
Distributed Rendering for Scalable Displays

Greg Humphreys Ian Buck Matthew Eldridge Pat Hanrahan

Computer Science Department
Stanford University

Abstract

We describe a novel distributed graphics system that allows an ap-
plication to render to a large tiled display. Our system, called
WireGL, uses a cluster of off-the-shelf PCs connected with a high-
speed network. WireGL allows an unmodified existing application
to achieve scalable output resolution on such a display. This paper
presents an efficient sorting algorithm which minimizes the network
traffic for a scalable display. We will demonstrate that for most
applications, our system provides scalable output resolution with
minimal performance impact.

Keywords: Remote Graphics, Cluster Rendering, Tiled Displays,
Distributed Rendering

1 Introduction

Modern supercomputers have allowed the scientific community to
generate simulation datasets at sizes which were not feasible in pre-
vious years. The ability to efficiently visualize such large, dynamic
datasets on a high-resolution display is a desirable capability for
researchers. However, the display resolution offered by today’s
graphics hardware is typically not sufficient to visualize these large
datasets. Large format displays such as the PowerWall [12] and
CAVE [4] support resolutions well beyond the common desktop
but are limited in their scalability. The work presented in this pa-
per provides a scalable display technology which decouples output
resolution from rendering performance. This offers a solution for
effectively visualizing large and dynamic datasets by constructing a
system that complements the large compute power from which the
data was generated.

Previous attempts to solve the resolution challenge have faced a
number of limitations. One method is to provide a parallel com-
puter (e.g, SGI Origin2000) with extremely high-end graphics ca-
pabilities (e.g, SGI InfiniteReality). This approach is limited by the
number of graphics accelerators that can fit in one computer and is
often prohibitively expensive, potentially costing many millions of
dollars. At the other end of the spectrum are clusters of worksta-
tions, each with a fast graphics accelerator. Most previous efforts to
allow fast rendering on clusters have dealt with static data and could
not handle dynamic scenes or time-varying visualizations. Other
systems require the use of a custom graphics API to achieve scal-
able rendering, meaning that existing applications must be ported
to the API in order to use the system.

The WireGL project at Stanford is researching the systems as-
pects of high-performance remote rendering. We hope to provide a
graphics system that allows the user to render to a tiled display with
none of the aforementioned limitations. Our goals are as follows:

• Provide a scalable display solution. For most graphics ap-
plications, we can scale the resolution of the output display

{humper|ianbuck|eldridge|hanrahan}@graphics.stanford.edu

0-7803-9802-5/2000/$10.00 c©2000 IEEE.

without affecting the performance of the application.

• Each node within the system should be inexpensive. We use
commodity PC graphics cards like the NVIDIA GeForce2
GTS, each of which costs less than $300 and offers per-
formance comparable to or faster than high-end workstation
graphics.

• Support an immediate-mode API like OpenGL rather than re-
quiring a static scene description. By not requiring the appli-
cation to describe its scene a priori, we enable more dynamic,
interactive visualizations.

• Finally, support existing, unmodified applications on a variety
of host systems. This relieves the programmer from having to
learn a new graphics API or system architecture to take advan-
tage of scalable displays. This also allows non-programmers
to use new display technology with their existing applications.

2 Related Work

The WireGL project grew out of Stanford’s Interactive Mural
group, which described techniques for treating a physically disjoint
set of displays as a single logical display, as well as algorithms
for efficiently sharing the display between a number of applica-
tions [6]. WireGL retains many of the techniques and metaphors
present in our original system but with an emphasis on performance
rather than interaction techniques. The major systems advancement
of WireGL over previous work at Stanford is the transition from
SGI InfiniteReality based tiled displays to a PC cluster approach.
This dramatically improves the scalability of our system, allowing
the system to scale to hundreds of nodes without becoming pro-
hibitively expensive.

Due to the relatively recent appearance of networks with a giga-
bit or more of bandwidth, most previous attempts at rendering over
a network have not been focused on high-performance rendering.
In fact, remote rendering has historically been an antonym of fast
rendering. GLX [13] and X Windows [11] both provide remote ren-
dering capabilities, but neither was designed to operate efficiently
over very high-speed networks. WireGL introduces new techniques
for data management and distribution to make effective use of to-
day’s high-speed networks.

Much research has been done on systems for large display walls,
such as the PowerWall [12] and the InfinityWall [5]. However,
many of these systems require that each display component of the
wall be connected to a large SMP system. WireGL works well with
a cluster of workstations, which significantly reduces the total cost
of the display wall. Also, other solutions often require the use of
a custom API, which may limit the abilities of the graphics sys-
tem [15].

Rendering on clusters of workstations is not a new idea. Many
of the studies done on load-balancing graphics with clusters have
typically focused on scene-graph based applications [14]. Since the
scene-graph data is typically static, it can be distributed to the clus-
ter before rendering. However, one of the main goals of WireGL

is to support dynamic scenes which cannot be represented with a
fixed scene-graph.

Sorting algorithms for computer graphics [3] have been explored
by many different graphics architectures. Mueller presents a par-
allel graphics architecture using a sort-first algorithm which takes
advantage of frame-to-frame coherence of scenes [10]. The dis-
play wall group at Princeton explored a load-balancing algorithm
which combines sorting of primitives with routing pixel data over
the cluster network [14]. Our system differs from previous research
in this area in that it presents a sort-first algorithm which works with
immediate-mode rendering; It is designed to work with an arbitrary
stream of graphics commands and no prior knowledge of the scene
to be rendered.

3 System Architecture

WireGL provides the familiar OpenGL API [13] to users of our
tiled graphics system. OpenGL is a graphics API for specifying
polygonal scenes and imagery to be rendered on a display. WireGL
is implemented as a driver that stands in for the system’s OpenGL
driver so applications can render to a tiled display without modifi-
cation. The WireGL driver is responsible for sending commands to
the graphics servers which will do the rendering on the client’s be-
half. A diagram of our system is shown in figure 1. The rendering
servers form a cluster of PCs, each with its own graphics acceler-
ator. The output of each server is connected to a projector which
projects onto a common screen. These projectors are configured
into a tiled array so that their outputs produce a single large image.

The client and servers are connected via a high-speed network.
Our current installation uses Myrinet [1], but WireGL is not bound
to a specific network technology. As long as the network can sup-
port basic message passing, our system can easily be modified to
support it. WireGL runs on TCP/IP and shared memory in addi-
tion to Myrinet GM, and a VIA port is in progress. WireGL also
makes no assumptions about the graphics hardware present in the
client or the server. Since the servers simply make calls to their na-
tive OpenGL driver, the graphics card can be upgraded without any
changes to WireGL. Also, the system is largely OS independent.
Only a small set of functions that connect OpenGL to the window
system vary on each platform.

In order to send the client’s OpenGL calls to the servers most
efficiently, WireGL needs a network protocol that is compact and
straightforward to encode. Given such a protocol, we must also
manage the total amount of data sent to each server. To avoid un-
necessarily retransmitting data to multiple servers, we use a combi-
nation of geometry bucketing and state tracking. These tools allow
us to send to each server a subset of the application’s commands
necessary for it to render its portion of the display.

3.1 Network Protocol

In an immediate-mode graphics API like OpenGL, each vertex is
specified by an individual function call. In scenes with significant
geometric complexity, an application can perform many millions of
such calls per frame and will be limited by the available network
bandwidth. Therefore, the amount of data required to represent the
function calls, as well as the amount of time required to construct
the network stream, will determine the overall throughput of the
system. Likewise, the time required to unpack the network com-
mands also directly affects our overall performance.

Application

Win32/
XLib

WireGL

Graphics
Hardware

Rendering
Server

Graphics Hardware

Network

Rendering
Server

Graphics Hardware

Rendering
Server

Graphics Hardware

Projector

Projector

Rendering
Server

Graphics Hardware

Projector

Projector

Figure 1: Diagram of the system architecture. WireGL is imple-
mented as a graphics driver which intercepts the application’s calls
to the graphics hardware. WireGL then distributes the rendering to
multiple rendering servers. These servers are connected to projec-
tors which display the final output.

Our network stream representation keeps function arguments
naturally aligned. For example, float arguments are aligned on 4-
byte boundaries and short arguments are aligned on 2-byte bound-
aries. This is important on the Intel architecture because misaligned
reads cost 4 to 12 times as much as aligned reads [8]. On other ar-
chitectures, reading unaligned data requires manual shift and mask
operations.

By eliminating unnecessary OpenGL commands (e.g. by col-
lapsing glVertex3f and glVertex3fv), the remaining 224 com-
mands can be encoded using a single byte opcode. In most cases,
the type and number of arguments is implicit. For example, a
glVertex3f call will generate a 1 byte opcode and 12 bytes of
data for the three floating-point vertex coordinates. For functions
which require a variable length data field such as glTexImage2D,
the representation explicitly encodes the size of the arguments.

Because an opcode is a single byte, interleaving opcodes and
data would introduce up to 3 wasted padding bytes per function call.
By packing opcodes and data separately, we can avoid these wasted
bytes. For example, a glVertex3f call can be encoded in 13 bytes
instead of 16 bytes when opcodes and data are packed separately.
We avoid the overhead of sending the opcodes and data as two sep-
arate messages on the network by packing the opcodes backwards
in the same network buffer as the data, as shown in figure 2.

This simple network representation allows for fast packing and
unpacking of the graphics commands. In most cases, packing sim-
ply requires copying the function arguments to the data buffer and
writing the opcode. To unpack the commands on the server, the
opcode is used as an offset into a jump table. Each unpacking func-
tion reads its arguments from the data buffer and calls its corre-

glColor3b (R, G, B)

C
olor3b

V
ertex3f

G B X Y Z

opcodes data

glVertex3f(X, Y, Z)

R

(pad)

Figure 2: A packed network buffer. Each thin rectangle is one byte.
The data are packed in ascending order and the opcodes in reverse
order. A header applied to the network buffer before transmission
encodes the location of the split between opcodes and data. Only
the shaded area is actually transmitted.

sponding OpenGL function. In many cases, the explicit reading of
arguments can be avoided by using the function’s vector equivalent.
For example, a glVertex3f call on the client can be decoded as a
glVertex3fv call on the server.

3.2 Bucketing

In order to render a single graphics stream on multiple servers, the
OpenGL commands need to be transmitted to each server. One
simple solution would be to broadcast the commands to each server.
However, high-speed switched networks like Myrinet generally do
not support efficient broadcast communication. To build a system
which scales effectively, we must limit the data that is transmitted
to each server.

Because the WireGL driver manages the stream of OpenGL calls
as they are made, it can exploit properties of that stream to more
efficiently use the network. Ideally, we would like to send the mini-
mal number of commands to each server for it to properly render its
portion of the output. WireGL achieves this by sorting the geometry
specified by the application and sending each server only the geom-
etry which overlaps its portion of the output display space. Unlike
solutions that require a retained-mode scene-graph, the WireGL
driver has no advance knowledge of the scene being rendered.

As the application makes OpenGL calls, WireGL packs the com-
mands into a geometry buffer and tracks their 3D bounding box.
The bounding box represents the extent of the primitives in their
local Cartesian coordinate system. The cost of maintaining the ob-
ject space bounding box is low; only 6 conditional assignments
are needed for each vertex. When the network buffer is flushed,
WireGL applies a 3D transformation to that bounding box to com-
pute the screen extent of the buffer’s geometry. For each server
whose output area is overlapped by the transformed bounding box,
WireGL copies the packed geometry opcodes and data into that
server’s outgoing network buffer. These outgoing buffers are also
populated by the state tracking system, described in section 3.3.
Since geometry commands typically make up most of the OpenGL
commands made per frame, this method provides a significant im-
provement in total network traffic over simply broadcasting.

Ideally, WireGL should transmit each primitive to only those
servers whose managed area it overlaps, and only those primitives
that span multiple managed areas would be transmitted more than
once. However, performing bucketing on a per-primitive granular-
ity would be very costly, since bucketing requires multiple matrix
multiplications. Instead, we transform the bounding box only when
the packed geometry buffer is flushed, which amortizes the trans-

formation cost over many primitives.
The success of this algorithm relies on the spatial locality of suc-

cessive primitives. Many large scale visualization applications (e.g.
volume rendering) exhibit this behavior. These applications issue
millions of small, spatially coherent primitives. Given the small
primitive size, the resulting transformed bounding box is much
smaller than the screen extent of a projector to which it will be
sent. As a result, most bucketed geometry is only sent to a single
projector, as demonstrated in the results shown later.

Although bucketing is critical to achieving output scalability, it
is important to note that it does not allow us to scale the size of the
display forever. As the display gets bigger (that is, as we add more
projectors), the screen extent of a particular bounding box increases
relative to the area managed by each rendering server. As a result,
more primitives will be multiply transmitted, limiting the overall
scalability of the system.

3.3 State Tracking

OpenGL is a large state machine. State parameters (lighting pa-
rameters, fog settings, etc.) can be set at almost any time and will
persist until they are reset in the future. For example, instead of
specifying the color of each primitive as the primitive is issued, the
user sets the “current” color and then draws many primitives to ap-
pear in that color. This design has some advantages over stateless
graphics systems since the state does not need to be continually re-
transmitted to the graphics hardware.

State commands cannot be packed and bucketed immediately,
because they do not have any geometric extent and they may affect
future geometry which is destined for a different server. One solu-
tion would be to simply broadcast state commands to all rendering
servers, as proposed by Torborg [16]. Broadcasting state would
be less costly than broadcasting geometry since the state data usu-
ally comprise a much smaller portion of the total frame data. For
example, the OpenGL Atlantis demo issues 3,020 bytes of state
commands and 375,223 bytes of geometry data per frame. Despite
this difference of two orders of magnitude, broadcasted state traffic
could quickly overtake bucketed geometry traffic as the display gets
larger. Ideally, we would like a technique similar to bucketing for
state commands.

WireGL solves this problem by tracking the entire OpenGL state
of the application as well as the current state of each of the servers.
When a state call is made by the application, instead of packing
the call into its network representation, the WireGL driver merely
updates a data structure containing the application’s graphics state,
as shown in figure 3. When WireGL transmits a network buffer of
geometry commands, it first determines the overlapped servers as
described in section 3.2. For each server that the buffer overlaps,
WireGL then computes a difference between the application’s state
and the server’s state and transmits the minimal set of updates to the
server to synchronize it with the application. Once these differences
have been sent, the packed geometry can follow. The buffer man-
agement scheme used to achieve this behavior is shown in figure
4.

We can compute the difference between the application’s state
and a server’s state very quickly using a hierarchical scheme; in
practice the entire state tracking system occupies less than 10 per-
cent of the total frame time for any application. For a complete
description of the state tracking subsystem of WireGL, see Buck,
Humphreys and Hanrahan [2].

4 Results

We have built a 36-node cluster named “Chromium.” Chromium
consists of 32 rendering workstations and 4 control servers. Each
workstation contains dual Pentium III 800MHz processors and an

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glRotatef(30, 0, 0, 1);
glTranslatef(x, y, z);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA,
 GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_DEPTH_TEST);
glBegin(GL_TRIANGLES);
glVertex3f(x1, y1, z1);
glVertex3f(x2, y2, z2);
glVertex3f(x3, y3, z3);
glEnd();

Application Source Code

Vertex3f (1)
Vertex3f (2)

Begin

X1

Y1

Z1

X2

Y2

Z2

X3

Y3

Z3

Vertex3f (3)
End

GL_TRIANGLES

O
pcodes

D
at

a

Geometry Buffer

Tracked Application State

Current Matrix Mode

Current Projection Matrix

Current Modelview Matrix

Blending

Blend Function

Depth Test

Inside Begin/End

Geometry Bounding Box

GL_MODELVIEW

IDENTITY

R(30,0,0,1)*T(x,y,z)

ENABLED

GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA

ENABLED

NO

[x1,y2,z1 x3,y3,z2]

Figure 3: Packing and state tracking. The “tracked application state” boxes contain the complete OpenGL state of the running application.
Note that the OpenGL state is actually quite large; state elements not shown in this figure are assumed to be the OpenGL default. Once
the source code shown in the upper left has executed, the geometry buffer contains just the opcodes and data that appeared between the
glBegin/glEnd pair, while all other calls have recorded their effects into the state structure. When the geometry buffer is transmitted, it will
be preceded by the necessary commands to bring the rendering server’s state up to date with the tracked application state.

C
h
a
n
g
e
S
t
a
t
e
(
1
)

D
r
a
w
S
t
u
f
f
(
1
)
;

C
h
a
n
g
e
S
t
a
t
e
(
2
)
;

D
r
a
w
S
t
u
f
f
(
2
)
;

C
h
a
n
g
e
S
t
a
t
e
(
3
)
;

D
r
a
w
S
t
u
f
f
(
3
)
;

C
h
a
n
g
e
S
t
a
t
e
(
4
)
;

D
r
a
w
S
t
u
f
f
(
4
)
;

C
h
a
n
g
e
S
t
a
t
e
(
5
)
;

D
r
a
w
S
t
u
f
f
(
5
)
;

C
h
a
n
g
e
S
t
a
t
e
(
6
)
;

D
r
a
w
S
t
u
f
f
(
6
)
;

A
pp

lic
at

io
n

S
ou

rc
e

C
od

e
G

eo
m

et
ry

 B
uf

fe
r

S
ta

te
 4

T
ra

ck
ed

 A
pp

lic
at

io
n

S
ta

te

O
P

S
 (

4)

D
A

T
A

 (
4)

S
er

ve
r

1
B

uf
fe

r

S
T

A
T

E
(0

,3
)

S
T

A
T

E
(0

,3
)

G
E

O
M

 (
3)

G
E

O
M

 (
3)

S
er

ve
r

2
B

uf
fe

r

S
T

A
T

E
(0

,1
)

S
T

A
T

E
(0

,1
)

G
E

O
M

 (
1)

G
E

O
M

(1
)

S
T

A
T

E
(1

,2
)

S
T

A
T

E
(1

,2
)

G
E

O
M

(2
)

G
E

O
M

 (
2)

S
er

ve
r

3
B

uf
fe

r

S
ta

te
 3

S
er

ve
r

1
S

ta
te

S
ta

te
 2

S
er

ve
r

2
S

ta
te

D
E

F
A

U
LT

S
er

ve
r

3
S

ta
te

Fi
gu

re
4:

A
sn

ap
sh

ot
of

W
ir

eG
L

’s
bu

ff
er

m
an

ag
em

en
ts

ch
em

e.
G

eo
m

et
ry

co
m

m
an

ds
ar

e
pa

ck
ed

im
m

ed
ia

te
ly

in
to

th
e

ge
om

et
ry

bu
ff

er
.S

ta
te

co
m

m
an

ds
re

co
rd

th
ei

r
ef

fe
ct

in
to

th
e

cl
ie

nt
’s

tr
ac

ke
d

st
at

e
st

ru
ct

ur
e.

W
he

n
th

e
ge

om
et

ry
bu

ff
er

is
flu

sh
ed

,t
he

bo
un

di
ng

bo
x

of
th

e
ge

om
et

ry
bu

ff
er

is
us

ed
to

de
te

rm
in

e
w

hi
ch

se
rv

er
s

w
ill

ne
ed

to
re

ce
iv

e
th

e
ge

om
et

ry
da

ta
.N

ot
e

th
at

w
he

n
th

e
ap

pl
ic

at
io

n
ch

an
ge

s
st

at
e,

th
e

ge
om

et
ry

bu
ff

er
m

us
tb

e
flu

sh
ed

be
ca

us
e

th
at

st
at

e
ch

an
ge

w
ill

on
ly

ap
pl

y
to

su
bs

eq
ue

nt
ge

om
et

ry
,n

ot
to

al
re

ad
y

pa
ck

ed
ge

om
et

ry
.

T
he

or
de

ri
ng

se
m

an
tic

s
of

O
pe

nG
L

di
ct

at
e

th
at

ea
ch

su
ch

se
rv

er
m

us
tfi

rs
th

av
e

its
st

at
e

br
ou

gh
tu

p
to

da
te

be
fo

re
th

e
ge

om
et

ry
co

m
m

an
ds

ca
n

le
ga

lly
be

ex
ec

ut
ed

.
In

th
e

fig
ur

e,
ge

om
et

ry
bl

oc
ks

1
an

d
2

ha
ve

fa
lle

n
co

m
pl

et
el

y
on

se
rv

er
2,

so
th

os
e

da
ta

an
d

th
e

as
so

ci
at

ed
st

at
e

ch
an

ge
s

on
ly

ap
pe

ar
in

its
as

so
ci

at
ed

bu
ff

er
.

G
eo

m
et

ry
bl

oc
k

3
fa

lls
co

m
pl

et
el

y
on

se
rv

er
1.

N
ot

e
th

at
se

rv
er

3
ha

s
no

th
ad

an
y

ge
om

et
ry

fa
ll

on
its

m
an

ag
ed

ar
ea

,s
o

no
da

ta
ha

ve
be

en
se

nt
to

it,
an

d
its

st
at

e
is

fa
lli

ng
fu

rt
he

r
an

d
fu

rt
he

r
be

hi
nd

th
e

ap
pl

ic
at

io
n.

If
a

ge
om

et
ry

bl
oc

k
w

er
e

to
fa

ll
on

m
or

e
th

an
on

e
se

rv
er

,t
he

ge
om

et
ry

w
ou

ld
be

co
pi

ed
to

m
ul

tip
le

ou
tg

oi
ng

bu
ff

er
s.

T
he

ST
A

T
E

(A
,B

)b
lo

ck
s

re
pr

es
en

tt
he

op
co

de
s

an
d

da
ta

ne
ce

ss
ar

y
to

tr
an

si
tio

n
fr

om
st

at
e

A
to

st
at

e
B

.

Network No Bounding Box Bounding Box
Ideal 22.6 MVerts/sec 12.0 MVerts/sec

293.5 MB/sec 156.0 MB/sec
Myrinet 4.73 MVerts/sec 4.10 MVerts/sec
Synchronous 61.5 MB/sec 53.3 MB/sec
Myrinet 7.70 MVerts/sec 7.68 MVerts/sec
Asynchronous 100.1 MB/sec 99.8 MB/sec

Figure 5: Packing rates for WireGL. glVertex3f packing was
tested with an ideal network (infinite bandwidth) and Myrinet with
synchronous and asynchronous overlapped sends. The rates were
calculated with and without bounding box calculation.

NVIDIA GeForce2 GTS graphics accelerator. The cluster is con-
nected with a Myrinet network which provides a point-to-point ob-
served bandwidth of 100MB/sec using our software. Each work-
station outputs a 1024x768 resolution video signal, which can be
connected to a large tiled display.

In this section, we analyze both the base protocol performance
and the overall scalability of WireGL.

4.1 Protocol Performance

The overall performance of the WireGL software is directly related
to the speed at which OpenGL commands can be processed by the
system. To evaluate the speed of our implementation, we tested a
simple application which draws a finely tessellated cube. This ap-
plication was tested against three different network models: “Ideal”
assumes an infinite bandwidth network, “Myrinet Synchronous”
which performs a synchronous send using the Myrinet GM library,
and “Myrinet Asynchronous” which performs asynchronous over-
lapped sends. In order to evaluate the overhead of computing the
object-space bounding box, vertex rates were measured with and
without bounding box calculation. All experiments were performed
with a 1x1 tiled display configuration.

Figure 5 shows the results of these tests. On the ideal network,
WireGL is capable of packing 22.6 million vertices, or 293.5MB
per second (recall that each vertex occupies 13 bytes). This rate is
halved when bounding boxes are computed, due to the extra compu-
tation which is performed at each glVertex3f call. These packing
rates are at or above the observed peak bandwidths of high-speed
networks available today.

Using Myrinet, it is clear that we are limited by the bandwidth
of the network. The synchronous send model uses blocking sends
which wait until the packet is placed on the physical network be-
fore returning. As a result, the packing and bounding box calcu-
lation costs are not overlapped with the network send time. This
can be seen in the drop in packing rate when we maintain a bound-
ing box. With asynchronous sends, the packing of glVertex3f
calls, including the bounding box calculation, is overlapped with
the network transmission. The results show that the bounding box
calculation does not impact performance since we are limited by
the bandwidth of the network, not by the WireGL implementation.

4.2 Scalability

To demonstrate scalability, we tested our system with three different
applications:

• March extracts and renders an isosurface from a volumetric
data set, a typical scientific visualization task. Our dataset is
a 4003 volume, and the corresponding isosurface consists of
1,525,008 triangles.

1x1 2x1 2x2 4x2 4x4 8x4

Tile Configuration

0.0

0.5

1.0

N
et

w
or

k
E

ff
ic

ie
nc

y

Figure 6: The network efficiency of March. 1x1 rendering demon-
strates ideal efficiency since no geometry is transmitted more than
once. At 32 rendering nodes, the efficiency has dropped to 81% due
to overlapping geometry with more than one rendering server.

• Nurbs tessellates a set of patches into triangle strips. This ap-
plication is typical of higher level surface description applica-
tions used in animation. Our dataset consists of 102 patches,
with 1,800 triangles per patch, for a total of a 183,600 trian-
gles.

• Quake is the first person action game Quake III: Arena by Id
Software. Quake is essentially an architectural walk-through
with visibility culling, and its extensive use of OpenGL’s fea-
ture set stresses our implementation of WireGL.

Each application was run in six different tiled display configu-
rations: 1x1, 2x1, 2x2, 4x2, 4x4, and 8x4, shown in figure 7. To
quantify the cost of state tracking and bucketing, we repeated our
experiments in “broadcast mode”, which disables state tracking and
bucketing and broadcasts the application’s command stream to all
of the rendering servers.

March and Nurbs, shown in figure 7(a,b), clearly demonstrate
WireGL’s scalability. As we increase the output size of the dis-
play, WireGL achieves a nearly constant frame rate regardless of
the number of rendering servers. In comparison, the frame rate of
the broadcast method drops with every server added to the config-
uration, as expected. All of the geometry rendered by both March
and Nurbs is visible, so there is no benefit to bucketing when only
rendering to a single display. In fact, broadcast mode has slightly
better performance than WireGL when rendering to a 1x1 tiled dis-
play because it does not incur the overhead of state tracking and
maintaining the bounding box. However, as soon as we add a sec-
ond display WireGL quickly overtakes the broadcast method due to
its more efficient network usage.

Broadcasting commands to twice the number of servers halves
the rendering speed, as expected. For March, WireGL’s rate for
32 rendering servers only decreases by 13% from the single server
configuration, compared to broadcast, which runs 25 times slower.
WireGL’s performance decrease is due to a small number of geom-
etry primitives crossing multiple server outputs, resulting in addi-
tional transmissions of the geometry buffer. As with any scene that
covers the entire output area, a certain number of primitives will
need to be sent to multiple servers. In general, the slowdown for
broadcast will be proportional to the number of rendering servers,
while the slowdown for WireGL is proportional to the multiply
transmitted geometry for each application.

In order to understand the cost of geometry that overlaps multiple
projectors, we measured the network efficiency of WireGL on vari-
ous tiled display configurations. Network efficiency is defined to be
the ratio of data sent to a tiled display versus data sent to a 1x1 con-
figuration. As we add more tiles, primitives tend to overlap more

(a) March (b) Nurbs (c) Quake

1x1 2x1 2x2 4x2 4x4 8x4

Tile Configuration

0.0

0.5

1.0

R
el

at
iv

e
F

ra
m

er
at

e

Broadcast WireGL

1x1 2x1 2x2 4x2 4x4 8x4

Tile Configuration

0.0

0.5

1.0

R
el

at
iv

e
F

ra
m

er
at

e

Broadcast WireGL

1x1 2x1 2x2 4x2 4x4 8x4

Tile Configuration

0.0

0.5

1.0

R
el

at
iv

e
F

ra
m

er
at

e

Broadcast WireGL

Figure 7: Frame rate comparisons between WireGL and broadcast. The broadcast frame rate falls off quickly as expected, while WireGL’s
frame rate falls much more slowly. The more rapid falloff of Quake is due to larger primitive sizes, which need to be transmitted to many
servers. The actual frame rates for each application in the 1x1 broadcast configuration are 0.25, 4.93, and 48.1 frames per second, respectively.
The 8x4 configuration forms a 25 megapixel display.

projectors, and we expect the network efficiency to decrease be-
cause those primitives must be sent multiple times. Figure 6 shows
the network efficency for March. Note that this corresponds almost
exactly to the relative framerates shown in figure 7(a), as expected.

Quake, shown in figure 7(c) does not scale as well as the other
two examples, but WireGL still has a large advantage over broad-
cast. Quake makes use of complex textures rather than incorporat-
ing additional geometry to represent detail, and as a result, issues
many large polygons. These large polygons cause the network ef-
ficiency of Quake to suffer because they must be sent to more than
one server. Evidence of this can be seen in the larger configurations.

Furthermore, Quake has been optimized to minimize the num-
ber of OpenGL state changes by rendering all of the elements in
the scene with similar state configuration at the same time. While
this can significantly improve performance on conventional graph-
ics hardware, sorting by state can be detrimental to WireGL’s buck-
eting scheme, since geometry which has similar state does not nec-
essarily exhibit good spatial locality. We address this problem by
bucketing more frequently. Despite these limitations, figure 7(c)
clearly demonstrates that our system can still efficiently manage
Quake rendering and is superior to basic broadcasting.

5 Conclusions and Future Work

We have described WireGL, a system for providing output resolu-
tion scalability to unmodified OpenGL applications. We have been
using WireGL since 1999 to research novel interaction metaphors
for large format displays. We have demonstrated that output scala-
bility can be achieved by tracking graphics state and sorting geom-
etry into buckets. The key to performance when rendering remotely
is managing the data that is sent between machines, since the net-
work is (today) the slowest link in the entire system.

As the display is scaled larger, each individual graphics acceler-
ator in the cluster is receiving less of the scene, and each incoming
network link is getting less traffic. So while the overall performance
of the client application remains nearly constant, the efficiency of
each element in the cluster decreases. The natural next step in this
research is to address “input scalability.” If we could keep each
graphics and network card in the cluster busy, the total rendering
rate of an application would increase with the size of the cluster,
which is the ultimate goal of our research.

To achieve this, WireGL will incorporate the OpenGL parallel
API extensions proposed by Igehy, Stoll and Hanrahan [7], which
allow a node in a parallel application to express the ordering re-
quirements of its outgoing stream with respect to its peers’ streams.
We can then run parallel applications on the cluster, and each node
can submit its own portion of the total scene to be rendered. By

changing the communication from a one-to-many to a many-to-
many model, we hope to realize a fully scalable rendering system.
We have already incorporated a preliminary implementation of the
parallel API with promising results.

Once input scalability is in place, we intend to add dynamic con-
figurability to our cluster rendering solution. For example, depend-
ing on available network bandwidth and the nature of the data be-
ing rendered, it may be more efficient to render the stream locally
and transmit an image-based representation of the commands rather
than the commands themselves. We intend to add a layer of con-
figurability so that connections between graphics streams and their
various transformation engines (render, sort, extract image, com-
posite, etc.) can be easily expressed. An ideal system would be
able to choose these configurations automatically while the appli-
cation is running. For example, we had to instruct WireGL to sort
geometry more frequently to improve the performance of Quake in
figure 7(c); it would be desirable for WireGL to make such deci-
sions automatically based on the observed behavior of a running
application.

Acknowledgments

The authors would like to thank Chris Niederauer for his help in
setting up the Chromium cluster. This work was supported by US
Department of Energy contract B504665.

References

[1] Nanette Boden, Danny Cohen, Robert Felderman, Alan
Kulawik, Charles Seitz, Jakov Seizovic, and Wen-King Su.
Myrinet: A gigabit-per-second local area network. IEEE
Micro, pages 29–36, February 1995.

[2] Ian Buck, Greg Humphreys, and Pat Hanrahan. Tracking
graphics state for networked rendering. Proceedings of
SIGGRAPH/Eurographics Workshop on Graphics Hardware,
August 2000.

[3] Michael Cox, Steven Molnar, David Ellsworth, and Henry
Fuchs. A sorting classification of parallel rendering. IEEE
Computer Graphics and Algorithms, pages 23–32, July 1994.

[4] Caroline Cruz-Neira, Daniel J. Sandin, and Tom DeFanti.
Surround-screen projection-based virtual reality: The design
and implementation of the CAVE. Proceedings of
SIGGRAPH 93, pages 135–142, August 1993.

[5] M. Czernuszenko, D. Pape, D. Sandin, T. DeFanti, G. Dawe,
and M. Brown. The ImmersaDesk and InfinityWall
projection-based virtual reality displays. In Computer
Graphics, May 1997.

[6] Greg Humphreys and Pat Hanrahan. A distributed graphics
system for large tiled displays. IEEE Visualization ’99, pages
215–224, October 1999.

[7] Homan Igehy, Gordon Stoll, and Pat Hanrahan. The design
of a parallel graphics interface. Proceedings of SIGGRAPH
98, pages 141–150, July 1998.

[8] Intel Corporation. Intel Architecture Software Developer’s
Manual, chapter 14, pages 9–10. 1999.

[9] Mark Kilgard. OpenGL Programming for the X Window
System. Addison-Wesley, 1996.

[10] Carl Mueller. The sort-first rendering architecture for
high-performance graphics. 1995 Symposium on Interactive
3D Graphics, pages 75–84, 1995.

[11] Adrian Nye, editor. X Protocol Reference Manual. O’Reilly
& Associates, 1995.

[12] University of Minnesota. PowerWall.
http://www.lcse.umn.edu/research/powerwall/powerwall.html.

[13] OpenGL Architecture Review Board. OpenGL Reference
Manual: the Official Reference Document for OpenGL,
Release 1. Addison–Wesley, 1993.

[14] Rudrajit Samanta, Jiannan Zheng, Thomas Funkhouser, Kai
Li, and Jaswinder Pal Singh. Load balancing for
multi-projector rendering systems. Proceedings of
SIGGRAPH/Eurographics Workshop on Graphics Hardware,
pages 107–116, August 1999.

[15] Daniel R. Schikore, Richard A. Fischer, Randall Frank, Ross
Gaunt, John Hobson, and Brad Whitlock. High-resolution
multi-projector display walls and applications. IEEE
Computer Graphics Applications, July 2000.

[16] John G. Torborg. A parallel processor architecture for
graphics arithmetric operations. Proceedings of SIGGRAPH
87, pages 197–204, 1987.

