CS 468

Differential Geometry
 for Computer Science

Lecture 9 - Intrinsic Geometry

Outline

From last lecture:

- The second fundamental form as extrinsic curvature.

Moving forward:

- The induced metric of a surface.
- Geodesics and length-minimizing curves.

Next time:

- The connection between the induced metric and geodesics.

Local Shape of a Surface

Example: Let S be the graph of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Without loss of generality, we can assume f vanishes to first order at $(0,0)$.

Then: The second fundamental form at $(0,0)$ is

$$
A_{(0,0)}=\left.\left(\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\
\frac{\partial^{2} f}{\partial x \partial y} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right)\right|_{\text {evaluated at }(0,0)}
$$

And we can characterize the origin via the eigenvalues of $A_{(0,0)}$ as

- Elliptic - both >0 or both <0
- Hyperbolic - one of each sign
- Parabolic - one is zero,
- Planar - both are zero
- Umbilic - both are equal

Interpretation of the Mean Curvature

The mean curvature is the gradient of surface area.

- I.e. the area of the surface decreases fastest when it is deformed in the $H \vec{n}$ direction.

To see this:

- Let $\phi: \mathcal{U} \rightarrow \mathbb{R}^{3}$ parametrize S and let $f: \mathcal{U} \rightarrow \mathbb{R}$ be a function. Then $\phi_{\varepsilon}:=\phi+\varepsilon f \cdot N$ parametrizes a deformation of S.
- Finally, let $g_{\varepsilon}(u):=\left[D \phi_{\varepsilon}\right]_{u}^{\top}\left[D \phi_{\varepsilon}\right]_{u}$ and $g:=g_{0}$. Now:

$$
\begin{aligned}
\left.\frac{d}{d \varepsilon} \operatorname{Area}\left(\phi_{\varepsilon}(\mathcal{U})\right)\right|_{\varepsilon=0} & =\left.\frac{d}{d \varepsilon} \int_{\mathcal{U}} \sqrt{\operatorname{det}\left(g_{\varepsilon}(u)\right)} d u\right|_{\varepsilon=0} \\
& =\frac{1}{2} \int_{\mathcal{U}} \operatorname{Tr}\left(\left.g^{-1} \frac{d g_{\varepsilon}(u)}{d \varepsilon}\right|_{\varepsilon=0}\right) \sqrt{\operatorname{det}(g(u))} d u \\
& =-\int_{\mathcal{U}} H(u) f(u) \sqrt{\operatorname{det}(g(u))} d u
\end{aligned}
$$

The Induced Metric

Observation: Let $\phi: \mathcal{U} \rightarrow \mathbb{R}^{3}$ parametrize a surface S. The object

$$
g:=\left[D \phi_{u}\right]^{\top} D \phi_{u} \quad \text { for } u \in \mathcal{U}
$$

has appeared quite often. What is the interpretation of g ?
Definition: The object g is the induced metric of S.

- Let $E_{i}:=\frac{\partial \phi}{\partial u^{i}}$ be the tangent vectors of S at $\phi(u)$.
- Then the components are $g_{i j}=E_{i}^{\top} E_{j}=\left\langle E_{i}, E_{j}\right\rangle$.
- Therefore the induced metric of a surface is the restriction of the Euclidean inner product to $T_{\phi(u)} S$, pulled back to \mathcal{U} via ϕ.
- A parametrization gives you a representation of the intrinsic metric in the parameter plane as a matrix (actually a (2,0)-tensor).

Covariance

A scalar quantity defined on a surface S is "geometric" if its value computed w.r.t. any parametrization is always the same.

A different property holds for vector or tensor quantities:

- The components of a "geometric" vector quantity computed w.r.t. two different parametrizations can be different.
- This is because the basis used to represent the quantity changes as well, and this must be taken into account.
- So we have transformation formulas for passing from one set of components to the other.
- This is called covariance.

Covariance of the Metric Tensor

Let $\phi: \mathcal{U} \rightarrow \mathbb{R}^{3}$ and $\psi: \mathcal{V} \rightarrow \mathbb{R}^{3}$ both parametrize S with $\phi(u)=\psi(v)=p \in S$. We get:

- $e_{i}:=[0 \ldots 1 \ldots 0]^{\top}$ are the standard basis vectors in \mathcal{U}.
- $f_{i}:=[0 \ldots 1 \ldots 0]^{\top}$ are the standard basis vectors in \mathcal{V}.
- $E_{i}:=\frac{\partial \phi}{\partial u^{i}}=D \phi_{u} \cdot e_{i}$ and $F_{i}:=\frac{\partial \psi}{\partial v^{i}}=D \psi_{v} \cdot f_{i}$ are bases for $T_{p} S$.

Then:

$$
F_{i}=\frac{\partial \psi}{\partial v^{i}}=\frac{\partial \phi \circ \phi^{-1} \circ \psi}{\partial v^{i}}=\sum_{j} \frac{\partial\left[\phi^{-1} \circ \psi\right]^{j}}{\partial v^{i}} \frac{\partial \phi}{\partial u^{j}}=\sum_{j} \frac{\partial u^{j}}{\partial v^{i}} E_{j}
$$

And

$$
\left\langle F_{k}, F_{\ell}\right\rangle=\left\langle\sum_{i} \frac{\partial u^{i}}{\partial v^{k}} E_{i}, \sum_{j} \frac{\partial u^{j}}{\partial v^{\ell}} E_{j}\right\rangle=\sum_{i j} \frac{\partial u^{i}}{\partial v^{k}} \frac{\partial u^{j}}{\partial v^{\ell}} g_{i j}
$$

The Geodesic Equation

Question: What is the shortest path between p, q in a surface S ?

Fact: We can find an equation satisfied by the shortest path.

- Let $\gamma: I \rightarrow S$ be the shortest path and γ_{ε} a variation with variation vector field V that is tangent to S. Then

$$
0=\left.\frac{d}{d \varepsilon} \operatorname{Length}\left(\gamma_{\varepsilon}\right)\right|_{\varepsilon=0}=\left.\frac{d}{d \varepsilon} \int_{I}\left\|\dot{\gamma}_{\varepsilon}(t)\right\| d t\right|_{\varepsilon=0} \quad \forall \text { variations }
$$

- From homework, we know that this implies

$$
0=\left\langle\vec{k}_{\gamma}, V\right\rangle \quad \forall \text { variations } \quad \Leftrightarrow \quad \vec{k}_{\gamma} \perp S
$$

Definition: Any curve satisfying this equation is called a geodesic.

The Geodesic Exponential Map

We'll see that the geodesic equation is a second-order ODE for γ.
Thus there exists a unique local solution for every choice of

$$
p:=\gamma(0) \in S \quad \text { and } \quad X:=\dot{\gamma}(0) \in T_{p} S
$$

Definition: The assignment of (p, X) to a solution at distance one is called the geodesic exponential map and is denoted

$$
\begin{aligned}
& \exp _{p}: B_{\varepsilon}(0) \subseteq T_{p} M \rightarrow M \\
& \exp _{p}(X):=\left[\begin{array}{c}
\text { one unit of arc-length } \\
\text { along the geodesic } \gamma \text { with } \\
\gamma(0)=p \text { and } \dot{\gamma}(0)=X
\end{array}\right]
\end{aligned}
$$

Note: The geodesic itself is given by $\gamma(t)=\exp _{p}(t X)$.

Geodesics Locally Minimize Length

Two preliminary results...
Proposition: It is easy to see that $\left[D \exp _{p}\right]_{0}=i d$. Hence $\exp _{p}$ is a diffeomorphism near the origin in $T_{p} M$.

Proposition: ("Gauss lemma") Let $v, w \in T_{v}\left(T_{p} S\right)$. Then

$$
\left\langle\left[D \exp _{p}\right]_{v}(v),\left[D \exp _{p}\right]_{v}(w)\right\rangle=\langle v, w\rangle
$$

An important consequence...
Theorem: Geodesics locally minimize length: if γ is a sufficiently short geodesic and c is a curve with the same endpoints as γ, then

$$
\text { Length }(\gamma) \leq \text { Length }(c)
$$

with equality if and only if $\gamma=c$.

Hopf-Rinow Theorem

Some facts about geodesics:

- Length-minimizing curves are geodesics.
- Short geodesics are length-minimizing.
- There exist long geodesics that are not length-minimizing.

Next: We turn S into a metric space with distance function

$$
d(p, q):=\inf _{\gamma \text { from } p \text { to } q} \text { Length }(\gamma)
$$

Then d is continuous and satisfies the triangle inequality.

Hopf-Rinow Theorem: If exp is globally defined then any two points p, q can be connected by a geodesic with length $d(p, q)$.

