
CS 468 (Spring 2013) — Discrete Differential Geometry

Lectures 4 and 5: Surfaces

Reminder: the differential of a function.

• The tangent space of Rn at p, denoted TpRn. Tangent vectors of curves.

• The differential of f : Rn → Rm at p is the matrix Dfp ∈ Rm×n with components ∂f i

∂xj
.

• Interpretation as a linear mapping Dfp : TpRn → Tf(p)Rm. Image of curves and their tangent
vectors. Let c : I → Rn be a curve with c(0) = p and ċ(0) = Xp. Then
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• The rank of Dfp. Injectivity and surjectivity.

• Qualitative picture of a map of locally constant rank. Let f : Rn → Rm.

– If Dfp is injective for all p ∈ Ω ⊆ Rn then we must have n ≤ m and we can “modify” f
as follows: there exist smooth bijections with smooth inverses (a.k.a. diffeomorphisms)
φ : Rn → Rn and ψ : Rm → Rm (actually defined on suitable open sets of Ω and f(Ω))
so that the map f̃ := ψ ◦ f ◦ φ−1 has the form

f̃(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0)

for all x := (x1, . . . , xn) in the domain of φ.

– If Dfp is surjective for all p ∈ Ω ⊆ Rn then we must have n ≥ m and a similar
modification of f has the form

f̃(x1, . . . , xm, xm+1, . . . , xn) = (x1, . . . , xm)

for all x := (x1, . . . , xn) in the domain of φ. Note that f̃ can be many-to-one since, for
instance, we have f̃−1(0) = {(0, . . . , 0, xm+1, . . . , xn) : xi ∈ R for each i}.

– If Dfp is bijective for all p ∈ Ω ⊆ Rn then we must have n = m and a similar modification
of f has the form

f̃(x1, . . . , xn) = (x1, . . . , xn)

for all x := (x1, . . . , xn) in the domain of φ. Note that f̃ and thus f are locally bijective.

– If Dfp has rank k for all p ∈ Ω ⊆ Rn then we must have k ≤ min(n,m) and a similar
modification of f has the form

f̃(x1, . . . , xn) = (x1, . . . , xk, 0, . . . , 0)

for all x := (x1, . . . , xn) in the domain of φ.

• Proofs are based on the inverse and implicit function theorems.

InvFT. If f : Rn → Rn is smooth with Dfp bijective, then f is invertible on a neighbourhood
of p. Note that Dfp is bijective at p if and only if det(Dfp) 6= 0. This is an open condition
so we actually obtain a stronger result than above.

ImpFT. If F : Rk × Rn → Rn is smooth with D1F(p,q) bijective and F (p, q) = 0, then the
equation F (x, y) = 0 can be solved for points (x, y) near (p, q) in the following sense. There
exists a function g : Rk → Rn defined in a neighbourhood of q giving us y = g(x) for which
q = g(p) and also F (x, g(x)) = 0. Note that we can compute Dgx in terms of D1F(x,g(x)) and
D2F(x,g(x)). Example: F (x, y, z) = x2 + y2 + z2 − 1.



Three kinds of surfaces.

• Common representations of surfaces in R3.

• Graphs of functions f : R2 → R. Examples: planes, upper hemisphere.

• Level sets of functions F : R3 → R. Examples: the whole sphere. Conic sections. Graphs as
the zero level set of F (x, y, z) := z − f(x, y). Writing a level set as a graph — when this is
possible, and the relation to ImpFT.

• Parametric surfaces σ : U → R3 where U ⊆ R2 is an open domain in the plane and σ(u1, u2) :=
(σ1(u1, u2), σ2(u1, u2), σ3(u1, u2)). Examples: sphere, torus. Graphs as parametrized surfaces
(x, y) 7→ (x, y, f(x, y)). Relation with level sets: F (σ(u)) = const for all u ∈ U .

• Suppose you come across a surface in R3, what representation do you choose to describe it
mathematically? Each representation has its limitations.

– Not every surface is a graph.

– How do you find a level set function? Or if you know the level set function, how do
you solve it? You have to solve equations! E.g. if F (x, y, z) = 0 you need to extract
z = g(x, y) with the property that F (x, y, g(x, y)) = 0.

– In general only part of a surface can be nicely parametrized. Non-uniqueness.

The definition of a surface.

• We would like a definition of a surface that as independent of representation as possible. The
method of choice is: local parametrizations.

• A a set of points S ⊂ R3 is a regular surface if for each p ∈ S there exists an open neigh-
bourhood V ⊆ R3 containing p, an open neighbourhood U ⊆ R2 and a parametrization
σ : U → V ∩ S such that:

1. σ = (σ1, σ2, σ3) is differentiable (i.e. each σi : U → R is a smooth function).

2. σ is invertible (as a map from the parameter domain onto its image) with continuous
inverse. I.e. there is a function σ−1 : V ∩ S → U such that σ ◦ σ−1 = idV ∩S and
σ−1 ∩ σ = idU ; and also σ−1 is the restriction to V ∩ S of a continuous function on an
open neighbourhood W ⊆ R3 containing V ∩ S onto U .

3. For every q ∈ U , the differential Dσq is injective.

• Proof that the sphere is a regular surface by writing it as the union of six graphs over the
coordinate planes. What happens at the edges of the coordinate charts?

• Another example where the coordinates are differentiable at q but Dσq is non-injective: the
sphere in polar coordinates.

• Example: graphs are regular surfaces.

• Example: inverse images of a regular values are regular surfaces, again is based on the ImpFT.

– Here we have F (p) = 0 and DFp 6= 0 meaning ∃ i so that ∂F (p)
∂xi
6= 0.

– W.l.o.g. i = n so we get from the ImpFT the local solution xn = g(x1, . . . , xn−1, ) so
that F (x1, . . . , xn−1, g(x1, . . . , xn−1)) = 0.

– Now F−1(0) near p projects down onto an open set U in the (x1, . . . , xn−1)-plane and
is equal to the graph {(x1, . . . , xn−1, g(x1, . . . , xn−1)) : (x1, . . . , xn−1) ∈ U}. Thus it’s a
surface!



Geometry versus topology.

• Explain this dichotomy.

• Euler characteristic.

The tangent space of a surface.

• Curves in a surface. The coordinate curves. Tangent vectors to a surface.

• Let σ : U ⊆ R2 → V ∩ S ⊆ R3 be a parametrization of a subset of a surface S and let p ∈ S
such that p = σ(u) for some u ∈ U . The tangent plane TpS defined as Image(Dσu) ⊆ Tσ(u)R3.

• The previous definition depends on the parametrization σ. What if we change parametriza-
tions? Do we get the same tangent space? Yes we do! Do change-of-parameters calculation.

• This is an example of a general principle of differential geometry: to define a geometric concept
such as the tangent plane rigorously, we can use a parametrization; but then we must show
independence of the particular parametrization chosen.

• Basis for the tangent space. This is NOT a geometric concept.

• Tangent space of a graph and of a level set.


