CS 468

Differential Geometry for Computer Science

Lecture 11 - Covariant Differentiation

High-Level Summary

The extrinsic geometry of a surface.

- Variation of the unit normal vector field.
- Second fundamental form (mean and Gauss curvatures, etc.)

High-Level Summary

The intrinsic geometry of a surface.

- The induced metric - the Euclidean inner product restricted to each tangent plane.
- Pulls back under a parametrization to $g_{u}:=\left[D \phi_{u}\right]^{\top}\left[D \phi_{u}\right]$.

So far we've seen that intrinsic lengths can be expressed via g.

$$
\text { length }:=\int_{0}^{1} \sqrt{[\dot{c}(t)]^{\top} \cdot g_{c(t)} \cdot[\dot{c}(t)]} d t
$$

$$
\text { length }:=\int_{0}^{1} \sqrt{\langle\dot{\gamma}(t), \dot{\gamma}(t)\rangle} d t
$$

Outlook

There's a loose end in the intrinsic geometry story so far:

- The equation satisfied by a length-minimizing curve $\gamma \subset S$ is called the geodesic equation:

$$
\vec{k}_{\gamma}(t) \perp T_{\gamma(t)} S
$$

- This looks completely extrinsic!

How to resolve this?

- We must show that the geodesic equation is expressible in terms of g alone. (As a system of second order ODE.)
- This involves a new topic - covariant differentiation on S.

Differentiation in Euclidean Space

- Let $V=\left[V^{1}, V^{2}, V^{3}\right]^{\top}$ be a vector in $T_{p} \mathbb{R}^{3}$ and let $c: I \rightarrow \mathbb{R}^{3}$ be a curve with $c(0)=p$ and $\dot{c}(0)=V$.
- Derivative of a scalar function f in the direction of a vector $V=\left[V^{1}, V^{2}, V^{3}\right]^{\top}$ is given by

$$
D_{V} f:=\left.\frac{d f(c(t))}{d t}\right|_{t=0}=\sum_{i=1}^{3} V^{i} \frac{\partial f}{\partial x^{i}}
$$

- Derivative of a vector field $Y(x):=\left[Y^{1}(x), Y^{2}(x), Y^{3}(x)\right]^{\top}$ in the direction of V is given by

$$
D_{V} Y:=\left[\begin{array}{c}
D_{V} Y^{1} \\
D_{V} Y^{2} \\
D_{V} Y^{3}
\end{array}\right]=\left[\begin{array}{c}
\vdots \\
\sum_{i=1}^{3} V^{i} \frac{\partial Y^{j}}{\partial x^{i}} \\
\vdots
\end{array}\right]
$$

Differentiation on a Surface

We can differentiate a function $f: S \rightarrow \mathbb{R}$ at a point $p \in S$ in the direction of a vector $V \in T_{p} S$.

- Find a curve $c: I \rightarrow S$ with $c(0)=p$ and $\frac{d c(0)}{d t}=V$.
- Then define $D_{V} f:=\left.\frac{d}{d t} f(c(t))\right|_{t=0}$.

Can we do the same for the derivative of a vector field $Y: S \rightarrow T S$?

- No! The vector field $\left.\frac{d}{d t} Y(c(t))\right|_{t=0}$ is not tangent to S.

Are there alternatives?

- Is there a geometric definition on S ?
- Can we use a parametrization $\phi: \mathcal{U} \rightarrow S$?
- We'd need to differentiate the coordinate vectors
$E_{i}:=D \phi\left(\frac{\partial}{\partial u^{i}}\right)$. What about parameter independence?

Covariant Differentiation

Start with a geometric definition on S.

Let Y be a vector field on S and $V_{p} \in T_{p} S$ a vector.

$$
\nabla_{V} Y:=\left[D_{V} Y\right]^{\|}
$$

Here $D_{V} Y$ is the Euclidean derivative $\left.\frac{d}{d t} Y(c(t))\right|_{t=0}$ where c is a curve in S such that $c(0)=p$ and $\dot{c}(0)=V_{p}$.

Note: We have a relationship with the second fundamental form:

$$
D_{V} Y=\left[D_{V} Y\right]^{\perp}+\left[D_{V} Y\right]^{\|}=A(V, Y) N+\nabla_{V} Y
$$

Properties of the Covariant Derivative

As defined, $\nabla_{V} Y$ depends only on V_{p} and Y to first order along c.
Also, we have the Five Properties:

1. C^{∞}-linearity in the V-slot:

$$
\nabla_{V_{1}+f V_{2}} Y=\nabla_{V_{1}} Y+f \nabla_{V_{2}} Y \text { where } f: S \rightarrow \mathbb{R}
$$

2. \mathbb{R}-linearity in the Y-slot:

$$
\nabla_{V}\left(Y_{1}+a Y_{2}\right)=\nabla_{V} Y_{1}+a \nabla_{V} Y_{2} \text { where } a \in \mathbb{R}
$$

3. Product rule in the Y-slot:

$$
\nabla_{v}(f Y)=f \cdot \nabla_{V} Y+\left(\nabla_{V} f\right) \cdot Y \text { where } f: S \rightarrow \mathbb{R}
$$

4. The metric compatibility property:

$$
\nabla_{v}\langle Y, Z\rangle=\left\langle\nabla_{v} Y, Z\right\rangle+\left\langle Y, \nabla_{v} Z\right\rangle
$$

5. The "torsion-free" property:

$$
\nabla V_{1} V_{2}-\nabla_{V_{2}} V_{1}=\left[V_{1}, V_{2}\right]
$$

The Lie bracket

$$
\begin{aligned}
{\left[V_{1}, V_{2}\right](f):=} & D_{V_{1}} D_{V_{2}}(f) \\
& -D_{V_{2}} D_{V_{1}}(f)
\end{aligned}
$$

Defines a vector field, which is tangent to S if V_{1}, V_{2} are!

The View From the Parameter Domain

Let $\phi: \mathcal{U} \rightarrow S$ be a parametrization with $\phi(0)=p$. A basis for the tangent planes $T_{\phi(u)} S$ near p is given by $E_{i}(u):=\frac{\partial \phi}{\partial u^{i}}$.

A calculation:

- Let $V_{p}=\sum_{i} a^{i} E_{i}(0)$ and $Y_{\phi(u)}:=\sum_{i} b^{i}(u) E_{i}(u)$
- The covariant derivative computed using the Five Properties:

$$
\begin{aligned}
\nabla_{V} Y & =\nabla_{\sum_{i} a^{i} E_{i}\left(\sum_{j} b^{j} E_{j}\right) \quad \text { The Christoffel symbols }} \begin{aligned}
\nabla_{E_{i}} E_{j}:=\sum_{k} \Gamma_{i j}^{k} E_{k}
\end{aligned} \\
& =\sum_{i j} a^{i} \nabla_{E_{i}}\left(b^{j}(u) E_{j}(u)\right) \quad \\
& \left.=\sum_{i j} a^{i}\left(\nabla_{E_{i}}\left(b^{j}\right) E_{j}\right)+a_{i} b_{j} \nabla_{E_{i}} E_{j}\right) \\
& =\sum_{k}\left(\sum_{i} a^{i} \frac{\partial b^{k}}{\partial u^{i}}+\sum_{i j} a^{i} b^{j} \Gamma_{i j}^{k}\right) E_{k}
\end{aligned}
$$

The Fundamental Lemma of Riemannian Geometry

The induced metric g and the Five Properties determines a unique covariant derivative called the Levi-Civita connection.

This relationship between g and ∇ is determined by the formula

$$
\Gamma_{i j k}=\frac{1}{2}\left(\frac{\partial g_{i k}}{\partial u^{j}}+\frac{\partial g_{k j}}{\partial u^{i}}-\frac{\partial g_{i j}}{\partial u^{k}}\right) \quad \text { where } \Gamma_{i j k}:=g\left(\nabla_{E_{i}} E_{j}, E_{k}\right)
$$

Note: $\Gamma_{i j}^{k}=\sum_{\ell} g^{k \ell} \Gamma_{i j \ell}$ where $g^{k \ell}$ are the components of g^{-1}.

The Geodesic Equation

Recall: The geodesic equation (so far) is the extrinsic equation

$$
\vec{k}_{\gamma}(t) \perp T_{\gamma(t)} S
$$

But: We can re-express this as a purely intrinsic equation

$$
\begin{aligned}
\vec{k}_{\gamma}(t) \perp T_{\gamma(t)} S & \Leftrightarrow \quad \ddot{\gamma}(t) \perp T_{\gamma(t)} S \\
& \Leftrightarrow[\ddot{\gamma}(t)]^{\|}=0 \\
& \Leftrightarrow\left[D_{\dot{\gamma}} \dot{\gamma}(t)\right]^{\|}=0 \\
& \Leftrightarrow \nabla_{\dot{\gamma}} \dot{\gamma}(t)=0
\end{aligned}
$$

In the parameter domain, this is a system of second order ODEs with coefficients determined from g.
γ is a geodesic

$$
\Leftrightarrow \quad \frac{d^{2} \gamma^{k}}{d t^{2}}+\frac{d \gamma^{i}}{d t} \frac{d \gamma^{j}}{d t} \Gamma_{i j}^{k}=0
$$

The Gradient of a Function

How does one define the gradient of a function?

- We can give a geometric definition using directional derivatives.
- Let $c: I \rightarrow S$ be a curve with $c(0)=p$ and $\dot{c}(0)=V$. Then

$$
\left.\frac{d f(c(t))}{d t}\right|_{t=0}:=\langle\nabla f(p), V\rangle
$$

- In Euclidean space, $\nabla f(p)=\left[D f_{p}\right]^{\top}$. But in the parameter domain, $\langle\cdot, \cdot\rangle \rightarrow g$ so $\nabla f=g^{-1} \cdot D f$.

Vector Analysis Operators

The important covariant differential operators on a surface:

	Geometric Definition	In the parameter domain
The gradient of $f: S \rightarrow \mathbb{R}$	∇f s.t. $D_{V}(f):=\langle\nabla f, V\rangle$	$[\nabla f]^{j}:=\sum_{j} g^{i j} \frac{\partial f}{\partial u^{j}}$
The divergence of the v.fld. X	$\nabla \cdot X:=\sum_{j}\left\langle\nabla_{E_{i}} X, E_{i}\right\rangle$	$\nabla \cdot X:=\sum_{i}\left[\frac{\partial X^{i}}{\partial u^{i}}+\sum_{j} \Gamma_{i j}^{i} X^{j}\right]$
where E_{i} is an ONB	$\Delta f:=\nabla \cdot(\nabla f)$	$\Delta f:=\sum_{i j} g^{i j}\left[\frac{\partial^{2} f}{\partial u^{i} \partial u^{j}}+\Gamma_{i j}^{k} \frac{\partial f}{\partial u^{k}}\right]$

Note: We have an integration by parts formula:

$$
\int_{S} f \nabla \cdot X d A=-\int_{S}\langle\nabla f, X\rangle d A+\int_{\partial S} f\left\langle X, \vec{n}_{\partial S}\right\rangle d \ell
$$

