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Abstract

Given a triangulated closed surface, the problem of constructing a hierarchy of surface models of
decreasing level of detail has attracted much attention in computer graphics. A hierarchy provides view-
dependent refinement and facilitates the computation of parameterization. For a triangulated closed
surface of � vertices and genus � , we prove that there is a constant ����� such that if �	����
�� , a
greedy strategy can identify ������ topology-preserving edge contractions that do not interfere with each
other. Further, each of them affects only a constant number of triangles. Repeatedly identifying and
contracting such edges produces a topology-preserving hierarchy of ������������� size and ������� �!�"�#�$�
depth. In practice, the genus � is very small when compared with � for large models and the selection
of edges can be enhanced by measuring the error of their contractions using some known heuristics.
Although several implementations exist for constructing hierarchies, our work is the first to show that a
greedy algorithm can efficiently compute a hierarchy of provably small size and low depth. When no
contractible edge exists, the triangulation is irreducible. Nakamoto and Ota showed that any irreducible
triangulation of an orientable 2-manifold has at most %'&)(+*-,).0/1�"243 /$56.$7 vertices. Using our proof
techniques we obtain a new bound of %'&)(0*-/�.8�-��56.$7 .

Keywords: level of detail, 2-manifold, abstract simplicial complex, homology, edge contraction, irre-
ducible triangulation.

1 Introduction

Surface simplification has been a popular research topic in computer graphics [2, 4, 10, 12, 13, 18, 19]. Most
practical surface simplification methods apply to triangulated surface models and are based on local updates
including vertex decimation and edge contraction. Garland’s survey [9] gives a good review of the literature.
Vertex decimation removes a vertex together with its incident edges and triangles and then retriangulates the
hole left on the surface. Edge contraction collapses an edge to a single vertex (often a new vertex), removing
the two incident triangles of the contracted edge and deforming the other triangles touching the contracted
edge. If the topology of the surface is not explicitly preserved when applying local updates, the resulting
surface might be pinched at a vertex or at an edge. That is, the surface ceases to be a 2-manifold, see Figure 1.
Arbitrary topology changes could easily produce noticeable bad visual effects (for example, imagine that a
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Figure 1: In figure (a), the decimation of � and a retriangulation produce a pinching at the edge �
	 which
could be avoided if �� instead of �
	 is used in the retriangulation. In figure (b), the contraction of �� to 	
produces a pinching at the edge 	�� .

rod is squeezed in the middle by an edge contraction). Also, some applications require that the topology
be preserved. Repeated topology-preserving vertex decimation or edge contraction can produce a hierarchy
of models of decreasing level of detail that is useful in many applications. For example, Lee et al. [15]
compute a parameterization of the triangulated surface model using such a hierarchy, which can be used for
remeshing, texture mapping and morphing. In dynamic virtual environment the hierarchy allows objects to
be adaptively refined in a view-dependent manner [4, 13, 18, 19]. Basically, undoing a local update increases
the local resolution and redoing a local update reduces the local resolution.

These applications require the local updates to be independent, that is, they do not affect the same
triangle. A hierarchy can be conceptually viewed as a directed acyclic graph. The nodes at the topmost level
are the triangles in the original surface. When applying a local update, nodes are created for the new triangles
and arcs are directed from each old triangle affected to the new triangles created. A new level of detail is
obtained by applying a set of independent local updates simultaneously. Each local update should affect a
small number of triangles as the time complexity of undoing/redoing the local update is proportional to it
[4, 19]. Further, the depth of the hierarchy should be small as it bounds the maximum time to obtain a single
triangle in the original surface from the model of the lowest level of detail. Given a triangulated surface of� vertices, any hierarchy constructed by repeated applications of independent topology-preserving vertex
decimations or edge contractions has depth � ������� � � .

For planar subdivisions with straight edges and triangular finite faces, Kirkpatrick [14] and de Berg and
Dobrindt [3] showed how to perform independent vertex decimations to construct a hierarchy of � ������� � �
depth and � � � � size. Each model in the hierarchy also has straight edges and triangular finite faces. Re-
cently, Duncan et al. [8] showed how to apply planarity-preserving edge contractions to compute a hierarchy
of � ������� � � depth for maximal planar graphs. This takes care of triangulated closed surfaces of genus zero
as well. In this paper, we resolve the corresponding question for triangulated closed surface of arbitrary
genus � , which complements the experimental effectiveness of several existing implementations [4, 15, 19].

The problem of computing the hierarchy of surface triangulations is related to a mathematical question
that has been studied before. An edge is contractible if its contraction does not change the surface topology.
A triangulation of a 2-manifold is called irreducible if no edge is contractible. Is there an upper bound on
the number of vertices of an irreducible triangulation in terms of the genus � ? Barnette and Edelson [1]
first proved that a finite upper bound exists. Later, Nakamoto and Ota [16] proved a bound of ����� �"!#�$!&% ,
where % is the Euler’s characteristic. This yields a bound of ')(
�&�*�+��� for orientable 2-manifolds. This
immediately implies that a contractible edge exists when �-, ')(
�&�.�/��� . If a vertex is not incident on any
contractible edge, it remains so after a topology-preserving edge contraction [17]. Thus, there are at least
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� � � � ')(�� ��� ��� ��� ��� contractible edges. However, in order to construct a hierarchy of low depth, we require
the contractible edges to be independent and we need many of them. It is tempting to adapt the analysis
of the Dobkin-Kirkpatrick hierarchy [6] to argue that there are linearly many independent edges, but this
argument alone is insufficient since we need to guarantee that those independent edges are contractible as
well.

In this paper, we prove a new upper bound of �)(��&� on the number of vertices of an irreducible tri-
angulation. Our proof techniques are different from that of Nakamoto and Ota. By using our techniques
and by considering a maximal matching of contractible edges, we prove that for any constant � , '���� ,
if � ,
	�������������������������������������������� , a greedy strategy can identify at least � ��� ����!�"�#����$�	%�����&� independent topology-
preserving edge contractions. Each edge contraction affects at most �'� � triangles. This produces a
topology-preserving hierarchy of � � � � �#( � size and � ������� � � � � depth (Theorem 11). These results
follow from two topological results about triangulations (Theorem 8 and Theorem 10). Since our topo-
logical results are applicable to triangulations with curved edges and curved triangles, we do not assume a
piecewise linear embedding of triangulations for our topological results. We may sometime use a piecewise
linear embedding as a tool in the proofs and we state this explicitly. In practice, when constructing a hierar-
chy, the surface models are linearly embedded1 and the edge contractions are selected to keep the geometric
approximation error small. There are known heuristics in the computer graphics literature for measuring the
error of an edge contraction. For example, our greedy strategy can be enhanced to select edges in increasing
order of quadric error [10].2

The rest of the paper is organized as follows. Section 2 provides the basic definitions. Section 3 intro-
duces a family of crossing cycle pairs which is the main tool for obtaining our results. We prove the new
upper bound on the number of vertices of an irreducible triangulation in Section 4. Section 5 presents our
topological and algorithmic results on constructing a hierarchy.

2 Preliminaries

Triangulated 2-manifolds (without boundaries) are popular representations of object boundaries in solid
modeling and computer graphics. The combinatorial structure of a triangulated 2-manifold can be repre-
sented using an abstract simplicial complex )+* �-,/.�0 �

, where
,

is a set of vertices and
0

is a set of subsets
of

,
. Each element 132 0

has cardinality 45� ! , �'67486 � , and 1 is called a 4 -simplex.
0

is required to
satisfy the following two conditions. First, for each �92 ,

, :)��;<2 0
. Second, For each 1=2 0

and >@?A1 ,
>B2 0

. Each proper subset of 1 is called a face of 1 . Two simplices are incident if one is a face of the
other. For simplicity, we write a 1-simplex :)� . �C; as � � , and a 2-simplex : � . � . 	D; as � ��	 . We also call the
1-simplices edges. The star of 1 , EGF � 1 � , is the collection of simplices :H>JI�1K?A>#; . If we collect the faces
of > , for all >82=EGF � 1 � , that are neither 1 nor incident to 1 , we obtain the link of 1 denoted as LNM � 1 � . For
each edge � � , its neighborhood O � � � � is :H>828LNM � � �NP LNM � � � I �RQS > . �JQS >#; . Figure 2 shows examples
of star, link and neighborhood.

We use TVU to denote the underlying space of ) , which is a 2-manifold if the link of each vertex is a
simple cycle. The circular ordering of vertices and edges in L�M � � � of a vertex � induces a circular ordering
of edges and 2-simplices in EGF � � � . A 2-simplex is oriented if directions are assigned to its edges so that they

1The surface may intersect itself during repeated edge contractions. Nevertheless, in computer graphics literature self-
intersection has not been reported as a nuisance unless the complexity of the simplified surface is very tiny compared to the
complexity of the original surface.

2There is no worst-case guarantee on the geometric approximation error if a surface is simplified using quadric error based edge
contraction. Nevertheless, the experimental results are often good [10].
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Figure 2: In (a), the bold line segments and the shaded triangles are simplices in EGF � � � . In (b), the black dots
and bold line segments are the vertices and edges in LNM � � � . Note that EGF � � ��� LNM � � � *�� . In (c), the dashed
line segment is �� and the black dots and bold line segments are vertices and edges in O � �� � . Note that � �
is non-contractible.

form a directed cycle. TVU is an orientable 2-manifold if the 2-simplices of ) can be oriented such that each
edge is assigned two opposite directions. There are two ways to orient a 2-simplex, so there are two ways
to orient ) . Orientable 2-manifolds are a popular class of surfaces.

The contraction of an edge �� is a local transformation of ) . A new vertex 	 is introduced to replace
�� . EGF � � � P EGF � � � is replaced by a local triangulation: for each vertex �A2 O � �� � , we get the edge �
� ;
for every edge ��J2+O � �� � , we get the 2-simplex �
�� . This yields a new abstract simplicial complex. An
arbitrary edge contraction may result in an abstract simplicial complex whose underlying space is not a 2-
manifold. For example, see Figure 1(b). We call a cycle in ) critical if it consists of three edges and it does
not bound a 2-simplex in ) . For example, the cycle through � , � and � in Figure 1(b) is a critical cycle. If )
is combinatorially equivalent to the boundary of a tetrahedron, no edge can be contracted without changing
the topology type of T'U . Otherwise, the contraction of an edge � is topology-preserving if and only if �
does not lie on a critical cycle. Dey et al. [5] discussed a more general definition of topology-preserving
edge contraction that works for non-manifolds.

3 Family of cycle pairs

We introduce a special family of crossing cycle pairs and prove several properties of these cycle pairs. They
are the main tool in obtaining our results in Sections 4 and 5.

3.1 Chain, cycle and crossing

We reexamine cycles using concepts from algebraic topology. For �@6 4=6 � , a 4 -chain is a formal sum
of a set of 4 -simplices with coefficients 0 or 1. The addition is commutative. Terms involving the same
4 -simplex can be added together by adding their coefficients using modulo 2 arithmetic. The modulo 2
arithmetic implies that a 4 -simplex appears in the final sum when it appears an odd number of times. The
boundary of a 4 -simplex 1 is the sum of

� 4 � ! � -simplices that are faces of 1 . The boundary of a 4 -chain is
the sum of the boundaries of its 4 -simplices. We use � to denote the boundary operator. Figure 3(a) shows
some examples.

A 1-chain is a cycle if its boundary is empty. The boundary of a 2-chain is always a cycle. The length
of a cycle is the number of edges in it. We call a cycle simple if it is simple in the graph-theoretic sense.
For example, in Figure 3(a), �
	 is a simple cycle but ��� is not. Recall that a cycle is critical if it consists
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Figure 3: In (a), there are two 1-chains � and � 	 shown as bold line segments and there is a 2-chain � shown
as shaded triangles. � �B* � � � . ��� 	 * � . � �3* ��/� ��	8� 	 � �/� � � � � �/� � ���)�/�/�
� � � � ��� � . In
(b), there are two cycles

� � and
�

( shown as bold solid and dashed line segments respectively.
� � and

�
(

cross at the vertices � and � .

of three edges and it does not bound a 2-simplex. So a critical cycle is always simple. Two cycles
� � and� ( are homologous if there exists a 2-chain � such that

� � * � ( � � � . For example, in Figure 3(a),
�)� �+�
� �+� � ��� � and �� �+��	K�+	 �5� � � �+� � � � � are homologous.

Let
� � and

�
( be two simple cycles in ) . Suppose that

� � and
�

( share a vertex � such that the edges
of
� � and

� ( incident to � are distinct. If the edges of
� � alternate with the edges of

� ( in EGF � � � (recall
that there is a circular ordering of edges and 2-simplices in EGF � � � ), we say that

� � and
�

( cross at � . We
call � a crossing of

� � and
�

( . Figure 3(b) shows an example. The above definition of crossing might
not be applicable when two cycles share edges. So we will perturb cycle edges in order to proceed further.
We remark that the crossing of cycles, as discussed here, is related to the concept of intersection number in
algebraic topology [7]. However, the definition of intersection number does not cater to edge sharing.

Since perturbation is a geometric operation, we need to work with a geometrical realization of ) which is
a simplicial complex

�) (embedded without self-intersection in a space of sufficiently high dimension [11]).� ) is a triangulation of a piecewise linear surface: each edge appears as a line segment and each 2-simplex
appears as a triangle. Since ) and

� ) have identical combinatorial structure, we do not distinguish corre-
sponding cycles in ) and

� ) . We would like to emphasize that
� ) is only a tool. Our results are topological

and independent of the geometric realization.
Let � � and � ( be two simple closed curves on the underlying piecewise linear surface of

�) . We say � �
and � ( cross at a point � if there is a small region 	 � � � around � such that � � � � (

� 	 � � � * :
� ; and
� � � 	 � � � contains points on both sides of � (

� 	 � � � locally. We also call � a crossing of � � and � ( .
Let

� � and
�

( be two simple cycles in ) . We treat
� � and

�
( as two simple closed curves on the

underlying surface of
� ) . We perturb

� � to another simple closed curve � � on
� ) as follows. Fix the vertices

of
� � . For each edge � of

� � , perturb � to a closed curved segment � such that ���F � � � lies in the interior
of a triangle of

� ) incident to � , � � � consists of the endpoints of � , and ���F � � � does not intersect any
curved segment obtained by perturbing other edges of

� � . Consequently, � � and
�

( intersect only at the
vertices of

� � , so the definition of crossings of two simple closed curves is applicable. We use
� ��� � (

to denote the parity of the number of crossings of � � and
� ( . We can generalize the definition to the case

where
�

( is a sum of simple cycles. Let
�

( *������� � � ( � , where
�

( � are simple cycles. Then we define� ��� � ( * � ������ � � ��� � ( �
��� ��� � . The following lemma shows that

� ��� � ( is well defined and its proof
can be found in Appendix I.3

3The generalization can be taken further. Let  �!�"$#&%')( !  *! ' and let  ,+-".#0/1 ( !  2+ 1 , where  *! ' and  ,+ 1 are simple cycles.
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LEMMA 1 Given a simple cycle
� � and a sum

�
( of simple cycles in ) ,

� �-� � ( is independent of the sum
expression of

�
( and the perturbation of

� � .
Lemma 1 leads to the following lemma concerning the crossing between a simple cycle and two homol-

ogous simple cycles.

LEMMA 2 Let � ,
� � and

�
( be three simple cycles in ) . If

� � and
�

( are homologous, then � � � � *
� � � ( .

Proof. By definition,
� � * �

( � ��� for some 2-chain � . So � � � � =
� � � � ( � � � � � ��� � � � � Clearly,

� � � > * � for any 2-simplex > . Thus, � � � �3* � which implies that � � � � *�� � � ( .

3.2 Crossing cycle pairs

Let
��� ' be a parameter. Let ��� denote a family of cycle pairs : �	��
 .��
 � I ! 6��/6�� ����� ; that satisfy four

conditions: (1) each
� 


is a critical cycle, (2) each
� 


is a simple cycle of length at most
�
, (3) for any � , � 


and
� 


cross at a vertex called the anchor of
� 


and
� 


does not share any other vertex with
� 


, and (4) For
�5Q*�� , the anchors of

� 

and

� � are different. Note that for �5Q*�� ,
� 


or
� 


may share vertices and edges
with

� � and
� � . The following lemma is the main result of this subsection.

LEMMA 3 � � � �C6 �)(�� � and for
��� ' , � � � �G6 ��� � � � .

We will show that � � � � is an upper bound on the number of vertices of an irreducible triangulation and
we will use � � $ � to prove our results on constructing a hierarchy. We provide the proofs for the bound ��� � � �
below. The sharper bound of �)(
�&� for � � � � can be found in Appendix II. First, we use the following lemma
to select a subset � � S � � .
LEMMA 4 There is a subset � � S � � of cardinality at least � � � � � ��� such that for any two distinct

� 

and� � in ��� , ��
 does not contain the anchor of

� � .
Proof. Let � be the graph formed by the union of

��

’s in ��� . Each

��

has three edges, so the degree sum

of vertices in � is at most ��� � � � . We claim that there are at least � � � � � � anchors in � of degree nine or less.
Otherwise, the degree sum of anchors in � is at least !#���5� � � � � � �)� � � * ��� � ��� � � � , where � , � � � � � �
is the number of anchors in � of degree ten or more. So the degree sum is greater than ��� ����� which is a
contradiction. We pick a maximal independent subset of anchors in � whose degrees are at most nine. Then
we set � � *7: �	� 
 .�� 
 � I the anchor of

� 

is picked ; . Clearly, � � � � � � � � � � ��� and for any

� 
 Q* � � in � � , � 

does not contain the anchor of

� � .
Next, we partition the

� 

’s in � � into equivalence classes of mutually homologous cycles. We pick one

cycle from each class and set � 	� * : �	� 
 .�� 
 � I � 
 picked ; . So any two distinct
� 


and
� � in � 	� are non-

homologous. We prove that � � 	� �G* � � � � � � � by showing that each equivalence class has � � ! � cycles. Then
the fact that ) has at most �&� mutually non-homologous cycles yields an upper bound on � � � � . We need some
definitions and an utility lemma (Lemma 5). Define a whisk to be a collection of mutually homologous

� 

’s

in ��� such that they share a common edge �� and neither � nor � is the anchor of any
��


in the collection.
We call �� the axis of the whisk. Given a whisk  , we use  �! to denote the set of vertices and edges in
 , i.e., the graph formed by the union of the cycles in  . We also call  ! a whisk for convenience.

Then  !#"  + can be defined to be $ # % ')( ! # /1 ( !  ! ' "  + 1&%�'�(*)�+ . However, this generalization is not needed for obtaining our
results.
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LEMMA 5 Let  be a whisk. Let �� be the axis of  . Let � be a set of whisks such that

(i) any two cycles in  P�������� ,
are homologous,

(ii)  �9, *�� for any
, 2	� ,

(iii) 
 ! �@, ! S : � . ��; for any two distinct whisks 
 .�, 2�� .

Then ��� �G6 � � �  � and �  �G6 �
.

Proof. Let
� 


be a cycle in  . Let
� 


be the cycle that pairs up with
��


in ��� . By definition,
� 
 � � 
 * ! .

Since
� 


and
� � are homologous for any cycle

� � in any whisk in � ,
� 
 � � � * � 
 � � 
 * ! by Lemma 2. It

follows that
� 


contains a vertex 	 of
� � . The vertex 	 cannot be � or � as

� 

does not share an edge with� 


. Since 
 ! � , ! S :)� . �C; for any two distinct whisks 
 .�, 2�� , each whisk in � contributes at least one
distinct vertex in

� 

. By the same reasoning,

� 

must contain the anchors of all cycles in  . Since

� 

has

length at most
�
, we conclude that ��� ��6 � ���  � . As ��� � � � , rearranging terms yields �  �G6 �

.

We are ready to bound � � 	� � from below.

LEMMA 6 There is a subset � 	� S � � of cardinality at least � � � � �� !#� � � � such that for any two distinct
� 


and
� � in � 	� , � 
 and

� � are non-homologous.

Proof. Let � � S � � be a subset satisfying Lemma 4. Let  be an equivalence class of mutually homologous� 

’s in � � . We first bound �  � . We pick maximal whisks  �� S  , !<6 �96�� , in a greedy fashion such

that  !� �  !� * � for !@6 �KQ*��86�� . By Lemma 5 (  *  � and � * :  � .�������.  �� ; � :  � ; ),
� �+! 6 � � �  �� � which implies that � 6 �

and

�  �� �G6 � � ! ��� � (1)

We partition  � � �� � �  �� into a collection � of maximal whisks. By the property of � � , no cycle in
� � contains the anchor of another cycle in � � . By greediness, for any

, 2�� ,
, ! �  !� Q* � for some

!96 �96�� . If
, ! �  !� Q* � , the maximality of  �� implies that

, ! �  !� * : � ; for some endpoint �
of the axis of  � . Take any whisk

, 2�� . By Lemma 5 (  * ,
and � * :  � .�������.  ��D; ), we have

� 6 � � � , � which implies that
� , �G6 � ��� .

for any
, 2 � � (2)

Let � � � � � ( be the axis of  � . Let � � � , ! 6 �@6 � , be the number of whisks
,

in � such that
, ! �  !� *

: �!� � ; . By Lemma 5 (  *� �� and � = the set of whisks in � that share �"� � with  !� ), we have

�#� � 6 � � �  �� � � (3)

Thus, �  � 	 ( �6 � �� � � � �  �� ��� � �$� � ���$� (
�%� � � �&� � � 	����6 � �� � � � �  �� ��� � � � � �  �� � �#� � �'� � � * � �� � � � � � � � �&� � �� � � � ��� � ! � �  � � � . If � * �

, then �  ��6 � �� � � �  � �C6 �
by (1). If �)( � , then �  �*( � �� � � � � � � �+� � *

��� � � � ��� � . This bound is maximized when � * � � � . So �  �*( � � � � .
We pick one

� 

from each equivalence class  of mutually homologous

� 

’s in � � . Let � 	� *7: � � 
 .� 
 � I� 


picked ; . Since � � � � � � � � � � ��� , � � 	� � � (�-, � �( 
� � � � � * � � � � �� !#� � � � .

Proof of Lemma 3: If T'U has genus � , ) contains at most �&� cycles that are mutually non-homologous.
Thus, � � 	� ��6"�&� . The result then follows from Lemma 6. The bound for � � � � is provided in Appendix II.
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4 Irreducible triangulation

In this section, we prove that any irreducible triangulation of an orientable 2-manifold of positive genus �
has at most �)(�� � vertices. We need the following lemma about a vertex.

LEMMA 7 Assume that TVU has positive genus. Let � be a critical cycle passing through vertices � , � and
� . Then one of the following holds.

(i) There are two contractible edges �� and �
	 that alternate with ��� and �
� in EGF � � � .
(ii) A pair of critical cycles cross at � .

Proof. Observe that � . �+2 LNM � � � . Let � be the list of vertices in LNM � � � in clockwise order starting at �
(recall that LNM � � � is circularly ordered). If there is a vertex � before � and a vertex 	 after � in � such
that �� and �
	 are contractible, then (i) is true. Assume that all edges � � , where � precedes � in � , are
non-contractible. (We can symmetrically handle the case that all edges �
	 , where 	 follows � in � , are
non-contractible.) Since � is a critical cycle, � and � are not adjacent in LNM � � � , so we can pick an edge � �
such that �8Q* � and � precedes � in � . Since �� is non-contractible and the genus of T U is positive, � � lies
on a critical cycle

�
that passes through � , � and some vertex 	 	 2@LNM � � � . If � and

�
cross at � , then (ii) is

true. Otherwise, either 	 	 * � or 	
	 precedes � in � . We repeat the above argument with � and � replaced
by � and 	 	 . We must eventually obtain a pair of critical cycles that cross at � .

THEOREM 8 Any irreducible triangulationof an orientable 2-manifold of genus � has at most
����� : �)(��&� . (C;

vertices.

Proof. The theorem is clearly true when �V* � . Let ) be an irreducible triangulation. Assume that � , � .
We construct a family � � of crossing cycle pairs as follows. Each vertex � in ) is incident on a non-
contractible edge, so � lies on a critical cycle. Since no edge of ) is contractible, Lemma 7(ii) holds and a
pair of critical cycles cross at � . We add this cycle pair to � � . The number of vertices of ) is � � � � which is
at most �)(
�&� by Lemma 3.

5 Hierarchy of surfaces

In this section, we prove that there are linearly many independent topology-preserving edge contractions.
Moreover, a simple greedy strategy can be used to find them. Let �� and � � be two edges of ) . We say that
�� and � � are independent if

� EGF � � � P EGF � � � � �"� EGF � � � P EGF � � � � * � . Although O � � � � and O � �%� � might
share vertices and edges, the contractions of � � and �%� do not affect the same triangle. Figure 4 shows an
example.

Our proof proceeds in two steps. First, we focus on the contractible edges of ) by considering a subgraph
�<U that contains all vertices of ) and the contractible edges of ) . (So �'U might be disconnected.) We prove
that a maximal matching of � U has linear size. Second, we prove that any maximal matching of � U contains
an independent subset of edges of linear size. Moreover, they can be found using a greedy strategy.

LEMMA 9 Let � be the number of vertices in ) and let � be the genus of T9U . Assume that � , � . Any
maximal matching of � U matches at least

� � �+!#'$!&�&� �+'�� ��� ! � vertices.
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Figure 4: � � and �� are not independent, but both are independent from �%� . The open regions covered by
EGF � � � P EGF � � � and EGF � � � P EGF � � � are shaded differently. O � � � � and O � �%� � share two vertices and one edge.

Proof. Our proof uses some geometric operations, so we again work with a geometric realization
� ) of ) .

We use � to denote the underlying surface of
� ) , i.e., � is the set of points on

� ) without the triangulation
structure. We obtain an embedding of � U on � by first drawing all vertices and edges of

�) on � and then
erasing all the non-contractible edges. � U induces a subdivision of � which we denote by � U � � � .

Pick a maximal matching of � U . Let �VU be the subgraph of � U (embedded on � ) consisting of matched
vertices and the edges of � U between them. So �VU contains all matching edges but �VU may contain
some non-matching edges as well. As our argument proceeds, we will create some segments on � , called
purple segments, that connect matched vertices. The purple segments can be straight or curved. The purple
segments will be used later to form a new graph with �9U .

We bound the number of unmatched vertices by charging them to edges in � U and the purple segments
as well as by forming a family � $ of crossing cycle pairs. We charge for the unmatched vertices one by one
in an arbitrary order. Let � be an unmatched vertex. If the degree of � in �'U is at most 1, then Lemma 7(ii)
applies and a pair of critical cycles cross at � . We charge for � by adding this cycle pair to � $ .

Suppose that the degree of � in � U is larger than 1. Since � is unmatched, all neighbors of � in � U are
matched. Let � and 	 be two consecutive neighbors of � in � U . Let 	 be a region in � U � � � such that ��
and �
	 lie consecutively on the boundary of 	 . 	 covers some triangles in EGF � � � , see Figure 5. We pick a
subset � S EGF � � � of triangles such that

��� ����� S 	 and �� and ��	 lie in the boundary of the closure of� � �	� �
. Let 	�
��� denote the closure of

� � �	� �
. Figure 5 shows an example of 	�
��� . Note that any incident

edge of � in
� ) that lies inside 	 
��� is non-contractible. There are three different ways to charge for � .

uvwR

v

u

w

R

Figure 5: The solid line segments are incident edges of � in � U . The dashed line segments are edges in
LNM � � � and EGF � � � that are not in � U . The shaded region is 	 . The darker subregion is 	 
��� .

Case 1: � is not incident to any edge in
�) that lies inside 	 
��� . It follows that 	 
��� * ��
	 . So �	 is an

edge in
� ) . Since 	 
��� S 	 , either �	 lies inside 	 or � 	 lies on the boundary of 	 .
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Case 1.1: �	 is an edge in � U . It follows that 	A* ��
	 * 	 
��� . Since � and 	 are matched vertices,
�	 belongs to �VU too. We charge for � by putting a red pebble at � 	 . Since �	 bounds at most two regions
in � U � � � , case 1.1 can be applied at most twice to � 	 producing at most two red pebbles on �	 . Thus, each
edge of �VU receives at most two red pebbles.

Case 1.2: �	 is not an edge in � U . So � 	 is non-contractible. If we have created a purple segment � 
�
connecting � and 	 before, we put a green pebble at � 
� to charge for � . Otherwise, we create the straight
purple segment � 
� * � 	 and put a green pebble at � 
� to charge for � .

We claim that the purple segment � 
� receives at most two green pebbles overall. If � 
� receives
a second green pebble, the boundary of 	 is a closed polygonal line connecting four vertices. The four
vertices are � , � , 	 , and an unmatched vertex � 	 such that � 	 , � and 	 satisfy the conditions of case 1 and
case 1.2 (with � replaced by � 	 ). That is, � 
� * �	 and two green pebbles are put at � 
� to charge for �
and � 	 . Since 	 does not have any unmatched vertex on its boundary other than � and � 	 , � 
� cannot receive
a third green pebble. In all, each purple segment receives at most two green pebbles.

Case 2: Some edge �
� in
�) lies inside 	 
��� . Recall that any incident edge of � that lies inside 	 
��� is

non-contractible. So ��� lies on a critical cycle � . Let �
� and �� be the other two edges of � . If ��� lies
inside 	�
��� or on the boundary of 	�
��� , then Lemma 7(ii) applies, so a pair of critical cycles cross at � .
We charge for � by adding this cycle pair to � $ .

Suppose that ��� lies outside 	 
��� . If we have not created a purple segment � 
� connecting � and 	
before, we create � 
� as follows. If � 	 is an edge in

� ) , we set � 
� * � 	 . Otherwise, we draw � 
� as a
segment, curved if necessary, inside 	�
��� . Clearly, � 
� does not cross any edge of � U . Moreover, by our
drawing strategy, � 
� does not cross any other purple segments created before.

After creating � 
� if necessary, we check the number of blue pebbles at � 
� . If � 
� contains less than
three blue pebbles, we add a blue pebble to � 
� to charge for � . If � 
� already contains three blue pebbles,
these blue pebbles were introduced to charge for three unmatched vertices � 
 , !<6�� 6 ' , other than � and
each � 
 is adjacent to both � and 	 . We pick � � such that � � Q* � and � � Q* � (recall that � and � are vertices
of the critical cycle � passing through � ). Let

�
be the cycle consisting of the edges � � , ��	 , 	 � � , and � � � .

Since ��� lies inside 	 
��� and �
� lies outside 	 
��� , � and
�

cross at � . We add the cycle pair
� � . � �

to � $
to charge for � .

By Lemma 3, � � $ � 6 !#�����&� . It remains to bound the total number of pebbles on the edges of � U and
the purple segments. Recall that there is no crossing among the edges of � U and the purple segments. We
add the purple segments as edges to �9U and we add more edges, if necessary, to obtain a connected graph
� ! that is embedded on � without any edge crossing. Let

�
and � be the number of vertices and edges in

� ! . (So
�

is the number of matched vertices.) By Euler’s relation, � 6 ' � � � � � � . Since each edge of
�'U carries at most two red pebbles and each purple segment carries at most two green pebbles and at most
three blue pebbles, the total number of pebbles in � ! is at most ��� 6 !�� � � '�� �+'��&� .

It follows that the number of unmatched vertices is bounded by !#�����&� ����� 6 !�� � � '�� � !#' !#�&� .
Hence, � 6 � � !�� � � '�� � !#'$!#�&� which implies that

� � � � � !#' !#�&� �+'�� ��� ! � .

THEOREM 10 Let � be the number of vertices of ) and let � be the genus of T9U . Assume that � , � . For
any constant � , '���� , if � � 	 �������������������� � ������� �����"� ���� , there are at least � ��� ����!�"�#����$�	%�����&� independent contractible
edges and for each such edge �� , O � � � � has at most � vertices.

Proof. Let 	 be some maximal matching of contractible edges. We use �
	 � to denote the number of
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matching edges in 	 . By Lemma 9, �
	 � � � � � !#'$!&�&� � '�� ��� '�� . Given a matching edge �� , we call
the number of vertices in O � � � � the neighborhood size of � � which is equal to

������������� � � � ������������� � � � ( .
Take any constant � , '���� . We claim that there are at least �
	 � � � matching edges such that each has
neighborhood size at most � . Suppose not. Then the sum of the neighborhood sizes of the matching edges
is greater than � � �
	 � � � . This implies that the sum of the degrees of the endpoints of the matching edges is
greater than

� � � ( � �
	 � � � � � � � ( �#� � � !&'$!#�&� � '�� ��� �)( � � � �"!#� � !#� � by our choices of � and � ,
contradicting the Euler’s relation. We pick the independent contractible edges as follows. First, we mark all
matching edges in 	 . We pick a marked matching edge � whose neighborhood size is at most � , unmark
� as well as all other matching edges that are not independent from � . We repeat the above until no more
matching edge can be picked. Since at most �5� ! matching edges can be unmarked in each iteration, at
least �
	 � �� � � �/� ! � � matching edges must be picked.

Although the proof of Theorem 10 uses a maximal matching 	 , it is not necessary to compute 	 first.
We initialize an empty output set of edges EDGE SET. Then we examine the edges of ) in an arbitrary
order and grow EDGE SET. For each edge � , we determine whether � is contractible, O � � � has at most �
vertices, and � and the edges in EDGE SET are independent. If these three conditions are satisfied, we add �
to EDGE SET. In all, we have the following theorem.

THEOREM 11 Given a triangulated closed surface of � vertices and positive genus � , a topology-preserving
hierarchy can be constructed by repeated contractions of independent contractible edges. Each edge con-
traction affects � � ! � triangles. The hierarchy has � ������� � �-� � depth and � � � � � ( � size.

The algorithm as described above takes � � � � � ( � time. In practice, the edge contractions should be
selected to keep the geometric approximation error small. Our greedy strategy resembles existing methods
employed by some computer graphics researchers to construct hierarchies [4, 15, 19]. They develop heuristic
functions to measure the geometric error of local updates (vertex decimations or edge contractions). The
local updates are sorted in increasing order of geometric error using such a heuristic function. Then the
sorted list is scanned to pick an independent subset. There is no worst-case guarantee on the geometric
approximation error of the simplified surface. However, experimental results are often good. We suggest
using the quadric error proposed by Garland and Heckbert [10] for edge contractions.4 Evaluating the
quadric error of the contraction of an edge � is done in � � ! � time by solving a system of three linear
equations involving three variables. The solution also tells the location of the new vertex that � should be
contracted to. After sorting the edges, we scan the sorted list using our greedy strategy to select independent
contractible edges. Due to sorting, the time complexity of the algorithm increases to � � � ����� � � � ( ����� � � .
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Appendix I

First, we prove that
�������

� is well defined when both
���

and
�
� are simple cycles.

LEMMA 12 Given two simple cycles
���

and
�
� in � ,

�������
� is independent of the perturbation of

���
.

Proof. Let 	 � and 	�
� be two simple closed curves on � � obtained by different perturbations of
���

. Let  be an edge of� �
. Let � and ��
 be the two perturbed versions of  in 	 � and 	�
� respectively. We modify 	 � by replacing � with ��


and examine the parity of crossings between the new closed curve and
�
� . If

�
� does not contain  , it is clear that the

crossing status at the endpoints of  remain unchanged after the replacement (i.e., an endpoint is a crossing after the
replacement iff it was a crossing). Consider the case where

�
� contains  . If � and ��
 lie inside the same triangle of � �

incident to  , the crossing status at each endpoint of  remains unchanged after the replacement. If � and ��
 lie inside
different triangles of � � incident to  , the crossing status at each endpoint of  is switched after the replacement (i.e.,
an endpoint is a crossing after the replacement iff it was not a crossing). Thus, the parity remains unchanged.

We are ready to prove that
� � ���

� is well defined when
�
� is a sum of simple cycles.

LEMMA 13 Given a simple cycle
� �

and a sum
�
� of simple cycles in � ,

� � ���
� is independent of the sum expression

of
�
� and the perturbation of

� �
.

Proof. Let � be a shared vertex between
� �

and
�
� . Let 	 � be the simple closed curve on � � obtained by a perturbation

of
� �

. 	 � divides a small region around � into two topological disks � � and � � . Since
�
� is a sum of simple cycles,

the number of edges of
�
� incident to � is even. It follows that the numbers of edges of

�
� in � � and � � have the

same parity. The parity of the crossings of 	 � and
�
� at � is completely determined by whether ��� contains an odd

or even number of edges of
�
� . If the number is odd, the parity of crossings of 	 � and

�
� at � is odd. Otherwise, the

parity is even. So the sum expression of
�
� is unimportant. We can also argue, as in the proof of Lemma 12, that the

choice of 	 � is unimportant.

Appendix II

We first bound � ��
� � from below.

LEMMA 14 There is a subset ��
��� � � of cardinality at least � � � � ����/ � such that for two distinct � � and � � in �!
� , � �
and �"� are non-homologous.

Proof. Let # � � � � be the set satisfying Lemma 4. Let $ be an equivalence class of mutually homologous �%� ’s in # � .
Our goal is to bound � $&� . We pick maximal whisks ')( � $ , �%*,+�*,- , in a greedy fashion such that '/.(�0 '1.24365
for �!*7+983;: *<- . By greediness, *�' � 5�
1
�
65='?> 7 is maximal. We partition $ 2,@ >(BA � '?( into a collection C of
maximal whisks. For any whisk DFE?C , observe that:

G Since *�' � 51
�
1
 5=' > 7 is maximal, D�. 0 '1.( 8315 for some �%*,+�*H- .
G If DI. 0 '1.( 83F5 , then D�. 0 '1.( 3 *KJ�7 for some endpoint J of the axis of ' ( and J is not the anchor of any

cycle in D by the property of # � .
G For any two distinct L 5MD1E?C , L�. does not contain the anchor of any cycle in D by the property of # � .

By Lemma 5 ( ' 3 'N( and O 3 *�' � 5�
1
1
 5M'?>�7 24*P'Q(�7-� , we have - 2/�?* , 2/�R'?(S� and �R'?(T� * , . Since
�R'Q(U�PV/� , we have -W* , . We conduct a case analysis to show that � $&�P*,X .
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Case 1: - 3 � . Let J � J � be the axis of ' � . We partition C into C ��� C � , where

C � 3 *�DFE?C��UD . 0 ' .� 3 * J � 7 7��
If � ' � � 3 , , then by Lemma 5 ( ' 3 ' � and O 3 C � ), � C �S�S* , 21�R' � � 3 � . So � $&� 3 �R' � � 3 , . Consider
the case where ��* � ' � �U*4/ . For any whisk DFE C�� , by Lemma 5 ( ' 3 D and O 3 *P' � 7 � � C � 2 *�D 7-� ),
we have � � C � �12 �����6��*4, 2,�RD�� . It follows that � C � �U*4, 21�RD�� . Since �RD��UV<� , � C � �S* / . This implies that
there are at most four cycles in $ 2 ' � . So � $&�T*7�R' � � � .!*,X .

Case 2: - 3 / . For �%*,+�* / , let J�( � J�( � be the axis of '?( . We partition C into C �B��� C � �
� C �

��� C � �
�	�

, where

C ( � 3 *�DFE?C��UD . 0 ' .( 3 *KJ ( � 705=D . 0 ' .��
 ( 365 7� 3 *�DFE?C�� D . 0 ' .� 8365 5MD . 0 ' .� 8365 7��
By Lemma 5 ( ' 3 'N( and O 3 *�' ��
 ()7 � C ( � ), we have � C ( � � � �%* , 21�R'Q(U� which implies that

� C ( ���P* / 2,�R' ( �� (4)

Also, observe that ��*/� � �P* . .

If � � � 3 � , then � $&� 3�� �( A � � �R' ( � �F� C ( � � �1� C ( � � � . By (4), we have � $&�P*�� 21� ' � �12 �R' � �P* X .
Suppose that � * � � ��* / . Let D be any whisk in

�
. For � * +/* / , by Lemma 5 ( ' 3 D and

O 3 *�' � 5=' � 7
� C ( � for some choice of � such that D�. 0 '1.( 3 * J ( � 7 ), we have � C ( � �1� /N* , 2/�RD�� or

� C ( � �1� /N* , 2<�RD�� . So � C ( � � 3 � or � C ( � � 3 � , say � C ( � � 3 � . Thus, � $&� 3 � � �1� � �( A � � �R'?(T�)�<� C ( � � � .
By (4), � $&�P*/� � � � .!* X .
Suppose that ,!*<� � � *�. . For �%*,+�* / , there exists an endpoint J of the axis of ' ( where there are at least
two distinct whisks L ( 5=D ( E � such that L�.( 0 '1.( 3 DI.( 0 '1.( 3 *KJ�7 . For �%*��!*�/ , by Lemma 5 ( ' 3 ' (
and O 3 *PL ( 5MD ( 7 � C ( � ), we obtain � C ( ��� ��/!* , 24�R' ( � which implies that � C ( �S� 3 � . By Lemma 5 ( ' 3 ' (
and O 3 *�L (05MDT()7 ), we have /�* , 2H� '?(U� which implies that �R'N(T� 3 � . Thus, � $&� 3 � � �6�H�R' � � � �R' � �P* X .

Case 3: - 3 , . By Lemma 5 ( ' 3 'N( and O 3 *�' � 5=' � 5M' � 7 2	*�'?()7 ), / * , 2<�R'Q(�� which implies that
� '?(T� 3 � . We claim that $ 2 @ >( A � '?( is empty. Suppose not. Let � � be a cycle in $ 2 @ >( A � '?( and let� � be the cycle that pairs up with � � in � � . By Lemma 2,

� � shares a vertex with '/.( for � *;+ * , . For
�?* +9* , , ' .( does not contain the anchor � � 0 � � by property of # � . So

� � must contain at least four
vertices, a contradiction. Thus, � $&� 3�� �( A � �R'?(T� 3 , .

This completes the proof that � $&�U*FX for any equivalence class $ of mutually homologous �%� ’s in # � . We pick
one � � from each such $ . Let �!
� 3 *8� � � 5 � ������� � picked 7 . Since � # � �PV<� � � � � / � and � $&�P*,X , � � 
� �PV<� � � � ����/ � .

COROLLARY 15 � � � �P* /).8�-� .

Proof. If ��� has genus � , then � contains at most /-� cycles that are mutually non-homologous. Thus, � � 
� ��* /-� .
Then Lemma 14 implies that � � � �P* /).0�1� .
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