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Figure 1: The corona radiata. Our system uses dynamic queries to find structure in neural pathways suggested by MR tractography.

ABSTRACT

Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging
method that can be used to measure local information about the
structure of white matter within the human brain. Combining DTI
data with the computational methods of MR tractography, neurosci-
entists can estimate the locations and sizes of nerve bundles (white
matter pathways) that course through the human brain. Neurosci-
entists have used visualization techniques to better understand trac-
tography data, but they often struggle with the abundance and com-
plexity of the pathways. In this paper, we describe a novel set of
interaction techniques that make it easier to explore and interpret
such pathways. Specifically, our application allows neuroscientists
to place and interactively manipulate box-shaped regions (or vol-
umes of interest) to selectively display pathways that pass through
specific anatomical areas. A simple and flexible query language
allows for arbitrary combinations of these queries using Boolean
logic operators. Queries can be further restricted by numerical path
properties such as length, mean fractional anisotropy, and mean cur-
vature. By precomputing the pathways and their statistical proper-
ties, we obtain the speed necessary for interactive question-and-
answer sessions with brain researchers. We survey some questions
that researchers have been asking about tractography data and show
how our system can be used to answer these questions efficiently.
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1 INTRODUCTION

The brain is a massively interconnected organ. Individual neurons
in the cortex typically connect to between 1,000 and 10,000 nearby
neurons within the gray matter. The entire central core of the brain,
known as the white matter, comprises relatively large fiber tracts
that mediate communication between neurons at widely separated
locations. Until recently, scientists have had limited ability to mea-
sure these white matter connections in human brains.

Knowledge about these white matter connections should en-
hance our understanding of normal brain function. Such knowledge
should also help diagnose certain pathological disorders in patients.
For example, recent research has found white matter pathway syn-
dromes related to language deficits [13, 15, 7]. Furthermore, an un-
derstanding of white matter structure could help surgeons to avoid
damaging important pathways.

Motivated by such concerns, a new technology called Diffusion
Tensor Imaging (DTI) has emerged, providing a non-invasive way
to measure properties of white matter pathways. Based on magnetic
resonance imaging, DTI estimates the random diffusion of water
molecules within biological tissue. It is widely believed that water
diffuses fastest along the length of axons (rather than across their
boundaries), which suggests that the principle direction of diffu-
sion can be used to approximate the local orientation of nerve fiber
bundles.



The inherent complexity of the diffusion data has motivated a va-
riety of visualization algorithms designed to assist the researcher in
analysis. One class of techniques known as MR tractography seeks
to trace the principal direction of diffusion through the tensor field,
connecting points together into pathways (also referred to in other
literature as “fiber tracts”). As a visual representation, MR trac-
tography is well-suited to the problem of determining white matter
structure, since it implies possible anatomical connections between
the endpoints of the pathways.

The pathways produced by tractography do not represent indi-
vidual nerve fibers, nor do they represent bundles of these fibers.
Rather, these pathways are abstract representations of possible
routes through the white matter of the brain. While tractography
algorithms typically produce tens of thousands of pathways, neuro-
scientists now believe that there are tens of millions of white matter
nerve fibers grouped into hundreds of major fiber tracts. Never-
theless, the tractography estimates do have the potential to suggest
real neural connections, especially when there are additional data
to corroborate these estimates (e.g. from post-mortem dissections,
animal studies, functional magnetic resonance imaging, etc.)

Our key contribution is a new interaction technique to assist in
the exploration and identification of the pathways suggested by MR
tractography. We precompute the pathways and their statistical
properties and query the resulting database on-the-fly, allowing for
easy exploration of tractography results using a direct-manipulation
interface. We enable the specification and interactive manipula-
tion of box-shaped regions of interest within the brain, making
it possible to selectively display pathways that pass through spe-
cific anatomical regions. Querying by other path properties such as
length and average curvature allows the researcher to further limit
the data displayed simultaneously, making results more comprehen-
sible. This dynamic query approach enables researchers to answer
specific questions about brain connectivity with far less time or ef-
fort than is required by existing approaches.

2 RELATED WORK

A variety of techniques have emerged for the visualization of diffu-
sion tensor data. Methods based on visual abstractions of the ten-
sors have been used effectively to convey information about tensors
at local scales within the volume (see Westin et al. [26] for a sum-
mary). Direct volume rendering techniques [11, 12] provide views
of the larger trends in the data. These methods are not designed to
extract or visualize estimated white matter pathways.

More relevant to our purpose of estimating white matter connec-
tivity are MR tractography techniques that attempt to trace white
matter pathways from DTI data. Streamline tracking (STT) tech-
niques trace pathways by following the principle direction of diffu-
sion [16, 5, 3]. Mori et al. [16] developed the FACT algorithm, a
variable-step STT method that can change directions at the bound-
ary of each voxel. Conturo et al. [5] used a constant step size, while
Basser et al. [3] suggested dynamically adjusting the step size to ac-
count for pathway curvature. Lazar et al. [14] described the tensor-
deflection algorithm (TEND) based on previous work by Weinstein
[25]. TEND may provide more accuracy in reconstructing certain
anatomical features. Poupon et al. [19] developed a regulariza-
tion technique for improved tracking, and suggested ways to model
branching of nerve fiber bundles. Zhukov and Barr [28] have used
regularization based on assumptions of anatomical smoothness to
extract pathways in the presence of noisy data.

Many of these techniques have been criticized for their inability
to handle branching or represent uncertainty[2], but they have been
shown to be capable of recovering basic anatomical structures[28].
Zhang et al. [27] render the resulting pathways as streamtubes,
where the cross-section of the streamtube is determined by the two
smaller eigenvectors of the diffusion tensor. da Silva et al. [6] use

streamtubes to visualize differences between diffusion tensor data
sets, comparing both tractography algorithms and data sets from
multiple subjects.

Several groups have pointed out the potential value of filtering
MR tractography data, both for rendering efficiency and simplic-
ity of display. Zhang et al. [27] pre-filter streamtubes based on
length, average linear anisotropy, and distance separating neigh-
boring streamtubes. Conturo et al. [5] use volumetric regions of
interest to select pathways that connect anatomically or function-
ally defined regions. Wakana et al. [24] have combined region-of-
interest filters with AND, OR, and NOT operations to isolate par-
ticular neurological pathways. All three groups filter streamtubes
as a pre-processing step; unlike the present application, those ap-
plications do not describe an interactive filtering technique.

While there has been significant progress on DTI visualization
algorithms, surprisingly little has been written about interaction
techniques. Zhang et al. [27] have been displaying streamtubes in
a CAVE environment to explore the possibility that virtual reality
will help doctors to make diagnoses.

Our interactive software is based on the principles of direct ma-
nipulation [22, 10] and dynamic queries [1]. An important moti-
vation for our technique has been the development of recent meth-
ods for visual query and analysis. Hochheiser and Shneiderman [9]
showed the power and simplicity of a visual query approach for an-
swering specific questions about time-series data. By defining and
manipulating rectangular regions of interest within the data set, a
researcher could select quantities (e.g. stock prices) that followed
certain patterns of behavior over time. Our software can be seen
as an application of their 2-D spatio-temporal method to the 3-D
spatial domain of the brain.

3 PREPROCESSING

3.1 Acquiring and Processing the Data

All DTI data were acquired from a neurologically normal male hu-
man subject aged 35. The DTI protocol involved eight three-minute
whole-brain scans, averaged to improve signal quality. We acquired
38 axial slices for two b-values, b = 0 and b = 800 s/mm2 along 12
different diffusion directions. We used a 1.5T GE Signa LX and a
diffusion-weighted single-shot spin echo, echo planar imaging se-
quence with 2x2x3 mm voxel size (TE = 63 ms; TR = 12 s; NEX =
1; flip angle = 90◦; FOV = 260 mm; matrix size = 128x128, band-
width = ±110 kHz, partial k-space acquisition).

We also collected high-resolution T1-weighted anatomical im-
ages using a sagittal 3D-SPGR sequence (1x1x1 mm voxel size).
The T1 images were used to confirm the locations of the DTI mea-
surements with respect to the anterior commissure (AC), posterior
commissure (PC), and the mid-sagittal plane. With these land-
marks, we computed a rigid-body transform from the native image
space to the conventional AC-PC aligned space. The DTI data were
then resampled to 2 mm isotropic voxels using a spline-based tensor
interpolation algorithm [17], taking care to rotate the tensors to pre-
serve their orientation with respect to the anatomy. We confirmed
that this co-registration technique aligns the DTI and T1 images to
within a few millimeters (except in regions prone to susceptibility
artifacts, such as orbito-frontal and anterior temporal regions). The
registration process took about twenty minutes.

We precomputed fractional anisotropy values for each diffusion
tensor. Fractional anisotropy (FA) is derived from the normalized
variance of the eigenvalues of each diffusion tensor [18]. FA is a
scalar value that summarizes the anisotropy of the ellipsoid repre-
sentation for diffusion. An FA of zero indicates spherical diffu-
sion, as is found in the gray matter. As FA increases, the diffu-
sion becomes more anisotropic. FA values near 0.5 indicate either
linear (cigar-shaped) or planar (pancake-shaped) ellipsoids, as are



typically found in the white matter. As FA approaches 1, the diffu-
sion becomes increasingly linear, indicated by long and thin ellip-
soids. We use the precomputed FA values to establish termination
criteria for path tracing algorithms (Section 3.2), to calculate the
average FA along pathways for query purposes (Section 3.3), and
in our interactive application to aid in navigation (Section 4.1). Our
decision to use FA was motivated by its widespread adoption in the
literature; there is reason to consider alternatives if the goal is to
develop new tractography algorithms. See Westin et al. [26] for a
good discussion of anisotropy measures and their uses in DTI.

3.2 Precomputing Pathways

Most existing tractography software traces pathways during inter-
action: the user selects a region of interest and the software traces
pathways from seed points within this region. This approach has
the disadvantage that path tracing can be time consuming, leading
to frustrating delays during interaction. Instead, our approach is
to precompute pathways that cover the entire white matter region
of the brain, then use our software interface to efficiently “prune”
these pathways to answer specific questions. Accordingly, we ini-
tialized seed points for path tracing at every other voxel in each di-
mension, evenly sampling the volume with seed points. (A similar
seeding approach was described by Conturo et al. [5].) This sam-
pling strategy ensured that each white matter region would have
at least some pathways passing through it. However, because the
pathway shapes cannot be predicted at seeding time, some regions
contain more pathways than others. In the future we may explore
other seeding methods that discard pathways that are too closely
packed, as suggested by Zhang et al. [27] and Vilanova et al. [23].

We generated our pathways using two standard tractography
methods. We chose these two algorithms because they are simple
and have already been compared in the literature [14]:

• STT: This method follows the principal diffusion direction
throughout the volume. We used a constant step size of 2 mm,
an FA termination threshold of 0.15, and an angular threshold
of 90◦. The paths generated by STT often take sharp turns
because they always follow the largest magnitude eigenvector,
even in regions where the two or three largest eigenvalues are
nearly identical.

• TEND: This method uses the tensor at each point to multi-
ply the incoming path vector, resulting in a new vector that is
deflected toward the principal direction of diffusion [14]. As
with STT, we used a constant step size of 2 mm, an FA ter-
mination threshold of 0.15, and an angular threshold of 90◦.
The paths generated by TEND are relatively straight, since
TEND avoids sharp turns when it encounters regions of low
anisotropy.

To interpolate between tensors during tracing, we used a simple
linear interpolation approach [28]. After thresholding by FA, our
precomputation process produced about 26,000 pathways, includ-
ing about 13,000 from each algorithm. All 26,000 pathways were
computed in about five minutes on an Intel Pentium 1.6 GHz PC.

3.3 Precomputing Statistical Properties of Pathways

Besides precomputing the pathways, the system also precomputes
statistics and other aggregate path information that can be used to
specify queries. The statistical criteria we have chosen are meant as
examples, and by no means represent an exhaustive set. Currently,
we calculate and store the following properties for each pathway:

• Length: Longer paths are less likely to represent real anatom-
ical connections, since error accumulates during path tracing.
Additionally, very short paths are often distracting.

• Average Fractional Anisotropy: Pathways that pass through
areas of low FA may be less likely to represent physical con-
nections. (In these nearly isotropic regions, tractography al-
gorithms differ greatly in how to proceed with path tracing.)

• Average Curvature: Pathways that make sharp turns are of-
ten suspect and may represent incorrect tracings. Neuroscien-
tists often have prior knowledge about the shapes of pathways,
and can use this property to remove pathways that do not fol-
low expected shapes. Curvature is computed for each set of
three consecutive points along the path, by using Heron’s for-
mula to find the osculating circle, then computing the recipro-
cal of its radius.

• Tractography Algorithm: For later querying, the system
tags each pathway with the algorithm used to generate it (STT
or TEND). Querying by the algorithm allows the user of our
application to compare the results of several tractography al-
gorithms, as described in Section 5.

4 THE DYNAMIC QUERY APPLICATION

This section describes the user interface to the interactive applica-
tion we have developed. The main purpose of our application is
exploratory data visualization: we want to make it easier for neuro-
scientists to understand the neural pathways suggested by MR trac-
tography algorithms. Figure 2 shows a labeled screen-shot of the
application. With our direct-manipulation interface, it is possible to
identify and display pathways that satisfy statistical constraints, or
that pass through specific volumes of interest (VOIs). The interface
consists of three components: The VOI panel (bottom right) allows
the investigator to specify box-shaped regions for use in queries.
The query panel (bottom left) provides mechanisms to query the
pathways based on intersections with VOIs and statistical proper-
ties. The scene window (top) displays the currently selected path-
ways and assists in navigating the volumetric data space.

We explain the use of this interface in Sections 4.1 and 4.2.
Please also see the included video footage for examples of its use.

4.1 Specifying Dynamic Queries

Before querying the data, an investigator must be able to navigate
the volumetric data space represented in the scene window. To be-
gin with, the investigator can change the camera position and ori-
entation using a standard trackball/mouse interface. As a further
aid to navigation, the scene window provides three moveable cut-
ting planes (tomograms), which display planar reformations of FA
data. Features visible in FA are commonly used by neuroscientists
to navigate the brain’s white matter structures.

Often a query sequence begins with the selection of a set of de-
sired pathways based on the statistical criteria described in Section
3.3. A set of slider bars in the query panel allows for the interactive
specification of a range (min, max) of acceptable values. As the
investigator drags any slider bar, the matching pathways are found
and displayed in the scene window.

A key feature of our application involves the use of VOIs to dis-
play pathways that pass through specific anatomical regions. Once
specified, VOIs can be used to form queries by setting the VOI
query expression in the query panel. VOIs can be combined us-
ing simple AND and OR operations, or by typing in an arbitrary
Boolean logic expression. The VOI editing panel (Figure 2, lower
right) allows for the exact specification of VOI dimensions and po-
sition. As the VOI is modified using the slider bars or text wid-
gets, the query is re-evaluated immediately and the scene window
is updated with new pathway information. A VOI can be controlled
more directly in the scene window, by using the mouse to click and
drag the VOI. The investigator simply selects a tomogram and then



Tomograms:

Axial, sagittal and 

coronal cutting planes of 

fractional anisotropy 

values aid in navigation.

Neural Pathways:

Pathways are rendered as

lines with a simple 

random jitter applied to 

the luminance.

VOI Controls:

Each VOI has its own size, position and label, 

and can be constrained to move symmetrically to 

another VOI in the opposite brain hemisphere.

Query Settings:

The researcher can 

query by tractography 

algorithm and control 

how the VOI queries 

are combined using 

logical expressions.

Scalar Value Query Sliders:

One can remove pathways that do not satisfy 

maximum or minimum values in length, average 

FA or average curvature.

Status Information:

Displayed are the current

coordinate system, the

position of each

tomogram, the current

coloring method, and the 

number of pathways 

matching the query.

Volumes of Interest:

VOIs can be used to

selectively display

pathways that pass

through specific

anatomical regions.

Figure 2: The user interface to our pathway exploration software. The interface consists of three components: The VOI panel (bottom right)
allows the investigator to specify box-shaped regions for use in queries. The query panel (bottom left) provides mechanisms to query the
pathways based on statistical properties and intersections with VOIs. The scene window (top) displays the currently selected pathways and
assists in navigating the volumetric data space. Neuroscientists use the VOI and query control panels to identify specific neural pathways, which
are then displayed in the scene window above.



(a)

(c) (d)

(b)

Figure 3: Sequence of dynamic queries identifying the spatial organization of fiber pathways. a) All 13,000 pathways computed using the STT
algorithm. Patterns are difficult to discern because of visual clutter. b) Using a length filter, we show only the pathways that are greater than
4 cm in length (about 30% of the total number of pathways). c) By placing VOI 1 in the scene, we show only the pathways that pass through
the internal capsule (bottom). d) By placing VOIs 2 and 3, we obtain a picture showing connections between 1 and either 2 or 3.

drags the VOI to any position on the plane. One can also link two
VOIs to move them symmetrically in opposite brain hemispheres.
This was made possible by aligning the data to AC-PC space, which
defines the plane halfway between the hemispheres.

4.2 Pathway Rendering

While others have used streamtubes to represent pathways [27], we
have chosen simply to use lines. Lines can be drawn much faster
than streamtubes, and they adequately represent connectivity infor-
mation of interest to neuroscientists (at the cost of losing local in-
formation about the underlying tensor data along the path). To vi-
sually distinguish the pathways, we use a simple ‘color jittering’
technique. In HSV color space, we compute a random luminance
offset for each pathway. The luminance of each pathway is deter-
mined at startup and is held constant to avoid shimmering artifacts.

Differences in hue are used to establish logical groupings of
pathways, using a process we call ’virtual staining’. Here, the in-
vestigator can choose a hue and use it to color all of the pathways
currently displayed in the scene window. This allows investigators
to identify specific pathways and then visualize them within their
surrounding context: as the query is modified, the original pathways
remain stained. Virtual staining was used extensively in generating
the results shown in Section 5, and in generating Figure 1.

4.3 Implementation

This section describes the implementation details of our interactive
application. The program was written entirely in C++, and was de-
signed to work on any modern inexpensive PC without any special
hardware requirements. The program makes use of the visualiza-
tion toolkit (VTK) [21] for 3D scene generation and interaction.

Since data exploration naturally involves making iterative adjust-
ments to queries, our main goal has been to make the system imme-
diately responsive when the investigator changes a query. One key
to this interactivity is the preprocessing described in the previous
section, but this preprocessing is not enough by itself to make our
system interactive. At runtime, we also need to be able to interac-
tively compute intersections between VOIs and pathways. To facil-
itate fast intersection tests, our program stores each pathway’s ge-
ometry as a hierarchical oriented bounding box (or OBBTree). For
this we used the freely-available RAPID software from the Univer-
sity of North Carolina [8]. All VOIs and pathways are represented
as sets of triangles that can be efficiently tested for intersection.
The box-shaped VOIs are trivial to triangulate, and the pathways
are triangulated as very small area (long and thin) triangles. Since
the RAPID software only reports object intersections between tri-
angles, our application also tests the endpoints of each pathway to
determine whether the pathway is fully contained within the VOI.
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Figure 4: Validation of known white matter pathways. The left and right inferior longitudinal fasciculi are known anatomical pathways that
connect the occipital and frontal lobes in each hemisphere. In four simple steps, a researcher used the system to produce a visual representation
of these known pathways. a) Placing a VOI covering the occipital lobes shows all pathways involved in human visual processing. b) Placing a
second VOI in the right frontal lobe and using an AND operation shows only the pathways in the right hemisphere, which are stained blue. c)
Moving the second VOI to a symmetric position on the left captures the pathways in the left hemisphere, which are stained yellow. d) Removing
the second VOI from the query shows the results of b and c within the original set of pathways. The pathways shown were all produced using
the STT algorithm and were also limited to lengths greater than 4 cm to reduce visual clutter.

Queries based on precomputed pathway properties are very fast
since the precomputed values need only be compared against the
current range of the query. The performance of RAPID is described
by Gottschalk et al. [8], but their execution times are based on an
older SGI Reality Engine. In our own benchmarks on a 1.6 GHz
Pentium laptop PC, we are able to intersect a VOI with between
80,000 and 220,000 pathways per second, depending on the size of
the VOI. (Larger VOIs require more bounding-box tests, since they
intersect with more of the pathways.) This allows us to maintain a
frame rate of 3-8 fps while manipulating the VOIs. While not the
most efficient solution for intersection with box-shaped VOIs, using
RAPID will allow us to implement more complex (e.g. non-convex)
VOI shapes in the future, without a major change in performance.

On average, each pathway consumes approximately 20 KB of
memory, including the OBBTree structure and the points used for
rendering. Accordingly, we use 510 MB of memory to represent all
26,000 pathways.

5 RESULTS

In this section we demonstrate some of the capabilities of our sys-
tem. First, we acquired a DTI data set collected from a single nor-
mal subject (described in Section 3.1). Using this data set as input
to our system, we identified three types of queries that are espe-
cially useful to neuroscientists. In particular, we will show how our
system has been used to validate known white matter pathways, to
explore previously unidentified pathways, and to visually compare
tractography algorithms. All three examples were produced by a
novice user of our system who is a neuroscientist specializing in
brain imaging.

Using our dynamic query system, the neuroscientist easily iden-
tified two known neural pathways in the test subject data, the left
and right Inferior Longitudinal Fasciculi (ILF). Shown in Figure
4, these pathways connect the occipital and frontal lobes in each



Figure 5: Exploration of candidate neural pathways. The query re-
sults show many pathways reflecting the well-known connection be-
tween the left and right occipital lobes, passing through the splenium.
Intriguingly, the query also suggests a possible connection through
the anterior commissure. This suggested pathway may incite further
validation research. Our system helps to form such hypotheses by al-
lowing researchers to interactively pose and answer specific questions
about connectivity. The pathways shown were all produced using the
STT algorithm and were also limited to lengths greater than 4 cm to
reduce visual clutter.

Figure 6: Visual comparison of tractography algorithms. The VOI in
this query is placed within the corpus callosum. The pathways were
computed using the STT (blue) and TEND (yellow) algorithms. Us-
ing virtual staining, a neuroscientist was able to easily inspect the
differences by overlaying the pathways. While both TEND and STT
show callosal projections to superior regions, the TEND pathways
also include callosal projections to both temporal lobes. This exam-
ple shows the extent to which the two algorithms can differ. The
pathways shown were limited to lengths greater than 4 cm to reduce
visual clutter.

hemisphere of the brain. 1 To locate the pathways, first our neu-
roscientist test subject placed a single VOI covering both occipital
lobes, revealing all neural pathways involved in visual processing.
Next, he placed an additional VOI in the right frontal lobe above
the eye and used an AND operation to show pathways connecting
the two brain regions. The many pathways passing between these
VOIs comprise the right ILF. Interested to see whether these neural
pathways were located symmetrically on both sides of the brain, the
researcher moved the second VOI to a symmetric position in the left
hemisphere, identifying the left ILF. Finally, using virtual staining,
the neuroscientist separately colored the pathways from each hemi-
sphere so that they could be visually compared. This exploration
was performed in about five minutes.

Our system also enables exploration of novel pathways that
could motivate future research. Figure 5 shows all the pathways
generated by our system which pass between the occipital lobes
(responsible for visual processing). To isolate these pathways, the
neuroscientist placed VOIs on each of the occipital lobes and dis-
played the conjunction of the VOI queries. The majority of the
connections follow a known neural pathway, crossing the posterior
corpus callosum and terminating at a symmetric location in the op-
posite hemisphere. Interestingly, some of them travel forward to
cross at what appears to be the anterior commissure, a small bun-
dle of fibers connecting the two hemispheres beneath the corpus
callosum. Further research is necessary to determine whether this
anterior pathway is real. In situations like this, our system can help
form hypotheses about novel pathways by allowing researchers to
interactively pose and answer specific questions about connectivity.
This exploration was performed in about five minutes.

Finally, our system can be used to visually compare the pathways
estimated by different tractography algorithms. Figure 6 shows
pathways generated by the STT and TEND algorithms (described in
Section 3.2). By virtually staining pathways passing through a re-
gion in the corpus callosum, the neuroscientist was able to visualize
an important difference between the two algorithms. The STT al-
gorithm, following the direction of greatest diffusion at each point,
generates only ’U-shaped’ pathways. The TEND algorithm addi-
tionally produces pathways passing from the corpus callosum to
each temporal lobe. As this example illustrates, the pathways gen-
erated by these algorithms can differ greatly. Such visualizations
are useful to the neuroscientist who is uncertain about the reliabil-
ity of estimates across algorithms, and to the expert in tractography
who wants to understand the consequences of algorithmic assump-
tions. This exploration was performed in about ten minutes.

6 DISCUSSION

The key to our system’s utility is its ability to render data and re-
spond to queries at interactive rates. Our colleagues in psychol-
ogy stressed the significance of this program as an exploratory tool;
quickly browsing through connections in the brain could be invalu-
able in identifying areas of interest for future study. The system
could also assist scientists investigating the neurological bases of
disorders, as has been done with other methods for analyzing DTI
data [15, 7, 13], or provide a diagnostic tool for such disorders. It
could be employed as an educational aid for students learning about
neuroanatomy, as it allows for interactive viewing of the primary
anatomical pathways.

Our system may also be useful for exploring data from sources
other than DTI. Saleem et al. [20] have developed a method of
tracing axonal connections across synapses in live monkeys. MnCl2
is injected into the monkey brain and transported along neuronal
tracts where it can later be detected with MRI. This approach may

1There is still some debate over the existence of the ILF; see Catani et
al. [4] for a recent discussion.



generate large amounts of verifiable, high-resolution data that could
be browsed efficiently with our system.

The results we have obtained with our system have been limited
by the resolution of the data and the quality of the tractography al-
gorithms. It is important to realize that these are not limitations
of our interactive technique, but rather they are limitations of the
current acquisition technology and algorithms. Current DTI data
are highly restricted in spatial resolution. The 2x2x3 mm resolu-
tion used in this scan represents the current state of the art. The
voxel dimensions are roughly two orders of magnitude larger than
the cross-sectional width of white matter axons (between 10 and 50
microns). This makes ambiguities in tracing inevitable when esti-
mating neural pathways from the diffusion tensor field. However,
despite limitations in data quality our system remains viable and
useful for exploring MR tractography data and suggesting possible
hypotheses about connectivity.

7 FUTURE WORK

The methodology of precomputation and dynamic queries should
yield several interesting enhancements in the future. In particu-
lar, it will be useful to expand our system to handle multiple data
sets. For instance, one could include pathways from multiple sub-
jects for the purposes of comparing pathological cases to normal
ones, or simply understanding population variance. In addition, our
technique should be integrated with functional magnetic resonance
imaging so that the user can simultaneously view connectivity and
activation information about specific brain regions [5]. While these
methods can benefit from a dynamic query approach, they will also
require the development of methods to co-register the various data
sets.

We also believe that useful improvements could be made in the
visual representation of the pathways. Currently the pathways are
drawn simply as lines; however, it might be advantageous to ag-
gregate pathways into groups, or to simplify their paths for easier
interpretation. Such abstractions could also contain visual cues that
measure either local DTI properties or statistical information re-
garding the certainty of the path estimates.

8 ACKNOWLEDGMENTS

We would like to thank Roland Bammer and Michael Moseley of
the Stanford University Lucas Center, for providing useful discus-
sion and developing the pulse sequences used to collect our data.

REFERENCES

[1] C. Ahlberg, C. Williamson, and B. Shneiderman. Dynamic queries
for information exploration: An implementation and evaluation. In
Proceedings of SIGCHI 92, pages 619–626. ACM Press, 1992.

[2] R. Bammer, B. Acar, and M. E. Moseley. In vivo MR tractography
using diffusion imaging. European Journal of Radiology 45, pages
223–234, 2002.

[3] P. J. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi. In
vivo fiber tractography using DT-MRI data. Magnetic Resonance in
Medicine, 44:625–632, 2000.

[4] M. Catani, D.K. Jones, R. Donato, and D.H. ffytche. Occipito-
temporal connections in the human brain. Brain, 126:2093–2107,
2003.

[5] T. E. Conturo, N. F. Lori, T. S. Cull, E. Akbudak, A. Z. Snyder, J. S.
Shimony, R. C. McKinstry, H. Burton, and M. E. Raichle. Tracking
neuronal fiber pathways in the living human brain. In Proceedings of
the National Academy of Sciences, pages 10422–10427, 1999.

[6] M.J. da Silva, S. Zhang, C. Demiralp, and D.H. Laidlaw. Visualizing
diffusion tensor volume differences. In IEEE Visualization 01 Pro-
ceedings, Work in Progress, 2001.

[7] G.K. Deutsch, R.F. Dougherty, R. Bammer, W.T. Siok, J.D.E.
Gabrieli, and B. Wandell. Children’s reading performance is corre-
lated with white matter structure measured by diffusion tensor imag-
ing. Cortex, In press.

[8] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: A hierarchi-
cal structure for rapid interference detection. In Proceedings of SIG-
GRAPH 96, pages 171–180, 1996.

[9] H. Hochheiser and B. Shneiderman. Visual queries for finding patterns
in time series data. Technical report, University of Maryland, 2002.

[10] E. Hutchins, J. Hollan, and D. Norman. Direct manipulation inter-
faces. In D. Norman and S. Draper, editors, User Centered System
Design, pages 87–124. Erlbaum, 1986.

[11] G. Kindlmann and D. Weinstein. Hue-balls and lit-tensors for direct
volume rendering of diffusion tensor fields. In IEEE Visualization 99
Proceedings, pages 183–189. IEEE Computer Society Press, 1999.

[12] G. Kindlmann, D. Weinstein, and D. Hart. Strategies for direct volume
rendering of diffusion tensor fields. IEEE Transactions on Visualiza-
tion and Computer Graphics 2000, pages 124–138, 2000.

[13] T. Klingberg, M. Hedehus, E. Temple, T. Salz, J.D. Gabrieli, M.E.
Moseley, and R.A. Poldrack. Microstructure of temporo-parietal white
matter as a basis for reading ability: Evidence from diffusion tensor
magnetic resonance imaging. Neuron, 25:493–500, 2000.

[14] M. Lazar, D. M. Weinstein, J. S. Tsuruda, K. M. Hasan, K. Arfanakis,
M. E. Meyerand, B. Badie, H. A. Rowley, V. Haughton, A. Field, and
A. L. Alexander. White matter tractography using diffusion tensor
deflection. Human Brain Mapping, 18:306–321, 2003.

[15] N. Molko, L. Cohen, J.F. Mangin, F. Chochon, S. Lehericy, D. L. Bi-
han, and S. Dehaene. Visualizing the neural bases of a disconnection
syndrome with diffusion tensor imaging. Journal of Cognitive Neuro-
science, pages 629–636, 2002.

[16] S. Mori, B.J. Crain, V.P. Chacko, and P.C. van Zijl. Three-dimensional
tracking of axonal projections in the brain by magnetic resonance
imaging. Ann Neurol, 45:265–269, 1999.

[17] S. Pajevic, A. Aldroubi, and P.J. Basser. A continuous tensor field
approximation of discrete DT-MRI data for extracting microstructural
and architectural features of tissue. J Magn Reson, 154(1):85–100,
2002.

[18] C. Pierpaoli and P.J. Basser. Toward a quantitative assessment of dif-
fusion anisotropy. Magnetic Resonance Magazine, pages 893–906,
1996.

[19] C. Poupon, J. Mangin, C.A. Clark, V. Frouin, J. Regis, D. Le Bihan,
and I. Bloch. Towards inference of human brain connectivity from
MR diffusion tensor data. Medical Image Analysis, 5:1–15, 2001.

[20] K. S. Saleem, J. Pauls, M. Augath, T. Trinath, B. Prause,
T. Hashikawa, and N. K. Logothetis. Magnetic resonance imaging of
neuronal connections in the macaque monkey. Neuron, 34:685–700,
2002.

[21] W. Schroeder, K. Marin, and B. Lorenson. The Visualization Toolkit.
Prentice Hall, New Jersey, USA, 1997.

[22] B. Shneiderman. Direct manipulation: A step beyond programming
languages. IEEE Computer 16(8), pages 57–69, 1983.

[23] A. Vilanova i Bartroli, G. Berenschot, and C. van Pul. DTI visual-
ization with streamsurfaces and evenly-spaced volume seeding. In
VisSym ’04 Symposium on Visualization, pages 173–182, 2004.

[24] S. Wakana, H. Jiang, L.M. Nagae-Poetscher, P.C. van Zijl, and
S. Mori. Fiber tract-based atlas of human white matter anatomy. Ra-
diology, pages 77–87, 2004.

[25] D. M. Weinstein, G. L. Kindlmann, and E. C. Lundberg. Tensorlines:
Advection-diffusion based propagation through diffusion tensor fields.
In IEEE Visualization 99 Proceedings, pages 249–254, San Francisco,
1999.

[26] C.F. Westin, M. SE, M. Nabavi, A. Jolesz, and F. Kikinis. Processing
and visualization for diffusion tensor MRI. Medical Image Analysis,
6:93–108, 2002.

[27] S. Zhang, C. Demiralp, and D. Laidlaw. Visualizing diffusion tensor
MR images using streamtubes and streamsurfaces. IEEE Transactions
on Visualization and Computer Graphics 2003, pages 454–462, 2003.

[28] L. Zhukov and A. H. Barr. Oriented tensor reconstruction: Tracing
neural pathways from diffusion tensor MRI. In IEEE Visualization 02
Proceedings, pages 387–394. IEEE Computer Society, 2002.


