CS 468

DIFFERENTIAL GEOMETRY FOR COMPUTER SCIENCE

Lecture 4 — The Definition of a Surface

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outline

- Important background knowledge.
 - $\rightarrow~$ The differential of a function.
 - $\rightarrow~$ The inverse and implicit function theorems.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Different kinds of surfaces.

The Differential of a Function

- The tangent space of \mathbb{R}^n at p, denoted $T_p \mathbb{R}^n$.
- Characterization of tangent vectors as tangent vectors of curves. Given X_p ∈ T_pM we can find c : I → ℝⁿ a curve with c(0) = p and c(0) = X_p.
- The differential of $f : \mathbb{R}^n \to \mathbb{R}^m$ at p is the matrix

$$Df_{p} \in \mathbb{R}^{m \times n}$$
 where $Df_{p} := \begin{pmatrix} \frac{\partial f^{1}}{\partial x^{1}} & \cdots & \frac{\partial f^{1}}{\partial x^{n}} \\ \vdots & & \vdots \\ \frac{\partial f^{m}}{\partial x^{1}} & \cdots & \frac{\partial f^{m}}{\partial x^{n}} \end{pmatrix}$

 Interpretation as a linear mapping Df_p: T_pℝⁿ → T_{f(p)}ℝ^m via the mage of curves and their tangent vectors.

$$\frac{d}{dt}f(c(t))\Big|_{t=0}=Df_p\cdot X_p$$

・ロト・西ト・ヨト・日・ うへつ

The Rank of the Differential

Qualitative picture of a map $f : \mathbb{R}^n \to \mathbb{R}^m$ of locally constant rank. **Result:** We can locally "modify" f into an equivalent map \tilde{f} s.t.

- Case 1: Df_p is injective for all $p \in \Omega \subseteq \mathbb{R}^n$ then $n \leq m$ and $\widetilde{f}(x^1,\ldots,x^n) = (x^1,\ldots,x^n,0,\ldots,0)$
- Case 2: Df_p is surjective for all $p \in \Omega$ then $n \ge m$ and $\tilde{f}(x^1, \dots, x^m, x^{m+1}, \dots, x^n) = (x^1, \dots, x^m)$
- Case 3: Df_p is bijective for all $p \in \Omega$ n = m and

$$\tilde{f}(x^1,\ldots,x^n)=(x^1,\ldots,x^n)$$

• Case 4: Df_p has rank k for all $p \in \Omega$ then $k \leq \min(n, m)$ and $\tilde{f}(x^1, \ldots, x^n) = (x^1, \ldots, x^k, 0, \ldots, 0)$

If Df_p has constant rank then f behaves like Df_p near p.

The Inverse and Implicit Function Theorems

Proofs of these results are based on two key technical theorems.

Inverse Function Theorem

- If $f : \mathbb{R}^n \to \mathbb{R}^n$ is smooth with Df_p bijective, then f is invertible on a neighbourhood of p.
- Note that Df_p is bijective at p iff $det(Df_p) \neq 0$.

Implicit Function Theorem

- If F: ℝ^k × ℝⁿ → ℝⁿ is smooth with D₂F_(p,q) bijective and F(p,q) = 0, then the equation F(x, y) = 0 can be solved for points (x, y) near (p, q) in the following sense.
- There exists a function $g : \mathbb{R}^k \to \mathbb{R}^n$ defined near q such that q = g(p) and also F(x, g(x)) = 0.
- We can compute Dg_x in terms of $D_1F_{(x,g(x))}$ and $D_2F_{(x,g(x))}$.

Three Kinds of Surfaces

Common representations of surfaces in \mathbb{R}^3 .

- Graphs of functions $f : \mathbb{R}^2 \to \mathbb{R}$.
- Level sets of functions $F : \mathbb{R}^3 \to \mathbb{R}$.
 - $\rightarrow~{\rm Graphs}$ as level sets
 - $\rightarrow\,$ Level sets as graphs relation to the Implicit Fn. Thm.
- Parametric surfaces $\sigma:U\to\mathbb{R}^3$ where $U\subseteq\mathbb{R}^2$ is an open domain in the plane and

$$\sigma(u^1, u^2) := (\sigma^1(u^1, u^2), \sigma^2(u^1, u^2), \sigma^3(u^1, u^2))$$

 \rightarrow Useful relation with level sets: $F(\sigma(u)) = const$.