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1 Introduction

We have talked about various extrinsic and intrinsic properties of surfaces. Ex-
trinsic geometry is basically ‘how a surface looks from the outside’ (when em-
bedded in R3, for example). Variations of the unit normal vector field and the
second fundamental form and associated curvatures are extrinsic. They depend
on the ambient space containing the surface.

Last time we talked about an intrinsic object: the induced metric gu = [Dφu]T [Dφu].
The induced metric allows us to calculate the Euclidean inner product of tangent
vectors expressed in tangent space bases. Since it gives us the inner product,
it can also be used to calculate intrinsic lengths. If we take some curve c(t)
defined for t ∈ [0, 1] and mapping into parameter space and then map it to a
curve on the surface using our parametrization φ, we get some curve γ = φ ◦ c.
Then using the induced metric, we have

〈γ̇(t), γ̇(t)〉 = [ċ(t)]>gc(t)[ċ(t)]

and so the length of γ along the surface is∫ 1

0

√
〈γ̇(t), γ̇(t)〉dt =

∫ 1

0

√
[ċ(t)]>gc(t)[ċ(t)]dt

There’s ‘something missing’ in our intrinsic geometry story so far. The geodesic
equation:

~kγ(t) ⊥ Tγ(t)S

tells us that if γ is a shortest path, then its ~k vector is perpendicular to the
tangent plane (derived last week).

The loose end is that this equation looks entirely extrinsic. We need to show the
geodesic equation is a second order ODE expressible in terms of g alone (so it
is an intrinsic thing). (This is helpful because there’s lots of theory for solving
second order ODEs.)
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2 Differentiation

2.1 Differentiation in Euclidean space

Let V = [V 1, V 2, V 3]> be a vector in TpR3 and let c : I → R3 be a curve with
c(0) = p and ċ(0) = V .

The derivative of a scalar function f in the direction of a vector V is given by

DV f :=
df(c(t))

dt

∣∣∣∣
t=0

=

3∑
i=1

V i
∂f

∂xi
= 〈∇f(p), V 〉

The derivative of a vector field Y (x) := [Y 1(x), Y 2(x), Y 3(x)]> in the V direc-
tion is

DV Y :=

DV Y
1

DV Y
2

DV Y
3

 =


...∑3

i=1 V
i ∂Y

j

∂xi
...



2.2 Differentiation on a surface

We can differentiate scalar functions on a surface just as we do scalar functions
on all of R3. If we have some f : S → R and want to find its derivative at p ∈ S
in the direction of some vector V ∈ TpS, we can just take a curve c : I → S

with c(0) = p, dc(0)dt = V and define DV f := d
dtf(c(t))|t=0.

However, you can’t do the same thing for the derivative of a tangent vector
field Y : S → TS. The difference between two of the vectors in the vector
field as distance between them goes to zero has no reason to lie tangent to the
surface, so d

dtY (c(t))|t=0 will not necessarily be tangent to S.

So what are possible alternatives? We could try using a parameterization.
Then we need to worry about independence from parameterization. A hint
it will be difficult is that we will need to differentiate the coordinate vectors
Ei := Dφ( ∂

∂ui ). In the parameter domain, we have the same coordinate system
everywhere, but if you push that basis forward, it will be different at each point,
so the vector field Y would have to be expressed in that different basis at each
point.
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3 Covariant Differentiation

We start with a geometric definition on S.
Definition. Let Y be a vector field on S and Vp ∈ TpS a vector.

∇V Y := [DV Y ]‖

where DV Y is the Euclidean derivative d
dtY (c(t))|t=0 for c a curve in S with

c(0) = p, ċ(0) = Vp.

So we start with DV Y not parallel to S, then we project it down onto the
tangent plane of the surface at p to solve the previously mentioned problem.
(Sidenote: ∇V Y is pronounced ‘nabla’ or ‘del V of Y .’)

This definition gives us a relationship with the second fundamental form

DV Y = [DV Y ]⊥ + [DV Y ]‖ = A(V, Y )N +∇V Y

because by the product rule,

[DV Y ]⊥ = 〈DV Y,N〉 = DV 〈Y,N〉 − 〈Y,DVN〉

The first part 〈Y,N〉 is zero because Y is parallel to the surface. The second
part is −〈Y,DVN〉 = A(Y, V ), from our definition of the second fundamental
form.

3.1 Five Properties of the Covariant Derivative

As defined, ∇V Y depends only on Vp and Y to first order along c. It’s a very
local derivative. It also satisfies the following five properties:

1. C∞-linearity in the V -slot. ∇V1+fV2
Y = ∇V!

Y +f∇V2
Y where f : S → R.

This property seems trivial, but something is going on that needs some
thought here. What is the directional derivative? In R3,

DV1+fV2
(h) = [Dh]>[V1 + fV2] = [Dh]>V1 + f [Dh]>V2

What could go wrong? We used a curve to define a derivative. Suppose
we have a curve c1 with tangent vector V1 and a curve c2 with tangent
vector V2. What’s the curve that generates V1 + fV2? It is not clear what
this curve should be. We don’t have partial derivatives to get around this
on a surface. The intuition is that to first order, none of this matters. All
of this can be defined in terms of a parameter domain and can be proved
to be independent of parameterization. It ends up not being an issue.

2. R-linearity in the Y -slot. ∇V (Y1 + aY2) = ∇V Y1 + a∇V Y2 where a ∈ R.
This means differentiation is a linear operation, as usual.
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3. Product rule in the Y -slot. ∇V (fY ) = f · ∇V Y + (∇V f) · Y where f :
S → R. Again, this comes from the properties of ordinary derivatives.
The derivative of the function f is the usual scalar derivative.

4. The metric compatibility property. ∇V 〈Y, Z〉 = 〈∇V Y,Z〉 + 〈Y,∇V Z〉.
This is a generalization of something that is true in Euclidean space:

〈Y1, Y2〉 =

3∑
i=1

Y i1Y
i
2

⇒ DV 〈Y1, Y2〉 =
d

dt
〈Y1(c(t)), Y2(c(t))〉

∣∣∣∣
t=0

=
d

dt

3∑
i=1

Y i1Y
i
2

∣∣∣∣
t=0

=

3∑
i=1

dY i1
dt

∣∣∣∣
t=0

Y i2 +

3∑
i=1

Y i1
dY i2
dt

∣∣∣∣
t=0

= 〈DV Y1, Y2〉+ 〈Y1, DV Y2〉

So this property follows from the product rule (as applied when going from
line 3 to 4).
This property means the covariant derivative interacts in the ‘nicest possi-
ble way’ with the inner product on the surface, just as the usual derivative
interacts nicely with the general Euclidean inner product.

5. The ‘torsion-free’ property. ∇V1
V2 −∇V2

V1 = [V1, V2].

The Lie bracket [V1, V2](f) := DV1DV2(f)−DV2DV1(f) is tangent to S if
V1, V2 are.
‘Intuition:’ we know

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi

for all scalar functions f ∈ C2(Rn). (‘Second partial derivatives com-
mute.’) Or, we can say the operator

∂

∂xi
∂

∂xj
− ∂

∂xj
∂

∂xi

is zero. So what this property is to scalar functions, property five is to
vector fields. It is basically ‘taking care of the commutativity of second
derivatives.’
(Note: A lecture supplement with more details on Lie differentiation and
the Lie bracket has been posted on the website.)
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3.2 Parameter Domain

We have given a geometric definition, so now we need to see what this
looks like in a parameter domain. Let φ : U → S be a parametrization
with φ(0) = p. A basis of the tangent planes Tφ(u)S near p is given by

Ei(u) := ∂φ
∂ui .

Let Vp =
∑
i a
iEi(0) and Yφ(u) :=

∑
i b
i(u)Ei(u) (so we are expressing

Vp and Y in parameter domain basis). E1 and E2 are just the usual
basis vectors e1 = (1, 0) and e2 = (0, 1) in the parameter domain pushed
forward at every point.
Use the five properties to compute ∇V Y :

∇V Y = ∇∑
i a

iEi

(∑
j

bjEj

)

=
∑
i

ai∇Ei

(∑
j

bjEj

)
, by property 1

=
∑
ij

ai∇Ei
(bjEj), by property 2

=
∑
ij

ai
(
∇Ei(b

j)Ej + bj∇EiEj
)

, by property 3

We know ∇Ei
Ej is expressible in the E-basis since it’s tangent to S (by

the definition of the covariant derivative). Expressing these terms in the
Ek basis yields the ‘Christoffel symbols’ Γkij , where

∇EiEj :=
∑
k

ΓkijEk

Substitute and switch around dummy variables to get∑
ij

ai
(
∇Ei

(bj)Ej + bj∇Ei
Ej
)

=
∑
ik

ai∇ei(bk)Ek +
∑
ij

aibj∇Ei
Ej

=
∑
ik

ai
∂bk

∂ui
Ek +

∑
ij

aibj
(∑

k

ΓkijEk

)

=
∑
k

∑
i

ai
∂bk

∂ui
+
∑
ij

aibjΓkij

Ek

Note: ∂bk

∂ui is the derivative ∇Ei
bk(u) because it is the derivative of bk in

the Ei direction.
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4 More Applications of ∇

4.1 Fundamental Lemma of Riemannian Geometry

The induced metric g and the Five Properties together determine a unique
covariant derivative called the Levi-Civita connection.

This relationship between g and ∇ is determined by the formula

Γijk =
1

2

(
∂gik
∂uj

+
∂gkj
∂ui

− ∂gij
∂uk

)
where Γijk := g(∇Ei

Ej , Ek).

Note: Γkij =
∑
` g

k`Γij`, where gk` are the components of g−1.

4.2 Geodesic Equation

Recall: so far the geodesic equation ~kγ(t) ⊥ Tγ(t)S is extrinsic. But we
can re-express this as a purely intrinsic equation:

~kγ(t) ⊥ Tγ(t)S ⇔ γ̈(t) ⊥ Tγ(t)S
⇔ [γ̈(t)]‖ = 0

⇔ [Dγ̇ γ̇(t)]‖ = 0

⇔ ∇γ̇ γ̇(t) = 0

In the parameter domain, once you substitute everything in this ends up
being a system of second order ODEs with coefficients determined from g:

γ is a geodesic ⇔ d2γk

dt2
+
∑
ij

dγi

dt

dγj

dt
Γkij = 0

4.3 Gradient of a function

We can use directional derivatives to give a geometric definition of gradi-
ent. The gradient of f is supposed to tell what direction to walk in to get
to the ‘top of the mountain’ as quickly as possible, i.e. it is the direction of
steepest ascent. So gradient is defined geometrically as ‘something whose
inner product gives you the directional derivative.’ In Euclidean space the
gradient is the transpose of the derivative matrix [Dfp]

>, so

df(c(t))

dt

∣∣∣∣
t=0

:= 〈∇f(p), V 〉

6



But in the parameter domain, the metric changes at every point, so or-
thogonality does not mean the same thing over the surface. So how can
we make the same thing happen? We can replace inner product with g.
So now, ∇f = g−1 ·Df . Then to find the gradient, you need the derivative
of the function f as well as the metric g.

4.4 Vector analysis operators

We can compute parameter domain formulas for all the important covari-
ant differential operators on a surface.

For the gradient of f : S → R, we have a geometric definition

∇f s.t. DV (f) := 〈∇f, V 〉

and a corresponding parameter domain definition

[∇f ]i :=
∑
j

gij
∂f

∂uj

For the divergence of a vector field X, we have a geometric definition

∇ ·X :=
∑
j

〈∇Ei
X,Ei〉

where Ei is an orthonormal basis, and a corresponding parameter domain
definition

∇ ·X :=
∑
i

∂Xi

∂ui
+
∑
j

ΓiijX
j


We define the Laplacian of f : S → R in terms of the divergence and
gradient, so

∆f := ∇ · (∇f)

and in the parameter domain,

∆f :=
∑
ij

gij
[

∂2f

∂ui∂uj
+ Γkij

∂f

∂uk

]
Note: We have an integration by parts formula∫

S

f ∇ ·XdA = −
∫
S

〈∇f,X〉dA+

∫
∂S

f〈X,~n∂S〉d`
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