CS 468

DIFFERENTIAL GEOMETRY FOR COMPUTER SCIENCE

Lecture 9 — Intrinsic Geometry

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

From last lecture:

• The second fundamental form as extrinsic curvature.

Moving forward:

- The induced metric of a surface.
- Geodesics and length-minimizing curves.

Next time:

• The connection between the induced metric and geodesics.

Local Shape of a Surface

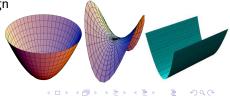
Example: Let S be the graph of a function $f : \mathbb{R}^2 \to \mathbb{R}$. Without loss of generality, we can assume f vanishes to first order at (0, 0).

Then: The second fundamental form at (0,0) is

$$A_{(0,0)} = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix} \Big|_{\text{evaluated at } (0,0)}$$

And we can characterize the origin via the eigenvalues of $A_{(0,0)}$ as

- Elliptic both > 0 or both < 0
- Hyperbolic one of each sign
- Parabolic one is zero,
- *Planar* both are zero
- Umbilic both are equal



Interpretation of the Mean Curvature

The mean curvature is the gradient of surface area.

• I.e. the area of the surface decreases fastest when it is deformed in the $H\vec{n}$ direction.

To see this:

- Let $\phi : \mathcal{U} \to \mathbb{R}^3$ parametrize S and let $f : \mathcal{U} \to \mathbb{R}$ be a function. Then $\phi_{\varepsilon} := \phi + \varepsilon f \cdot N$ parametrizes a deformation of S.
- Finally, let $g_{\varepsilon}(u) := [D\phi_{\varepsilon}]_{u}^{\top} [D\phi_{\varepsilon}]_{u}$ and $g := g_{0}$. Now:

$$\begin{aligned} \frac{d}{d\varepsilon} \operatorname{Area}(\phi_{\varepsilon}(\mathcal{U})) \Big|_{\varepsilon=0} &= \frac{d}{d\varepsilon} \int_{\mathcal{U}} \sqrt{\det(g_{\varepsilon}(u))} du \Big|_{\varepsilon=0} \\ &= \frac{1}{2} \int_{\mathcal{U}} \operatorname{Tr}\left(g^{-1} \frac{dg_{\varepsilon}(u)}{d\varepsilon} \Big|_{\varepsilon=0}\right) \sqrt{\det(g(u))} du \\ &= -\int_{\mathcal{U}} H(u) f(u) \sqrt{\det(g(u))} du \end{aligned}$$

The Induced Metric

Observation: Let $\phi : \mathcal{U} \to \mathbb{R}^3$ parametrize a surface *S*. The object

$$g := [D\phi_u]^\top D\phi_u$$
 for $u \in \mathcal{U}$

has appeared quite often. What is the interpretation of g?

Definition: The object *g* is the induced metric of *S*.

- Let $E_i := \frac{\partial \phi}{\partial u^i}$ be the tangent vectors of S at $\phi(u)$.
- Then the components are $g_{ij} = E_i^\top E_j = \langle E_i, E_j \rangle$.
- Therefore the induced metric of a surface is the restriction of the Euclidean inner product to T_{φ(u)}S, pulled back to U via φ.
- A parametrization gives you a representation of the intrinsic metric in the parameter plane as a matrix (actually a (2,0)-tensor).

Covariance

A scalar quantity defined on a surface S is "geometric" if its value computed w.r.t. any parametrization is always the same.

- A different property holds for vector or tensor quantities:
 - The components of a "geometric" vector quantity computed w.r.t. two different parametrizations can be different.
 - This is because the **basis** used to represent the quantity changes as well, and this must be taken into account.
 - So we have **transformation formulas** for passing from one set of components to the other.

A D F 4 目 F 4 目 F 4 目 9 0 0 0

• This is called **covariance**.

Covariance of the Metric Tensor

Let $\phi : \mathcal{U} \to \mathbb{R}^3$ and $\psi : \mathcal{V} \to \mathbb{R}^3$ both parametrize S with $\phi(u) = \psi(v) = p \in S$. We get:

- $e_i := [0 \dots 1 \dots 0]^\top$ are the standard basis vectors in \mathcal{U} .
- $f_i := [0 \dots 1 \dots 0]^\top$ are the standard basis vectors in \mathcal{V} .

•
$$E_i := \frac{\partial \phi}{\partial u^i} = D\phi_u \cdot e_i$$
 and $F_i := \frac{\partial \psi}{\partial v^i} = D\psi_v \cdot f_i$ are bases for $T_p S$.

Then:

$$F_{i} = \frac{\partial \psi}{\partial \mathbf{v}^{i}} = \frac{\partial \phi \circ \phi^{-1} \circ \psi}{\partial \mathbf{v}^{i}} = \sum_{j} \frac{\partial [\phi^{-1} \circ \psi]^{j}}{\partial \mathbf{v}^{i}} \frac{\partial \phi}{\partial \mathbf{u}^{j}} = \sum_{j} \frac{\partial u^{j}}{\partial \mathbf{v}^{i}} E_{j}$$
Change of basis matrix

And

$$\langle F_k, F_\ell \rangle = \left\langle \sum_i \frac{\partial u^i}{\partial v^k} E_i, \sum_j \frac{\partial u^j}{\partial v^\ell} E_j \right\rangle = \sum_{ij} \frac{\partial u^i}{\partial v^k} \frac{\partial u^j}{\partial v^\ell} g_{ij}$$

もしゃ 本語を 本語を 本日を

The Geodesic Equation

Question: What is the shortest path between p, q in a surface S?

Fact: We can find an equation satisfied by the shortest path.

 Let γ : I → S be the shortest path and γ_ε a variation with variation vector field V that is tangent to S. Then

$$0 = \frac{d}{d\varepsilon} \text{Length}(\gamma_{\varepsilon}) \bigg|_{\varepsilon = 0} = \frac{d}{d\varepsilon} \int_{I} \left\| \dot{\gamma}_{\varepsilon}(t) \right\| dt \bigg|_{\varepsilon = 0} \quad \forall \text{ variations}$$

• From homework, we know that this implies

$$0 = \langle ec{k}_\gamma, V
angle \; \; orall \; \mathrm{variations} \; \; \Leftrightarrow \; \; ec{k}_\gamma \perp S$$

Definition: Any curve satisfying this equation is called a geodesic.

The Geodesic Exponential Map

We'll see that the geodesic equation is a second-order ODE for γ . Thus there exists a unique local solution for every choice of

$$p:=\gamma(0)\in S$$
 and $X:=\dot{\gamma}(0)\in T_pS$

Definition: The assignment of (p, X) to a solution at distance one is called the geodesic exponential map and is denoted

$$\begin{split} \exp_p : B_{\varepsilon}(0) &\subseteq T_p M \to M \\ \exp_p(X) := \begin{bmatrix} \text{one unit of arc-length} \\ \text{along the geodesic } \gamma \text{ with} \\ \gamma(0) &= p \text{ and } \dot{\gamma}(0) = X \end{bmatrix} \end{split}$$

Note: The geodesic itself is given by $\gamma(t) = \exp_p(tX)$.

Geodesics Locally Minimize Length

Two preliminary results...

Proposition: It is easy to see that $[D \exp_p]_0 = id$. Hence \exp_p is a diffeomorphism near the origin in T_pM .

Proposition: ("Gauss lemma") Let $v, w \in T_v(T_pS)$. Then

$$\langle [D \exp_{\rho}]_{v}(v), [D \exp_{\rho}]_{v}(w) \rangle = \langle v, w \rangle$$

An important consequence...

Theorem: Geodesics locally minimize length: if γ is a sufficiently short geodesic and *c* is a curve with the same endpoints as γ , then

```
Length(\gamma) \leq Length(c)
```

with equality if and only if $\gamma = c$.

Hopf-Rinow Theorem

Some facts about geodesics:

- Length-minimizing curves are geodesics.
- Short geodesics are length-minimizing.
- There exist long geodesics that are not length-minimizing.

Next: We turn S into a metric space with distance function

$$d(p,q) := \inf_{\gamma \text{ from } p \text{ to } q} \text{Length}(\gamma)$$

Then d is continuous and satisfies the triangle inequality.

Hopf-Rinow Theorem: If exp is globally defined then any two points p, q can be connected by a geodesic with length d(p, q).