CS 468

DIFFERENTIAL GEOMETRY FOR COMPUTER SCIENCE

Lecture 13 — Tensors and Exterior Calculus

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outline

• Linear and multilinear algebra with an inner product

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Tensor bundles over a surface
- Symmetric and alternating tensors
- Exterior calculus
- Stokes' Theorem
- Hodge Theorem

Inner Product Spaces

Let \mathcal{V} be a vector space of dimension n.

Def: An inner product on \mathcal{V} is a bilinear, symmetric, positive definite function $\langle \cdot, \cdot \rangle : \mathcal{V} \times \mathcal{V} \to \mathbb{R}$.

We have all the familiar constructions:

- The norm of a vector is $\|v\| := \sqrt{\langle v, v \rangle}$.
- Vectors v, w are orthogonal if $\langle v, w \rangle = 0$.
- If S is a subspace of V then every vector v ∈ V can be uniquely decomposed as v := v^{||} + v[⊥] where v^{||} ∈ S and v[⊥] ⊥ S.
- The mapping $v \mapsto v^{\parallel}$ is the orthogonal projection onto S.

Dual Vectors

Def: Let \mathcal{V} be vector space. The dual space is

$$\mathcal{V}^* := \{\xi : \mathcal{V} \to \mathbb{R} : \xi \text{ is linear}\}$$

Proposition: \mathcal{V}^* is a vector space of dimension *n*.

Proof: If $\{E_i\}$ is a basis for \mathcal{V} then $\{\omega^i\}$ is a basis for \mathcal{V}^* where

$$\omega^{i}(E_{s}) = \begin{cases} 1 & i = s \\ 0 & \text{otherwise} \end{cases}$$

・ロト・日本・ヨト・ヨー もんの

The Dual Space of an Inner Product Space

Let $\mathcal V$ be vector space with inner product $\langle\cdot,\cdot\rangle.$ The following additional constructions are available to us.

- If $v \in \mathcal{V}$ then $v^{\flat} \in \mathcal{V}^*$ where $v^{\flat}(w) := \langle v, w \rangle \; \forall \; w \in \mathcal{V}.$
- If $\xi \in \mathcal{V}^*$ then $\exists \xi^{\sharp} \in \mathcal{V}$ so that $\xi(w) = \langle \xi^{\sharp}, w \rangle \ \forall w \in \mathcal{V}$.
- These are inverse operations: $(v^{\flat})^{\sharp} = v$ and $(\xi^{\sharp})^{\flat} = \xi$.
- \mathcal{V}^* carries the inner product $\langle \xi, \zeta \rangle_{\mathcal{V}^*} := \langle \xi^{\sharp}, \zeta^{\sharp} \rangle \; \forall \, \xi, \zeta \in \mathcal{V}^*$

Basis Representations

Let $\{E_i\}$ denote a basis for \mathcal{V} and put $g_{ij} := \langle E_i, E_j \rangle$.

Def: Let g^{ij} be the components of the inverse of the matrix $[g_{ij}]$.

Then:

• The dual basis is $\omega^i := \sum_j g^{ij} E_j$.

• If
$$v = \sum_{i} v^{i} E_{i}$$
 then $v^{\flat} = \sum_{i} v_{i} \omega^{i}$ where $v_{i} := \sum_{j} g_{ij} v^{j}$.

• If
$$\xi = \sum_{i} f_{i} \eta^{i}$$
 then $f^{\sharp} = \sum_{i} f^{i} E_{i}$ where $f^{i} := \sum_{j} g^{ij} f_{j}$.

• If
$$\xi = \sum_{i} a_{i} \omega^{i}$$
 and $\zeta = \sum_{i} b_{i} \omega^{i}$ then $\langle \xi, \zeta \rangle = \sum_{ij} g^{ij} a_{i} b_{j}$

Note: If $\{E_i\}$ is orthonormal then $g_{ij} = \delta_{ij}$ and $v_i = v^i$ and $\xi^i = \xi_i$.

・ロト ・ 西 ト ・ ヨ ト ・ ヨ ・ う へ ()・

Tensors

Let \mathcal{V} be a vector space of dimension n.

Tensors are "multilinear functions on \mathcal{V} with multi-vector output."

Def: The space of *k*-covariant and ℓ -contravariant tensors is

$$\mathcal{V}^* \underbrace{\overset{k \text{ times}}{\bigotimes \cdots \bigotimes}}_{\mathcal{V}^*} \otimes \mathcal{V} \underbrace{\overset{\ell \text{ times}}{\bigotimes \cdots \bigotimes}}_{\mathcal{V} :=} \left\{ f : \mathcal{V} \underbrace{\overset{k \text{ times}}{\times \cdots \times}}_{\text{ such that } f \text{ is multilinear}}^{\ell \text{ times}} \mathcal{V} \right\}$$

Basic facts:

- Vector space of dimension $n^{k+\ell}$. Basis in terms of E_i 's and ω^i 's.
- Inherits an inner product from ${\mathcal V}$ and has \sharp and \flat operators.
- There are contractions (killing a \mathcal{V} factor with a \mathcal{V}^* factor).

Symmetric Bilinear Tensors

A symmetric (2,0)-tensor is an element $A \in \mathcal{V}^* \otimes \mathcal{V}^*$ such that A(v, w) = A(w, v) for all $v, w \in \mathcal{V}$. **Example:**

Some properties:

- In a basis we have $A = \sum_{ij} A_{ij} \omega^i \otimes \omega^j$ with $A_{ij} = A_{ji}$.
- We define an associated self-adjoint (1,1)-tensor S ∈ V* ⊗ V with the formula A(v, w) := ⟨S(v), w⟩.
- In a basis we have $S = \sum_{ij} S_i^j \omega^i \otimes E_j$ where $S_i^j = \sum_k g^{kj} A_{ik}$.

• If
$$v = \sum_{i} v^{i} E_{i}$$
 and $w = \sum_{i} w^{i} E_{i}$ then $\langle v, w \rangle = [v]^{\top}[g][w]$ and
 $A(v, w) = [v]^{\top}[A][w]$ and $S = [g]^{-1}[A]$

• The contraction of A equals the trace of S equals $\sum_{ij} g^{ij} A_{ij}$

 $A = 2^{nd}$ FF and S = shape operator.

Alternating Tensors

A k-form is an element $\sigma \in \mathcal{V}^* \otimes \cdots \otimes \mathcal{V}^*$ such that for all $v, w \in \mathcal{V}$ and pairs of slots in σ we have

$$\sigma(\ldots v \ldots w \ldots) = -\sigma(\ldots w \ldots v \ldots)$$
 "Alternating (k, 0)-tensor"

Fact: If dim $\mathcal{V} = 2$ then only k = 0, 1, 2 are non-trivial.

 $\operatorname{Alt}^0(\mathcal{V}) = \mathbb{R}$ and $\operatorname{Alt}^1(\mathcal{V}) = \mathcal{V}^*$ and $\operatorname{Alt}^2(\mathcal{V}) \cong \mathbb{R}$

Duality: if \mathcal{V} has an inner product

• The area form $dA \in Alt^2(\mathcal{V})$

 $dA(v, w) := \begin{bmatrix} \text{Signed area of} \\ \text{parallelogon } v \land w \end{bmatrix}$

Basis: The element $\omega^1 \wedge \omega^2$ Let $v = \sum_i v^i E_i$ and $w = \sum_i w^i E_i$. Then we define it via $\omega^1 \wedge \omega^2(v, w) := \det([v, w])$

 The Hodge-star operator * *dA = 1 and if $\omega \in Alt^1(\mathcal{V})$ then $\omega \wedge *\tau := \langle \omega, \tau \rangle \, dA \quad \leftarrow \quad *1 = dA \qquad *\omega(v) = \omega(R_{\pi/2}(v))$ A D F 4 目 F 4 目 F 4 目 9 0 0 0

Tensor Bundles on a Surface

Let S be a surface and let $\mathcal{V}_p := \mathcal{T}_p S$.

Def: The bundle of (k, ℓ) -tensors over S attached the vector space $\mathcal{V}_p^{(k,\ell)} := \mathcal{V}_p^* \otimes \cdots \otimes \mathcal{V}_p^* \otimes \mathcal{V}_p \otimes \cdots \otimes \mathcal{V}_p$ at each $p \in S$.

Def: A section of this bundle is the assignment $p \mapsto \sigma_p \in \mathcal{V}_p^{(k,\ell)}$. Examples:

- $k = \ell = 0$ sections are functions on S
- $k = 0, \ell = 1$ sections are vector fields on S
- $k = 1, \ell = 0$ sections are one-forms on S
- k = 2, l = 0 and symmetric sections are a symmetric bilinear form at each point. E.g. the metric and the 2nd FF.
- k = 2, l = 0 and antisymmetric sections are two-forms on S.
 E.g. the area form.

Covariant Differentiation in a Tensor Bundle

The covariant derivative extends naturally to tensor bundles.

A formula: Choose a basis and suppose

$$\sigma := \sum_{ijkl} \sigma_{ij}^{k\ell} \omega^i \otimes \omega^j \otimes E_k \otimes E_\ell$$

is a tensor. Then

$$abla \sigma := \sum_{ijkls}
abla_s \sigma_{ij}^{k\ell} [\omega^i \otimes \omega^j \otimes E_k \otimes E_\ell] \otimes \omega_s$$

is also a tensor, where

$$\nabla_{s}\sigma_{ij}^{k\ell} := \frac{\partial \sigma_{ij}^{k\ell}}{\partial x^{s}} - \Gamma_{is}^{t}\sigma_{tj}^{k\ell} - \Gamma_{js}^{t}\sigma_{it}^{k\ell} + \Gamma_{ts}^{i}\sigma_{ij}^{t\ell} + \Gamma_{ts}^{\ell}\sigma_{ij}^{kt}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Exterior Differentiation

Def: The exterior derivative is the operator $d : Alt^{k}(S) \to Alt^{k+1}(S)$ defined as follows.

- Choose a basis.
- If $f \in Alt^0(S)$ we define df geometrically by df(V) := V(f) or

$$df = \sum_{i} \frac{\partial f}{\partial x^{i}} \omega^{i}$$
 Thus $(df)^{\sharp} = \nabla f$

A D F 4 目 F 4 目 F 4 目 9 0 0 0

• If
$$\omega = \sum_{i} a_{i} \omega^{i} \in Alt^{1}(S)$$
 then $d\omega = \left(\frac{\partial a^{1}}{\partial x^{2}} - \frac{\partial a^{2}}{\partial x^{1}}\right) \omega^{1} \wedge \omega^{2}$

• If
$$\omega = a \omega^1 \wedge \omega^2 \in \operatorname{Alt}^0(S)$$
 then $d\omega = 0$.

Basic Facts:

- $dd\omega = 0$ for all $\omega \in \operatorname{Alt}^k(S)$ and all k.
- $d\omega = \operatorname{Antisym}(\nabla \omega)$.

The Co-differential Operator

Def: The co-differential is the L^2 -adjoint of d. It is therefore an operator δ : Alt^{k+1}(S) \rightarrow Alt^k(S) that satisfies

$$\int_{\mathcal{S}} \langle d\omega, \tau \rangle \, d\mathsf{A} = \int_{\mathcal{S}} \langle \omega, \delta \tau \rangle \, d\mathsf{A}$$

It is given by $\delta := - * d *$.

Interpretations:

- If f is a function, then $(df)^{\sharp} = \nabla f$.
- If X is a vector field, then $\delta X^{\flat} = div(X)$.
- If X is a vector field, then $dX^{\flat} = curl(X) dA$.
- If f is a function, then $(\delta(f \, dA))^{\flat} = R_{\pi/2}(\nabla f)$.

Stokes' Theorem

Intuition: Generalization of the Fundamental Theorem of Calculus.

Suppose that c be a (k + 1)-dimensional submanifold of S with k-dimensional boundary ∂c . Let ω be a k-form on S. Then:

$$\int_{c}d\omega=\int_{\partial c}\omega$$

Interpretations:

• The divergence theorem:

$$\int_{S} div(X) dA = \int_{\partial S} \langle N_{\partial S}, X \rangle \, d\ell$$

• Etc.

The Hodge Theorem

Theorem: Alt¹(S) = dAlt⁰(S) $\oplus \delta$ Alt²(S) $\oplus H^1$ where H^1 is the set of harmonic one-forms:

$$h \in \mathcal{H}^1 \qquad \Leftrightarrow \qquad dh = 0 \text{ and } \delta h = 0$$

 $\Leftrightarrow \qquad \underbrace{(d\delta + \delta d)}_{\text{``Hodge Laplacian''}} h = 0$

Corollary: Every vector field X on S can be decomposed into a "gradient" part, a "divergence-free" part, and a "harmonic part."

$$X =
abla \phi + curl(
abla \psi) + h^{\sharp}$$
 with $h \in \mathcal{H}^1$

Another deep mathematical result:

Theorem: dim $(\mathcal{H}^1) = 2\chi(S)$. This is a toplogical invariant.