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Outline

• The “official” definition of a surface.

• Examples.

• Tangent plane, normal vector.



Representing a Surface

Suppose you come across a surface in R3, what representation do
you choose to describe it mathematically?

Each representation has its limitations.

• Not every surface is a graph.

• How do you find a level set function? Or if you know the level
set function, how do you solve it? You have to solve equations!
E.g. if F (x , y , z) = 0 you need to extract z = g(x , y) with the
property that F (x , y , g(x , y)) = 0.

• In general only part of a surface can be nicely parametrized.

• Non-uniqueness of all the representations.



The definition of a surface.

We would like a definition of a surface that as independent of
representation as possible.

The method of choice: local parametrizations.

A a set S ⊂ R3 is a regular surface if for each p ∈ S there exists an
open neighbourhood V ⊆ R3 containing p, an open neighbourhood
U ⊆ R2 and a parametrization σ : U → V ∩ S such that:

1. σ = (σ1, σ2, σ3).

2. σ is invertible as a map from U onto V ∩ S and has a
continuous inverse.

3. Dσq is injective ∀ q. (If and only if det
(
(Dσq)>Dσq

)
6= 0.)



Examples

• A graph is a regular surface.

• Proof that the sphere is a regular surface by writing it as the
union of six graphs over the coordinate planes.

• Another example where the coordinates are differentiable at q
but Dσq is non-injective: the sphere in polar coordinates.

A more sophisticated example.

• The inverse image of a regular value is regular surface...



Regular Values

Let F : R3 → R be a differentiable function. A value c ∈ R is called
regular if DFp 6= 0 for all p ∈ F−1(c).

E.g. a non-regular value: F (x , y , z) := x2 + y2 ± z2 and c = 0.

Theorem: F−1(c) is a regular surface.

Proof:

• Here F (p) = 0 and DFp 6= 0 meaning ∃ i so that ∂F (p)
∂x i
6= 0.

• W.l.o.g. i = n so we get from the Im. F. T. the local solution
xn = g(x̄) where x̄ := (x1, . . . , xn−1, ) so that F (x̄ , g(x̄)) = 0.

• Now F−1(0) near p projects down onto an open set U in the
x̄-plane and is equal to the graph {(x̄ , g(x̄)) : x̄ ∈ U}.

• Thus it’s a surface!



The Tangent Space of a Surface

• Curves in a surface. The coordinate curves.

• Tangent vectors to a surface.

The “official” definition.

Let σ : U ⊆ R2 → V ∩ S ⊆ R3 be a parametrization of a
subset of a surface S and let p ∈ S such that p = σ(u) for
some u ∈ U.

The tangent plane TpS defined as Image(Dσu) ⊆ Tσ(u)R3.

A general principle of differential geometry is at work here:

• We define a geometric concept using a parametrization... then
we must show independence of the chosen parametrization.



Parameter Independence of the Tangent Space

• The previous definition depends on the parametrization σ.

• What if we change parametrization?

• We get the same tangent space!!

The proof would go like this:

→ Let σ : U → R3 and τ : U ′ → R3 be two different
parametrizations of the same part of the surface.

→ Now σ ◦ τ−1 : U ′ → U is a smooth bijection.

→ Then we compute

Image
(
Dσu

)
= Image

(
D(σ ◦ τ−1 ◦ τ)u

)
= Image

(
D(σ ◦ τ−1)τ(u) · Dτu

)
= Image

(
Dτu

)



Basis for the Tangent Space

• This is NOT a geometric concept.

• Three ways of getting a basis for the tangent space:

→ Tangent space of a parametric surface.

→ Tangent space of a graph.

→ Tangent space of a level set.

The relation F ◦ c(t) = const. for curves c(t) belonging to the
level set F−1(const.)

• Note where the construction breaks down!


