CS 468

Differential Geometry for Computer Science

Lecture 15 - Isometries, Rigidity and Curvature

Outline

- Geodesic normal coordinates
- Local rigidity - Gauss curvature and the Theorema Egregium
- Isometries and isometry invariance
- Global rigidity - Gauss-Bonnet theorem

The Exponential Map

Recall: The geodesic exponential map of a surface S at $p \in S$ is the mapping $\exp _{p}: T_{p} S \rightarrow S$ defined by

$$
\exp _{p}(V):=\gamma(1)
$$

where γ is the unique geodesic through p in direction V.
Key facts:

- There are open sets $\mathcal{U} \subseteq T_{p} S$ containing the origin and $\mathcal{V} \subseteq S$ containing p so that $\exp _{p}: \mathcal{U} \rightarrow \mathcal{V}$ is a diffeomorphism.
- W.I.o.g. \mathcal{U} and \mathcal{V} are geodesically convex.
- The curve $t \rightarrow \exp _{p}(t V)$ is a geodesic for each $V \in \mathcal{U}$.

Geodesic Normal Coordinates

We can use $\exp _{p}$ to create local coordinates near $p \in S$.

- Choose an orthonormal basis e_{1}, e_{2} for $T_{p} S$.
- Choose r so that $x^{1} e_{1}+x^{2} e_{2} \in \mathcal{U}$ for all $\left(x^{1}, x^{2}\right) \in B_{r}(0) \subseteq \mathbb{R}^{2}$.
- Define $\phi: B_{r}(0) \rightarrow S$ by $\phi\left(x^{1}, x^{2}\right):=\exp _{p}\left(x^{1} e_{1}+x^{2} e_{2}\right)$.

Properties:

- Straight lines through the origin in $B_{r}(0)$ are geodesics.
- The induced metric is Euclidean at the origin in $B_{r}(0)$.
- The Christoffel symbols vanish at the origin in $B_{r}(0)$.

$$
g_{i j}(x)=\delta_{i j}+\mathcal{O}\left(\|x\|^{2}\right) \quad x \in B_{r}(0)
$$

Local Rigidity

We can thus find coordinates that make the induced metric Euclidean to first order at any point.

Question: Can we do better?

- For instance, can we achieve the ultimate simplification - can we make the metric Euclidean in an entire neighbourhood?
- Or how about just Euclidean to second order at any point?

NO! A fundamental fact is

- The equations we'd have to solve to achieve a Euclidean metric to more than second order are overdetermined.
- There are integrability conditions that have to hold:

$$
0=\frac{\partial \Gamma_{j k}^{s}}{\partial x^{i}}-\frac{\partial \Gamma_{i k}^{s}}{\partial x^{j}}+\Gamma_{j k}^{t} \Gamma_{i t}^{s}-\Gamma_{i k}^{t} \Gamma_{j t}^{s} \text { for all } i, j, k, s
$$

Gauss' Totally Awesome Theorem

We can interpret the integrability condition in terms of curvature.

- Define the Riemann curvature $(3,1)$-tensor of S by

$$
\operatorname{Rm}(X, Y, Z):=\nabla_{Y} \nabla_{X} Z-\nabla_{X} \nabla_{Y} Z-\nabla_{[X, Y]} Z
$$

- Thus we can expand $\mathrm{Rm}=\sum_{i j k s} R_{i j k}^{s} \omega^{i} \otimes \omega^{j} \otimes \omega^{k} \otimes E_{s}$ where

$$
R_{i j k}^{s}=\frac{\partial \Gamma_{j k}^{s}}{\partial x^{i}}-\frac{\partial \Gamma_{i k}^{s}}{\partial x^{j}}+\Gamma_{j k}^{t} \Gamma_{i t}^{s}-\Gamma_{i k}^{t} \Gamma_{j t}^{s}
$$

- Now we have the Theorema Egregium of Gauss that relates the Riemann curvature tensor to the second fundamental form:

$$
R_{i j k}^{s}+\left(A_{j k} A_{i}^{s}-A_{i k} A_{j}^{s}\right)=0 \quad \text { where } A_{i}^{s}=\sum_{t} g^{s t} A_{i t}
$$

Interpretation

Let $R_{i j k \ell}:=\sum_{s} g_{\ell s} R_{i j k}{ }^{s}$ be the Riemann curvature (4,0)-tensor.

In two dimensions, the Theorema Egregium shows that the only independent term in $R_{i j k \ell}$ is

$$
R_{1212}=-(\underbrace{A_{11} A_{22}-A_{12}^{2}}_{\text {Determinant of } A})
$$

The determinant of A (in an ONB) is the product of the principal curvatures, also known as the Gauss curvature!

It's an intrinsic quantity!

Isometries

Def: Surfaces S and S^{\prime} with metrics g and g^{\prime} are isometric if there exists $\phi: S \rightarrow S^{\prime}$ s.t. for all $X_{p}, Y_{p} \in T_{p} S$ and all $p \in S$ we have

$$
g^{\prime}\left(D \phi\left(X_{p}\right), D \phi\left(Y_{p}\right)\right)=g\left(X_{p}, Y_{p}\right)
$$

I.e. the intrinsic geometry is preserved at corresponding points.

Examples:

- Isometries induced from rigid motions of \mathbb{R}^{3}.
- Purely intrinsic isometries.
\rightarrow Non-planar developable surfaces.
\rightarrow Catenoid and helicoid.
\rightarrow Amphora and inverted amphora.
\rightarrow Infinitesimal isometries and Killing vector fields.

The Catenoid and the Helicoid Are Isometric

Rigidity

Isometries are rare.
Fact: Curvature is a local invariant under isometry.

- The key obstruction to the existence of local isometries.
- I.e. surfaces with different curvatures can't be isometric.
- But surfaces with the same curvature are so - locally.
- Example: surfaces of constant curvature.
\rightarrow The exponential maps can be used for this purpose.
\rightarrow Choose a basis for $T_{p} M$ and $T_{q} N$.
\rightarrow Now consider $\exp _{q}^{N} \circ\left(\exp _{p}^{M}\right)^{-1}$.

Globally, it's more complicated!

Gauss-Bonnet Theorem

The Gauss-Bonnet Theorem shows that curvature is also a global invariant with a connection to topological type.

Theorem: Let S be a regular, oriented surface with piecewisesmooth boundary consisting of consecutive curves C_{1}, \ldots, C_{n}.

Let θ_{i} be the external angle at the $C_{i} \rightarrow C_{i+1}$ transition.
Then the Gauss-Bonnet formula holds:

$$
\sum_{i} \int_{C_{i}} k_{C_{i}}(s) d s+\sum_{i} \theta_{i}+\int_{S} K d A=2 \pi \chi(S)
$$

where k_{C} is the geodesic curvature of C and K is the Gauss curvature of S and $\chi(S)$ is the Euler characteristic of S.

Sketch of the Proof

- Carve S up into small triangular patches, each topologically equivalent to a disk.
- Apply the local Gauss-Bonnet theorem to each patch, and add up all contributions appropriately.
- The local Gauss-Bonnet theorem itself has a number of steps.

1. Introduce an orthogonal coordinate system.
2. Define the angle ϕ between vector fields V, W along a curve γ.
3. Relate ϕ^{\prime} to the covariant derivatives of V, W along γ.
4. Let $V=\gamma^{\prime}$ and W be a coordinate vector field. Relate \vec{k}_{γ} to ϕ^{\prime}.
5. Integrate this relationship along γ and apply Green's Theorem.
6. Apply the theorem of turning tangents.
