CS 468

Differential Geometry for Computer Science

Lecture 4 - The Definition of a Surface

Outline

- Important background knowledge.
\rightarrow The differential of a function.
\rightarrow The inverse and implicit function theorems.
- Different kinds of surfaces.

The Differential of a Function

- The tangent space of \mathbb{R}^{n} at p, denoted $T_{p} \mathbb{R}^{n}$.
- Characterization of tangent vectors as tangent vectors of curves. Given $X_{p} \in T_{p} M$ we can find $c: I \rightarrow \mathbb{R}^{n}$ a curve with $c(0)=p$ and $\dot{c}(0)=X_{p}$.
- The differential of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ at p is the matrix

$$
D f_{p} \in \mathbb{R}^{m \times n} \quad \text { where } \quad D f_{p}:=\left(\begin{array}{ccc}
\frac{\partial f^{1}}{\partial x^{1}} & \cdots & \frac{\partial f^{1}}{\partial x^{n}} \\
\vdots & & \vdots \\
\frac{\partial f^{m}}{\partial x^{1}} & \cdots & \frac{\partial f^{m}}{\partial x^{n}}
\end{array}\right)
$$

- Interpretation as a linear mapping $D f_{p}: T_{p} \mathbb{R}^{n} \rightarrow T_{f(p)} \mathbb{R}^{m}$ via the mage of curves and their tangent vectors.

$$
\left.\frac{d}{d t} f(c(t))\right|_{t=0}=D f_{p} \cdot X_{p}
$$

The Rank of the Differential

Qualitative picture of a map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ of locally constant rank.
Result: We can locally "modify" f into an equivalent map \tilde{f} s.t.

- Case 1: $D f_{p}$ is injective for all $p \in \Omega \subseteq \mathbb{R}^{n}$ then $n \leq m$ and

$$
\tilde{f}\left(x^{1}, \ldots, x^{n}\right)=\left(x^{1}, \ldots, x^{n}, 0, \ldots, 0\right)
$$

- Case 2: $D f_{p}$ is surjective for all $p \in \Omega$ then $n \geq m$ and

$$
\tilde{f}\left(x^{1}, \ldots, x^{m}, x^{m+1}, \ldots, x^{n}\right)=\left(x^{1}, \ldots, x^{m}\right)
$$

- Case 3: $D f_{p}$ is bijective for all $p \in \Omega n=m$ and

$$
\tilde{f}\left(x^{1}, \ldots, x^{n}\right)=\left(x^{1}, \ldots, x^{n}\right)
$$

- Case 4: $D f_{p}$ has rank k for all $p \in \Omega$ then $k \leq \min (n, m)$ and

$$
\tilde{f}\left(x^{1}, \ldots, x^{n}\right)=\left(x^{1}, \ldots, x^{k}, 0, \ldots, 0\right)
$$

Summary

If $D f_{p}$ has constant rank then f behaves like $D f_{p}$ near p.

The Inverse and Implicit Function Theorems

Proofs of these results are based on two key technical theorems.

Inverse Function Theorem

- If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is smooth with $D f_{p}$ bijective, then f is invertible on a neighbourhood of p.
- Note that $D f_{p}$ is bijective at p iff $\operatorname{det}\left(D f_{p}\right) \neq 0$.

Implicit Function Theorem

- If $F: \mathbb{R}^{k} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is smooth with $D_{2} F_{(p, q)}$ bijective and $F(p, q)=0$, then the equation $F(x, y)=0$ can be solved for points (x, y) near (p, q) in the following sense.
- There exists a function $g: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ defined near q such that $q=g(p)$ and also $F(x, g(x))=0$.
- We can compute $D g_{x}$ in terms of $D_{1} F_{(x, g(x))}$ and $D_{2} F_{(x, g(x))}$.

Three Kinds of Surfaces

Common representations of surfaces in \mathbb{R}^{3}.

- Graphs of functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- Level sets of functions $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$.
\rightarrow Graphs as level sets
\rightarrow Level sets as graphs - relation to the Implicit Fn. Thm.
- Parametric surfaces $\sigma: U \rightarrow \mathbb{R}^{3}$ where $U \subseteq \mathbb{R}^{2}$ is an open domain in the plane and

$$
\sigma\left(u^{1}, u^{2}\right):=\left(\sigma^{1}\left(u^{1}, u^{2}\right), \sigma^{2}\left(u^{1}, u^{2}\right), \sigma^{3}\left(u^{1}, u^{2}\right)\right)
$$

\rightarrow Useful relation with level sets: $F(\sigma(u))=$ const .

