CS 468 (Spring 2013) - Discrete Differential Geometry

Lecture 2: Curves

Definition of a curve.

- Definition. A parametrized differentiable curve in \mathbb{R}^{n} is a differentiable map $\gamma: I \rightarrow \mathbb{R}^{n}$ where $I=(a, b)$ is an open interval in \mathbb{R}. Note: I can be a closed interval - now we have a curve with boundary points.
- Notation. Such a map has component functions $\gamma(t):=\left(\gamma_{1}(t), \ldots, \gamma_{n}(t)\right)$. Each $\gamma_{i}: I \rightarrow \mathbb{R}$ is a differentiable function.
- The domain I is the space where the parameter t lives.
- The image of γ is the set of points $\{\gamma(t): t \in I\} \subseteq \mathbb{R}^{n}$. It is a geometric thing called the trace of the curve. We interpret $\gamma(t)$ as the location of a particle in space at the instant of time t; and we interpret the trace of the curve as the path traced out by the particle as t varies in I.
- Distinction between this kind of curve and a 1-D manifold.

Velocity and Acceleration.

- Instantaneous velocity of the particle at time t is $\dot{\gamma}(t)=\left(\dot{\gamma}_{1}(t), \ldots, \dot{\gamma}_{n}(t)\right)$.
- Instantaneous acceleration of the particle at time t is $\ddot{\gamma}(t)=\left(\ddot{\gamma}_{1}(t), \ldots, \ddot{\gamma}_{n}(t)\right)$.
- Constant speed curves; acceleration is normal to the velocity. Constant velocity curves are straight lines.
- Singular points where $\dot{\gamma}=0$. The parametrized map can still be differentiable but the trace may not be smooth. For example:

$$
\gamma(t):= \begin{cases}\left(e^{-1 / t^{2}}, 0\right) & t>0 \\ 0 & t=0 \\ \left(0, e^{-1 / t^{2}}\right) & t<0\end{cases}
$$

Examples.

- Lines in space: $\gamma(t)=x_{0}+t v$ is the line passing through x_{0} in direction v.
- Circle in \mathbb{R}^{2}, helix in \mathbb{R}^{3}.
- Curve in which the trace intersects itself
- Curve with a kink, curve with a cusp - smooth (with singular point) and non-smooth parametrizations thereof (e.g. $\gamma(t)=\left(t^{3}, t^{2}\right)$ or $\bar{\gamma}(t)=\left(t, t^{2 / 3}\right)$).
- An exotic example. E.g. Cycloid - the motion of a point on the rim of a wheel of radius R as the wheel rolls without slipping along the x-axis. (This is derived as follows. Let θ be the angle through which the wheel has rolled. Then the distance the point of contact with the ground has moved is equal to $R \theta$. Hence the position of the centre of the wheel has moved to $(R \theta, R)$. And the point on the edge of the wheel, originally touching the ground at $\theta=0$ has rotated through a clockwise angle of θ measured relative to the centre of the wheel. In other words, this point is located at

$$
\gamma(\theta):=(R \theta, R)+(R \cos (-\pi / 2-\theta), R \sin (-\pi / 2-\theta))=(R \theta, R)-(R \sin (\theta), R \cos (\theta)) .
$$

Change of parameter.

- Definition of reparametrization: a bijective map $\phi: J \rightarrow I$ gives you a new curve $\tilde{\gamma}: J \rightarrow \mathbb{R}^{n}$ defined by $\tilde{\gamma}(s)=\gamma(\phi(s))$. The formula $t=\phi(s)$ is a change of parameter.
- Note that a smooth mapping ϕ between intervals is a bijection if and only if ϕ^{\prime} never vanishes.
- The trace remains unchanged.
- Effect on velocity and acceleration:

$$
\begin{aligned}
\frac{d \tilde{\gamma}(s)}{d s} & =\frac{d \gamma(\phi(s))}{d s}=\frac{d \gamma}{d t} \circ \phi(s) \frac{d \phi(s)}{d s} \quad \text { Note length changes } \\
\frac{d^{2} \tilde{\gamma}(s)}{d s^{2}} & =\frac{d}{d s}\left(\frac{d \gamma}{d t} \circ \phi(s) \frac{d \phi(s)}{d s}\right) \\
& =\frac{d^{2} \gamma}{d t^{2}} \circ \phi(s)\left(\frac{d \phi(s)}{d s}\right)^{2}+\frac{d \gamma}{d t} \circ \phi(s) \frac{d^{2} \phi(s)}{d s^{2}}
\end{aligned}
$$

Arc length.

- Discrete approximation of the length of a differentiable curve by means of line segments; limit as segment length $\rightarrow 0$ yields the arc length integral.
- Derivation: let $\gamma:[a, b] \rightarrow \mathbb{R}^{3}$ be a smooth curve and partition $I=\left[t_{0}, t_{1}\right] \cup \cdots \cup\left[t_{n-1}, t_{n}\right]$ with $t_{0}=a$ and $t_{n}=b$. Suppose $\gamma(t)=(x(t), y(t), z(t))$. Now compute

$$
\begin{aligned}
\text { length }(\gamma([a, b])) & \approx \sum_{i=1}^{n}\left\|\gamma\left(t_{i}\right)-\gamma\left(t_{i-1}\right)\right\| \\
& =\sum_{i=1}^{n}\left(\left(x\left(t_{i}\right)-x\left(t_{i-1}\right)\right)^{2}+\left(y\left(t_{i}\right)-y\left(t_{i-1}\right)\right)^{2}+\left(z\left(t_{i}\right)-z\left(t_{i-1}\right)\right)^{2}\right)^{1 / 2} \\
& =\sum_{i=1}^{n}\left(\left(\dot{x}\left(t_{i}^{*}\right) \Delta t_{i}\right)^{2}+\left(\dot{y}\left(t_{i}^{*}\right) \Delta t_{i}\right)^{2}+\left(\dot{z}\left(t_{i}^{*}\right) \Delta t_{i}\right)^{2}\right)^{1 / 2} \quad \begin{array}{l}
\text { Mean value theorem; } t_{i}^{*} \in\left[t_{i-1}, t_{i}\right] \\
\text { and } \Delta i:=\left|t_{i}-t_{i-1}\right|
\end{array} \\
& =\sum_{i=1}^{n}\left(\left(\dot{x}\left(t_{i}^{*}\right)\right)^{2}+\left(\dot{y}\left(t_{i}^{*}\right)\right)^{2}+\left(\dot{z}\left(t_{i}^{*}\right)\right)^{2}\right)^{1 / 2} \Delta t_{i} \\
& \left.\xrightarrow{n \rightarrow \infty} \int_{a}^{b}\left((\dot{x}(t))^{2}+(\dot{y}(t))\right)^{2}+(\dot{z}(t))^{2}\right)^{1 / 2} d t \\
& =\int_{a}^{b}\|\dot{\gamma}(t)\| d t
\end{aligned}
$$

- Parameter independence. Let $\phi:[a, b] \rightarrow[a, b]$ be a diffeomorophism with $\phi(a)=a$ and $\phi(b)=b$. Let $\tilde{\gamma}(s):=\gamma(\phi(s))$. Then

$$
\begin{aligned}
\operatorname{length}(\tilde{\gamma}([a, b])) & =\int_{a}^{b}\left\|\frac{d \gamma \circ \phi(s)}{d s}\right\| d s \\
& =\int_{a}^{b}\left|\phi^{\prime}(s)\right|\left\|\frac{d \gamma}{d t} \circ \phi(s)\right\| d s \quad \begin{array}{l}
\text { Let } t=\phi(s) \text { so } d t=\phi^{\prime}(s) d s \text { and thus } \\
d s=\left(\phi^{\prime}(s)\right)^{-1} d t=\left(\phi^{\prime} \circ \phi^{-1}(t)\right)^{-1} d t
\end{array} \\
& =\int_{a}^{b}\left|\phi^{\prime} \circ \phi^{-1}(t)\right|\left\|\frac{d \gamma(t)}{d t}\right\| \frac{d t}{\left|\phi^{\prime} \circ \phi^{-1}(t)\right|} \\
& =\int_{a}^{b}\left\|\frac{d \gamma(t)}{d t}\right\| d t \\
& =\operatorname{length}(\gamma([a, b]))
\end{aligned}
$$

- Example calculations - mostly no closed form for arc lengths.
- First example: $\gamma(t)=\left(e^{t} \cos (t), e^{t} \sin (t)\right)$. Then $\dot{\gamma}(t)=e^{t}(\cos (t), \sin (t))+e^{t}(-\sin (t), \cos (t))$ and $\|\dot{\gamma}(t)\|=e^{t}\|(\cos (t), \sin (t))+(-\sin (t), \cos (t))\|=\sqrt{2} e^{t}$. Thus

$$
\text { length }(\gamma([0, T]))=\int_{0}^{T}\|\dot{\gamma}(t)\| d t=\sqrt{2} \int_{0}^{T} e^{t} d t=\sqrt{2}\left(e^{T}-1\right)
$$

- Second example: $\gamma(t)$ such that $\|\dot{\gamma}\|=$ const. Then

$$
\operatorname{length}\left(\gamma\left(\left[T_{0}, T\right]\right)\right)=\int_{T_{0}}^{T}\|\dot{\gamma}(t)\| d t=C\left(T-T_{0}\right)
$$

Thus $L=C\left(T-T_{0}\right)$ and T is almost the arc-length parameter itself. If $C=1$ we say that γ is parametrized by arc-length.

- The arc length re-parametrization - proof that it has constant velocity. Let $\gamma: I \rightarrow \mathbb{R}$ be a smooth curve and define the function $\ell: I \rightarrow[0$, length $(\gamma(I))]$ by $\ell(t):=\int_{0}^{t}\|\dot{\gamma}(x)\| d x$.
- Note that $\frac{d \ell(t)}{d t}=\|\dot{\gamma}(t)\|$ so that if γ has no points where $\dot{\gamma}=0$ then ℓ is invertible.
- Define a new parameter s that satisfies $s=\ell(t)$. So now we have $t=\ell^{-1}(s)$ and we can define a re-parametrized version of γ, namely $\tilde{\gamma}(s)=\gamma\left(\ell^{-1}(s)\right)$.
- Note that $\left\|\frac{d}{d s} \tilde{\gamma}(s)\right\|=1$ because

$$
\frac{d \tilde{\gamma}(s)}{d s}=\frac{d \gamma}{d t} \circ \ell^{-1}(s) \frac{d \ell^{-1}(s)}{d s}=\frac{\dot{\gamma} \circ \ell^{-1}(s)}{\frac{d \ell}{d t} \circ \ell^{-1}(s)}=\frac{\dot{\gamma} \circ \ell^{-1}(s)}{\left\|\dot{\gamma} \circ \ell^{-1}(s)\right\|}
$$

- Thus $\left\|\frac{d \tilde{\gamma}(s)}{d s}\right\|=1$ and the re-parametrized version is parametrized by arc length.
- The arc-length parametrization is very useful theoretically (as we'll see) but difficult to work with in practice because the arc-length can be hard to compute (i.e. finding the function ℓ) and it's inverse can then be very hard to find (i.e. inverting to find ℓ^{-1}).
- Example: we have $s=\sqrt{2} e^{t}$ for the logarithmic spiral so $t=\log (s / \sqrt{2})$. Hence the re-parametrized version of the logarithmic spiral is

$$
\tilde{\gamma}(s)=\frac{s}{\sqrt{2}}(\cos (\log (s / \sqrt{2})), \sin (\log (s / \sqrt{2}))) .
$$

Curvature.

- Definition of the geodesic curvature vector in an arbitrary parametrization - the normal component of the acceleration vector, normalized by the squared length of the tangent vector.

$$
\vec{k}_{c}:=\frac{1}{\|\dot{c}\|^{2}}\left(\ddot{c}-\frac{\langle\ddot{c}, \dot{c}\rangle}{\|\dot{c}\|^{2}} \dot{c}\right)=\frac{1}{\|\dot{c}\|}\left[\frac{d}{d t}\left(\frac{\dot{c}}{\|\dot{c}\|}\right)\right]^{\perp} \quad \begin{aligned}
& \text { Rate of change of the unit tangent } \\
& \text { vector perpendicular to the curve }
\end{aligned}
$$

- Definition of the geodesic curvature $k_{c}:=\left\|\vec{k}_{c}\right\|$.
- In the arc length parametrization we have $\vec{k}_{c}=[\ddot{c}]^{\perp}$.
- Examples: zero-acceleration curve - straight line; constant-acceleration plane curve - circle.

Frenet frame.

- Let $\gamma: \rightarrow \mathbb{R}^{3}$ be a curve, without loss of generality parametrized by arc-length. We will now find a canonical framing of γ, namely a choice of "moving axes" (three linearly independent vectors attached to each point $\gamma(s))$ that is best adapted to its geometry.
- Let $T(s):=\dot{\gamma}(s)$. Then $\|T(s)\|=1$ for all s since γ is parametrized by arc-length.
- A point of non-zero curvature allows us to define a distinguished normal vector. Recall that we have $0=\frac{d}{d s}\|\dot{\gamma}(s)\|^{2}=2\langle T(s), \dot{T}(s)\rangle=2\left\langle T(s), \vec{k}_{\gamma}(s)\right\rangle$. Thus the curvature vector is normal to γ. Since it's not equal to zero, we can divide by its magnitude and obtain a unit normal vector field $N(s):=\dot{T}(s) /\|\dot{T}(s)\|$ along γ. This is our second vector in the moving axis.
- We define the osculating plane at $\gamma(s)$ to the plane spanned by $T(s)$ and $N(s)$.
- We now define the binormal vector, the third vector in our moving axes, to be $B(s):=$ $T(s) \times N(s)$. This is also a unit vector and is orthogonal to both $T(s)$ and $N(s)$.
- The Frenet frame for γ is the set of moving axes $\{T(s), N(s), B(s)\}$ and is defined at each point $\gamma(s)$ where $k_{\gamma}(s) \neq 0$.
- The Frenet formulas explain the variation in the Frenet frame along γ. That is, we have

$$
\begin{aligned}
\dot{T}(s) & =k_{\gamma}(s) N(s) \\
\dot{N}(s) & =\langle\dot{N}(s), T(s)\rangle T(s)+\langle\dot{N}(s), N(s)\rangle N(s)+\langle\dot{N}(s), B(s)\rangle B(s) \\
& =-k_{\gamma}(s) T(s)+\langle\dot{N}(s), B(s)\rangle B(s) \\
& =-k_{\gamma}(s) T(s)-\tau_{\gamma}(s) B(s) \\
\dot{B}(s) & =\langle\dot{B}(s), T(s)\rangle T(s)+\langle\dot{B}(s), N(s)\rangle N(s)+\langle\dot{B}(s), B(s)\rangle B(s) \\
& =-\langle B(s), \dot{T}(s)\rangle T(s)+\langle\dot{B}(s), N(s)\rangle N(s) \\
& =-k_{\gamma}(s)\langle B(s), N(s)\rangle T(s)-\langle B(s), \dot{N}(s)\rangle N(s) \\
& =\tau_{\gamma}(s) N(s)
\end{aligned}
$$

- Here we have introduced the torsion $\tau_{\gamma}(s):=-\langle\dot{N}(s), B(s)\rangle$.
- Local Theorem: Let $\gamma:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}^{3}$ be a curve with non-zero curvature. Let $k:=k_{\gamma}(0)$ and $\tau=\tau_{\gamma}(0)$ and $k^{\prime}=\dot{k}_{\gamma}(0)$. Then

$$
\begin{aligned}
\gamma(s) & \approx \gamma(0)+s \dot{\gamma}(0)+\frac{s^{2}}{2} \ddot{\gamma}(0)+\frac{s^{3}}{6} \dddot{\gamma}(0) \\
& =\left(s-\frac{k^{2} s^{3}}{6}\right) T(0)+\left(\frac{s^{2} k}{2}+\frac{s^{3} k^{\prime}}{6}\right) N(0)-\frac{k \tau s^{3}}{6} B(0)
\end{aligned}
$$

Thus locally, k and k^{\prime} determine the amount of turning in the $\{T(0), N(0)\}$-plane, while τ and k determine the amount of lifting out of the $\{T(0), N(0)\}$-plane in the $B(0)$-direction.

- Global Theorem: the Fundamental Theorem of Curves.
"Given differentiable functions $k: I \rightarrow \mathbb{R}$ with $k>0$, and $\tau: \rightarrow \mathbb{R}$, there exists a regular curve $\gamma: I \rightarrow \mathbb{R}^{3}$ such that s is the arc-length, $k(s)$ is the geodesic curvature, and $\tau(s)$ is the torsion. Any other curve satisfying the same conditions differs from γ by a rigid motion."
- A proof of the uniqueness part: differentiate $\frac{1}{2}\|\gamma(s)-\tilde{\gamma}(s)\|^{2}$. A proof of the existence part: involves solving a system of ODEs.

Bishop frame.

- The Frenet frame has an "existential" problem... I. e. it is not defined when $k_{\gamma}(s)=0$. But as a paper from the 1960s asserts: There is more than one way to frame a curve.
- Definition. The Bishop frame gives an alternative framing of a curve.
- Variational characterization of the Bishop frame. Bending and twisting energies.
- What's the best example?

