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Abstract

Modeling and rendering of natural scenes with thousands of plants
poses a number of problems. The terrain must be modeled and plants
must be distributed throughout it in a realistic manner, reflecting the
interactions of plants with each other and with their environment.
Geometric models of individual plants, consistent with their po-
sitions within the ecosystem, must be synthesized to populate the
scene. The scene, which may consist of billions of primitives, must
be rendered efficiently while incorporating the subtleties of lighting
in a natural environment.

We have developed a system built around a pipeline of tools that
address these tasks. The terrain is designed using an interactive
graphical editor. Plant distribution is determined by hand (as one
would do when designing a garden), by ecosystem simulation, or by
a combination of both techniques. Given parametrized procedural
models of individual plants, the geometric complexity of the scene is
reduced by approximate instancing, in which similar plants, groups
of plants, or plant organs are replaced by instances of representative
objects before the scene is rendered. The paper includes examples
of visually rich scenes synthesized using the system.

CR categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism, I.6.3 [Simulation and Modeling]: Appli-
cations, J.3 [Life and Medical Sciences]: Biology.
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1 INTRODUCTION

Synthesis of realistic images of terrains covered with vegetation is
a challenging and important problem in computer graphics. The
challenge stems from the visual complexity and diversity of the
modeled scenes. They include natural ecosystems such as forests or
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grasslands, human-made environments, for instance parks and gar-
dens, and intermediate environments, such as lands recolonized by
vegetation after forest fires or logging. Models of these ecosystems
have a wide range of existing and potential applications, including
computer-assisted landscape and garden design, prediction and vi-
sualization of the effects of logging on the landscape, visualization
of models of ecosystems for research and educational purposes,
and synthesis of scenes for computer animations, drive and flight
simulators, games, and computer art.

Beautiful images of forests and meadows were created as early
as 1985 by Reeves and Blau [50] and featured in the computer
animation The Adventures of André and Wally B. [34]. Reeves and
Blau organized scene modeling as a sequence of steps: specification
of a terrain map that provides the elevation of points in the scene,
interactive or procedural placement of vegetation in this terrain,
modeling of individual plants (grass and trees), and rendering of the
models. This general scheme was recently followed by Chiba et
al. [8] in their work on forest rendering, and provides the basis for
commercial programs devoted to the synthesis of landscapes [2, 49].

The complexity of nature makes it necessary to carefully allot com-
puting resources — CPU time, memory, and disk space — when
recreating natural scenes with computer graphics. The size of the
database representing a scene during the rendering is a particularly
critical item, since the amount of geometric data needed to represent
a detailed outdoor scene is more than can be represented on modern
computers. Consequently, a survey of previous approaches to the
synthesis of natural scenes reflects the quest for a good tradeoff be-
tween the realism of the images and the amount of resources needed
to generate them.

The scenes synthesized by Reeves and Blau were obtained using
(structured) particle systems, with the order of one million particles
per tree [50]. To handle large numbers of primitive elements con-
tributing to the scene, the particle models of individual trees were
generated procedurally and rendered sequentially, each model dis-
carded as soon as a tree has been rendered. Consequently, the size
of memory needed to generate the scene was proportional to the
number of particles in a single tree, rather than the total number of
particles in the scene. This approach required approximate shading
calculations, since the detailed information about the neighborhood
trees was not available. Approximate shading also reduced the time
needed to render the scenes.

Another approach to controlling the size of scene representation
is the reduction of visually unimportant detail. General methods
for achieving this reduction have been the subject of intense re-
search (for a recent example and further references see [24]), but
the results do not easily apply to highly branching plant structures.
Consequently, Weber and Penn [63] introduced a heuristic multires-
olution representation specific to trees, which allows for reducing



the number of geometric primitives in the models that occupy only
a small portion on the screen. A multiresolution representation of
botanical scenes was also explored by Marshall et al. [35], who in-
tegrated polygonal representations of larger objects with tetrahedral
approximations of the less relevant parts of a scene.

A different strategy for creating visually complex natural scenes
was proposed by Gardner [17]. In this case, the terrain and the
trees were modeled using a relatively small number of geometric
primitives (quadric surfaces). Their perceived complexity resulted
from procedural textures controlling the color and the transparency
of tree crowns. In a related approach, trees and other plants were
represented as texture-mapped flat polygons (for example, see [49]).
This approach produced visible artifacts when the position of the
viewpoint was changed. A more accurate image-based representa-
tion was introduced by Max [37], who developed an algorithm for
interpolating between precomputed views of trees. A multiresolu-
tion extension of this method, taking advantage of the hierarchical
structure of the modeled trees, was presented in [36]. Shade et al.
described a hybrid system for walkthroughs that uses a combination
of geometry and textured polygons [53].

Kajiya and Kay [26] introduced volumetric textures as an alter-
native paradigm for overcoming the limitations of texture-mapped
polygons. A method for generating terrains with volumetric textures
representing grass and trees was proposed by Neyret [40, 41]. Chiba
et al. [8] removed the deformations of plants caused by curvatures
of the underlying terrain by allowing texels to intersect.

The use of volumetric textures limits the memory or disk space
needed to represent a scene, because the same texel can be re-applied
to multiple areas. The same idea underlies the oldest approach to
harnessing visually complex scenes, object instancing [59]. Ac-
cording to the paradigm of instancing, an object that appears sev-
eral times in a scene (possibly resized or deformed by an affine
transformation) is defined only once, and its different occurrences
(instances) are specified by affine transformations of the prototype.
Since the space needed to represent the transformations is small,
the space needed to represent an entire scene depends primarily
on the number and complexity of different objects, rather than the
number of their instances. Plants are particularly appealing objects
of instancing, because repetitive occurrences can be found not only
at the level of plant species, but also at the level of plant organs
and branching structures. This leads to compact hierarchical data
structures conducive to fast ray tracing, as discussed by Kay and
Kajiya [27], and Snyder and Barr [56]. Hart and DeFanti [20, 21]
further extended the paradigm of instancing from hierarchical to
recursive (self-similar) structures. All the above papers contain
examples of botanical scenes generated using instancing.

The complexity of natural scenes makes them not only difficult to
render, but also to specify. Interactive modeling techniques, avail-
able in commercial packages such as Alias/Wavefront Studio 8 [1],
focus on the direct manipulation of a relatively small number of
surfaces. In contrast, a landscape with plants may include many
millions of individual surfaces — representing stems, leaves, flow-
ers, and fruits — arranged into complex branching structures, and
further organized in an ecosystem. In order to model and render
such scenes, we employ the techniques summarized below.

Multilevel modeling and rendering pipeline. Following the ap-
proach initiated by Reeves and Blau [50], we decompose the process
of image synthesis into stages: modeling of the terrain, specifica-
tion of plant distribution, modeling of the individual plants, and
rendering of the entire scene. Each of these stages operates at a
different level of abstraction, and provides a relatively high-level
input for the next stage. Thus, the modeler is not concerned with

plant distribution when specifying the terrain, and plant distribution
is determined (interactively or algorithmically) without considering
details of the individual plants. This is reminiscent of the simu-
lations of flocks of birds [51], models of flower heads with phyl-
lotactic patterns [16], and models of organic structures based on
morphogenetic processes [14], where simulations were performed
using geometrically simpler objects than those used for visualiza-
tion. Blumberg and Galyean extended this paradigm to multi-level
direction of autonomous animated agents [5]. In an analogous way,
we apply it to multi-level modeling.

Open system architecture. By clearly specifying the formats of
inputs and outputs for each stage of the pipeline, we provide a
framework for incorporating independently developed modules into
our system. This open architecture makes it possible to augment
the complexity of the modeled scenes by increasing the range of
the available modules, and facilitates experimentation with various
approaches and algorithms.

Procedural models. As observed by Smith [55], procedural models
are often characterized by a significant data-base amplification,
which means that they can generate complex geometric structures
from small input data sets. We benefit from this phenomenon by
employing procedural models in all stages of the modeling pipeline.

Approximate instancing. We use object instancing as the primary
paradigm for reducing the size of the geometric representation of
the rendered scenes. To increase the degree of instancing, we cluster
scene components (plants and their parts) in their parameter spaces,
and approximate all objects within a given cluster with instances of
a single representative object. This idea was initially investigated by
Brownbill [7]; we extend it further by applying vector quantization
(c.f. [18]) to find the representative objects in multidimensional
parameter spaces.

Efficient rendering. We use memory- and time-efficient render-
ing techniques: decomposition of the scenes into subscenes that
are later composited [12], ray tracing with instancing and a sup-
port for rendering many polygons [56], and memory-coherent ray
tracing [43] with instancing.

By employing these techniques, we have generated scenes with up
to 100,000 detailed plant models. This number could be increased
even further, since none of the scenes required more than 150MB
to store. However, with 100,000 plants, each plant is visible on
average only in 10 pixels of a 1K � 1K image. Consequently, we
seem to have reached the limits of useful scene complexity, because
the level of visible detail is curbed by the size and resolution of the
output device.

2 SYSTEM ARCHITECTURE

The considerations presented in the previous section led us to the
modular design of our modeling and rendering system EcoSys,
shown schematically in Figure 1.

The modeling process begins with the specification of a terrain. For
this purpose, we developed an interactive editor TerEdit, which
integrates a number of terrain modeling techniques (Section 3). Its
output, a terrain data file, includes the altitudes of a grid of points su-
perimposed on the terrain, normal vectors indicating the local slope
of the terrain, and optional information describing environmental
conditions, such as soil humidity.

The next task is to determine plant distribution on a given terrain. We
developed two techniques for this purpose: visual editing of plant
densities and simulation of plant interactions within an ecosystem
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Figure 1: Architecture of the scene synthesis system. Bold frames
indicate interactive programs and input files specified by the user.

(Section 4). The editing approach is particularly well suited to model
environments designed by people, for example orchards, gardens,
or parks. The user specifies the distribution of plant densities using
a paint program. To convert this information into positions of
individual plants, we developed the program densedis based on
a half-toning algorithm: each dot becomes a plant. We can also
specify positions of individual plants explicitly; this is particularly
important in the synthesis of scenes that include detailed views of
individual plants in the foreground.

To define plant distribution in natural environments, such as forests
or meadows, we apply an ecosystem simulation model. Its input
consists of terrain data, ecological characteristics of plant species
(for example, annual or perennial growth and reproduction cycle,
preference for wet or dry soil, and shade tolerance) and, optionally,
the initial distribution of plants. The growth of plants is simu-
lated accounting for competition for space, sunlight, resources in
the soil, aging and death, seed distribution patterns, etc. We per-
form these simulations using the L-system-based plant modeling
program cpfg [47], extended with capabilities for simulating in-
teractions between plants and their environments [39]. To allow for
simulations involving thousands of plants, we use their simplified
geometrical representations, which are subsequently replaced by
detailed plant models for visualization purposes.

Specification of a plant distribution may involve a combination of
interactive and simulation techniques. For example, a model of an
orchard may consist of trees with explicitly specified positions and
weeds with positions determined by a simulation. Conversely, the
designer of a scene may wish to change its aspects after an ecological
simulation for aesthetic reasons. To allow for these operations, both
densedis and cpfg can take a given plant distribution as input
for further processing.

Plant distribution, whether determined interactively or by ecosystem
simulation, is represented in an ecosystem file. It contains the
information about the type, position and orientation of each plant

(which is needed to assemble the final scene), and parameters of
individual plants (which are needed to synthesize their geometric
models).

Since we wish to render scenes that may include thousands of plants,
each possibly with many thousands of polygons, the creation and
storage of a separate geometric plant model for each plant listed in
the ecosystem file is not practical. Consequently, we developed a
program quantv that clusters plants in their parameter space and
determines a representative plant for each cluster (Section 6). The
algorithm performs quantization adaptively, thus the result depends
on the characteristics of plants in the ecosystem. The quantization
process produces two outputs: a plant parameter file, needed to
create geometric models of the representative plants, and a quantized
ecosystem file, which specifies positions and orientations of the
instances of representative plants throughout the scene.

We employ two modeling programs to create the representative
plants: the interactive plant modeler xfrog [10, 32, 33] and the
L-system-based simulator cpfg [39, 47]. These programs input
parametrized procedural plant models and generate specific geo-
metric plant models according to the values in the plant parameter
file (Section 5). To reduce the amount of geometric data, we ex-
tended the concept of instancing and quantization to components
of plants. Thus, if a particular plant or group of plants has several
parts (such as branches, leaves, or flowers) that are similar in their
respective parameter spaces, we replace all occurrences of these
parts with instances of a representative part.

Finally, the ecosystem is rendered. The input for rendering con-
sists of the quantized ecosystem file and the representative plant
models. Additional information may include geometry of the ter-
rain and human-made objects, such as houses or fences. In spite
of the quantization and instancing, the resulting scene descriptions
may still be large. We experimented with three renderers to handle
this complexity (Section 7). One renderer, called fshade, de-
composes the scene into sub-scenes that are rendered individually
and composited to form final images. Unfortunately, separating
the scene into sub-scenes makes it impossible to properly capture
global illumination effects. To alleviate this problem, we use the
ray-tracer rayshade [29], which offers support for instancing and
time-efficient rendering of scenes with many polygons, as long as
the scene description fits in memory. When the scene description
exceeds the available memory, we employ the memory-efficient
ray-tracer toro [43], extended with a support for instancing.

In the following sections we describe the components of the
EcoSysmodeling pipeline in more detail. In Section 8, we present
examples that illustrate the operation of the system as a whole.

3 TERRAIN SPECIFICATION

We begin the modeling of a scene with the specification of a terrain.
The goal of this step is to determine elevation data, local orienta-
tions of the terrain, and additional characteristics, such as the water
content in the soil, which may affect the type and vigor of plants at
different locations.

Terrain data may have several sources. Representations of real
terrains are available, for example, from the U.S. Geological Sur-
vey [30]. Several techniques have also been developed for creating
synthetic terrains. They include: hand-painted height maps [65],
methods for generating fractal terrains (reviewed in [38]), and mod-
els based on the simulation of soil erosion [28, 38].

In order to provide detailed control over the modeled terrain while
taking advantage of the data amplification of fractal methods [55],



Figure 2: Three stages in creating a terrain: after loading a height map painted by hand (left), with hills added using noise synthesis (middle),
and with a stream cut using the stream mask (right).

we designed and implemented an interactive terrain editing sys-
tem TerEdit, which combines various techniques in a procedural
manner. Terrain editing consists of operations, which modify the
terrain geometry and have the spatial scope limited by masks. A
similar paradigm is used in Adobe Photoshop [9], where selections
can be used to choose an arbitrary subset of an image to edit.

We assume that masks have values between zero and one, allowing
for smooth blending of the effects of operations. Both masks and
operations can depend on the horizontal coordinates and the altitude
of the points computed so far. Thus, it is possible to have masks that
select terrain above some altitude or operations that are functions
of the current altitude. The user’s editing actions create a pipeline
of operations with associated masks; to compute the terrain altitude
at a point, the stages of this pipeline are evaluated in order. Undo
and redo operations are easily supported by removing and re-adding
operations from the pipeline and re-evaluating the terrain.

Examples of editing operations include translation, scaling, non-
linear scaling, and algorithmic synthesis of the terrain. The syn-
thesis algorithm is based on noise synthesis [38], which generates
realistic terrains by adding multiple scales of Perlin’s noise func-
tion [42]. The user can adjust a small number of parameters that
control the overall roughness of the terrain, the rate of change in
roughness across the surface of the terrain, and the frequency of
the noise functions used. Noise synthesis allows terrain to be eas-
ily evaluated at a single point, without considering the neighboring
points; this makes it possible to have operations that act locally.
Another advantage of noise synthesis is efficiency of evaluation;
updating the wireframe terrain view (based on 256 � 256 samples
of the region of interest) after applying an operation typically takes
under a second. On a multiprocessor machine, where terrain evalu-
ation is multi-threaded, the update time is not noticeable.

The editor provides a variety of masks, including ones that select
rectangular regions of terrain from a top view, masks that select
regions based on their altitude, and masks defined by image files.
One of the most useful masks is designed for cutting streams through
terrain. The user draws a set of connected line segments over the
terrain, and the influence of the mask is based on the minimum
distance from a sample point to any of these segments. A spline is
applied to smoothly increase the influence of the mask close to the
segments. When used with a scaling operation, the terrain inside
and near the stream is scaled towards the water level, and nearby
terrain is ramped down, while the rest of the terrain is unchanged.

The specification of a terrain using TerEdit is illustrated in Fig-
ure 2. In the first snapshot, the hill in the far corner was defined by
loading in a height map that had been painted by hand. Next, small
hills were added to the entire terrain using noise synthesis. The last
image shows the final terrain, after the stream mask was used to cut
the path of a stream. A total of five operators were applied to make
this terrain, and the total time to model it was approximately fifteen
minutes.

Once the elevations have been created, additional parameters of
the terrain can be computed as input for ecosystem simulations
or a direct source of parameters for plant models. Although the
user can interactively paint parameters on the terrain, simulation
provides a more sound basis for the modeling of natural ecosystems.
Consequently, TerEdit incorporates a simulator of rain water flow
and distribution in the soil, related to both the erosion algorithm by
Musgrave et al. [38] and the particle system simulation of water on
building facades by Dorsey et al. [11]. Water is dropped onto the
terrain from above; some is absorbed immediately while the rest
flows downhill and is absorbed by the soil that it passes through.
A sample terrain with the water distribution generated using this
approach is shown in Figure 3.

Figure 3: A sample terrain with the water concentration ranging
from high (blue) to low (yellow)

4 SPECIFICATION OF PLANT POPULATIONS

The task of populating a terrain with plants can be addressed using
methods that offer different tradeoffs between the degree of user
control, time needed to specify plant distribution, and biological
validity of the results. The underlying techniques can be divided
into space-occupancy or individual-based techniques. This clas-
sification is related to paradigms of spatially-explicit modeling in
ecology [3, 19], and parallels the distinction between space-based
and structure-based models of morphogenesis [44].

The space-occupancy techniques describe the distribution of the
densities of given plant species over a terrain. In the image synthesis
context, this distribution can be be obtained using two approaches:

Explicit specification. The distribution of plant densities is mea-
sured in the field (by counting plants that occupy sample plots) or
created interactively, for example using a paint program.

Procedural generation. The distributions of plant densities is ob-
tained by simulating interactions between plant populations using
an ecological model. The models described in the literature are
commonly expressed in terms of cellular automata [19] or reaction-
diffusion processes [23].

The individual-based techniques provide the location and attributes
of individual plants. Again, we distinguish two approaches:



Explicit specification. Plant positions and attributes represent field
data, for example obtained by surveying a real forest [25], or speci-
fied interactively by the user.

Procedural generation. Plant positions and attributes are obtained
using a point pattern generation model, which creates a distribu-
tion of points with desired statistical properties [66], or using an
individual-based population model [13, 58], which is applied to
simulate interactions between plants within an ecosystem.

Below we describe two methods for specifying plant distribution that
we have developed and implemented as components of EcoSys.
The first method combines interactive editing of plant densities
with a point pattern generation of the distribution of individual
plants. The second method employs individual-based ecological
simulations.

4.1 Interactive specification of plant populations

To specify a plant population in a terrain, the user creates a set
of gray-level images with a standard paint program. These im-
ages define the spatial distributions of plant densities and of plant
characteristics such as the age and vigor.

Given an image that specifies the distribution of densities of a plant
species, positions of individual plants are generated using a half-
toning algorithm. We have used the Floyd-Steinberg algorithm [15]
for this purpose. Each black pixel describes the position of a plant
in the raster representing the terrain. We also have implemented a
relaxation method that iteratively moves each plant position towards
the center of mass of its Voronoi polygon [6]. This reduces the
variance of distances between neighboring plants, which sometimes
produces visually pleasing effects.

Once the position of a plant has been determined, its parameters are
obtained by referring to the values of appropriate raster images at
the same point. These values may control the plant model directly
or provide arguments to user-specified mathematical expressions,
which in turn control the models. This provides the user with an
additional means for flexibly manipulating the plant population.

Operations on raster images make it possible to capture some inter-
actions between plants. For example, if the radius of a tree crown
is known, the image representing the projection of the crown on
the ground may be combined with user-specified raster images to
decrease the density or vigor of plants growing underneath.

4.2 Simulation of ecosystems

Individual-based models of plant ecosystems operate at various lev-
els of abstraction, depending on the accuracy of the representation
of individual plants [58]. Since our goal is to simulate complex
scenes with thousands of plants, we follow the approach of Firbank
and Watkinson [13], and represent plants coarsely as circles posi-
tioned in a continuous landscape. Each circle defines the ecological
neighborhood of the plant in its center, that is the area within which
the plant interacts with it neighbors. Biologically motivated rules
govern the outcomes of interactions between the intersecting circles.
Global behavior of the ecosystem model is an emergent property of
a system of many circles.

We implemented the individual-based ecosystem models using the
framework of open L-systems [39]. Since L-systems operate on
branching structures, we represent each plant as a circle located at
the end of an invisible positioning line. All lines are connected into
a branching structure that spreads over the terrain.

Figure 4: Steps 99, 134, and 164 of a sample simulation of the
self-thinning process. Colors represents states of the plants: not
dominated (green), dominated (red), and old (yellow). The simula-
tion began with 62,500 plants, placed at random in a square field.
Due to the large number of plants, only a part of the field is shown.

Figure 5: The average area of plants as a function of their density.
Small dots represent the results of every tenth simulation step. Large
dots correspond to the states of simulation shown in Figure 4.

For example, let us consider a model of plant distribution due to
a fundamental phenomenon in plant population dynamics, self-
thinning. This phenomenon is described by Ricklefs as follows [52,
page 339]: “If one plots the logarithm of average plant weight as a
function of the logarithm of density, data points fall on a line with
a slope of approximately � 3

2 [called the self-thinning curve]. [...]
When seeds are planted at a moderate density, so that the begin-
ning combination of density and average dry weight lies below the
self-thinning curve, plants grow without appreciable mortality until
the population reaches its self-thinning curve. After that point, the
intense crowding associated with further increase in average plant
size causes the death of smaller individuals.”

Our model of self-thinning is a simplified version of that by Firbank
and Watkinson [13]. The simulation starts with an initial set of
circles, distributed at random in a square field, and assigned random
initial radii from a given interval. If the circles representing two
plants intersect, the smaller plant dies and its corresponding circle
is removed from the scene. Plants that have reached a limit size are
considered old and die as well.

Figure 4 shows three snapshots of the simulation. The correspond-
ing plot shows the average area of the circles as a function of their
density (Figure 5). The slope of the self-thinning curve is equal to
�1; assuming that mass is proportional to volume, which in turn
is proportional to area raised to the power of � 3

2 , the self-thinning
curve in the density-mass coordinates would have the slope of � 3

2 .
Thus, in spite of its simplicity, our model captures the essential
characteristic of plant distribution before and after it has reached
the self-thinning curve.



Figure 6: Simulated distribution of eight plant species in a ter-
rain from Figure 3. Colors indicate plant species. Plants with a
preference for wet areas are shown in blue.

A slightly more complicated model describes plant distribution in
a population of different plant species. Each species is defined
by a set of values that determine: (i) the number of new plants
added to the field per simulation step, (ii) the maximum size of
the plants, (iii) their average growth rate, (iv) the probability of
surviving the domination by a plant with a competitive advantage,
and (v) a preference for wet or dry areas. An individual plant
is characterized by: (i) the species to which it belongs, (ii) its
size, and (iii) its vigor. The vigor is a number in the range from
0 to 1, assigned to each plant as a randomized function of water
concentration at the plant’s location and the plant’s preference for
wet or dry areas. The competitive ability of a plant is determined
as a product of its vigor and its relative size (the ratio between the
actual and maximum size). When the circles representing two plants
intersect, their competitive abilities are compared. The plant with a
smaller competitive ability is dominated by the other plant and may
die with the defined probability.

Figure 6 presents the result of a simulation involving a mix of eight
plant species growing in a terrain shown in Figure 3. Plants with a
preference for wet areas are represented by blue circles. Plants with
a preference for dry areas have been assigned other colors. Through
the competition between the species, a segregation of plants between
the wet and dry areas has emerged.

Similar models can be developed to capture other phenomena that
govern the development of plant populations.

5 MODELING OF PLANTS

Interactive editing of plant populations and the simulation of ecosys-
tems determine positions and high-level characteristics of all plants
in the modeled scene. On this basis, geometric models of individual
plants must now be found.

Recent advances in plant measuring techniques have made it possi-
ble to construct a geometric model of a specific plant according to
detailed measurements of its structure [54]. Nevertheless, for the
purpose of visualizing plants differing by age, vigor, and possibly
other parameters, it is preferable to treat geometric models as a
product of the underlying procedural models. Construction of such
models for computer graphics and biological purposes has been a
field of active study, recently reviewed in [45]. Consequently, below
we discuss only the issue of model parametrization, that is the incor-
poration of high-level parameters returned by the population model

into the plant models. We consider two different approaches, which
reflect different predictive values of mechanistic and descriptive
models [60].

Mechanistic models operate by simulating the processes that control
the development of plants over time. They inherently capture how
the resulting structure changes with age [46, 47]. If a mechanistic
model incorporates environmental inputs, the dependence of the
resulting structure on the corresponding environmental parameters
is an emergent feature of the model [39]. The model predicts the
effect of various combinations of environmental parameters on the
structure, and no explicit parametrization is needed. L-systems [47]
and their extensions [39] provide a convenient tool for expressing
mechanistic models. Within EcoSys, mechanistic models have
been generated using cpfg.

Descriptive models capture plant architecture without simulating
the underlying developmental processes. Consequently, they do
not have an inherent predictive value. Nevertheless, if a family of
geometric models is constructed to capture the key “postures” of a
plant at different ages and with different high-level characteristics,
we can obtain the in-between geometries by interpolation. This is
equivalent to fitting functions that map the set of high-level param-
eters to the set of lower-level variables present in the model, and
can be accomplished by regression [57] (see [48] for an application
example). In the special case of plant postures characterized by a
single parameter, the interpolation between key postures is analo-
gous to key-framing [62], and can be accomplished using similar
techniques. We applied interpolation to parametrize models created
using both xfrog and cpfg.

6 APPROXIMATE INSTANCING

Geometric plant models are often large. A detailed polygonal rep-
resentation of a herbaceous plant may require over 10MB to store; a
scene with one thousand plants (a relatively small number in ecosys-
tem simulations) would require 10GB. One approach for reducing
such space requirements is to simplify geometric representations
of objects that have a small size on the screen. We incorporated
a version of this technique into our system by parameterizing the
procedural plant models so that they can produce geometries with
different polygonizations of surfaces. However, this technique alone
was not sufficient to reduce the amount of data to manageable levels.

Instancing was used successfully in the past for compactly rep-
resenting complex outdoor scenes (e.g. [56]). According to the
paradigm of instancing [59], geometric objects that are identical
up to affine transformations become instances of one object. To
achieve a further reduction in the size of geometric descriptions, we
extended the paradigm of instancing to objects that resemble each
other, but are not exactly the same. Thus, sets of similar plants
are represented by instances of a single representative plant. Fur-
thermore, the hierarchical structure of plant scenes, which may be
decomposed into groups of plants, individual plants, branches of
different order, plant organs such as leaves and flowers, etc., lends
itself to instancing at different levels of the hierarchy. We create
hierarchies of instances by quantizing model components in their
respective parameter spaces, and reusing them.

Automatic generation of instance hierarchies for plant models ex-
pressed using a limited class of L-systems was considered by
Hart [20, 21]. His approach dealt only with exact instancing.
Brownbill [7] considered special cases of approximate instancing
of plants, and analyzed tradeoffs between the size of the geometric
models and their perceived distortion (departure from the original



geometry caused by the reduction of diversity between the compo-
nents). He achieved reductions of the database size ranging from 5:1
to 50:1 with a negligible visual impact on the generated images (a
tree and a field of grass). This result is reminiscent of the observation
by Smith [55] that the set of random numbers used in stochastic al-
gorithms for generating fractal mountains and particle-system trees
can be reduced to a few representative values without significantly
affecting the perceived complexity of the resulting images.

We generalize Brownbill’s approach by relating it to clustering.
Assuming that the characteristics of each plant are described by a
vector of real numbers, we apply a clustering algorithm to the set
of these vectors in order to find representative vectors. Thus, we
reduce the problem of finding representative plants and instancing
them to the problem of finding a set of representative points in the
parameter space and mapping each point to its representative. We
assume that plants with a similar appearance are described by close
points in their parameter space; if this is not the case (for example,
because the size of a plant is a nonlinear function of its age), we
transform the parameter space to become perceptually more linear.
We cluster and map plant parts in the same manner as the entire
plants.

This clustering and remapping can be stated also in terms of vector
quantization [18]: we store a code book of plants and plant parts and,
for each input plant, we store a mapping to an object in the code book
rather than the plant geometry itself. In computer graphics, vector
quantization has been widely used for color image quantization [22];
more recent applications include reduction of memory needs for
texture mapping [4] and representing light fields [31].

We use a multi-dimensional clustering algorithm developed by Wan
et al. [61], which subdivides the hyperbox containing data points by
choosing splitting planes to minimize the variance of the resulting
clusters of data. We extended this algorithm to include an “impor-
tance weight” with each input vector. The weights make it possible
to further optimize the plant quantization process, for example by
allocating more representative vectors to the plants that occupy a
large area of the screen.

7 RENDERING

Rendering natural scenes raises two important questions: (i) dealing
with scene complexity, and (ii) simulating illumination, materials
and atmospheric effects. WithinEcoSys, we addressed these ques-
tions using two different strategies.

The first strategy is to to split the scene into sub-scenes of man-
ageable complexity, render each of them independently using ray-
casting, and composite the resulting RGB�Z images into the final
image [12]. The separation of the scene into sub-scenes is a byprod-
uct of the modeling process: both densedis and cpfg can output
the distribution of a single plant species to form a sub-scene. The
ray-casting algorithm is implemented in fshade, which creates the
scene geometry procedurally by invoking the xfrog plant modeler
at run time. This reduces file I/O and saves disk space compared to
storing all of the geometric information for the scene on disk and
reading it in while rendering. For example, the poplar tree shown
in Figure 16 is 16 KB as a procedural model (plant template), but
6.7 MB in a standard text geometry format.

A number of operations can be applied to the RGB�Z images before
they are combined. Image processing operations, such as saturation
and brightness adjustments, are often useful. Atmospheric effects
can be introduced in a post process, by modifying colors according
to the pixel depth. Shadows are computed using shadow maps [64].

The scene separation makes it possible to render the scene quickly
and re-render its individual sub-scenes as needed to improve the
image. However, complex lighting effects cannot be easily included,
since the renderer doesn’t have access to the entire scene description
at once.

The second rendering strategy is ray tracing. It lacks the capability
to easily re-render parts of scenes that have been changed, but makes
it possible to include more complex illumination effects. In both
ray-tracers that we have used, rayshade [29] and toro [43], pro-
cedural geometry descriptions are expanded into triangle meshes,
complemented with a hierarchy of grids and bounding boxes needed
to speed up rendering [56]. Rayshade requires the entire scene
description (object prototypes with their bounding boxes and a hier-
archy of instancing transformations) to be kept in memory, otherwise
page swapping significantly decreases the efficiency of rendering.
In the case of toro, meshes are stored on disk; these are read in
parts to a memory cache as needed for rendering computations and
removed from memory when a prescribed limit amount of memory
has been used. Consequently, the decrease in performance when the
memory size has been reached is much slower [43]. We have made
the straightforward extension of memory-coherent ray-tracing al-
gorithms to manage instanced geometry: along with non-instanced
geometry, the instances in the scene are also managed by the geom-
etry cache.

Because rays can be traced that access the entire scene, more com-
plex lighting effects can be included. For example, we have found
that attenuating shadow rays as they pass through translucent leaves
of tree crowns greatly improves their realism and visual richness.

8 EXAMPLES

We evaluated our system by applying it to create a number of scenes.
In the examples presented below, we used two combinations of
the modules: (i) ecosystem simulation and plant modeling using
cpfg followed by rendering using rayshade or toro, and (ii)
interactive specification of plant distribution using densedis in
conjunction with plant generation usingxfrog and rendering using
fshade.

Figure 7 presents visualizations of two stages of the self-thinning
process, based on distributions shown in Figure 4. The plants
represent hypothetical varieties of Lychnis coronaria [47] with red,
blue, and white flowers. Plant size values returned by the ecosystem
simulation were quantized to seven representative values for each
plant variety. The quantized values were mapped to the age of the
modeled plants. The scene obtained after 99 simulation steps had
16,354 plants. The rayshade file representing this scene without
instancing would be 3.5 GB (estimated); with instancing it was 6.7
MB, resulting in the compression ratio of approximately 500:1. For
the scene after 164 steps, the corresponding values were: 441 plants,
125 MB, 5.8 MB, compression 21:1.

The mountain meadow (Figure 8 top) was generated by simulating
an ecosystem of eight species of herbaceous plants, as discussed in
Section 5. The distribution of plants is qualitatively similar to that
shown schematically in Figure 6, but it includes a larger number of
smaller plants. The individual plants were modeled with a high level
of detail, which made it possible to zoom in on this scene and view
individual plants. The complete scene has approximately 102,522
plants, comprising approximately 2 � 109 primitives (polygons and
cylinders). The rayshade file representing this scene without
instancing would be 200 GB (estimated), with the instancing it was
151 MB, resulting in a compression ratio of approximately 1,300:1.



Figure 7: A Lychnis coronaria field after 99 and 164 simulation
steps

The time needed to model this scene on a 150 MHz R5000 Silicon
Graphics Indy with 96 MB RAM was divided as follows: simulation
of the ecosystem (25 steps): 35 min, quantization (two-dimensional
parameter space, each of the 8 plant species quantized to 7 levels):
5 min, generation of the 56 representative plants using cpfg: 9
min. The rendering time using rayshade on a 180 MHz R10000
Silicon Graphics Origin 200 with 256 MB RAM (1024�756 pixels,
4 samples per pixel) was approximately 8 hours. (It was longer using
toro, but in that case the rendering time did not depend critically
on the amount of RAM.)

In the next example, the paradigm of parameterizing, quantizing,
and instancing was applied to entire groups of plants: tufts of grass
with daisies. The number of daisies was controlled by a parameter
(Figure 9). The resulting lawn is shown in Figure 10. For this
image, ten different sets of grass tufts were generated, each instanced
twenty times on average. The total reduction in geometry due to
quantization and instancing (including instancing of grass blades
and daisies within the tufts) was by a factor of 130:1. In Figure 11,
a model parameter was used to control the size of the heaps of
leaves. The heap around the stick and the stick itself were modeled
manually.

Interactive creation of complex scenes requires the proper use of
techniques to achieve an aesthetically pleasing result. To illustrate
the process that we followed, we retrace the steps that resulted in
the stream scene shown in Figure 15.

We began with the definition of a hilly terrain crossed by a little
stream (Figure 2). To cover it with plants, we first created procedural
models of plant species fitting this environment (Figure 12). Next,
we extracted images representing the terrain altitudes and the stream
position (Figures 13a and 13b) from the original terrain data. This

Figure 8: Zooming in on a mountain meadow

provided visual cues needed while painting plant distributions, for
example, to prevent plants from being placed in the stream.

After that, we interactively chose a viewpoint, approximately at hu-
man height. With the resulting perspective view of the terrain as
a reference, we painted a gray scale image for each plant species
to define its distribution. We placed vegetation only in the areas
visible from the selected viewpoint to speed up the rendering later
on. For example, Figure 13c shows the image that defines the den-
sity distribution of stinging nettles. Since the stinging nettles grow
on wet ground, we specified high density values along the stream.
The density image served as input to densedis, which deter-
mined positions of individual plants. The dot diagram produced by
densedis (Figure 13d) provided visual feedback that was used to
refine the density image step by step until the desired distribution
was found.



Figure 9: Grass tufts with varying daisy concentrations

Figure 10: Lawn with daisies

Figure 11: Leaves on grass

Figure 12: Sample plant models used in the stream scene. Top
row: apple, stinging nettle, dandelion; bottom row: grass tuft, reed,
yellow flower.

a b c d

Figure 13: Creating distribution of stinging nettle: the heightmap of
the covered area (a), the river image (b), the plant density distribution
painted by the user (c), and the resulting plant positions (d).

Once the position of plants was established, we employed additional
parameters to control the appearance of the plants. The vigor of
stinging nettle plants, which affects the length of their stems and the
number of leaves, was controlled using the density image for the
nettles. To control the vigor of grass we used the height map: as a
result, grass tufts have a slightly less saturated color on top of the
hill than in the lower areas. Each tuft was oriented along a weighted
sum of the terrain’s surface normal vector and the up vector.

At this point, the scene was previewed and further changes in the
density image were made until a satisfying result was obtained.

Figure 14: OpenGL preview of the stream scene including stinging
nettle and yellow flowers



Figure 15: Stream scene

Figure 14 shows the preview of the distribution of stinging nettles
and yellow flowers. To prevent intersections between these plants,
the painted density image for the yellow flowers was multiplied by
the inverted density image for the nettles.

The apple trees were placed by painting black dots on a white image.
The final scene (Figure 15) was rendered using fshade. Images
representing each species were rendered separately, and the result-
ing sub-scenes were composited as described in Section 7. The
clouds were then added using a real photograph as a texture map.
To increase the impression of depth in the scene, color saturation and
contrast were decreased with increasing depth in a postprocessing
step, and colors were shifted towards blue. Table 1 provides statis-
tics about the instancing and geometric compression for this scene.
The creation of this image took two days plus one day for defining
the plant models. The actual compute time needed to synthesize this
scene on a 195 MHz R10000 8-processor Silicon Graphics Onyx
with 768MB RAM (1024� 756 pixels, 9 samples per pixel) was 75
min.

Figures 16 and 17 present further examples of scenes with interac-
tively created plant distributions. To simulate the effect of shad-
owing on the distribution of the yellow flowers in Figure 16, we
rendered a top view of the spheres that approximate the shape of the
apple trees, and multiplied the resulting image (further modified in-
teractively) with the initial density image for the yellow flowers. We
followed a similar strategy in creating Figure 17: the most impor-

tant trees were positioned first, then rendered from above to provide
visual cues for the further placements. Table 2 contains statistics
about the geometry quantization in Figure 17.

plant obj. inst. plant obj. inst.
apple 1 4 grass tuft 15 2577
reed 140 140 stinging nettle 10 430
dandelion 10 55 yellow flower 10 2751

Table 1: Number of prototype objects and their instances in the
stream scene (Figure 15). Number of polygons without instancing:
16,547,728, with instancing: 992,216. Compression rate: 16.7:1.

plant obj. inst. plant obj. inst.
weeping willow 16 16 reed 15 35
birch 43 43 poppy 20 128
distant tree 20 119 cornflower 72 20
St. John’s wort 20 226 dandelion 20 75
grass tuft 15 824

Table 2: Number of prototype objects and their instances in the
Dutch scene (Figure 17). Number of polygons without instancing:
40,553,029, with instancing: 6,737,036. Compression rate: 6.0:1



Figure 16: Forest scene

9 CONCLUSIONS

We presented the design and experimental implementation of a sys-
tem for modeling and rendering scenes with many plants. The cen-
tral issue of managing the complexity of these scenes was addressed
with a combination of techniques: the use of different levels of ab-
straction at different stages of the modeling and rendering pipeline,
procedural modeling, approximate instancing, and the employment
of space- and time-efficient rendering methods. We tested our sys-
tem by generating a number of visually complex scenes. Conse-
quently, we are confident that the presented approach is operational
and can be found useful in many practical applications.

Our work is but an early step in the development of techniques for
creating and visualizing complex scenes with plants, and the pre-
sented concepts require further research. A fundamental problem
is the evaluation of the impact of quantization and approximate in-
stancing on the generated scenes. The difficulty in studying this
problem stems from: (i) the difficulty in generating non-instanced
reference images for visual comparison purposes (the scenes are too
large), (ii) the lack of a formally defined error metric needed to eval-
uate the artifacts of approximate instancing in an objective manner,
and (iii) the difficulty in generalizing results that were obtained by
the analysis of specific scenes. A (partial) solution to this prob-
lem would set the stage for the design and analysis of methods that
may be more suitable for quantizing plants than the general-purpose
variance-based algorithm used in our implementation.

Other research problems exposed by our experience with EcoSys
include: (i) improvement of the terrain model through its coupling
with the plant population model (in nature vegetation affects terrain,
for example by preventing erosion); (ii) design of algorithms for
converting plant densities to positions, taking into account statistical
properties of plant distributions found in natural ecosystems [66]);
(iii) incorporation of morphogenetic plasticity (dependence of the
plant shape on its neighbors [58]) into the multi-level modeling
framework; this requires transfer of information about plant shapes
between the population model and the procedural plant models; (iv)
extension of the modeling method presented in this paper to ani-
mated scenes (with growing plants and plants moving in the wind);
(v) design of methods for conveniently previewing scenes with bil-
lions of geometric primitives (for example, to select close views
of details); and (vi) application of more faithful local and global
illumination models to the rendering of plant scenes (in particular,
consideration of the distribution of diffuse light in the canopy).

Figure 17: Dutch landscape
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