CS 468 (Spring 2013) - Discrete Differential Geometry

Lectures 5: Surface Geometry

Level sets.

- Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a function and let $c \in \mathbb{R}$ be a number. The level set of F with value c is the set of points

$$
F^{-1}(c):=\left\{p \in \mathbb{R}^{3}: F(p)=c\right\}
$$

- So to find a level set, you must solve the equation $F(p)=c$ for $p=(x, y, z)$.
- Note: if there are no solutions, then $F^{-1}(c)=\varnothing$ (the empty set).

Level sets as surfaces.

- The big question: what is the geometric nature of a level set?
- Our intuition says the a level set is a surface because a level set consists of the solution of "one scalar equation in three unknowns."
- The reasoning is: by solving the equations you should be able to express one of the unknowns as a function of the other two. In other words, you can write $z=g(x, y)$ for some function g, and $F(x, y, g(x, y))=c$. Now the solution set looks like

$$
\left\{(x, y, g(x, y)): x, y 2 \in U \subseteq \mathbb{R}^{2}\right\}
$$

In other words, the solution set is a graph, which is a surface as we saw in class.

Exceptions.

- There are exceptions to the nice intuitive picture described above.
- For example, consider the function $F(x, y, z):=x^{2}+y^{2}+z^{2}$. The level set of $c>0$ is a sphere of radius \sqrt{c} - which is a surface. The level set of $c<0$ is the empty set. The level set of $c=0$ consists of the point $(0,0,0)$ only. In other words, $F^{-1}(0)=\{(0,0,0)\}$. This is not a surface.
- There are other examples where $F^{-1}(c)$ is not a surface. For instance, the level set of zero of the function $F(x, y, z)=x^{2}+y^{2}$ is the z-axis, which is a line and not a surface. (Other level sets with $c>0$ are cylinders and with $c<0$ are the empty set.)
- Even weirder things can happen. For instance, the level set of zero of the function $F(x, y, z):=$ $x y$ is the union of the (y, z)-plane and the (x, z)-plane which is not a surface in the neighbourhood of the z-axis. (Draw this object!)
- Much, much weirder things can happen.

Regular values.

- We would like to characterize when a level set is a surface. We will need the concept of a regular value.
- Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a differentiable function. A number $c \in R$ is a regular value for F if the derivative matrix of F (which is a 1×3 matrix in this case) does not vanish anywhere on the level set $F^{-1}(c)$.
- I.e. c is a regular value for F if $D F_{p}=\left(\frac{\partial F(p)}{\partial x}, \frac{\partial F(p)}{\partial y}, \frac{\partial F(p)}{\partial z}\right) \neq(0,0,0)$ for all $p \in F^{-1}(0)$.

The inverse image of a regular value is a surface.

- Suppose c is a regular value for F and let $p \in F^{-1}(c)$.
- Without loss of generality, we can assume that $\frac{\partial F(p)}{\partial z} \neq 0$.
- We now invoke the Implicit Function Theorem.
- Write $F: \mathbb{R}^{2} \times \mathbb{R} \rightarrow \mathbb{R}$. Now the matrix $D_{2} F_{p}$ appearing in this theorem is simply the number $\frac{\partial F(p)}{\partial z}$. So the invertibility of $D_{2} F_{p}$ is equivalent to $\frac{\partial F(p)}{\partial z} \neq 0$.
- The Implicit Function Theorem now gives us a local solution $z=g(x, y)$ where $g: U \rightarrow \mathbb{R}$ is a smooth function defined in a neighbourhood of p.
- Now $F^{-1}(0)$ near p can be parametrized with the help of g. That is, we can write $F^{-1}(0)$ near p as $\{(x, y, g(x, y)):(x, y) \in U\}$.
- In other words, $F^{-1}(0)$ near p is the graph of g. This is a regular surface!

A nice formula.

- We can relate the derivatives of g to the derivatives of F using the chain rule.
- We have $F(x, y, g(x, y))=c$ so for instance

$$
\begin{aligned}
0 & =\frac{\partial F(x, y, g(x, y))}{\partial x} \\
& =\frac{\partial F}{\partial x}(x, y, g(x, y))+\frac{\partial F}{\partial z}(x, y, g(x, y)) \cdot \frac{\partial g}{\partial x}
\end{aligned}
$$

- By isolating $\frac{\partial g}{\partial x}$ we obtain the formula

$$
\frac{\partial g}{\partial x}=-\frac{\frac{\partial F}{\partial x}(x, y, g(x, y))}{\frac{\partial F}{\partial z}(x, y, g(x, y))}
$$

which is a sensible mathematical expression so long as $\frac{\partial F}{\partial z} \neq 0$ which is certainly true sufficiently close to p.

- A similar formula holds for $\frac{\partial g}{\partial y}$.

