
CS 468 (Spring 2013) — Discrete Differential Geometry

Lecture 2: Curves

Definition of a curve.

• Definition. A parametrized differentiable curve in Rn is a differentiable map γ : I → Rn
where I = (a, b) is an open interval in R. Note: I can be a closed interval — now we have a
curve with boundary points.

• Notation. Such a map has component functions γ(t) := (γ1(t), . . . , γn(t)). Each γi : I → R is
a differentiable function.

• The domain I is the space where the parameter t lives.

• The image of γ is the set of points {γ(t) : t ∈ I} ⊆ Rn. It is a geometric thing called the trace
of the curve. We interpret γ(t) as the location of a particle in space at the instant of time t;
and we interpret the trace of the curve as the path traced out by the particle as t varies in I.

• Distinction between this kind of curve and a 1-D manifold.

Velocity and Acceleration.

• Instantaneous velocity of the particle at time t is γ̇(t) = (γ̇1(t), . . . , γ̇n(t)).

• Instantaneous acceleration of the particle at time t is γ̈(t) = (γ̈1(t), . . . , γ̈n(t)).

• Constant speed curves; acceleration is normal to the velocity. Constant velocity curves are
straight lines.

• Singular points where γ̇ = 0. The parametrized map can still be differentiable but the trace
may not be smooth. For example:

γ(t) :=


(e−1/t2 , 0) t > 0

0 t = 0

(0, e−1/t2) t < 0

Examples.

• Lines in space: γ(t) = x0 + tv is the line passing through x0 in direction v.

• Circle in R2, helix in R3.

• Curve in which the trace intersects itself

• Curve with a kink, curve with a cusp — smooth (with singular point) and non-smooth
parametrizations thereof (e.g. γ(t) = (t3, t2) or γ̄(t) = (t, t2/3)).

• An exotic example. E.g. Cycloid — the motion of a point on the rim of a wheel of radius R
as the wheel rolls without slipping along the x-axis. (This is derived as follows. Let θ be the
angle through which the wheel has rolled. Then the distance the point of contact with the
ground has moved is equal to Rθ. Hence the position of the centre of the wheel has moved
to (Rθ,R). And the point on the edge of the wheel, originally touching the ground at θ = 0
has rotated through a clockwise angle of θ measured relative to the centre of the wheel. In
other words, this point is located at

γ(θ) := (Rθ,R) + (R cos(−π/2− θ), R sin(−π/2− θ)) = (Rθ,R)− (R sin(θ), R cos(θ)) .



Change of parameter.

• Definition of reparametrization: a bijective map φ : J → I gives you a new curve γ̃ : J → Rn
defined by γ̃(s) = γ(φ(s)). The formula t = φ(s) is a change of parameter.

• Note that a smooth mapping φ between intervals is a bijection if and only if φ′ never vanishes.

• The trace remains unchanged.

• Effect on velocity and acceleration:
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Arc length.

• Discrete approximation of the length of a differentiable curve by means of line segments; limit
as segment length → 0 yields the arc length integral.

• Derivation: let γ : [a, b] → R3 be a smooth curve and partition I = [t0, t1] ∪ · · · ∪ [tn−1, tn]
with t0 = a and tn = b. Suppose γ(t) = (x(t), y(t), z(t)). Now compute
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=
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• Parameter independence. Let φ : [a, b] → [a, b] be a diffeomorophism with φ(a) = a and
φ(b) = b. Let γ̃(s) := γ(φ(s)). Then
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• Example calculations — mostly no closed form for arc lengths.

– First example: γ(t) = (et cos(t), et sin(t)). Then γ̇(t) = et(cos(t), sin(t))+et(− sin(t), cos(t))
and ‖γ̇(t)‖ = et‖(cos(t), sin(t)) + (− sin(t), cos(t))‖ =

√
2et. Thus

length(γ([0, T ])) =

ˆ T

0
‖γ̇(t)‖dt =

√
2

ˆ T

0
etdt =

√
2(eT − 1)

– Second example: γ(t) such that ‖γ̇‖ = const . Then

length(γ([T0, T ])) =

ˆ T

T0

‖γ̇(t)‖dt = C(T − T0)

Thus L = C(T − T0) and T is almost the arc-length parameter itself. If C = 1 we say
that γ is parametrized by arc-length.

• The arc length re-parametrization — proof that it has constant velocity. Let γ : I → R be a
smooth curve and define the function ` : I → [0, length(γ(I))] by `(t) :=

´ t
0 ‖γ̇(x)‖dx.

– Note that d`(t)
dt = ‖γ̇(t)‖ so that if γ has no points where γ̇ = 0 then ` is invertible.

– Define a new parameter s that satisfies s = `(t). So now we have t = `−1(s) and we can
define a re-parametrized version of γ, namely γ̃(s) = γ(`−1(s)).

– Note that ‖ dds γ̃(s)‖ = 1 because
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=
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– Thus
∥∥dγ̃(s)
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∥∥ = 1 and the re-parametrized version is parametrized by arc length.

– The arc-length parametrization is very useful theoretically (as we’ll see) but difficult to
work with in practice because the arc-length can be hard to compute (i.e. finding the
function `) and it’s inverse can then be very hard to find (i.e. inverting to find `−1).

– Example: we have s =
√

2et for the logarithmic spiral so t = log(s/
√

2). Hence the
re-parametrized version of the logarithmic spiral is

γ̃(s) =
s√
2

(
cos(log(s/

√
2)), sin(log(s/

√
2))
)
.

Curvature.

• Definition of the geodesic curvature vector in an arbitrary parametrization — the normal
component of the acceleration vector, normalized by the squared length of the tangent vector.
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‖ċ‖2

ċ
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‖ċ‖

)]⊥
Rate of change of the unit tangent
vector perpendicular to the curve

• Definition of the geodesic curvature kc := ‖~kc‖.
• In the arc length parametrization we have ~kc = [c̈]⊥.

• Examples: zero-acceleration curve — straight line; constant-acceleration plane curve — circle.



Frenet frame.

• Let γ :→ R3 be a curve, without loss of generality parametrized by arc-length. We will now
find a canonical framing of γ, namely a choice of “moving axes” (three linearly independent
vectors attached to each point γ(s)) that is best adapted to its geometry.

• Let T (s) := γ̇(s). Then ‖T (s)‖ = 1 for all s since γ is parametrized by arc-length.

• A point of non-zero curvature allows us to define a distinguished normal vector. Recall that
we have 0 = d

ds‖γ̇(s)‖2 = 2〈T (s), Ṫ (s)〉 = 2〈T (s),~kγ(s)〉. Thus the curvature vector is normal
to γ. Since it’s not equal to zero, we can divide by its magnitude and obtain a unit normal
vector field N(s) := Ṫ (s)/‖Ṫ (s)‖ along γ. This is our second vector in the moving axis.

• We define the osculating plane at γ(s) to the plane spanned by T (s) and N(s).

• We now define the binormal vector, the third vector in our moving axes, to be B(s) :=
T (s)×N(s). This is also a unit vector and is orthogonal to both T (s) and N(s).

• The Frenet frame for γ is the set of moving axes {T (s), N(s), B(s)} and is defined at each
point γ(s) where kγ(s) 6= 0.

• The Frenet formulas explain the variation in the Frenet frame along γ. That is, we have

Ṫ (s) = kγ(s)N(s)

Ṅ(s) = 〈Ṅ(s), T (s)〉T (s) + 〈Ṅ(s), N(s)〉N(s) + 〈Ṅ(s), B(s)〉B(s)

= −kγ(s)T (s) + 〈Ṅ(s), B(s)〉B(s)

= −kγ(s)T (s)− τγ(s)B(s)

Ḃ(s) = 〈Ḃ(s), T (s)〉T (s) + 〈Ḃ(s), N(s)〉N(s) + 〈Ḃ(s), B(s)〉B(s)

= −〈B(s), Ṫ (s)〉T (s) + 〈Ḃ(s), N(s)〉N(s)

= −kγ(s)〈B(s), N(s)〉T (s)− 〈B(s), Ṅ(s)〉N(s)

= τγ(s)N(s)

• Here we have introduced the torsion τγ(s) := −〈Ṅ(s), B(s)〉.
• Local Theorem: Let γ : (−ε, ε)→ R3 be a curve with non-zero curvature. Let k := kγ(0) and
τ = τγ(0) and k′ = k̇γ(0). Then

γ(s) ≈ γ(0) + sγ̇(0) +
s2

2
γ̈(0) +

s3

6

...
γ (0)

=

(
s− k2s3

6

)
T (0) +

(
s2k

2
+
s3k′

6

)
N(0)− kτs3

6
B(0)

Thus locally, k and k′ determine the amount of turning in the {T (0), N(0)}-plane, while τ
and k determine the amount of lifting out of the {T (0), N(0)}-plane in the B(0)-direction.

• Global Theorem: the Fundamental Theorem of Curves.

“Given differentiable functions k : I → R with k > 0, and τ :→ R, there exists a regular
curve γ : I → R3 such that s is the arc-length, k(s) is the geodesic curvature, and τ(s) is the
torsion. Any other curve satisfying the same conditions differs from γ by a rigid motion.”

• A proof of the uniqueness part: differentiate 1
2‖γ(s)− γ̃(s)‖2. A proof of the existence part:

involves solving a system of ODEs.



Bishop frame.

• The Frenet frame has an “existential” problem... I. e. it is not defined when kγ(s) = 0. But
as a paper from the 1960s asserts: There is more than one way to frame a curve.

• Definition. The Bishop frame gives an alternative framing of a curve.

• Variational characterization of the Bishop frame. Bending and twisting energies.

• What’s the best example?


