
CS 468 (Spring 2013) — Discrete Differential Geometry

Lecture 9 Supplement

1. Introduction

The following material has turned out to be quite technical. I would say that the “take-home”
messages of this document are the following.

• The geodesic exponential map is a local diffeomorphism, meaning that expp maps an open
disk containing the origin in TpS continuous, bijectively and with continuous inverse onto an
open neighbourhood of p in S.

• The exponential map is thus a parametrization of a portion of S. How “good” is this
parametrization? It’s not so good that it maps the inner product in the parameter domain
to the inner product of Euclidean space (that would be asking a lot!). Rather, it preserves
these inner products to a certain extent (the Gauss Lemma).

• Geodesics locally minimize length in the sense that if p, q ∈ S are sufficiently close together,
then there exists a geodesic from p to q and it is the unique shortest curve between them.

2. The Exponential Map Is A Local Diffeomorphism

Let S be a regular surface and p ∈ S. We have defined the exponential map expp : TpS → S as “the
map from initial condition to solution” of the geodesic equation. In other words, expp(X) = γ(1)
where γ is the geodesic with γ(0) = p and γ̇(0) = X. Furthermore, by the “uniqueness” part of the
Existence and Uniqueness Theorem of Second-Order ODEs, we can show that expp(tX) = γ(t).

A very simple observation with a significant consequence is that [D expp]0 is the identity map.
But this is hard to see through all the notation. Let’s verify this result first, and then we’ll state
its consequence in the next paragraph. Recall that by definition, [D expp]0(V ) := d

dt expp(V (t))
∣∣
t=0

where V (t) is any curve in TpS such that V (0) = 0 and V̇ (0) = V . Since TpS is a vector space
where multiplication by a scalar makes sense, we can choose V (t) := tV . Thus

[D expp]0(V ) =
d

dt
expp(tV )

∣∣∣∣
t=0

= V (1)

again by definition of the exponential map as the unique geodesic γ(t) := expp(tV ) with γ(0) = p
and γ̇(0) = V . But (??) states exactly that [D expp]0 = id .

The consequence of this result follows from the inverse function theorem, which states that if the
differential of a map is invertible then the map itself is a local diffeomorphism. Thus expp : TpS → S
is a local diffeomorphism. This means that there is a radius R so that the ball of radius R about
the origin in TpS maps diffeomorphically (smoothly, bijectively, with smooth inverse) onto a subset
B ⊆ S containing p. We call B a normal neighbourhood of p.

Another way to say this is: we can use expp : BR(0) ⊆ TpS → B ⊆ S to parametrize a portion
of S, namely the normal neighbourhood B, from a portion of the tangent plane TpS, namely BR(0).

3. The Gauss Lemma

We can ask what happens to inner products of vectors under [D expp]. The result is known as the
Gauss Lemma. The set-up is best visualized by picture — see Figure ??.

Lemma. Let v, w ∈ Tv(TpS). Then
〈
[D expp]v(v), [D expp]v(w)

〉
= 〈v, w〉.



Figure 1: The quantities appearing in the statement of the Gauss Lemma. The white page repre-
sents the surface S, the rectangle represents TpS and the curve represents the geodesic t 7→ expp(tv).

Proof. Since [D expp]v is a linear map, it is sufficient to split w = w‖ + w⊥ into a component w‖

parallel to v and a component w⊥ perpendicular to v, and then to prove the Gauss Lemma separately
for w‖ and w⊥. Moreover, it is sufficient to take w‖ = v. In summary, thanks to linearity, we have to
prove only two things:

〈
[D expp]v(v), [D expp]v(v)

〉
= 〈v, v〉 and

〈
[D expp]v(v), [D expp]v(w

⊥)
〉

= 0.

Also, we’re going to use the definition of the differential of a map F as [DF ]x(V ) := d
dεF (c(ε))

∣∣
ε=0

where c is any curve satisfying c(0) = x and ċ(0) = X.

For the first calculation, we use the definition of the differential of a map to write [D expp]v(v) =
d
ds expp((1 + s)v)

∣∣
s=0

which equals d
dt expp(tv)

∣∣
t=1

just by changing variables t = 1 + s. Therefore

〈
[D expp]v(v), [D expp]v(v)

〉
=

〈
d

dt
expp(tv),

d

dt
expp(tv)

〉∣∣∣∣
t=1

= 〈γ̇(1), γ̇(1)〉

where γ(t) := expp(tv) is the geodesic through p with γ̇(0) = v. We evaluate this inner product

indirectly as follows. Note that d
dt〈γ̇(t), γ̇(t)〉 = 2〈γ̈(t), γ̇(t)〉 = 0 for all t. This is because γ satisfies

the geodesic equation (the inner product of γ̈ — which equals ~kγ because γ is parametrized by a
constant multiple of arc-length by definition — with any tangential vector vanishes!) Therefore
〈γ̇(t), γ̇(t)〉 is constant. This implies that 〈v, v〉 = 〈γ̇(0), γ̇(0)〉 = 〈γ̇(1), γ̇(1)〉 as required.

Next we tackle the second calculation. The principle is the same, but we have to be a bit more
clever. Define the function f(s, t) := expp(tv(s)) where v(s) is a curve in TpS satisfying v(0) = v
and v̇(0) = w where v ⊥ w. Moreover, since any curve will do, and since all we really care about
is the v ⊥ w, we can choose v(s) so that ‖v(s)‖ is constant. (This works because ‖v(s)‖ = const
implies 〈v, w〉 = 〈v, dvds 〉 = 1

2
d
ds‖v(s)‖2 = 0.) See Figure ??.

By definition of the exponential of a map (think about this!), we can say〈
[D expp]v(v), [D expp]v(w

⊥)
〉

=

〈
∂f

∂t
,
∂f

∂s

〉∣∣∣∣
t=1
s=0

Since we don’t know what this is, we proceed indirectly as above:

∂

∂t

〈
∂f

∂t
,
∂f

∂s

〉
=

〈
∂2f

∂t2
,
∂f

∂s

〉
+

〈
∂f

∂t
,
∂2f

∂t∂s

〉
=

〈
∂2f

∂t2
,
∂f

∂s

〉
+

〈
∂f

∂t
,
∂2f

∂s∂t

〉
=

〈
∂2f

∂t2
,
∂f

∂s

〉
+

1

2

∂

∂s

〈
∂f

∂t
,
∂f

∂t

〉



=

〈
∂2f

∂t2
,
∂f

∂s

〉
+

1

2

∂

∂s
‖v(s)‖2

= 0

for two reasons: the first term vanishes because the geodesic equation for the curve t 7→ expp(tv(s))

says that its second derivative is perpendicular to any tangent vector of S, in particular to ∂f
∂s ; the

second term vanishes because ‖v(s)‖ is constant. Consequently,
〈∂f
∂t ,

∂f
∂s

〉
is constant in t and so

〈
[D expp]v(v), [D expp]v(w

⊥)
〉

=

〈
∂f

∂t
,
∂f

∂s

〉∣∣∣∣
t=1
s=0

=

〈
∂f

∂t
,
∂f

∂s

〉∣∣∣∣
t=0
s=0

= 0

as required. The Gauss Lemma is thus proved!

Figure 2: The red lines shown in TpS are the curves s 7→ tV (s) for three values of t, including
t = 1. W.l.o.g. we can make them concentric circles. Their images under expp are shown passing
through expp(V ) as well.

4. Geodesics Locally Minimize Length

We can now prove the main theorem of the lecture.

Theorem 1. Geodesics locally minimize length: if γ is a sufficiently short geodesic and c is a curve
with the same endpoints as γ, then Length(γ) ≤ Length(c) with equality if and only if γ = c.

Proof. Suppose that γ is so short that it is fully contained inside a normal neighbourhood of its start-
ing point p := γ(0). We can also assume that c is contained inside this neighbourhood (otherwise c
would be longer than γ because the length of γ is less than the radius of this neighbourhood while
the length of the part of c between c(0) and the point where c leaves this neighbourhood is larger.)
Since expp is a diffeomorphism on this neighbourhood, we can uniquely write c(s) := expp(r(s)v(s))
for some curve of unit vectors v(s) and distance function r(s). Note that r(1) = Length(γ) and
r(0) = 0. See Figure ??.

In the notation of the Gauss Lemma, c(s) = f(s, r(s)). Now we differentiate to find the tangent
vector of c:

dc

ds
=
∂f

∂s
+
∂f

∂t
◦ (r(s))

dr

ds
.

Then we integrate to find the arc-length of c:

Length(c) =

ˆ 1

0
‖ċ(s)‖ds



=

ˆ 1

0

√〈
∂f

∂s
+
∂f

∂t
◦ (r(s))ṙ(s),

∂f

∂s
+
∂f

∂t
◦ (r(s))

dr

ds

〉
ds

=

ˆ 1

0

√∥∥∥∥∂f∂s
∥∥∥∥2 + |ṙ(s)|2 ds

because
〈∂f
∂t ,

∂f
∂s

〉
= 0 by the Gauss Lemma and

∥∥∂f
∂t

∥∥ = 1 by definition. But now,

Length(c) =

ˆ 1

0

√∥∥∥∥∂f∂s
∥∥∥∥2 + |ṙ(s)|2 ≥

ˆ 1

0
ṙ(s) ds = r(1)− r(0) = Length(γ) .

If equality holds here, then it must be the case that ∂f
∂s = 0 everywhere, in which case c is a

monotone reparametrization of γ.

Figure 3: The picture of γ and c pulled back under expp into TpS, and the quantities appearing in
the proof of Theorem 1. Note that γ pulls back to a straight line!


