CS 468

Differential Geometry
 for Computer Science

Lecture 5 - Surface Geometry

Outline

- The "official" definition of a surface.
- Examples.
- Tangent plane, normal vector.

Representing a Surface

Suppose you come across a surface in \mathbb{R}^{3}, what representation do you choose to describe it mathematically?

Each representation has its limitations.

- Not every surface is a graph.
- How do you find a level set function? Or if you know the level set function, how do you solve it? You have to solve equations! E.g. if $F(x, y, z)=0$ you need to extract $z=g(x, y)$ with the property that $F(x, y, g(x, y))=0$.
- In general only part of a surface can be nicely parametrized.
- Non-uniqueness of all the representations.

The definition of a surface.

We would like a definition of a surface that as independent of representation as possible.

The method of choice: local parametrizations.

A a set $S \subset \mathbb{R}^{3}$ is a regular surface if for each $p \in S$ there exists an open neighbourhood $V \subseteq \mathbb{R}^{3}$ containing p, an open neighbourhood $U \subseteq \mathbb{R}^{2}$ and a parametrization $\sigma: U \rightarrow V \cap S$ such that:

1. $\sigma=\left(\sigma^{1}, \sigma^{2}, \sigma^{3}\right)$.
2. σ is invertible as a map from U onto $V \cap S$ and has a continuous inverse.
3. $D \sigma_{q}$ is injective $\forall q$. (If and only if $\operatorname{det}\left(\left(D \sigma_{q}\right)^{\top} D \sigma_{q}\right) \neq 0$.)

Examples

- A graph is a regular surface.
- Proof that the sphere is a regular surface by writing it as the union of six graphs over the coordinate planes.
- Another example where the coordinates are differentiable at q but $D \sigma_{q}$ is non-injective: the sphere in polar coordinates.

A more sophisticated example.

- The inverse image of a regular value is regular surface...

Regular Values

Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a differentiable function. A value $c \in \mathbb{R}$ is called regular if $D F_{p} \neq 0$ for all $p \in F^{-1}(c)$.
E.g. a non-regular value: $F(x, y, z):=x^{2}+y^{2} \pm z^{2}$ and $c=0$.

Theorem: $F^{-1}(c)$ is a regular surface.

Proof:

- Here $F(p)=0$ and $D F_{p} \neq 0$ meaning $\exists i$ so that $\frac{\partial F(p)}{\partial x^{i}} \neq 0$.
- W.l.o.g. $i=n$ so we get from the Im. F. T. the local solution $x^{n}=g(\bar{x})$ where $\bar{x}:=\left(x^{1}, \ldots, x^{n-1},\right)$ so that $F(\bar{x}, g(\bar{x}))=0$.
- Now $F^{-1}(0)$ near p projects down onto an open set U in the \bar{x}-plane and is equal to the graph $\{(\bar{x}, g(\bar{x})): \bar{x} \in U\}$.
- Thus it's a surface!

The Tangent Space of a Surface

- Curves in a surface. The coordinate curves.
- Tangent vectors to a surface.

The "official" definition.

```
Let }\sigma:U\subseteq\mp@subsup{\mathbb{R}}{}{2}->V\capS\subseteq\mp@subsup{\mathbb{R}}{}{3}\mathrm{ be a parametrization of a
subset of a surface S and let p\inS such that p=\sigma(u) for
some u\inU.
The tangent plane }\mp@subsup{T}{p}{}S\mathrm{ defined as Image (D }\mp@subsup{\sigma}{u}{})\subseteq\mp@subsup{T}{\sigma(u)}{}\mp@subsup{\mathbb{R}}{}{3}\mathrm{ .
```

A general principle of differential geometry is at work here:

- We define a geometric concept using a parametrization... then we must show independence of the chosen parametrization.

Parameter Independence of the Tangent Space

- The previous definition depends on the parametrization σ.
- What if we change parametrization?
- We get the same tangent space!!

The proof would go like this:
\rightarrow Let $\sigma: U \rightarrow \mathbb{R}^{3}$ and $\tau: U^{\prime} \rightarrow \mathbb{R}^{3}$ be two different parametrizations of the same part of the surface.
\rightarrow Now $\sigma \circ \tau^{-1}: U^{\prime} \rightarrow U$ is a smooth bijection.
\rightarrow Then we compute

$$
\begin{aligned}
\operatorname{Image}\left(D \sigma_{u}\right) & =\operatorname{Image}\left(D\left(\sigma \circ \tau^{-1} \circ \tau\right)_{u}\right) \\
& =\operatorname{Image}\left(D\left(\sigma \circ \tau^{-1}\right)_{\tau(u)} \cdot D \tau_{u}\right) \\
& =\operatorname{Image}\left(D \tau_{u}\right)
\end{aligned}
$$

Basis for the Tangent Space

- This is NOT a geometric concept.
- Three ways of getting a basis for the tangent space:
\rightarrow Tangent space of a parametric surface.
\rightarrow Tangent space of a graph.
\rightarrow Tangent space of a level set.
The relation $F \circ c(t)=$ const. for curves $c(t)$ belonging to the level set F^{-1} (const.)
- Note where the construction breaks down!

