Image alignment and stabilization

Frédo Durand MIT EECS \& CSAIL

Some slides by Alyosha Efros, Steve Seitz \& Rick Szeliski

Align \& combine multiple images

- High dynamic range imaging
- Flash no flash
- Denoising
- Lucky imaging
- Depth of field extension,
- Panoramas
+ Photomontage
- Video stabilization
- 3D compositing

DENOISING

Tutorial by Eugene Hsu

+ http://iphone.squicky.org/noise-84
- Follow him at
http://twitter.com/hsugene/
- Take multiple shots of a static scene
- Align
- Average to reduce noise.

Single frame

Average of 8 frames

EXTENDED

DEPTH of FIELD

Focal stack DoF extensions

CSAIL

- Capture \mathbf{N} images focused at different distances
- For each output pixel, choose the sharpest image -e.g. look at local variance, gradient.

From Agarwala et al.

Focal stack

Montage

CSAI

Macro montage

- 55 images here

- Helicon focus
- http://www.heliconsoft.com/animation/Krebs fly1/ index.html
- http://www.krebsmicro.com/

Focal stack \& plenoptic camera

Light Field Photography with a Hand-Held Plenoptic Camera, Ren Ng, Marc Levoy, Mathieu Brédif, Gene Duval, Mark Horowitz, Pat Hanrahan

- Capture light field
- Refocus to create focal stack
- Use photomontage to generate all-focus image

Focal stack \& plenoptic camera

Figure 15: Left: Extended depth of field computed from a stack of photographs focused at different depths. Right: A single sub-aperture image,

From Ng et al. http:// graphics.stanford.edu /papers/lfcamera/ which has equal depth of field but is noisier.

References

- http://www.janrik.net/ptools/ExtendedFocusPano12/index.html
- http://www.outbackphoto.com/workflow/wf 72/essay.html
- http://grail.cs.washington.edu/projects/photomontage/
- http://people.csail.mit.edu/hasinoff/timecon/
- http://graphics.stanford.edu/papers/lfcamera/

IMAGE STACKS, PHOTOMONTAGE

Interactive Digital Photomontage

- Aseem Agarwala, Mira Dontcheva, Maneesh Agrawala, Steven Drucker, Alex Colburn, Brian Curless, David Salesin, Michael Cohen. Interactive Digital Photomontage. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2004), 2004.
- Set of aligned images of same scene
+ Combine in clever ways
- automatic or user-specified
+ More about the exact combination next time.

Family portrait challenge

Digital photomontage

Tourist removal

Wire removal

IMAGE

 ALIGNMENT
Image alignment goals

- Multiple-exposure photography
- Denoising, depth of field extension, etc.
- Lucky imaging
- Flash no flash, Panoramas, HDR
- Photomontage
- Video stabilization
- Matchmove
- Recover 3D camera path for computer graphics object compositing

Approaches: dense vs. sparse

- Pixel-based alignment
- match all pixels
- aka dense
- Feature-based alignment
- match only special pixels such as corners
- aka sparse

Approaches: model or not

- Model based : restricted range of motions
- e.g. translation, affine, homography
- Non-parametric
- motion could be anything

BRUTE FORCE

Brute force: dense \& model-based

- Given low-order motion model
- Find parameters that minimize Sum of Square difference
- e.g. for translation: for $t x=x 0: s t e p: x 1$,
for ty=y0:step:y1,
compare imagel (x, y) to image2 $(x+t x, y+t y)$
end;
end;

OPTICAL FLOW

Optical flow: dense, non-parametr.

- Estimate motion of each pixel separately

Problem statement

- Motion from image H to image I
- Given pixel in H, find nearby pixel in I with same color
- Assumptions:
- small motion
- color (or brightness) constancy

1D brightness constancy

- Goal: Estimate motion by observing a single pixel just look at brightness variation between $\mathrm{H}(\mathrm{p})$ and I(p)
- Solution: use first-order model

pixel p

1D brightness constancy

- We observe a given brightness variation at p
- We know the local image derivative

$$
\begin{aligned}
& \mathrm{I}(\mathrm{p})=\mathrm{H}(\mathrm{p}+\Delta \mathrm{p}) \\
& \mathrm{I}(\mathrm{p}) \approx \mathrm{H}(\mathrm{p})+\mathrm{H}^{\prime}(\mathrm{p}) \Delta \mathrm{p} \\
& \mathrm{I}(\mathrm{p})-\mathrm{H}(\mathrm{p}) \approx \mathrm{H}^{\prime}(\mathrm{p}) \Delta \mathrm{p} \\
& \Delta \mathrm{p} \approx[\mathrm{I}(\mathrm{p})-\mathrm{H}(\mathrm{p})] / \mathrm{H}^{\prime}(\mathrm{p})
\end{aligned}
$$

Same in 2D

- If It is the time derivative and [uv] is the flow:

$$
0=I_{t}+\nabla I \cdot[u v]
$$

- bean counting:
- 2 unknowns per pixel : [u,v]
- only one equation
- Only the component along the gradient is known (aperture problem)
- Explains the barberpole illusion :
http://www.sandlotscience.com/Ambiguous/ barberpole.htm

Aperture problem

Solving the aperture problem

- Idea: use multiple pixels, assume flow is smooth

$$
0=I_{t}\left(\mathbf{p}_{\mathbf{i}}\right)+\nabla I\left(\mathbf{p}_{\mathbf{i}}\right) \cdot\left[\begin{array}{ll}
u & v
\end{array}\right]
$$

$$
\underset{\underset{25 \times 2}{A}}{\left[\begin{array}{cc}
I_{x}\left(\mathbf{p}_{1}\right) & I_{y}\left(\mathbf{p}_{1}\right) \\
I_{x}\left(\mathbf{p}_{2}\right) & I_{y}\left(\mathbf{p}_{2}\right) \\
\vdots & \vdots \\
I_{x}\left(\mathbf{p}_{25}\right) & I_{y}\left(\mathbf{p}_{25}\right)
\end{array}\right]} \underset{\substack{d \times 1}}{\left[\begin{array}{c}
u \\
v
\end{array}\right]}=--\left[\begin{array}{c}
I_{t}\left(\mathbf{p}_{1}\right) \\
I_{t}\left(\mathbf{p}_{2}\right) \\
\vdots \\
I_{t}\left(\mathbf{p}_{25}\right)
\end{array}\right]
$$

Small motion problem

- The first order model breaks quickly
- Solution: reduce image resolution!

Coarse-to-fine optical flow

Coarse-to-fine optical flow

Gaussian pyramid of image \mathbf{H}

Gaussian pyramid of image I

Coarse-to-fine optical flow

$u=1.25$ pixels

Gaussian pyramid of image \mathbf{H}
$u=10$ pixels
$u=5$ pixels

Coarse-to-fine optical flow

Gaussian pyramid of image \mathbf{H}

Gaussian pyramid of image I

Coarse-to-fine optical flow

Coarse-to-fine optical flow

Coarse-to-fine optical flow

Coarse-to-fine optical flow

Image alignment: translation

Image alignment: translation

Optical flow for alignment

- Pros:
- All pixels get used in matching
- Can get sub-pixel accuracy (important for good mosaicing!)
- Relatively fast and simple
- Cons:
- Prone to local minima
- Images need to be already well-aligned ;-(
- What if, instead, we extract important "features" from the image and just align these?

Other application: retiming

- Generate video at higher frame rate
- Avoid cross fading artifacts
- Idea: Advect pixels according to optical flow http://www.springerlink.com/content/y701u6n114j7323m/

FEATURE

 TRACKING
Good features to track

- Idea: some pixels are easier to track
- e.g. corners, because they suffer less from the aperture problem

Condition for solvability

- Optimal (u, v) satisfies Lucas-Kanade equation

$$
\begin{gathered}
{\left[\begin{array}{cc}
\sum I_{x} I_{x} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y} I_{y}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=-\left[\begin{array}{c}
\sum I_{x} I_{t} \\
\sum I_{y} I_{t}
\end{array}\right]} \\
A^{T} A
\end{gathered} A^{T} b
$$

$$
A^{T} A=\left[\begin{array}{ll}
\sum I_{x} I_{x} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y} I_{y}
\end{array}\right]=\sum\left[\begin{array}{l}
I_{x} \\
I_{y}
\end{array}\right]\left[I_{x} I_{y}\right]=\sum \nabla I(\nabla I)^{T}
$$

Condition for solvability

- Optimal (u, v) satisfies Lucas-Kanade equation

$$
\begin{array}{cc}
{\left[\begin{array}{cc}
\sum I_{x} I_{x} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y} I_{y}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=-\left[\begin{array}{c}
\sum I_{x} I_{t} \\
\sum I_{y} I_{t}
\end{array}\right]} \\
A^{T} A & A^{T} b
\end{array}
$$

When is This Solvable?

- $A^{\top} A$ should be invertible
- $A^{\top} A$ should not be too small due to noise
-eigenvalues λ_{1} and λ_{2} of $\mathbf{A}^{\top} \mathbf{A}$ should not be too small
- $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ should be well-conditioned
$-\lambda_{1} / \lambda_{2}$ should not be too large ($\lambda_{1}=$ larger eigenvalue)

$$
A^{T} A=\left[\begin{array}{ll}
\sum I_{x} I_{x} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y} I_{y}
\end{array}\right]=\sum\left[\begin{array}{c}
I_{x} \\
I_{y}
\end{array}\right]\left[I_{x} I_{y}\right]=\sum \nabla I(\nabla I)^{T}
$$

Condition for solvability

- Optimal (u, v) satisfies Lucas-Kanade equation

$$
\begin{array}{cc}
{\left[\begin{array}{cc}
\sum I_{x} I_{x} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y} I_{y}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=-\left[\begin{array}{c}
\sum I_{x} I_{t} \\
\sum I_{y} I_{t}
\end{array}\right]} \\
A^{T} A & A^{T} b
\end{array}
$$

When is This Solvable?

- \mathbf{A}^{\top} A should be invertible
- $A^{\top} A$ should not be too small due to noise
-eigenvalues λ_{1} and λ_{2} of $\mathbf{A}^{\top} \mathbf{A}$ should not be too small
- $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ should be well-conditioned
$-\lambda_{1} / \lambda_{2}$ should not be too large ($\lambda_{1}=$ larger eigenvalue)
$\mathbf{A}^{\top} \mathbf{A}$ is solvable when there is no aperture problem
$A^{T} A=\left[\begin{array}{ll}\sum I_{x} I_{x} & \sum I_{x} I_{y} \\ \sum I_{x} I_{y} & \sum I_{y} I_{y}\end{array}\right]=\sum\left[\begin{array}{c}I_{x} \\ I_{y}\end{array}\right]\left[I_{x} I_{y}\right]=\sum \nabla I(\nabla I)^{T}$

Edge

$\sum \nabla I(\nabla I)^{T}$

- large gradients, all the same
- \quad large λ_{1}, small λ_{2}

Low texture region

$$
\sum \nabla I(\nabla I)^{T}
$$

- gradients have small magnitude

- small λ_{1}, small λ_{2}

High textured region

$\sum \nabla I(\nabla I)^{T}$

- gradients are different, large magnitudes large λ_{1}, large λ_{2}

Harris Detector

* Average intensity change in direction $[u, v]$ can be expressed as a bilinear Taylor form:

$$
E(u, v) \cong[u, v] M\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

- Describe a point in terms of eigenvalues of M : measure of corner response

$$
R=\lambda_{1} \lambda_{2}-k\left(\lambda_{1}+\lambda_{2}\right)^{2}
$$

- A good (corner) point should have a large intensity change in all directions, i.e. R should be large positive
- Variation: Shi-Tomasi: Pretty much same as Harris, but use $\min (\lambda 1, \lambda 2)$ instead of R

Recap

- Brute force : dense, model based
- Optical flow: dense, non-parametric
- nearby pixels, same color
- uses all pixels
- can be unstable
- Feature tracking: sparse, non-parametric
- find corners
- then apply optical flow to them
- problem: what if the motion is too big?

Rich feature descriptors

- e.g. SIFT, Schmid \& Mohr 1997, Lowe 1999, Baumberg 2000, Tuytelaars \& Van Gool 2000, Mikolajczyk \& Schmid 2001, Brown \& Lowe 2002, Matas et. al. 2002, Schaffalitzky \& Zisserman 2002
- Detect points of interest
- Associate rich descriptor of patch (histogram of gradient in 4×4 subwindows)
- Can be matched across images

MODEL

FITTING

Fitting a model

- Often, we want to infer a simple low-order motion model
- e.g. translation, affine, projective
- because we know the motion
- or to regularize (get a smoother estimate)
- How do we do, given a number of correspondences or flow vectors?

Fitting a model

- e.g. affine:
$x^{\prime}=a x+b y+c$
$y^{\prime}=d x+e y+f$
- Find a, b, c, d, e, f given a number of pairs (x^{\prime}, y^{\prime}), (x, y)
- Simple linear least squares: two equations per pair of 2D points, need at least 3 points.

Robustness to bad matches

- RANSAC (RANdom SAmple Consensus)
- Fit a model with random subset of correspondences
- Count how many correspondences it matches
- Iterate
- Reweighted least squares
- Fit model with least square
- Reweight correspondences based on how close they are from their predicted new location
- Iterate

VIEWFINDER

 ALIGNMENT
Challenge: real time on cell phone

- Viewfinder Alignment. Andrew Adams, Natasha Gelfand, Kari Pulli, Eurographics 2008
- http://graphics.stanford.edu/papers/ viewfinderalignment/

Idea: 1 D matches of gradient

- Compute and project gradient along 4 directions - Brute force search for 1D translations

Idea: 1 D matches of gradient

- Compute and project gradient along 4 directions - Also extract strong corners for rotation inference

Application: denoising

VIDEO

STABILIZATION

Video stabilization : 3 steps

- Estimate motion
- local motion vector
- Fit per-frame global motion
- Smooth motion temporally
- e.g. low pass or model fitting
- Warp frames

More advanced: 3 D motion

- [Buehler et al. CVPR 2001]
- Given correspondences and assuming a rigid object, estimate camera pose \& 3D coordinates
+ Smooth 3D motion for more realistic stabilization
- Triangulate features and warp individual triangles
+ Maybe use other frames to fill in missing info

Content-Preserving Warps

- Liu et al. SIGGRAPH 2009

 http://pages.cs.wisc.edu/~liu/project/3dstab.htm- Extract camera path \& 3D feature coord.
- Smooth 3D motion
+ Content-preserving warp

Content-Preserving Warps

- Use smoothed feature locations as constraints

- Preserve local aspect ratios (conformal mapping)
- Preserve more in salient regions

Solving for warp

- Grid over image, solve for coordinate of vertices - Least square minimization
+ Data term: feature location
- Smoothness term: local similarity (conformal)

Bells and whistles

- Global projective (homography) pre-warp
- to take care of most of the job
- Cross-fade the influence of feature points
- Because they appear and disappear.

Results

Results

Video

VIDEO

MATCHING

Video matching

- Sand and Teller SIGGRAPH 2004 http://rvsn.csail.mit.edu/vid-match/
- Robust to scene changes, timing change

MATCH MOVE

Match move

- For compositing with moving camera
- Given video sequence, deduce 3D camera motion
- Match with computer graphics camera, miniature camera, etc.

http://www.digilab.uni-hannover.de/docs/manual.html\#overview

Example: music video by P. Sand

- Compositing of live action into miniature
- Match camera motion
- http://peter-sand.org/

Live action

- Note orange balls to create good features
- Green screen for compositing

Live action

Miniature construction

Tuesday, February 23, 2010

Miniature

- Note the big camera (DSLR)

5 degrees of freedom camera robot

Video

RE-

PHOTOGRAPHY

Computational Re-Photography

- Bae, Agarwala \& Durand, to appear
+ Goal: given reference (old) photo, take new photo at same viewpoint

Guidance visualization

- Camera tethered to laptop
- Arrows tell user where to go
- Overlay edges for finer grain

REFERENCES

Video stabilization

+ http://www.visionbib.com/bibliography/motion-i781.html
+ http://research.microsoft.com/en-us/people/yasumat/fullframe cvpr05.pdf
+ http://pages.cs.wisc.edu/~fliu/project/3dstab.htm
+ http://pages.cs.wisc.edu/~gleicher/Web/Projects/ReCinematography
+ http://ieeexplore.ieee.org/Xplore/login.jsp?url=http\%3A\%2F
\%2Fieeexplore.ieee.org\%2Fiel5\%2F30\%2F31480\%2F01467968.pdf \%3Farnumber\%3D1467968\&authDecision=-203
- http://www.cs.unc.edu/~mcmillan/papers/CVPR01 buehler.pdf
+ http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04272080

Commercial stabilization

- http://www.ovation.co.uk/Video-Stabilization.html

Tracking

- http://citeseerx.ist.psu.edu/viewdoc/download? doi=10.1.1.84.8498\&rep=repl \&type=pdf

Features

- http://www.cs.toronto.edu/~jepson/csc2503/ tutSIFT04.pdf
- http://citeseerx.ist.psu.edu/viewdoc/summary? doi=10.1.1.2.8899

