CS 468

Differential Geometry for Computer Science

Lecture 13 - Tensors and Exterior Calculus

Outline

- Linear and multilinear algebra with an inner product
- Tensor bundles over a surface
- Symmetric and alternating tensors
- Exterior calculus
- Stokes' Theorem
- Hodge Theorem

Inner Product Spaces

Let \mathcal{V} be a vector space of dimension n.
Def: An inner product on \mathcal{V} is a bilinear, symmetric, positive definite function $\langle\cdot, \cdot\rangle: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$.

We have all the familiar constructions:

- The norm of a vector is $\|v\|:=\sqrt{\langle v, v\rangle}$.
- Vectors v, w are orthogonal if $\langle v, w\rangle=0$.
- If \mathcal{S} is a subspace of \mathcal{V} then every vector $v \in \mathcal{V}$ can be uniquely decomposed as $v:=v^{\|}+v^{\perp}$ where $v^{\|} \in \mathcal{S}$ and $v^{\perp} \perp \mathcal{S}$.
- The mapping $v \mapsto v^{\|}$is the orthogonal projection onto \mathcal{S}.

Dual Vectors

Def: Let \mathcal{V} be vector space. The dual space is

$$
\mathcal{V}^{*}:=\{\xi: \mathcal{V} \rightarrow \mathbb{R}: \xi \text { is linear }\}
$$

Proposition: \mathcal{V}^{*} is a vector space of dimension n.
Proof: If $\left\{E_{i}\right\}$ is a basis for \mathcal{V} then $\left\{\omega^{i}\right\}$ is a basis for \mathcal{V}^{*} where

$$
\omega^{i}\left(E_{s}\right)= \begin{cases}1 & i=s \\ 0 & \text { otherwise }\end{cases}
$$

The Dual Space of an Inner Product Space

Let \mathcal{V} be vector space with inner product $\langle\cdot, \cdot\rangle$. The following additional constructions are available to us.

- If $v \in \mathcal{V}$ then $v^{b} \in \mathcal{V}^{*}$ where $v^{b}(w):=\langle v, w\rangle \forall w \in \mathcal{V}$.
- If $\xi \in \mathcal{V}^{*}$ then $\exists \xi^{\sharp} \in \mathcal{V}$ so that $\xi(w)=\left\langle\xi^{\sharp}, w\right\rangle \forall w \in \mathcal{V}$.
- These are inverse operations: $\left(v^{b}\right)^{\sharp}=v$ and $\left(\xi^{\sharp}\right)^{b}=\xi$.
- \mathcal{V}^{*} carries the inner product $\langle\xi, \zeta\rangle_{\mathcal{V}^{*}}:=\left\langle\xi^{\sharp}, \zeta^{\sharp}\right\rangle \forall \xi, \zeta \in \mathcal{V}^{*}$

Basis Representations

Let $\left\{E_{i}\right\}$ denote a basis for \mathcal{V} and put $g_{i j}:=\left\langle E_{i}, E_{j}\right\rangle$.
Def: Let $g^{i j}$ be the components of the inverse of the matrix $\left[g_{i j}\right]$.
Then:

- The dual basis is $\omega^{i}:=\sum_{j} g^{i j} E_{j}$.
- If $v=\sum_{i} v^{i} E_{i}$ then $v^{b}=\sum_{i} v_{i} \omega^{i}$ where $v_{i}:=\sum_{j} g_{i j} v^{j}$.
- If $\xi=\sum_{i} f_{i} \eta^{i}$ then $f^{\sharp}=\sum_{i} f^{i} E_{i}$ where $f^{i}:=\sum_{j} g^{i j} f_{j}$.
- If $\xi=\sum_{i} a_{i} \omega^{i}$ and $\zeta=\sum_{i} b_{i} \omega^{i}$ then $\langle\xi, \zeta\rangle=\sum_{i j} g^{i j} a_{i} b_{j}$

Note: If $\left\{E_{i}\right\}$ is orthonormal then $g_{i j}=\delta_{i j}$ and $v_{i}=v^{i}$ and $\xi^{i}=\xi_{i}$.

Tensors

Let \mathcal{V} be a vector space of dimension n.
Tensors are "multilinear functions on \mathcal{V} with multi-vector output."
Def: The space of k-covariant and ℓ-contravariant tensors is

Basic facts:

- Vector space of dimension $n^{k+\ell}$. Basis in terms of E_{i} 's and $\omega^{i \prime}$ s.
- Inherits an inner product from \mathcal{V} and has \sharp and b operators.
- There are contractions (killing a \mathcal{V} factor with a \mathcal{V}^{*} factor).

Symmetric Bilinear Tensors

A symmetric (2,0)-tensor is an element $A \in \mathcal{V}^{*} \otimes \mathcal{V}^{*}$ such that $A(v, w)=A(w, v)$ for all $v, w \in \mathcal{V}$.

Some properties:

Example:

$A=2^{\text {nd }} \mathrm{FF}$ and
$S=$ shape operator.

- In a basis we have $A=\sum_{i j} A_{i j} \omega^{i} \otimes \omega^{j}$ with $A_{i j}=A_{j i}$.
- We define an associated self-adjoint (1,1)-tensor $S \in \mathcal{V}^{*} \otimes \mathcal{V}$ with the formula $A(v, w):=\langle S(v), w\rangle$.
- In a basis we have $S=\sum_{i j} S_{i}^{j} \omega^{i} \otimes E_{j}$ where $S_{i}^{j}=\sum_{k} g^{k j} A_{i k}$.
- If $v=\sum_{i} v^{i} E_{i}$ and $w=\sum_{i} w^{i} E_{i}$ then $\langle v, w\rangle=[v]^{\top}[g][w]$ and

$$
A(v, w)=[v]^{\top}[A][w] \quad \text { and } \quad S=[g]^{-1}[A]
$$

- The contraction of A equals the trace of S equals $\sum_{i j} g^{i j} A_{i j}$

Alternating Tensors

A k-form is an element $\sigma \in \mathcal{V}^{*} \otimes \cdots \otimes \mathcal{V}^{*}$ such that for all $v, w \in \mathcal{V}$ and pairs of slots in σ we have

$$
\sigma(\ldots v \ldots w \ldots)=-\sigma(\ldots w \ldots v \ldots) \quad \text { "Alternating }(k, 0) \text {-tensor" }
$$

Fact: If $\operatorname{dim} \mathcal{V}=2$ then only $k=0,1,2$ are non-trivial.

$$
\operatorname{Alt}^{0}(\mathcal{V})=\mathbb{R} \quad \text { and } \quad \operatorname{Alt}^{1}(\mathcal{V})=\mathcal{V}^{*} \quad \text { and } \quad \operatorname{Alt}^{2}(\mathcal{V}) \cong \mathbb{R}
$$

Duality: if \mathcal{V} has an inner product

- The area form $d A \in \operatorname{Alt}^{2}(\mathcal{V})$

$$
d A(v, w):=\left[\begin{array}{c}
\text { Signed area of } \\
\text { parallelogon } v \wedge w
\end{array}\right]
$$

Basis: The element $\omega^{1} \wedge \omega^{2}$
Let $v=\sum_{i} v^{i} E_{i}$ and $w=\sum_{i} w^{i} E_{i}$.
Then we define it via
$\quad \omega^{1} \wedge \omega^{2}(v, w):=\operatorname{det}([v w])$

- The Hodge-star operator *

$$
\omega \wedge * \tau:=\langle\omega, \tau\rangle d A \quad \leftarrow * 1=d A \quad * \omega(v)=\omega\left(R_{\pi / 2}(v)\right)
$$

Tensor Bundles on a Surface

Let S be a surface and let $\mathcal{V}_{p}:=T_{p} S$.
Def: The bundle of (k, ℓ)-tensors over S attached the vector space $\mathcal{V}_{p}^{(k, \ell)}:=\mathcal{V}_{p}^{*} \otimes \cdots \otimes \mathcal{V}_{p}^{*} \otimes \mathcal{V}_{p} \otimes \cdots \otimes \mathcal{V}_{p}$ at each $p \in S$.

Def: A section of this bundle is the assignment $p \mapsto \sigma_{p} \in \mathcal{V}_{p}^{(k, \ell)}$.
Examples:

- $k=\ell=0$ - sections are functions on S
- $k=0, \ell=1$ - sections are vector fields on S
- $k=1, \ell=0$ - sections are one-forms on S
- $k=2, \ell=0$ and symmetric - sections are a symmetric bilinear form at each point. E.g. the metric and the $2^{\text {nd }} \mathrm{FF}$.
- $k=2, \ell=0$ and antisymmetric - sections are two-forms on S.
E.g. the area form.

Covariant Differentiation in a Tensor Bundle

The covariant derivative extends naturally to tensor bundles.
A formula: Choose a basis and suppose

$$
\sigma:=\sum_{i j k l} \sigma_{i j}^{k \ell} \omega^{i} \otimes \omega^{j} \otimes E_{k} \otimes E_{\ell}
$$

is a tensor. Then

$$
\nabla \sigma:=\sum_{i j k l s} \nabla_{s} \sigma_{i j}^{k \ell}\left[\omega^{i} \otimes \omega^{j} \otimes E_{k} \otimes E_{\ell}\right] \otimes \omega_{s}
$$

is also a tensor, where

$$
\nabla_{s} \sigma_{i j}^{k \ell}:=\frac{\partial \sigma_{i j}^{k \ell}}{\partial x^{s}}-\Gamma_{i s}^{t} \sigma_{t j}^{k \ell}-\Gamma_{j s}^{t} \sigma_{i t}^{k \ell}+\Gamma_{t s}^{i} \sigma_{i j}^{t \ell}+\Gamma_{t s}^{\ell} \sigma_{i j}^{k t}
$$

Exterior Differentiation

Def: The exterior derivative is the operator $d: \operatorname{Alt}^{k}(S) \rightarrow \operatorname{Alt}^{k+1}(S)$ defined as follows.

- Choose a basis.
- If $f \in \operatorname{Alt}^{0}(S)$ we define $d f$ geometrically by $d f(V):=V(f)$ or

$$
d f=\sum_{i} \frac{\partial f}{\partial x^{i}} \omega^{i} \quad \text { Thus }(d f)^{\sharp}=\nabla f
$$

- If $\omega=\sum_{i} a_{i} \omega^{i} \in \operatorname{Alt}^{1}(S)$ then $d \omega=\left(\frac{\partial a^{1}}{\partial x^{2}}-\frac{\partial a^{2}}{\partial x^{1}}\right) \omega^{1} \wedge \omega^{2}$
- If $\omega=a \omega^{1} \wedge \omega^{2} \in \mathrm{Alt}^{0}(S)$ then $d \omega=0$.

Basic Facts:

- $d d \omega=0$ for all $\omega \in \operatorname{Alt}^{k}(S)$ and all k.
- $d \omega=\operatorname{Antisym}(\nabla \omega)$.

The Co-differential Operator

Def: The co-differential is the L^{2}-adjoint of d. It is therefore an operator $\delta: \mathrm{Alt}^{k+1}(S) \rightarrow \mathrm{Alt}^{k}(S)$ that satisfies

$$
\int_{S}\langle d \omega, \tau\rangle d A=\int_{S}\langle\omega, \delta \tau\rangle d A
$$

It is given by $\delta:=-* d *$.

Interpretations:

- If f is a function, then $(d f)^{\sharp}=\nabla f$.
- If X is a vector field, then $\delta X^{b}=\operatorname{div}(X)$.
- If X is a vector field, then $d X^{b}=\operatorname{curl}(X) d A$.
- If f is a function, then $(\delta(f d A))^{b}=R_{\pi / 2}(\nabla f)$.

Stokes' Theorem

Intuition: Generalization of the Fundamental Theorem of Calculus.

Suppose that c be a $(k+1)$-dimensional submanifold of S with k-dimensional boundary ∂c. Let ω be a k-form on S. Then:

$$
\int_{c} d \omega=\int_{\partial c} \omega
$$

Interpretations:

- The divergence theorem:

$$
\int_{S} \operatorname{div}(X) d A=\int_{\partial S}\left\langle N_{\partial S}, X\right\rangle d \ell
$$

- Etc.

The Hodge Theorem

Theorem: $\operatorname{Alt}^{1}(S)=d \operatorname{Alt}^{0}(S) \oplus \delta \operatorname{Alt}^{2}(S) \oplus \mathcal{H}^{1}$ where \mathcal{H}^{1} is the set of harmonic one-forms:

$$
\begin{aligned}
h \in \mathcal{H}^{1} & \Leftrightarrow \\
& \Leftrightarrow \quad d h=0 \text { and } \delta h=0 \\
& \underbrace{(d \delta+\delta d)}_{\text {"Hodge Laplacian" }} h=0
\end{aligned}
$$

Corollary: Every vector field X on S can be decomposed into a "gradient" part, a "divergence-free" part, and a "harmonic part."

$$
X=\nabla \phi+\operatorname{curl}(\nabla \psi)+h^{\sharp} \quad \text { with } h \in \mathcal{H}^{1}
$$

Another deep mathematical result:
Theorem: $\operatorname{dim}\left(\mathcal{H}^{1}\right)=2 \chi(S)$. This is a toplogical invariant.

