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Align & combine multiple images

✦ High dynamic range imaging

✦ Flash no flash

✦ Denoising

✦ Lucky imaging

✦ Depth of field extension,

✦ Panoramas

✦ Photomontage

✦ Video stabilization

✦ 3D compositing 
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DENOISING
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Tutorial by Eugene Hsu

✦ http://iphone.squicky.org/noise-84
• Follow him at

 http://twitter.com/hsugene/ 

✦ Take multiple shots 
of a static scene

✦ Align 

✦ Average to reduce noise. 
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Single frame
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Average of 8 frames	
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EXTENDED 
DEPTH of FIELD
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Focal stack DoF extensions
• Capture N images focused at different distances
• For each output pixel, choose the sharpest image

–e.g. look at local variance, gradient. 

From Agarwala et al. 
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Montage
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Macro montage 
• 55 images here
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Software
• Helicon focus
• http://www.heliconsoft.com/animation/Krebs_fly1/

index.html
• http://www.krebsmicro.com/
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Focal stack & plenoptic camera
Light Field Photography with a Hand-Held Plenoptic 
Camera, Ren Ng, Marc Levoy, Mathieu Brédif, Gene Duval, 
Mark Horowitz, Pat Hanrahan

• Capture light field

• Refocus to create focal stack

• Use photomontage to 
generate all-focus image

Stanford Tech Report CTSR 2005-02

Figure 14: Refocusing after a single exposure of the light field camera. Top
is the photo that would have resulted from a conventional camera, focused
on the clasped fingers. The remaining images are photographs refocused
at different depths: middle row is focused on first and second figures; last
row is focused on third and last figures. Compare especially middle left and
bottom right for full effective depth of field.

Figure 15: Left: Extended depth of field computed from a stack of pho-
tographs focused at different depths. Right: A single sub-aperture image,
which has equal depth of field but is noisier.

Figure 16: Refocusing of a portrait. Left shows what the conventional
photo would have looked like (autofocus mis-focused by only 10 cm on the
girl’s hair). Right shows the refocused photograph.

Figure 17: Light field photograph of water splashing out of of a broken
wine glass, refocused at different depths.

Figure 18: Moving the observer in the macrophotography regime (1:1 mag-
nification), computed after a single light field camera exposure. Top row
shows movement of the observer laterally within the lens plane, to pro-
duce changes in parallax. Bottom row illustrates changes in perspective
by moving along the optical axis, away from the scene to produce a near-
orthographic rendering (left) and towards the scene to produce a medium
wide angle (right). In the bottom row, missing rays were filled with closest
available (see Figure 7).
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(a) (b) (c) (d)

Figure 13: A complete light field captured by our prototype. Careful examination (zoom in on electronic version, or use magnifying glass in print) reveals
292×292 microlens images, each approximately 0.5 mm wide in print. Note the corner-to-corner clarity and detail of microlens images across the light
field, which illustrates the quality of our microlens focusing. (a), (b) and (c) show magnified views of regions outlined on the key in (d). These close-ups are
representative of three types of edges that can be found througout the image. (a) illustrates microlenses at depths closer than the focal plane. In these right-side
up microlens images, the woman’s cheek appears on the left, as it appears in the macroscopic image. In contrast, (b) illustrates microlenses at depths further
than the focal plane. In these inverted microlens images, the man’s cheek appears on the right, opposite the macroscopic world. This effect is due to inversion
of the microlens’ rays as they pass through the world focal plane before arriving at the main lens. Finally, (c) illustrates microlenses on edges at the focal plane
(the fingers that are clasped together). The microlenses at this depth are constant in color because all the rays arriving at the microlens originate from the same
point on the fingers, which reflect light diffusely.
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Stanford Tech Report CTSR 2005-02

Figure 14: Refocusing after a single exposure of the light field camera. Top
is the photo that would have resulted from a conventional camera, focused
on the clasped fingers. The remaining images are photographs refocused
at different depths: middle row is focused on first and second figures; last
row is focused on third and last figures. Compare especially middle left and
bottom right for full effective depth of field.

Figure 15: Left: Extended depth of field computed from a stack of pho-
tographs focused at different depths. Right: A single sub-aperture image,
which has equal depth of field but is noisier.

Figure 16: Refocusing of a portrait. Left shows what the conventional
photo would have looked like (autofocus mis-focused by only 10 cm on the
girl’s hair). Right shows the refocused photograph.

Figure 17: Light field photograph of water splashing out of of a broken
wine glass, refocused at different depths.

Figure 18: Moving the observer in the macrophotography regime (1:1 mag-
nification), computed after a single light field camera exposure. Top row
shows movement of the observer laterally within the lens plane, to pro-
duce changes in parallax. Bottom row illustrates changes in perspective
by moving along the optical axis, away from the scene to produce a near-
orthographic rendering (left) and towards the scene to produce a medium
wide angle (right). In the bottom row, missing rays were filled with closest
available (see Figure 7).

10

From Ng et al. http://
graphics.stanford.edu
/papers/lfcamera/
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References
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IMAGE STACKS, 
PHOTOMONTAGE
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Interactive Digital Photomontage

✦ Aseem Agarwala, Mira Dontcheva, Maneesh 
Agrawala, Steven Drucker, Alex Colburn, Brian 
Curless, David Salesin, Michael Cohen. 
Interactive Digital Photomontage. ACM 
Transactions on Graphics (Proceedings of 
SIGGRAPH 2004), 2004.

✦ Set of aligned images of same scene

✦ Combine in clever ways
• automatic or user-specified

✦ More about the exact combination next time. 
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Family portrait challenge
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Family portrait challenge
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Digital photomontage

To appear in the ACM SIGGRAPH ’04 conference proceedings

Figure 1 From a set of five source images (of which four are shown on the left), we quickly create a composite family portrait in which everyone is smiling
and looking at the camera (right). We simply flip through the stack and coarsely draw strokes using the designated source image objective over the people we
wish to add to the composite. The user-applied strokes and computed regions are color-coded by the borders of the source images on the left (middle).

Time-lapse mosaics: merging a time-lapse series into a single im-
age in which time varies across the frame, without visible artifacts
from movement in the scene (Figure 7).

Panoramic stitching: creating panoramic mosaics from multiple
images covering different portions of a scene, without ghosting ar-
tifacts due to motion of foreground objects (Figure 8).

Clean-plate production: removing transient objects (such as peo-
ple) from a scene in order to produce a clear view of the back-
ground, known as a “clean plate” (Figures 9 and 12).

1.1 Related work

The history of photomontage is nearly as old as the history of pho-
tography itself. Photomontage has been practiced at least since the
mid-nineteenth century, when artists like Oscar Rejlander [1857]
and Henry Peach Robinson [1869] began combining multiple pho-
tographs to express greater detail. Much more recently, artists like
Scott Mutter [1992] and Jerry Uelsmann [1992] have used a similar
process for a very different purpose: to achieve a surrealistic effect.
Whether for realism or surrealism, these artists all face the same
challenges of merging multiple images effectively.

For digital images, the earliest and most well-known work in image
fusion used Laplacian pyramids and per-pixel heuristics of salience
to fuse two images [Ogden et al. 1985; Burt and Kolczynski 1993].
These early results demonstrated the possibilities of obtaining in-
creased dynamic range and depth of field, as well as fused images
of objects under varying illumination. However, these earlier ap-
proaches had difficulty capturing fine detail. They also did not pro-
vide any interactive control over the results. Haeberli [1994] also
demonstrated a simplified version of this approach for creating ex-
tended depth-of-field images; however, his technique tended to pro-
duce noisy results due to the lack of spatial regularization. He also
demonstrated simple relighting of objects by adding several images
taken under different illuminations; we improve upon this work,
allowing a user to apply the various illuminations locally, using a
painting interface.

More recently, the texture synthesis community has shown that rep-
resenting the quality of pixel combinations as a Markov Random
Field and formulating the problem as a minimum-cost graph-cut al-
lows the possibility of quickly finding good seams. Graph-cut opti-
mization [Boykov et al. 2001], as the technique is known, has been
used for a variety of tasks, including image segmentation, stereo
matching, and optical flow. Kwatra et al. [2003] introduced the use
of graph-cuts for combining images. Although they mostly focused
on stochastic textures, they did demonstrate the ability to combine

two natural images into one composite by constraining certain pix-
els to come from one of the two sources. We extend this approach to
the fusion of multiple source images using a set of high-level image
objectives.

Gradient-domain fusion has also been used, in various forms, to
create new images from a variety of sources. Weiss [2001] used this
basic approach to create “intrinsic images,” and Fattal et al. [2002]
used such an approach for high-dynamic-range compression. Our
approach is most closely related to Poisson image editing, as intro-
duced by Perez et al. [2003], in which a region of a single source
image is copied into a destination image in the gradient domain.
Our work differs, however, in that we copy the gradients from
many regions simultaneously, and we have no single “destination
image” to provide boundary conditions. Thus, in our case, the Pois-
son equation must be solved over the entire composite space. We
also extend this earlier work by introducing discontinuities in the
Poisson equation along high-gradient seams. Finally, in concur-
rent work, Levin et al. [2004] use gradient-domain fusion to stitch
panoramic mosaics, and Raskar et al. [2004] fuse images in the gra-
dient domain of a scene under varying illumination to create surre-
alist images and increase information density.

Standard image-editing tools such as Adobe Photoshop can be
used for photomontage; however, they require mostly manual se-
lection of boundaries, which is time consuming and burdensome.
While interactive segmentation algorithms like “intelligent scis-
sors” [Mortensen and Barrett 1995] do exist, they are not suitable
for combining multiple images simultaneously.

Finally, image fusion has also been used, in one form or another, in
a variety of specific applications. Salient Stills [Massey and Bender
1996] use image fusion for storytelling. Multiple frames of video
are first aligned into one frame of reference and then combined into
a composite. In areas where multiple frames overlap, simple per-
pixel heuristics such as a median filter are used to choose a source.
Image mosaics [Szeliski and Shum 1997] combine multiple, dis-
placed images into a single panorama; here, the primary techni-
cal challenge is image alignment. However, once the images have
been aligned, moving subjects and exposure variations can make
the task of compositing the aligned images together challenging.
These are problems that we address specifically in this paper. Ak-
ers et al. [2003] present a manual painting system for creating pho-
tographs of objects under variable illumination. Their work, how-
ever, assumes known lighting directions, which makes data acquisi-
tion harder. Also, the user must manually paint in the regions, mak-
ing it difficult to avoid artifacts between different images. Shape-
time photography [Freeman and Zhang 2003] produces compos-
ites from video sequences that show the closest imaged surface to
the camera at each pixel. Finally, in microscopy and macro pho-
tography of small specimens such as insects and flowers, scientists
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IMAGE 
ALIGNMENT
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Image alignment goals

✦ Multiple-exposure photography
• Denoising, depth of field extension, etc.
• Lucky imaging
• Flash no flash, Panoramas, HDR

✦ Photomontage

✦ Video stabilization

✦ Matchmove 
• Recover 3D camera path for computer graphics object 

compositing 
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Approaches: dense vs. sparse

✦ Pixel-based alignment
• match all pixels
• aka dense

✦ Feature-based alignment
• match only special pixels such as corners
• aka sparse

Tuesday, February 23, 2010



Approaches: model or not

✦ Model based : restricted range of motions
• e.g. translation, affine, homography

✦ Non-parametric
• motion could be anything
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BRUTE FORCE
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Brute force: dense & model-based

✦ Given low-order motion model

✦ Find parameters that minimize Sum of Square 
difference

✦ e.g. for translation: 
for tx=x0:step:x1,

  for ty=y0:step:y1,
     compare image1(x,y) to image2(x+tx,y+ty)
  end;
end;
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OPTICAL FLOW
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Optical flow: dense, non-parametr.

✦ Estimate motion of each pixel separately
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Problem statement

✦ Motion from image H to image I

✦ Given pixel in H, find nearby pixel in I with same 
color

✦ Assumptions: 
• small motion
• color (or brightness) constancy
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1D brightness constancy

✦ Goal: Estimate motion by observing a single pixel
just look at brightness variation between H(p) and 
I(p) 

✦ Solution: use first-order model

H
I

pixel p

∆p
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1D brightness constancy

✦ We observe a given brightness variation at p

✦ We know the local image derivative

I(p)=H(p+∆p)
I(p)≈H(p) + H’(p)∆p
I(p)-H(p)≈H’(p)∆p

∆p≈[I(p)-H(p)] / H’(p)

H
I

pixel p

I(p)-H(p)

∆p
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Same in 2D

✦ If It is the time derivative and [u v]  is the flow:

✦ bean counting: 
• 2 unknowns per pixel : [u,v]
• only one equation
• Only the component along the gradient is known 

(aperture problem)
• Explains the barberpole illusion : 

http://www.sandlotscience.com/Ambiguous/
barberpole.htm
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Aperture problem
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Aperture problem
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Solving the aperture problem

✦ Idea: use multiple pixels, assume flow is smooth
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Small motion problem

✦ The first order model breaks quickly

✦ Solution: reduce image resolution!
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Coarse-to-fine optical flow

image Iimage H
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Coarse-to-fine optical flow

image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H
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Coarse-to-fine optical flow

image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels
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Coarse-to-fine optical flow

image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H
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Coarse-to-fine optical flow

image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

run iterative L-K
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Coarse-to-fine optical flow

image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

run iterative L-K

warp & upsample
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Coarse-to-fine optical flow

image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

run iterative L-K

run iterative L-K

warp & upsample
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Coarse-to-fine optical flow

image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

run iterative L-K

run iterative L-K

warp & upsample

.

.

.
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Image alignment: translation
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Image alignment: translation
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Optical flow for alignment

✦ Pros:
• All pixels get used in matching
• Can get sub-pixel accuracy (important for good 

mosaicing!)
• Relatively fast and simple

✦ Cons:
• Prone to local minima
• Images need to be already well-aligned ;-(

✦ What if, instead, we extract important “features” 
from the image and just align these?
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Other application: retiming

✦ Generate video at higher frame rate
• Avoid cross fading artifacts

✦ Idea: Advect pixels according to optical flowAn Application of Optical Flow: Slow Motion Effect 659

Fig. 1. Two consecutive images and a sample result of the slow motion computation

Explicit solution to occlusions problem could be also developed. Again, the
success of this method would be extremely sensitive to the optical flow field
quality, and both directions of optical flow would need to be calculated, to cover
both cases where an object is occluded and revealed.

References
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frame n frame n+1

linear 
interpolation

http://www.springerlink.com/content/y701u6n1l4j7323m/

Optical flow 
advection
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FEATURE 
TRACKING
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Good features to track

✦ Idea: some pixels are easier to track
• e.g. corners, because they suffer less from the aperture 

problem
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Condition for solvability
• Optimal (u, v) satisfies Lucas-Kanade equation
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Condition for solvability
• Optimal (u, v) satisfies Lucas-Kanade equation

When is This Solvable?
• ATA should be invertible 
• ATA should not be too small due to noise

–eigenvalues λ1 and λ2 of ATA should not be too small
• ATA should be well-conditioned

–  λ1/ λ2 should not be too large (λ1 = larger eigenvalue)
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Condition for solvability
• Optimal (u, v) satisfies Lucas-Kanade equation

When is This Solvable?
• ATA should be invertible 
• ATA should not be too small due to noise

–eigenvalues λ1 and λ2 of ATA should not be too small
• ATA should be well-conditioned

–  λ1/ λ2 should not be too large (λ1 = larger eigenvalue)
ATA is solvable when there is no aperture problem
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Edge

– large gradients, all the same
–  large λ1, small λ2
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Low texture region

– gradients have small magnitude
–  small λ1, small λ2
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High textured region

– gradients are different, large magnitudes
–  large λ1, large λ2
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Harris Detector
✦ Average intensity change in direction [u,v] can be expressed 

as a bilinear Taylor form: 

✦ Describe a point in terms of eigenvalues of M:
measure of corner response

✦ A good (corner) point should have a large intensity change in 
all directions, i.e. R should be large positive

✦ Variation: Shi-Tomasi: Pretty much same as Harris, but use 
min(λ1,λ2) instead of R
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Recap

✦ Brute force : dense, model based

✦ Optical flow: dense, non-parametric
• nearby pixels, same color
• uses all pixels
• can be unstable

✦ Feature tracking: sparse, non-parametric
• find corners
• then apply optical flow to them

• problem: what if the motion is too big? 
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Rich feature descriptors

✦ e.g. SIFT, Schmid & Mohr 1997, Lowe 1999, Baumberg 2000, 
Tuytelaars & Van Gool 2000, Mikolajczyk & Schmid 2001, Brown & 
Lowe 2002, Matas et. al. 2002, Schaffalitzky & Zisserman 2002

✦ Detect points of interest

✦ Associate rich descriptor of patch (histogram of 
gradient in 4x4 subwindows)
• Can be matched across images
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MODEL 
FITTING
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Fitting a model

✦ Often, we want to infer a simple low-order motion 
model
• e.g. translation, affine, projective
• because we know the motion
• or to regularize (get a smoother estimate)

✦ How do we do, given a number of 
correspondences or flow vectors?
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Fitting a model

✦ e.g. affine:
x’=ax+by+c
y’=dx+ey+f

✦ Find a, b, c, d, e, f given a number of pairs (x’, y’), 
(x, y)

✦ Simple linear least squares: two equations per pair 
of 2D points, need at least 3 points. 
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Robustness to bad matches

✦ RANSAC
(RANdom SAmple Consensus)
• Fit a model with random subset of correspondences
• Count how many correspondences it matches
• Iterate

✦ Reweighted least squares
• Fit model with least square
• Reweight correspondences based on how close they are 

from their predicted new location
• Iterate
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VIEWFINDER 
ALIGNMENT
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Challenge: real time on cell phone

✦ Viewfinder Alignment. Andrew Adams, Natasha 
Gelfand, Kari Pulli, Eurographics 2008

✦ http://graphics.stanford.edu/papers/
viewfinderalignment/
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Idea: 1D matches of gradient

✦ Compute and project gradient along 4 directions

✦ Brute force search for 1D translations
A. Adams, N. Gelfand & K. Pulli / Viewfinder Alignment

Figure 1: A digest is produced from a viewfinder frame. Gradients are taken in four different directions, and then projected in

the respective perpendicular directions. The resulting arrays form a kind of Hough transform, which records image edges as

spikes. Secondly, a corner detection filter is used to extract the k strongest corners. The resulting digest takes very little memory,

and can be very quickly compared against another digest, without reference to the original images, to obtain a warp.

under translation. For example, under horizontal translation

the projection in the vertical direction translates, while the

projection in the horizontal direction changes slowly as gra-

dients enter and leave the frame. Under this translation, the

two other projections would exhibit a combination of the two

effects.

Edge Alignment. Alignment between two sets of projec-

tions is simple to compute. Independently for each direction,

we do a brute force search over the range of expected transla-

tions (±40 pixels) for the translation that maximizes the cor-

relation of the projections. ±40 pixels on a 320×240 image

is sufficient to catch all motions slow enough that the whole

image is not motion blurred beyond recognition. Multigrid

methods [Ter86] could be applied here to accelerate the 1D

alignment, but as this stage takes only about 5% of the total

processing time, the potential for speed-up is small.

We choose the translation that minimizes a weighted sum

of absolute differences. This gives us a proposed shift in each

of the four directions, which we denote x, y, u, and v, where

u = x+y

2
(the positive diagonal) and v = x−y

2
(the negative

diagonal). The shift in x paired with the shift in y gives us a

2D translation. The shift in u paired with the shift in v gives

us another 2D translation. We use the average of these two

translations.

Alignment of the arrays in the diagonal directions is com-

plicated by the fact that a different number of pixels were

summed up at each array entry. We accommodate for this

by accumulating a homogeneous value at each array entry.

Formally, given an image I of size w×h, our projections are

given by:

�
px[i]0
px[i]1

�
= ∑

x

�
(I(x, i)− I(x, i−1))2

1

�

�
py[i]0
py[i]1

�
= ∑

y

�
(I(i,y)− I(i−1,y))2

1

�

�
pu[i]0
pu[i]1

�
= ∑

x,y

�
(I(x,y)− I(x−1,y−1))2

1

�
where � x+y

2
�=i

�
pv[i]0
pv[i]1

�
= ∑

x,y

�
(I(x,y)− I(x+1,y−1))2

1

�
where � x+h−y

2
�=i

To compute the translation, we need to line up the cor-

responding arrays from two frames, p and q, and calculate

the best shift for each projection direction: δx, δy, δu, and

δv. One could naively compute the best shift in a particular

direction d by dividing by the homogeneous coordinate and

hence comparing the average square gradient values:

δd = argmin
δ

∑
i

�� pd [i]0
pd [i]1

− qd [i+δ]0
qd [i+δ]1

��

For the diagonal projections, this treats values at either

end of the arrays (resulting from the average of a few gra-

dient values) with equal importance to values in the middle

of the arrays (which are the averages of a large number of

gradient values). We would like to weight our distance by

c� 2007 The Author(s)

Journal compilation c� 2007 The Eurographics Association and Blackwell Publishing Ltd.
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Idea: 1D matches of gradient

✦ Compute and project gradient along 4 directions

✦ Also extract strong corners for rotation inference
A. Adams, N. Gelfand & K. Pulli / Viewfinder Alignment

Figure 1: A digest is produced from a viewfinder frame. Gradients are taken in four different directions, and then projected in

the respective perpendicular directions. The resulting arrays form a kind of Hough transform, which records image edges as

spikes. Secondly, a corner detection filter is used to extract the k strongest corners. The resulting digest takes very little memory,

and can be very quickly compared against another digest, without reference to the original images, to obtain a warp.

under translation. For example, under horizontal translation

the projection in the vertical direction translates, while the

projection in the horizontal direction changes slowly as gra-

dients enter and leave the frame. Under this translation, the

two other projections would exhibit a combination of the two

effects.

Edge Alignment. Alignment between two sets of projec-

tions is simple to compute. Independently for each direction,

we do a brute force search over the range of expected transla-

tions (±40 pixels) for the translation that maximizes the cor-

relation of the projections. ±40 pixels on a 320×240 image

is sufficient to catch all motions slow enough that the whole

image is not motion blurred beyond recognition. Multigrid

methods [Ter86] could be applied here to accelerate the 1D

alignment, but as this stage takes only about 5% of the total

processing time, the potential for speed-up is small.

We choose the translation that minimizes a weighted sum

of absolute differences. This gives us a proposed shift in each

of the four directions, which we denote x, y, u, and v, where

u = x+y

2
(the positive diagonal) and v = x−y

2
(the negative

diagonal). The shift in x paired with the shift in y gives us a

2D translation. The shift in u paired with the shift in v gives

us another 2D translation. We use the average of these two

translations.

Alignment of the arrays in the diagonal directions is com-

plicated by the fact that a different number of pixels were

summed up at each array entry. We accommodate for this

by accumulating a homogeneous value at each array entry.

Formally, given an image I of size w×h, our projections are

given by:

�
px[i]0
px[i]1

�
= ∑

x

�
(I(x, i)− I(x, i−1))2

1

�

�
py[i]0
py[i]1

�
= ∑

y

�
(I(i,y)− I(i−1,y))2

1

�

�
pu[i]0
pu[i]1

�
= ∑

x,y

�
(I(x,y)− I(x−1,y−1))2

1

�
where � x+y

2
�=i

�
pv[i]0
pv[i]1

�
= ∑

x,y

�
(I(x,y)− I(x+1,y−1))2

1

�
where � x+h−y

2
�=i

To compute the translation, we need to line up the cor-

responding arrays from two frames, p and q, and calculate

the best shift for each projection direction: δx, δy, δu, and

δv. One could naively compute the best shift in a particular

direction d by dividing by the homogeneous coordinate and

hence comparing the average square gradient values:

δd = argmin
δ

∑
i

�� pd [i]0
pd [i]1

− qd [i+δ]0
qd [i+δ]1

��

For the diagonal projections, this treats values at either

end of the arrays (resulting from the average of a few gra-

dient values) with equal importance to values in the middle

of the arrays (which are the averages of a large number of

gradient values). We would like to weight our distance by

c� 2007 The Author(s)
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Application: denoisingA. Adams, N. Gelfand & K. Pulli / Viewfinder Alignment

Second, our corner features are locations only with no
descriptors. We can’t tell two points apart. Calculating a
descriptor such as SIFT [Low04] would allow us to better
distinguish which points really match each other, reducing
the probability of false matches. Unfortunately, effective de-
scriptors are expensive to compute.

Third, we need not compute a simple least-squares sim-
ilarity transform. Our algorithm works in principle for any
warp which is close to a translation. Point features could be
used to compute a full homography, using RANSAC to re-
ject outliers, which would be more robust than simple thresh-
olding. The reason we use such a simple model for aligning
the point features is both due to computational cost and be-
cause the extra degrees of freedom introduced by more com-
plicated models are usually unneccessary.

Finally, one could attempt to break the motion blur limit
on the algorithm by explicitly estimating blur kernels and us-
ing those as motion tracks. However, current methods of esti-
mating blur kernels from a single image (such as [FSH∗06])
are nowhere near real time.

Even with a growing amount of computing power there
will be a need for light-weight alignment methods for a long
time. Real-time alignment is usually used as a secondary
mechanism for some other application, and should ideally
use only a small fraction of CPU time. Additionally, mobile
phones are battery-powered devices, and CPU and memory
usage consume valuable power.

3. Applications
3.1. Low-Noise Low-Light Viewfinding
Running a viewfinder at 30 fps necessarily limits the expo-
sure time of each frame to at most 1/30s. In dark environ-
ments, where one would normally use a flash to take a casual
photo, this requires a large analog gain, and hence a very
noisy viewfinder. Many cameras have a ’night’ viewfinder
mode, which doubles the exposure time and halves the frame
rate. This reduces noise a little, but reduces responsiveness
and increases motion blur from handshake. One could imag-
ine increasing exposure time without sacrificing frame rate
by maintaining a ring buffer of the last n frames, and dis-
playing the average of them. However, this kind of temporal
filter increases motion blur too much to be useful.

We instead propose using an aligned temporal filter,
which computes an average of earlier frames after align-
ment. The advantage over regular viewfinding is dramati-
cally reduced noise (see Figure 5). The only disadvantage is
motion blur on objects moving within the scene (but not due
to handshake or panning). If the alignment fails (for exam-
ple due to sudden movement or overwhelming noise), then
the viewfinder merely displays the most recent viewfinder
frame, so our worst case scenario is the regular viewfinder.

Prior Work. Image and video denoising is a fundamen-
tal problem in image processing. An excellent survey of de-

Figure 5: The regular viewfinder (top left) suffers from noise
in low-light situations. To reduce this, we take an aligned
temporal filter of the previous few frames (top right). With-
out alignment, such a temporal filter introduces blur due to
hand shake (bottom left). A downside of using this technique
indiscriminately is that the filter causes moving subjects to
exhibit motion blur (bottom right). If noise were preferred to
motion blur, one could detect such motion with aligned dif-
ferencing and selectively turn off the temporal filter at those
pixels.

noising methods can be found in [BCM05]. Video-specific
denoising methods greatly benefit from combining informa-
tion from adjacent frames to remove noise [DS84, JASS98]
and to enhance dynamic range [BM05].

Implementation. Our application maintains a single ac-
cumulation buffer. Every frame, the buffer is aligned and
warped to match the incoming frame. The incoming frame
is then multiplied by α and added to (1−α) times the accu-
mulation buffer. This produces an aligned exponentially de-
caying temporal filter. Small values of α produce very low
noise and much motion blur, while larger values produce less
motion blur and more noise. The right value to use is just
enough to remove visible noise. We use α = 1

8 . In addition,
we calibrate for fixed pattern noise by running the camera at
the same settings with the lens cover closed and averaging
a long sequence of frames. We subtract this average fixed
pattern noise from each incoming frame, to ensure the aver-

c� 2007 The Author(s)
Journal compilation c� 2007 The Eurographics Association and Blackwell Publishing Ltd.
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VIDEO 
STABILIZATION
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Video stabilization : 3 steps

✦ Estimate motion
• local motion vector
• Fit per-frame global motion

✦ Smooth motion temporally
• e.g. low pass or model fitting

✦ Warp frames
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More advanced: 3D motion

✦ [Buehler et al. CVPR 2001]

✦ Given correspondences and assuming a rigid 
object, estimate camera pose & 3D coordinates

✦ Smooth 3D motion for more realistic stabilization

✦ Triangulate features and warp individual triangles

✦ Maybe use other frames to fill in missing info
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Figure 1. Color interpolation strategies for image-based rendering. (a) In the ULR algorithm, colors
along rays ri are blended together based on the angular distance from the desired ray. (b) In our
algorithm, we propose blending reference colors based on the distance of the vanishing points vi

from the projection of the scene point pdes. (c) The vanishing point tells which ray in the desired view
is parallel to the reference ray. If the reference ray is parallel to the desired ray (i.e., they are the same
ray) then the vanishing point equals pdes and the distance is zero.

wheremij is a point feature (represented (u, v, 1)T ) in im-
age i, and .= denotes equality up to scale. Note that a pro-
jective reconstruction is uniquely defined up to an arbitrary
projective transformation T . That is, we can transform the
projection matrices and the structure points with T and ar-
rive at an equivalent projective reconstruction:

mij
.= (PiT

−1)(TMj) = P ′
i M

′
j.

This unknown projective transformation makes it impossi-
ble to compare angles and distances in the non-metric space.
However, we can see that the projections of quantities into
the image space are unaffected by T . Thus, we design our
IBR algorithm to operate in image space whenever possible.

Correspondence The ULR algorithm uses correspon-
dence based on polygons, which are simply piecewise pla-
nar patches. We also define correspondence in our algo-
rithm using piecewise planar patches. Given some desired
view with projection matrix Pdes, we project the structure
points Mj into that view. We then Delaunay triangulate
these image points, which results in a tessellation of the
image plane. For each triangle Tk in the tessellation, we
compute the plane Πk that passes through the three struc-
ture points defining the vertices of the triangles. Using Πk ,
we compute the planar homographyHki that maps pixels in
the desired view to pixels in reference view i:

Hki
.= PiP

+
k ,

where P +
k is a 4 × 3 inverse projection matrix that maps

pixels in the desired view onto the plane Πk [5]. The ho-
mographiesHki establish a correspondence between pixels
in the desired view and the reference views. An example
tessellation is shown in Figure 2.

Figure 2. An example triangular tessellation
that we use for pixel correspondence.

Interpolation For each individual pixel in the desired
view, the ULR algorithm blends between corresponding
pixels from multiple reference views. Given a set of corre-
sponding pixels pi in the reference views, the final color of
the pixel pdes in the desired view is computed as a weighted
average of these reference pixel colors. The colors are in-
versely weighted based on the angular difference between
the reference viewing rays and the desired viewing ray (see
Figure 1a). In fact, the actual angles are not important;
rather, it is the relationships between angles (e.g., the or-
dering of angles) that matter most. We exploit this fact in
our algorithm.
Consider measuring relative angle sizes using the follow-

ing metric defined in image space. We compute the van-
ishing points vi of all the corresponding reference rays as

(a) (b) (c)
Figure 3. Three iterations of our feature smoothing procedure. The initial feature tracks are drawn
as solid lines, and the desired radial features are shown as dots. The desired focus of expansion is
marked with a circle. (a) Before optimization. (b) After one iteration. (c) After all iterations.

with constant velocity should fit a log function of the form
a log |t− t0|+ b, where t is a time index and a, b, and t0 are
unknown parameters that we optimize for each point.
After we determine the desired feature locations, we run

the optimization to compute new projection matrices. The
solution converges with only one or two iterations of re-
fitting the target features and optimizing the projection ma-
trices (see Figure 3b,c), and the projection matrices then
produce a stabilized video sequence when used with our
IBR algorithm.

4.2. Rendering

As the final step, we render the new image sequence cor-
responding to the new projection matrix sequence P ′

i . We
have implemented our non-metric IBR algorithm off-line
in a ray-tracing fashion. For each desired view, the ren-
derer first computes the triangular tessellation of the visi-
ble structure points.1 Then, for each pixel in the desired
view, the renderer computes the corresponding pixels in the
reference views using the planar homographies Hki. Each
reference pixel is assigned a weight according to the vanish-
ing point distances, which are computed using the homogra-
phies H̃i,j,∞. To compute these weights, we follow the ap-
proach in [3]. Specifically, we take the k closest reference
pixels (in terms of vanishing point distance) and linearly
convert those distances into weights such that the largest
distance is equal to zero: wi = 1−di/dk, where 1 ≤ i ≤ k,
and the distances increase with i. We then normalize the wi

such that they all add to one. The output color of the pixel is
taken to be the weighted sum of the reference pixel colors.
We typically use k = 4 reference images at each pixel, and
we use a maximum of 11 reference images for each desired
image.

1A structure point is deemed visible in a desired view if it is visible in
the corresponding original view.

5. Results

We have tested our video stabilization technique on a va-
riety of video sequences. All of our video sequences are ac-
quired with a hand-held video camera that has had its own
video stabilization features disabled. All other automatic
features of the camera have been enabled. In the first two
examples we use a constant velocity linear motion model
with the focus of expansion in and out of the field of view,
respectively. In the third example we use a simultaneous
moving and zooming motion model: the camera moves for-
ward while zooming out to keep the size of the foreground
object constant. This motion imitates a cinematographic ef-
fect made popular by Alfred Hitchcock. Note that both the
time varying intrinsic (focal length) and the extrinsic cam-
era parameters are smoothed.
In Figure 4 we have shown plots of feature motion as

they evolve over time. The tracks drawn with solid lines are
the original features that were tracked with automatic fea-
ture tracking software [15]. The tracks drawn in dotted lines
are the target features as seen from the stabilized camera tra-
jectory. The images below the track plots are representative
frames from the stabilized sequence. Note that the track
plots depict point features tracked over time and not linear
features in a single image.

6. Conclusions and Future Work

In this paper, we have demonstrated a technique for sta-
bilizing video sequences using non-metric image-based ren-
dering techniques. We have suggested that useful IBR algo-
rithms for this purpose should be able to do three things:
correspond points between reference images, interpolate
between reference images, and navigate a virtual camera in
the scene. In fact, these three properties are generally useful
in most IBR applications.
Unfortunately, most IBR algorithms handle these three

issues using the assumption that a Euclidean reconstruc-

(a) (b) (c)
Figure 3. Three iterations of our feature smoothing procedure. The initial feature tracks are drawn
as solid lines, and the desired radial features are shown as dots. The desired focus of expansion is
marked with a circle. (a) Before optimization. (b) After one iteration. (c) After all iterations.

with constant velocity should fit a log function of the form
a log |t− t0|+ b, where t is a time index and a, b, and t0 are
unknown parameters that we optimize for each point.
After we determine the desired feature locations, we run

the optimization to compute new projection matrices. The
solution converges with only one or two iterations of re-
fitting the target features and optimizing the projection ma-
trices (see Figure 3b,c), and the projection matrices then
produce a stabilized video sequence when used with our
IBR algorithm.

4.2. Rendering

As the final step, we render the new image sequence cor-
responding to the new projection matrix sequence P ′

i . We
have implemented our non-metric IBR algorithm off-line
in a ray-tracing fashion. For each desired view, the ren-
derer first computes the triangular tessellation of the visi-
ble structure points.1 Then, for each pixel in the desired
view, the renderer computes the corresponding pixels in the
reference views using the planar homographies Hki. Each
reference pixel is assigned a weight according to the vanish-
ing point distances, which are computed using the homogra-
phies H̃i,j,∞. To compute these weights, we follow the ap-
proach in [3]. Specifically, we take the k closest reference
pixels (in terms of vanishing point distance) and linearly
convert those distances into weights such that the largest
distance is equal to zero: wi = 1−di/dk, where 1 ≤ i ≤ k,
and the distances increase with i. We then normalize the wi

such that they all add to one. The output color of the pixel is
taken to be the weighted sum of the reference pixel colors.
We typically use k = 4 reference images at each pixel, and
we use a maximum of 11 reference images for each desired
image.

1A structure point is deemed visible in a desired view if it is visible in
the corresponding original view.

5. Results

We have tested our video stabilization technique on a va-
riety of video sequences. All of our video sequences are ac-
quired with a hand-held video camera that has had its own
video stabilization features disabled. All other automatic
features of the camera have been enabled. In the first two
examples we use a constant velocity linear motion model
with the focus of expansion in and out of the field of view,
respectively. In the third example we use a simultaneous
moving and zooming motion model: the camera moves for-
ward while zooming out to keep the size of the foreground
object constant. This motion imitates a cinematographic ef-
fect made popular by Alfred Hitchcock. Note that both the
time varying intrinsic (focal length) and the extrinsic cam-
era parameters are smoothed.
In Figure 4 we have shown plots of feature motion as

they evolve over time. The tracks drawn with solid lines are
the original features that were tracked with automatic fea-
ture tracking software [15]. The tracks drawn in dotted lines
are the target features as seen from the stabilized camera tra-
jectory. The images below the track plots are representative
frames from the stabilized sequence. Note that the track
plots depict point features tracked over time and not linear
features in a single image.

6. Conclusions and Future Work

In this paper, we have demonstrated a technique for sta-
bilizing video sequences using non-metric image-based ren-
dering techniques. We have suggested that useful IBR algo-
rithms for this purpose should be able to do three things:
correspond points between reference images, interpolate
between reference images, and navigate a virtual camera in
the scene. In fact, these three properties are generally useful
in most IBR applications.
Unfortunately, most IBR algorithms handle these three

issues using the assumption that a Euclidean reconstruc-
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Content-Preserving Warps

✦ Liu et al. SIGGRAPH 2009 
http://pages.cs.wisc.edu/~fliu/project/3dstab.htm

✦ Extract camera path & 
3D feature coord.

✦ Smooth 3D motion

✦ Content-preserving warp

Tuesday, February 23, 2010
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Content-Preserving Warps

✦ Use smoothed feature 
locations as constraints

✦ Preserve local aspect ratios 
(conformal mapping)

✦ Preserve more in salient regions
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Solving for warp

✦ Grid over image, solve for coordinate of vertices

✦ Least square minimization

✦ Data term: feature location

✦ Smoothness term: local similarity (conformal)
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Bells and whistles

✦ Global projective (homography) pre-warp
• to take care of most of the job

✦ Cross-fade the influence of feature points
• Because they appear and disappear. 
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Results
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Results
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Video
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VIDEO 
MATCHING
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Video matching

✦ Sand and Teller SIGGRAPH 2004
http://rvsn.csail.mit.edu/vid-match/

✦ Robust to scene changes, timing change
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MATCH MOVE
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Match move

✦ For compositing with moving camera

✦ Given video sequence, deduce 3D camera motion

✦ Match with computer graphics camera, miniature 
camera, etc. 

http://www.digilab.uni-hannover.de/docs/manual.html#overview
Tuesday, February 23, 2010
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Example: music video by P. Sand

✦ Compositing of live action into miniature

✦ Match camera motion

✦ http://peter-sand.org/
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Live action

✦ Note orange balls to create good features

✦ Green screen for compositing

✦
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Live action
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Miniature construction
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Miniature

✦ Note the big camera (DSLR)
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5 degrees of freedom camera robot
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Video
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RE-
PHOTOGRAPHY

Tuesday, February 23, 2010



Computational Re-Photography

✦ Bae, Agarwala & 
Durand, to appear

✦ Goal: given reference 
(old) photo, take new 
photo at same 
viewpoint

4 • Soonmin Bae et al.

The first frame

Reference

The second frame

structure

feature points feature points

feature points

Estimate
focal length and pose

Estimate
structure and pose

reference focal length + scene structure + [ R10 | T10 ]

Fig. 4. Our procedure to calibrate and register the reference camera.

each correspondence using triangulation [Hartley and Zisserman
2000]. These 3D points are then projected into the second view,
and displayed to the user alongside the reference photograph; the
user is asked to click 6-8 correspondences. These correspondences
are used to register the reference camera in the next step.

3.2 Reference camera registration
We next relate the reference image to the reconstructed scene from
the first two photographs taken by the user, given matches be-
tween the reference and the second view. For this, we infer the
intrinsic and extrinsic parameters of the reference camera using
Levenberg-Marquardt optimization (specifically, Lourakis’s LM
package [2004]), minimizing the sum of squared projection errors
of the matched points. We assume zero skew and optimize nine de-
grees of freedom: one for focal length, two for the principal point,
three for rotation, and three for translation. We initialize the rota-
tion matrix to the identity matrix, the translation matrix to zero,
and the focal length to the focal length of the current camera. We
initialize the principal point by analyzing the vanishing points as
described in Section 3.2.1.
Although this initialization is not close to the ground truth, we

observe that the Levenberg-Marquardt algorithm converges to the
correct answer since we allow only 9 degrees of freedom and the
rotation matrix tends to be close to the identity matrix for repho-
tography.

3.2.1 Principal point estimation. The principal point is the in-
tersection of the optical axis with the image plane. If a shift move-
ment is applied to the lens to make the verticals parallel or if the im-
age is cropped, the principal point is not in the center of the image,
and it must be computed. The analysis of vanishing points provides
strong cues for inferring the location of the principal point. Under
perspective projection, parallel lines in space appear to meet at a
single point in the image plane; this point is the vanishing point of
the lines. Given the vanishing points of three orthogonal directions,
the principal point is located at the orthocenter of the triangle whose
vertices are the vanishing points [Hartley and Zisserman 2000], as
shown in Figure 5.
We ask the users to click on three parallel lines in the same di-

rection; although two parallel lines are enough for computation, we

Vanishing point
Principal point

Fig. 5. Under perspective projection, parallel lines in space appear to meet
at their vanishing point in the image plane. Given the vanishing points of
three orthogonal directions, the principal point is located at the orthocenter
of the triangle with vertices at the vanishing points

ask for three to improve robustness. We compute the intersections
of the parallel lines. We locate each vanishing point at the weighted
average of three intersections. The weight is proportional to the an-
gle between two lines [Caprile and Torre 1990], since the location
of the vanishing point becomes less reliable at smaller angles. We
discard the vanishing point when the sum of the three angles is less
than 5 degrees.
During Levenberg-Marquardt non-linear optimization, we ini-

tialize and constrain the principal point as the orthocenter, given
three finite vanishing points. If we have one finite and two infinite
vanishing points, we initialize and constrain the principal point as
the finite vanishing point. With two finite vanishing points, we con-
strain the principal point to be on the vanishing line that connects
the finite vanishing points.
In summary, the result of the above methods is a 3D reconstruc-

tion of the scene from the first and second frames, as well as a
calibration of the reference view and its relative pose from the first
view. This information is then used in the next stage, which guides
the user to the viewpoint of the reference image.

4. REAL-TIME USER GUIDANCE
Our rephotography tool provides the user with real-time guidance
towards the reference viewpoint. To do so, we compute relative
pose between the current view and the reference view and visualize
the needed 3D translation to the user in the form of two arrows, as
shown in Figure 9. We also show the current view to the user after
a best-fit rotation alignment between the current view and the refer-
ence view is applied. This rotational stabilization allows the user to
focus on 3D translation and avoid worrying about precisely rotating
the camera. To achieve real-time performance, we interleave a ro-
bust but slower relative-pose computation with a faster, lightweight
updating scheme. A diagram of our real-time guidance approach is
shown in Figure 6.

4.1 Robust Camera Pose Estimation
In our robust estimation process, we estimate the camera pose rel-
ative to the first frame instead of the reference in order to avoid
degeneracy in the estimation when the user approaches the desired
viewpoint. Since we know the reference camera location relative to
the first frame [R10|T10], we can derive the relative pose between
the current and reference photographs. [Rij |Tij ] is the jth camera
location relative to the ith camera location. R is its rotational com-
ponent, and T is its translational component. For each frame n, we
compute the current camera location relative to the first camera lo-
cation [R1n|T1n]. The translational component T0n of the current
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  0. Register the reference camera  
  1. Robust estimation starts. Estimate correspondences.
  2. Estimate camera pose.
  3. Estimate the scale of the translation.
  4. Check if the robust estimation result passes sanity testing. 
      If yes, proceed to the next step. Otherwise repeat from Step 1.
  5. Visualize the direction to move. The robust estimation ends.
  6. Multi-threading starts. Thread A repeats robust estimation
      from Step 1, while Thread B performs a lightweight estimation.
  7. Thread B tracks inliers found in Step 2 and estimates camera
      pose using only one iteration.
  8. Estimate the scale of the translation.
  9. Check if the lightweight estimation result passes sanity testing. 
      If yes, proceed to the next step.Otherwise repeat from Step 7.
10. Visualize the direction to move.
11. Repeat from Step 7 until Thread A !nishes Step 5 and updates
      the set of inliers.

Fig. 8. The flow chart of our interleaved scheme.

4.3.1 Sanity Testing. For each resulting pose, we perform three
sanity tests to make sure our visualization is reliable. We compare
the 3D structure reconstructed from each frame with our initial 3D
reconstruction from the first two images. We measure the 3D error
of all points and ignore the pose estimation if the median of the 3D
error is more than 10 %. Typically, the median error is less than
5 %.
In addition, we check if the current camera pose result is con-

sistent with previous ones. We found that a simple filter works, al-
though the Kalman filter [Kalman 1960] would likely generate a
good result as well. We measure the mean and the standard devia-
tion of the camera locations at the previous ten frames and confirm
that the current estimated camera location is within 4 standard de-
viations from the mean. We assume the camera motion is smooth
and the pose variation is small. The above two tests typically detect
a wrong answer roughly once in 100 frames.
Finally, we test for a structure degeneracy caused when all the

inliers come from one single plane in the scene. We find the best-
fitting homography using RANSAC with 1.5 pixel average map-
ping errors within 500 iterations. If the number of homography in-
liers is more than 70 % of the epipolar geometry inliers, we ignore
the pose estimation result. Since we use a large-enough baseline,
this error does not occur frequently.
When our estimation result fails to pass the above tests, we sim-

ply do not update the visualization. Since wrong answers do not
occur often, this does not affect the user experience significantly.

4.4 Scale Estimation
After relative pose is computed, a problem remains: the scale of the
translation between the current frame and the first frame is ambigu-
ous. We therefore scale it to maintain consistency between itera-
tions. In the initial calibration step, we reconstructed a 3D structure
between the first and second frames using triangulation. In a subse-
quent iteration n, we reconstruct 3D structure between the first and
nth frames. The scale between these two reconstructions should be
different by a constant factor. We can make the scales consistent by
estimating the scale factor that causes the distance between the first
camera and the 3D scene to be equivalent between the two recon-
structions. To do so, we place the first camera at the origin for both
reconstructions. We then compute the median ratio of distance to

the origin for each 3D point in the first reconstruction and the nth
reconstruction. Finally, we multiply the length of the translation
vector by this ratio, which makes the length of our arrow visualiza-
tion meaningful and consistent across frames.

4.5 Rotation Stabilization
We also use the result of relative pose estimation to rotationally
stabilize the current frame before displaying it. Since users find it
challenging to simultaneously follow instructions suggesting both
translational and rotational motions, we instead only communicate
translation to the user. We automatically compute the best camera
rotation between the current and reference views, and apply this
rotation as a warp before displaying the current frame. This rota-
tion alignment allows the user to focus on translating the camera in
the right direction without striving to hold the camera in the right
orientation.
The effect of a 3D camera rotation and zoom can be described

with an infinite homography [Hartley and Zisserman 2000]. The
infinite homography is a subclass of the general homography, as it
is restricted to rigid camera rotations and zooms. We use the algo-
rithm of Brown et al. [2007] to compute the infinite homography
that fits all the epipolar geometry inliers with the least squared er-
ror.

5. VISUALIZATION

Fig. 9. A screen capture of our visualization, including our primary visual-
ization of two 2D arrows, as well as an edge visualization. The top arrow is
the direction seen from the top view and the bottom arrow is perpendicular
to the optical axis. The edge visualization shows a linear blend of the edges
of the reference image and the current scene after rotation stabilization. The
alignment of the edges can be used to evaluate whether the user has reached
the desired viewpoint.

Comparing the reference and current image side by side does not
provide precise information about viewpoint difference. In our pilot
user study, we provided a linear-blend of the reference and current
image, and users could not estimate the desired viewpoint by ex-
amining the pixel difference. In a subsequent test, we showed the
relative pose information in 3D (See Figure 11(a)). Still we found
that it was hard for users to interpret 3D information. In our final
visualization design, we visualize the relative camera pose in two
2D planes: one is the direction seen from the top view and the other
is perpendicular to the optical axis, as shown in Figure 9. In our
final user studies, users found our arrow visualization easy to learn
and follow.
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Reference

The current frame

The first frame

Fig. 2. The first photograph is captured from a location rotated about 20
degrees from the user’s best approximation of the desired viewpoint. The
second photograph is then captured from the user’s best approximation.

structure to calibrate the historical camera after asking the user to
manually identify a few correspondences with the historical image
(challenge 4). We also use this wide baseline to solve challenge 3 by
performing pose estimation relative to the first frame rather than the
reference view, which helps avoid degeneracy. The computed 3D
structure also helps us to compute a consistent 3D scale across iter-
ations (challenge 2). Finally, our calibration method also includes
an optional interactive approach to calibrating a non-central prin-
cipal point (Section 3.2.1), which asks the user to identify sets of
parallel lines in the scene.
Another key aspect of our approach is real-time visual guidance

that directs the user towards the desired viewpoint (Section 4). This
feedback includes a visualization of the needed 3D translation to
the reference view computed by interleaving a slower, robust rel-
ative pose algorithm (Section 4.1) with faster, lightweight updates
(Section 4.2).We also use the computed relative pose to perform ro-
tation stabilization (Section 4.5); that is, we show the current view
to the user after warping it with an infinite homography [Hartley
and Zisserman 2000] fit to the reference view, which can account
for both camera rotation and zoom. Because of this stabilization
the user does not need to worry about precisely rotating the cam-
era, and can focus on following the 3D translation directions from
our tool (challenge 1).
After giving an overview of the user experience of our rephotog-

raphy tool, the rest of this paper describes the technical details of
our approach, evaluates it with several user studies, and presents
results of using our tool to perform historical rephotography.

2.1 User Experience
While we ultimately wish to embed our tool entirely on a cam-
era, our current implementation relies on a laptop connected to a
camera as shown in Figure 3. The camera’s viewfinder images are
streamed to the laptop, which performs computation to visualize
the necessary motions to the user.
The user begins by loading a reference image. If the user suspects

that the image was shot with a non-central principal point (e.g., ver-
tical lines on tall buildings are vertical in the historical photograph),
she can optionally calibrate the principal point by identifying three
sets of parallel lines in the reference image. We allow the use of a
screen magnifier to make the lines more visible. Identifying these
lines is typically easy for photographs of buildings, which is the
most common scenario in which a photographer chooses to manip-
ulate the principal point using a view camera or a tilt-shift lens.

Fig. 3. In our prototype implementation, a laptop is connected to a camera.
The laptop computes the relative camera pose and visualizes how to trans-
late the camera with two 2D arrows. Our alignment visualization, which
consists of edges detected from the reference image composited onto the
current view, helps users to evaluate whether they have reached the final
viewpoint.

The user is next instructed to shoot an image that is rotated
roughly 20 degrees away from the reference viewpoint. The actual
amount of rotation is unimportant and is only specified to simplify
instructions; it is only important that the baseline from the refer-
ence viewpoint be reasonably wide. We call this image the “first
frame.” Next, the user goes to her best estimate of the reference
viewpoint, and shoots a “second frame.” The system computes 3D
structure from these two frames, and then asks the user to click six
correspondences between the reference image and the 3D structure
projected onto the second frame. After doing so, the real-time feed-
back begins and arrows direct the user towards the goal. Alongside
the arrows we show the rotation-stabilized current viewpoint. The
user can switch between several visualizations (Section 5), such as
an overlay of edges detected from the reference image onto the cur-
rent viewpoint, which can help the user in evaluating whether the
current viewpoint is a successful rephotograph. Once the user is
happy with the viewpoint, she can capture her final rephotograph.

3. CALIBRATION
The first step of our computational rephotography tool is to cal-
ibrate both the intrinsic and extrinsic parameters of the unknown
historical camera. We do so by performing a sparse 3D reconstruc-
tion of the same scene imaged by the historical camera using two
user-captured images, and then optimizing the parameters of the
unknown camera to minimize projection error of the features man-
ually corresponded by the user. We also optionally allow the user
to calibrate a non-central principal point by specifying sets of par-
allel scene lines in the historical image. This process is shown in
Figure 4.

3.1 Wide baseline 3D reconstruction
The user begins by capturing two images (the first and second
frames) with a wide baseline (Figure 2); a wide baseline improves
the accuracy and stability of 3D reconstruction. We assume the
current camera is calibrated (we use Bouguet’s calibration tool-
box [2007]), and then perform structure-from-motion to register
the two cameras and reconstruct sparse 3D structure. Specifically,
we use the robust pose estimation algorithm described in Sec-
tion 4.1. In brief, it uses the algorithm of Stewenius et al. [2007]
to compute relative pose given SIFT [Lowe 2004] correspondences
between the two views within a robust sampling loop similar to
RANSAC [Fischler and Bolles 1981]. Then, given the projection
matrices of the two cameras, we reconstruct the 3D coordinates of
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(a) Reference photographs (c) Professional rephotographs
without our technique

(b) Our rephotograph results

Fig. 16. Results. Left to right: the reference images, our rephotograph results, and professional manual rephotographs without our method.
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