CS 468

Differential Geometry for Computer Science

Lecture 7 - Extrinsic Curvature

Outline

- Normal vectors.
- Surface integrals and surface area.
- The Gauss map.
- The second fundamental form.
- Interpretation - extrinsic curvature.

The Unit Normal Vector of a Surface

- The unit normal vector of a surface. Is this geometric?
\rightarrow Normal line is geometric. Normal direction may not be.
\rightarrow Non-orientable surfaces.
- Unit normal vector of a parametrized surface and a graph:

$$
\text { If } \quad T_{p} S=\operatorname{span}\left\{E_{1}, E_{2}\right\} \quad \text { then } \quad N:=\frac{E_{1} \times E_{2}}{\left\|E_{1} \times E_{2}\right\|}
$$

- Unit normal vector of level set $S:=F^{-1}(v)$ at regular value v. Let c be a curve $\subseteq S$ with $c(0)=p$ and $\dot{c}(0)=X \in T_{p} S$.

$$
\begin{array}{ll}
\Rightarrow & v=F(c(t)) \quad \forall t \\
\Rightarrow & 0=\left.\frac{d}{d t} F(c(t))\right|_{t=0}=\left\langle\left[D F_{p}\right]^{\top}, X\right\rangle \\
\Rightarrow & N:=\frac{\left[D F_{p}\right]^{\top}}{\left\|D F_{p}\right\|} \perp T_{p} S
\end{array}
$$

Surface Area

- Area of infinitesimal coordinate rectangle.
\rightarrow Let $\phi: \mathcal{U} \rightarrow \mathbb{R}^{3}$ be a parametrization of S.
\rightarrow Let $E_{i}:=D \phi_{u} \cdot[0, \ldots, 1, \ldots, 0]^{\top}$ span $T_{\phi(u)} S$.
\rightarrow Area of rectangle $E_{1} \wedge E_{2}$ is $\left\|E_{1} \times E_{2}\right\|=\left|\operatorname{det}\left(D \phi_{u}^{\top} D \phi_{u}\right)\right|^{1 / 2}$.
- The Riemann sum that yields a surface integral. Let $f: S \rightarrow \mathbb{R}$ be an integrable function.

$$
\Rightarrow \quad \int_{S} f d \text { Area }:=\lim \sum_{i} f\left(\phi\left(u_{i}\right)\right) \sqrt{\operatorname{det}\left(D \phi_{u_{i}}^{\top} D \phi_{u_{i}}\right)}
$$

- where the Riemannian area form is:

$$
d \operatorname{Area}(u):=\sqrt{\operatorname{det}\left(D \phi_{u}^{\top} D \phi_{u}\right)} d u^{1} d u^{2}
$$

- Independence of parametrization.

The Gauss Map

Let S be an orientable surface with unit normal vector N_{p} at $p \in S$.

- The Gauss map of S is the mapping $n: S \rightarrow \mathbb{S}^{2}$ given by

$$
n(p):=N_{p}
$$

- We view N_{p} as a vector in \mathbb{R}^{3} of length one \Rightarrow a point in \mathbb{S}^{2}.
- The Gauss map of a differentiable surface is itself differentiable.
- Its differential is $D n_{p}: T_{p} S \rightarrow T_{N_{p}} \mathbb{S}^{2}$.
- Since $T_{p} S$ and $T_{n(p)} \mathbb{S}^{2}$ are parallel planes (they're both perpendicular to N_{p}), we can re-define $D n_{p}: T_{p} S \rightarrow T_{p} S$.

The Second Fundamental Form

Defn: The second fundamental form of S at p is the bilinear form

$$
\begin{gathered}
A_{p}: T_{p} S \times T_{p} S \rightarrow \mathbb{R} \\
A_{p}(V, W):=-\left\langle D n_{p}(V), W\right\rangle
\end{gathered}
$$

It measures the projection onto W of the rate of change of N_{p} in the V-direction at every point $p \in S$.

Proposition: A_{p} is self-adjoint.
Proof: Work with the components $\left[A_{p}\right]_{i j}:=\left\langle\frac{\partial N}{\partial u^{i}}, \frac{\partial \phi}{\partial u^{j}}\right\rangle$. The key is the symmetry of mixed partial derivatives!

Extrinsic Curvature

- Let c be a curve in S with $c(0)=p$.
- Let $\vec{k}_{c}(0)$ be the geodesic curvature vector of c at zero. Then

$$
\left\langle\vec{k}_{c}(0), N_{p}\right\rangle=A_{p}(\dot{c}(0), \dot{c}(0))
$$

- Note: depends only on the geometry of S at p.
- Let V vary over all unit vectors in $T_{p} S$. Then $A_{p}(V, V)$ takes on a minimum value $k_{\text {min }}$ and a maximum value $k_{\text {max }}$.
\rightarrow Eigenvalues of A_{p} - the principal curvatures of S at p.
\rightarrow Corresponding eigenvectors are the principal directions of S at p.
\rightarrow Note that the principal directions are orthogonal.
- Mean curvature $H:=k_{\min }+k_{\max }\left(=\operatorname{Tr}\left(A_{p}\right)\right.$ w.r.t. ONB$)$.
- Gauss curvature $K:=k_{\min } \cdot k_{\max }\left(=\operatorname{det}\left(A_{p}\right)\right.$ w.r.t. ONB $)$.

Local Shape of a Surface

Example: Second fundamental form of a graph. What can we see?

- Elliptic, hyperbolic, parabolic, planar or umbilic points.
- Local characterization of the surface S at p depending on type.
\rightarrow Proof based on Taylor series expansion.

Interpretation of the Mean Curvature

The mean curvature is the gradient of the area functional.

- I.e. area decreases fastest in the $H \vec{n}$ direction.

The calculation:

- Let $\phi: \mathcal{U} \rightarrow \mathbb{R}^{3}$ parametrize S and let $f: \mathcal{U} \rightarrow \mathbb{R}$ be a function.
- Let $\phi_{\varepsilon}(u):=\phi(u)+\varepsilon f(u) N_{u}$ parametrize a deformation of S.

Now let $g_{\varepsilon}(u):=\left[D \phi_{\varepsilon}\right]_{u}^{\top}\left[D \phi_{\varepsilon}\right]_{u}$ and $g:=g_{0}$. Then

$$
\begin{aligned}
\left.\frac{d}{d \varepsilon} \operatorname{Area}\left(\phi_{\varepsilon}(\mathcal{U})\right)\right|_{\varepsilon=0} & =\left.\frac{d}{d \varepsilon} \int_{\mathcal{U}} \sqrt{\operatorname{det}\left(g_{\varepsilon}(u)\right)} d u\right|_{\varepsilon=0} \\
& =\int_{\mathcal{U}} \operatorname{Tr}\left(\left.g^{-1} \frac{d g_{\varepsilon}(u)}{d \varepsilon}\right|_{\varepsilon=0}\right) \sqrt{\operatorname{det}(g(u))} d u \\
& =-2 \int_{\mathcal{U}} H(u) f(u) \sqrt{\operatorname{det}(g(u))} d u
\end{aligned}
$$

Interpretation of the Gauss Curvature

Two results. Let n be the Gauss map.

- Proposition: $K(p)>0$ iff n locally preserves orientation; and $K(p)<0$ iff n locally reverses orientation.
- Proposition: Let $p \in S$ be such that $K(p) \neq 0$ and let $\varepsilon>0$ be such that K does not change sign in $B_{\varepsilon}(p)$. Then we have

$$
K(p)=\lim _{\varepsilon \rightarrow 0} \frac{\operatorname{Area}\left(n\left(B_{\varepsilon}(p)\right)\right)}{\operatorname{Area}\left(B_{\varepsilon}(p)\right)}
$$

