CS 468 (Spring 2013) - Discrete Differential Geometry

Lectures 4 and 5: Surfaces

Reminder: the differential of a function.

- The tangent space of \mathbb{R}^{n} at p, denoted $T_{p} \mathbb{R}^{n}$. Tangent vectors of curves.
- The differential of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ at p is the matrix $D f_{p} \in \mathbb{R}^{m \times n}$ with components $\frac{\partial f^{i}}{\partial x^{j}}$.
- Interpretation as a linear mapping $D f_{p}: T_{p} \mathbb{R}^{n} \rightarrow T_{f(p)} \mathbb{R}^{m}$. Image of curves and their tangent vectors. Let $c: I \rightarrow \mathbb{R}^{n}$ be a curve with $c(0)=p$ and $\dot{c}(0)=X_{p}$. Then

$$
\left.\frac{d}{d t} f(c(t))\right|_{t=0}=\left(\ldots,\left.\sum_{i} \frac{\partial f^{j}}{\partial x^{i}} \circ c(t) \frac{d c^{i}(t)}{d t}\right|_{t=0}, \ldots\right)=D f_{p} \cdot X_{p}
$$

- The rank of $D f_{p}$. Injectivity and surjectivity.
- Qualitative picture of a map of locally constant rank. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
- If $D f_{p}$ is injective for all $p \in \Omega \subseteq \mathbb{R}^{n}$ then we must have $n \leq m$ and we can "modify" f as follows: there exist smooth bijections with smooth inverses (a.k.a. diffeomorphisms) $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $\psi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ (actually defined on suitable open sets of Ω and $f(\Omega)$) so that the map $\tilde{f}:=\psi \circ f \circ \phi^{-1}$ has the form

$$
\tilde{f}\left(x^{1}, \ldots, x^{n}\right)=\left(x^{1}, \ldots, x^{n}, 0, \ldots, 0\right)
$$

for all $x:=\left(x^{1}, \ldots, x^{n}\right)$ in the domain of ϕ.

- If $D f_{p}$ is surjective for all $p \in \Omega \subseteq \mathbb{R}^{n}$ then we must have $n \geq m$ and a similar modification of f has the form

$$
\tilde{f}\left(x^{1}, \ldots, x^{m}, x^{m+1}, \ldots, x^{n}\right)=\left(x^{1}, \ldots, x^{m}\right)
$$

for all $x:=\left(x^{1}, \ldots, x^{n}\right)$ in the domain of ϕ. Note that \tilde{f} can be many-to-one since, for instance, we have $\tilde{f}^{-1}(0)=\left\{\left(0, \ldots, 0, x^{m+1}, \ldots, x^{n}\right): x^{i} \in \mathbb{R}\right.$ for each $\left.i\right\}$.

- If $D f_{p}$ is bijective for all $p \in \Omega \subseteq \mathbb{R}^{n}$ then we must have $n=m$ and a similar modification of f has the form

$$
\tilde{f}\left(x^{1}, \ldots, x^{n}\right)=\left(x^{1}, \ldots, x^{n}\right)
$$

for all $x:=\left(x^{1}, \ldots, x^{n}\right)$ in the domain of ϕ. Note that \tilde{f} and thus f are locally bijective.

- If $D f_{p}$ has rank k for all $p \in \Omega \subseteq \mathbb{R}^{n}$ then we must have $k \leq \min (n, m)$ and a similar modification of f has the form

$$
\tilde{f}\left(x^{1}, \ldots, x^{n}\right)=\left(x^{1}, \ldots, x^{k}, 0, \ldots, 0\right)
$$

for all $x:=\left(x^{1}, \ldots, x^{n}\right)$ in the domain of ϕ.

- Proofs are based on the inverse and implicit function theorems.

InvFT. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is smooth with $D f_{p}$ bijective, then f is invertible on a neighbourhood of p. Note that $D f_{p}$ is bijective at p if and only if $\operatorname{det}\left(D f_{p}\right) \neq 0$. This is an open condition so we actually obtain a stronger result than above.

ImpFT. If $F: \mathbb{R}^{k} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is smooth with $D_{1} F_{(p, q)}$ bijective and $F(p, q)=0$, then the equation $F(x, y)=0$ can be solved for points (x, y) near (p, q) in the following sense. There exists a function $g: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ defined in a neighbourhood of q giving us $y=g(x)$ for which $q=g(p)$ and also $F(x, g(x))=0$. Note that we can compute $D g_{x}$ in terms of $D_{1} F_{(x, g(x))}$ and $D_{2} F_{(x, g(x))}$. Example: $F(x, y, z)=x^{2}+y^{2}+z^{2}-1$.

Three kinds of surfaces.

- Common representations of surfaces in \mathbb{R}^{3}.
- Graphs of functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Examples: planes, upper hemisphere.
- Level sets of functions $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$. Examples: the whole sphere. Conic sections. Graphs as the zero level set of $F(x, y, z):=z-f(x, y)$. Writing a level set as a graph - when this is possible, and the relation to ImpFT .
- Parametric surfaces $\sigma: U \rightarrow \mathbb{R}^{3}$ where $U \subseteq \mathbb{R}^{2}$ is an open domain in the plane and $\sigma\left(u^{1}, u^{2}\right):=$ $\left(\sigma^{1}\left(u^{1}, u^{2}\right), \sigma^{2}\left(u^{1}, u^{2}\right), \sigma^{3}\left(u^{1}, u^{2}\right)\right)$. Examples: sphere, torus. Graphs as parametrized surfaces $(x, y) \mapsto(x, y, f(x, y))$. Relation with level sets: $F(\sigma(u))=$ const for all $u \in U$.
- Suppose you come across a surface in \mathbb{R}^{3}, what representation do you choose to describe it mathematically? Each representation has its limitations.
- Not every surface is a graph.
- How do you find a level set function? Or if you know the level set function, how do you solve it? You have to solve equations! E.g. if $F(x, y, z)=0$ you need to extract $z=g(x, y)$ with the property that $F(x, y, g(x, y))=0$.
- In general only part of a surface can be nicely parametrized. Non-uniqueness.

The definition of a surface.

- We would like a definition of a surface that as independent of representation as possible. The method of choice is: local parametrizations.
- A a set of points $S \subset \mathbb{R}^{3}$ is a regular surface if for each $p \in S$ there exists an open neighbourhood $V \subseteq \mathbb{R}^{3}$ containing p, an open neighbourhood $U \subseteq \mathbb{R}^{2}$ and a parametrization $\sigma: U \rightarrow V \cap S$ such that:

1. $\sigma=\left(\sigma^{1}, \sigma^{2}, \sigma^{3}\right)$ is differentiable (i.e. each $\sigma^{i}: U \rightarrow \mathbb{R}$ is a smooth function).
2. σ is invertible (as a map from the parameter domain onto its image) with continuous inverse. I.e. there is a function $\sigma^{-1}: V \cap S \rightarrow U$ such that $\sigma \circ \sigma^{-1}=i d_{V \cap S}$ and $\sigma^{-1} \cap \sigma=i d_{U}$; and also σ^{-1} is the restriction to $V \cap S$ of a continuous function on an open neighbourhood $W \subseteq \mathbb{R}^{3}$ containing $V \cap S$ onto U.
3. For every $q \in U$, the differential $D \sigma_{q}$ is injective.

- Proof that the sphere is a regular surface by writing it as the union of six graphs over the coordinate planes. What happens at the edges of the coordinate charts?
- Another example where the coordinates are differentiable at q but $D \sigma_{q}$ is non-injective: the sphere in polar coordinates.
- Example: graphs are regular surfaces.
- Example: inverse images of a regular values are regular surfaces, again is based on the ImpFT.
- Here we have $F(p)=0$ and $D F_{p} \neq 0$ meaning $\exists i$ so that $\frac{\partial F(p)}{\partial x^{i}} \neq 0$.
- W.l.o.g. $i=n$ so we get from the ImpFT the local solution $x^{n}=g\left(x^{1}, \ldots, x^{n-1}\right.$, $)$ so that $F\left(x^{1}, \ldots, x^{n-1}, g\left(x^{1}, \ldots, x^{n-1}\right)\right)=0$.
- Now $F^{-1}(0)$ near p projects down onto an open set U in the (x^{1}, \ldots, x^{n-1})-plane and is equal to the graph $\left\{\left(x^{1}, \ldots, x^{n-1}, g\left(x^{1}, \ldots, x^{n-1}\right)\right):\left(x^{1}, \ldots, x^{n-1}\right) \in U\right\}$. Thus it's a surface!

Geometry versus topology.

- Explain this dichotomy.
- Euler characteristic.

The tangent space of a surface.

- Curves in a surface. The coordinate curves. Tangent vectors to a surface.
- Let $\sigma: U \subseteq \mathbb{R}^{2} \rightarrow V \cap S \subseteq \mathbb{R}^{3}$ be a parametrization of a subset of a surface S and let $p \in S$ such that $p=\sigma(u)$ for some $u \in U$. The tangent plane $T_{p} S$ defined as $\operatorname{Image}\left(D \sigma_{u}\right) \subseteq T_{\sigma(u)} \mathbb{R}^{3}$.
- The previous definition depends on the parametrization σ. What if we change parametrizations? Do we get the same tangent space? Yes we do! Do change-of-parameters calculation.
- This is an example of a general principle of differential geometry: to define a geometric concept such as the tangent plane rigorously, we can use a parametrization; but then we must show independence of the particular parametrization chosen.
- Basis for the tangent space. This is NOT a geometric concept.
- Tangent space of a graph and of a level set.

