribFList> are followed by the corresponding desired value. The
list is terminated with 0. If <pfAttribList> is NULL then the result
is the same as if <pfAttribList> was empty.

<nMaxFormats> specifies the maximum number of pixel formats to be
returned.

<piFormats> points to an array of returned indices of the matching
pixel formats. The best pixel formats (i.e., closest match and best
format for the hardware) are at the head of the list. The caller
must allocate this array and it must have at least <nMaxFormats>
entries.

<nNumFormats> returns the number of matching formats. This value may
be larger than <nMaxFormats>.

If the function succeeds, the return value is TRUE. If the function
fails the return value is FALSE. To get extended error information,
call GetLastError. If no matching formats are found then nNumFormats
is set to zero and the function returns TRUE.

If FALSE is returned, the contents of <piFormats> are undefined.

WGL_ARB_pixel_format NVIDIA OpenGL Extension Specifications

 550

wglChoosePixelFormatARB selects pixel formats to return based on the
attribute values specified in <piAttribIList> and <pfAttribFList>.
Some attribute values must match the pixel format value exactly when
the attribute is specified while others specify a minimum criteria,
meaning that the pixel format value must meet or exceed the
specified value. See the table below for details.

Attribute Type Match Criteria

WGL_DRAW_TO_WINDOW_ARB boolean exact
WGL_DRAW_TO_BITMAP_ARB boolean exact
WGL_ACCELERATION_ARB enum exact
WGL_NEED_PALETTE_ARB boolean exact
WGL_NEED_SYSTEM_PALETTE_ARB boolean exact
WGL_SWAP_LAYER_BUFFERS_ARB boolean exact
WGL_SWAP_METHOD_ARB enum exact
WGL_NUMBER_OVERLAYS_ARB integer minimum
WGL_NUMBER_UNDERLAYS_ARB integer minimum
WGL_SHARE_DEPTH_ARB boolean exact
WGL_SHARE_STENCIL_ARB boolean exact
WGL_SHARE_ACCUM_ARB boolean exact
WGL_SUPPORT_GDI_ARB boolean exact
WGL_SUPPORT_OPENGL_ARB boolean exact
WGL_DOUBLE_BUFFER_ARB boolean exact
WGL_STEREO_ARB boolean exact
WGL_PIXEL_TYPE_ARB enum exact
WGL_COLOR_BITS_ARB integer minimum
WGL_RED_BITS_ARB integer minimum
WGL_GREEN_BITS_ARB integer minimum
WGL_BLUE_BITS_ARB integer minimum
WGL_ALPHA_BITS_ARB integer minimum
WGL_ACCUM_BITS_ARB integer minimum
WGL_ACCUM_RED_BITS_ARB integer minimum
WGL_ACCUM_GREEN_BITS_ARB integer minimum
WGL_ACCUM_BLUE_BITS_ARB integer minimum
WGL_ACCUM_ALPHA_BITS_ARB integer minimum
WGL_DEPTH_BITS_ARB integer minimum
WGL_STENCIL_BITS_ARB integer minimum
WGL_AUX_BUFFERS_ARB integer minimum

All attributes except WGL_NUMBER_OVERLAYS_ARB, WGL_NUMBER_UNDERLAYS_ARB,
WGL_SHARE_DEPTH_ARB, WGL_SHARE_STENCIL_ARB, and WGL_SHARE_ACCUM_ARB
apply to the main planes and not to any layer planes. If
WGL_SHARE_DEPTH_ARB, WGL_SHARE_STENCIL_ARB, and WGL_SHARE_ACCUM_ARB are
specified in either <piAttribList> or <pfAttribList>, then a pixel
format will only be selected if it has no overlays or underlays or if
all of its overlays and underlays match the specified value.
Applications that need to find a pixel format that supports a layer
plane with other buffer attributes (such as WGL_SUPPORT_OPENGL_ARB set
to TRUE), must go through the list that is returned and call
wglGetPixelFormatAttrib*vARB to find one with the appropriate
attributes.

Attributes that are specified in neither <piAttribIList> nor
<pfAttribFList> are ignored (i.e., they are not looked at during the
selection process). In addition the following attributes are always

NVIDIA OpenGL Extension Specifications WGL_ARB_pixel_format

 551

ignored, even if specified: WGL_NUMBER_PIXEL_FORMATS_ARB,
WGL_RED_SHIFT_ARB, WGL_GREEN_SHIFT_ARB, WGL_BLUE_SHIFT_ARB,
WGL_ALPHA_SHIFT_ARB, WGL_TRANSPARENT_ARB,
WGL_TRANSPARENT_RED_VALUE_ARB,WGL_TRANSPARENT_GREEN_VALUE_ARB,
WGL_TRANSPARENT_BLUE_VALUE_ARB, WGL_TRANSPARENT_ALPHA_VALUE_ARB, and
WGL_TRANSPARENT_INDEX_ARB.

If both <piAttribIList> and <pfAttribFList> are NULL or empty then all
pixel formats for this device are returned.

An error is generated if <piAttribIList> or <pfAttribFList> contain an
invalid attribute or if <hdc> is invalid.

Although it is not an error, wglChoosePixelFormat and
wglChoosePixelFormatARB should not be used together. It is not necessary
to change existing OpenGL programs but application writers should use
wglChoosePixelFormatARB whenever possible. New pixel format attributes
introduced by extensions (such as the number of multisample buffers)
will only be known to the new calls, wglChoosePixelFormatARB and
wglGetPixelFormatAttrib*vARB..

New State

None

New Implementation Dependent State

None

Dependencies on WGL_ARB_extensions_string

Because there is no way to extend WGL, these calls are defined in the
ICD and can be called by obtaining the address with wglGetProcAddress.
Because this extension is a WGL extension, it is not included in the
extension string returned by glGetString. Its existence can be
determined with the WGL_ARB_extensions_string extension.

Revision History

Changes from EXT_pixel_format:

* Added WGL prefix to name to avoid possible name collisions
* EXT suffix changed to ARB
* Updated to new template, adding contact, status and revision sections
* Version is no longer an RCS version
* Attribute list passed to wglGetPixelFormatAttrib*v is type const
* Separate red,green,blue,alpha and index transparent values
* WGL_SWAP_LAYER_BUFFERS and WGL_SWAP_METHOD values defined for single

buffered pixel formats
* Array of return values for wglGetPixelFormatAttrib*v and

wglChoosePixelFormatARB is undefined if function fails
* Error returned if iPixelFormat is zero or negative in

wglGetPixelFormat*v
* Under "Supported Pixel Formats", indicate that SetPixelFormat and

DescribePixelFormat do not accept non displayable pixel formats.
Passing one in results in an error

* If either piAttribIList of pfAttribFList are NULL when

WGL_ARB_pixel_format NVIDIA OpenGL Extension Specifications

 552

wglChoosePixelFormatARB is called then it is as if they were empty
* Clarify that wglChoosePixelFormatARB returns TRUE even if no matching

formats found
* wglChoosePixelFormatARB will only match an overlay attribute (eg,

WGL_SHARE_DEPTH_ARB) if there are no overlay planes or if all
overlay/underlay plane attributes match the specified criteria

* Be careful about using term hardware (change to pixel format where
appropriate)

* wglChoosePixelFormatARB now ignores the following attributes (in
addition to WGL_NUMBER_PIXEL_FORMATS_ARB): WGL_*_SHIFT_ARB,
WGL_TRANSPARENT_ARB, WGL_TRANSPARENT_*_VALUE_ARB.

* Clarify that new pixel format attributes (eg, attributes introduced by
extensions such as multisampling) are only known to the new pixel
format calls, wglChoosePixelFormatARB and wglGetPixelFormat*vARB.

* Add dependency on WGL_ARB_extensions_string

NVIDIA OpenGL Extension Specifications WGL_EXT_swap_control

 553

Name

EXT_swap_control

Name Strings

WGL_EXT_swap_control

Version

Date: 1/27/1999 Revision: 1.3

Number

172

Dependencies

WGL_EXT_extensions_string is required.

Overview

This extension allows an application to specify a minimum periodicity
of color buffer swaps, measured in video frame periods.

New Procedures and Functions

BOOL wglSwapIntervalEXT(int interval)

int wglGetSwapIntervalEXT(void)

New Tokens

None

Additions to Chapter 2 of the 1.2 GL Specification (OpenGL Operation)

None

Additions to Chapter 3 of the 1.2 GL Specification (Rasterization)

None

Additions to Chapter 4 of the 1.2 GL Specification (Per-Fragment Operations
and the Framebuffer)

None

Additions to Chapter 5 of the 1.2 GL Specification (Special Functions)

None

Additions to Chapter 6 of the 1.2 GL Specification (State and State Requests)

None

WGL_EXT_swap_control NVIDIA OpenGL Extension Specifications

 554

Additions to the WGL Specification

wglSwapIntervalEXT specifies the minimum number of video frame periods
per buffer swap for the window associated with the current context.
The interval takes effect when SwapBuffers or wglSwapLayerBuffer
is first called subsequent to the wglSwapIntervalEXT call.

The parameter 'interval' specifies the minimum number of video frames
that are displayed before a buffer swap will occur.

A video frame period is the time required by the monitor to display a
full frame of video data. In the case of an interlaced monitor,
this is typically the time required to display both the even and odd
fields of a frame of video data. An interval set to a value of 2
means that the color buffers will be swapped at most every other video
frame.

If 'interval' is set to a value of 0, buffer swaps are not synchron-
ized to a video frame. The 'interval' value is silently clamped to
the maximum implementation-dependent value supported before being
stored.

The swap interval is not part of the render context state. It cannot
be pushed or popped. The current swap interval for the window
associated with the current context can be obtained by calling
wglGetSwapIntervalEXT. The default swap interval is 1.

Because there is no way to extend wgl, this call is defined in the ICD
and can be called by obtaining the address with wglGetProcAddress.
Because this is not a GL extension, it is not included in the
GL_EXTENSIONS string.

Errors

If the function succeeds, the return value is TRUE. If the function
fails, the return value is FALSE. To get extended error information,
call GetLastError.

ERROR_INVALID_DATA The 'interval' parameter is negative.

New State

None

New Implementation Dependent State

None

	Table of NVIDIA OpenGL Extension Support
	ARB_imaging
	ARB_multisample
	ARB_multitexture
	ARB_texture_border_clamp
	ARB_texture_compression
	ARB_texture_cube_map
	ARB_texture_env_add
	ARB_texture_env_combine
	ARB_texture_env_dot3
	ARB_transpose_matrix
	EXT_abgr
	EXT_bgra
	EXT_blend_color
	EXT_blend_minmax
	EXT_blend_subtract
	EXT_compiled_vertex_array
	EXT_draw_range_elements
	EXT_fog_coord
	EXT_packed_pixels
	EXT_paletted_texture
	EXT_point_parameters
	EXT_rescale_normal
	EXT_secondary_color
	EXT_separate_specular_color
	EXT_shared_texture_palette
	EXT_stencil_wrap
	EXT_texture_compression_s3tc
	EXT_texture3D
	EXT_texture_cube_map
	EXT_texture_edge_clamp
	EXT_texture_env_add
	EXT_texture_env_combine
	EXT_texture_env_dot3
	EXT_texture_filter_anisotropic
	EXT_texture_lod_bias
	EXT_texture_object
	EXT_vertex_array
	EXT_vertex_weighting
	IBM_texture_mirrored_repeat
	NV_blend_square
	NV_evaluators
	NV_fence
	NV_fog_distance
	NV_light_max_exponent
	NV_multisample_filter_hint
	NV_packed_depth_stencil
	NV_register_combiners
	NV_register_combiners2
	NV_texgen_emboss
	NV_texgen_reflection
	NV_texture_compression_vtc
	NV_texture_env_combine4
	NV_texture_rectangle
	NV_texture_shader
	NV_texture_shader2
	NV_vertex_array_range
	NV_vertex_array_range2
	NV_vertex_program
	SGIS_generate_mipmap
	SGIS_texture_lod
	SGIX_depth_texture
	SGIX_shadow
	WGL_ARB_buffer_region
	WGL_ARB_extensions_string
	WGL_ARB_pbuffer
	WGL_ARB_pixel_format
	WGL_EXT_swap_control

