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Abstract

The use of the reflectance fields of real world objects to render realistic looking images is

rapidly increasing. The reflectance field describes the transport of light between the light

incident on an object and the light exitant from it. This has numerous applications in areas

that include entertainment, cultural heritage, digital libraries and space exploration. The

central problem with this approach is the lack of fast methods to acquire the reflectance

field data. This dissertation addresses this problem and describes a system for acquiring

the reflectance field of real world objects that performs manyorders of magnitude faster

than the previous approaches.

The system models the 8D reflectance field as a transport matrix between the 4D in-

cident light field and the 4D exitant light field. It is a challenging task to measure this

matrix because of its large size. However, in some cases the matrix is sparse, e.g. in scenes

with little or no inter-reflections. To measure such matrices, this thesis describes a hierar-

chical technique calleddual photographywhich exploits this sparseness to parallelize the

acquisition process. This technique, however, performs poorly for scenes with significant

diffuse inter-reflections because in such cases the matrix is dense. Fortunately, in these

cases the matrix is often data-sparse. Data-sparseness refers to the fact that sub-blocks

of the matrix can be well approximated using low-rank representations. Additionally, the

transport matrix is symmetric. Symmetry enables simultaneous measurements from both

sides, rows and columns, of the transport matrix. These measurements are used to develop

a hierarchical acquisition algorithm that can exploit the data-sparseness by a local rank-1

approximation. This technique, calledsymmetric photography, parallelizes the acquisition

for dense but data-sparse transport matrices.

In the process, this thesis introduces the use of hierarchical tensors as the underlying

vii



data structure to represent data-sparse matrices, specifically through local rank-1 factor-

izations of the transport matrix. Besides providing an efficient representation for storage,

it enables fast acquisition of the approximated transport matrix and fast rendering of the

images from the captured matrix. The prototype acquisitionsystem consists of an array

of mirrors and a pair of coaxial projector and camera controlled by a computer. The ef-

fectiveness of the system is demonstrated with scenes rendered from reflectance fields that

were captured by this system. In these renderings one can change the viewpoint as well as

relight objects using arbitrary incident light fields.
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Chapter 1

Introduction: Reflectance Fields in

Computer Graphics

Synthesizing realistic looking images is one of the centralproblems in computer graphics.

In order to achieve photorealism, the traditional graphicspipeline works by trying to simu-

late real-world physics accurately. The typical input to such a pipeline is a scene consisting

of object shapes, material properties and a set of lights. Although it is possible to provide

fairly accurate descriptions of object shapes, material properties are harder to model, as in

the case of translucent materials. This limitation affectsthe degree of realism in images

rendered from synthetic scenes. Moreover, there exists a trade-off between the degree of

realism and the computational resources required for simulating physical effects such as

diffuse inter-reflections, shadows, caustics, sub-surface scattering etc.

An alternative to modeling the shape and the material properties of objects is capturing

the appearance of the objects/scene directly. The appearance of a scene can be described by

an 8D function called the reflectance field which was introduced in the graphics community

by Debevec et al. [DHT+00]. The reflectance field describes the transport of light between

the light incident on an object and the light exitant from it.Once available, this representa-

tion can be used to render realistic images of the scene from any viewpoint under arbitrary

lighting. The resulting images capture all global illumination effects such as diffuse inter-

reflections, shadows, caustics and sub-surface scattering, without the need for an explicit

physical simulation. This dissertation focuses on techniques for acquiring reflectance fields
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2 CHAPTER 1. INTRODUCTION

of real-world objects.

In addition to being used as a primitive for computer graphics, reflectance fields have a

wide variety of applications:

• Entertainment: Convincingly inserting real actors inside a virtually generated set is

a major issue in current movie production. For this purpose,a reflectance field is the

primary dataset required to render images of people under arbitrary changes in light-

ing and viewing direction. Techniques for capturing and rendering from reflectance

fields have already been used in motion pictures such asSpiderman 2, King Kong

andSuperman Returns.

• Cultural heritage: Digital documentation of cultural artifacts is very important. Be-

sides providing an online catalogue of the artifacts it provides an easy way to study

the working techniques and design choices of artists who created the artifacts. Re-

flectance fields provide a complete representation for digitally storing such artifacts

as compared to traditional approach of acquiring just a geometric model as has been

explored in [HCD01].

• Space exploration:Photographs of rocks found on other planets provide scientists

with a window through which they can explore the outer space.Various missions

(e.g. Mars Rover Spirit) have been used for this purpose before. If instead of captur-

ing just a photograph, the whole reflectance field of the rock were acquired, then it

can be used to visualize the structure of the rock in far greater detail.

It is important to note that none of the applications described above have used a com-

plete reflectance field. This is because with current hardware and algorithms it is not pos-

sible to measure a complete reflectance field in reasonable time.

1.1 Problem Statement

The 8D reflectance field of a scene or object is defined as a transport matrix that describes

the transfer of energy between a light field [LH96] of incoming rays (the illumination) and

a light field of outgoing rays (the view), each of which are 4D.The rows of this matrix
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correspond to the view rays and the columns correspond to theillumination rays. Even for

small light field representations, say only 3×3 angular and 100×100 spatial, the trans-

port matrix would contain about 1010 entries. If constructed by measuring one entry per

video frame, it could take several days to capture even at video rate, making this approach

intractable.

Therefore, we must (1) devise algorithms that speed up the acquisition process; and

(2) devise infrastructure that can support the algorithms.In this dissertation we describe

techniques which accomplishes the above mentioned goals.

1.2 Previous Work

The idea of capturing the reflectance field of a scene is recent, but researchers have been

trying to measure the reflectance properties of surfaces, the bidirectional reflectance func-

tions, for much longer. Since measuring the bidirectional reflectance function requires

similar machinery as that required for measuring reflectance fields, we will start by review-

ing bidirectional reflectance functions first. The survey presented in Sections1.2.1 and

1.2.2has been adapted from [LHG+05].

1.2.1 Measurement of Bidirectional Reflectance Functions

The optical properties of an opaque homogeneous surface canbe characterized by re-

flectance as a function of incident light direction (two angles) and reflected light direction

(two angles). The resulting 4D function is called the bidirectional reflectance distribution

function (BRDF) [NRH+77]. If the surface is textured rather than homogeneous, then its

optical properties depend on position on the surface (two spatial coordinates) as well as

direction, leading to a 6D function called the spatially varying bidirectional reflectance

distribution function (SBRDF). Dana et al. [DNGK97] also call it the bidirectional tex-

ture function (BTF). Finally, if the object exhibits subsurface scattering, as does marble

or human skin, then its reflectance properties depend on the outgoing as well as incoming

position, adding two more spatial coordinates. The resulting function is 8D, and is called

the bidirectional surface scattering distribution function (BSSRDF).
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Characterizing the 4D, 6D, and 8D reflectance (or transmittance) functions of surfaces

is an active research area in applied physics and computer graphics. To realistically ren-

der some materials, such as plastics and metals, analytic descriptions of these functions

are known and tractable to compute. In other cases, analyticmodels are known, but these

include free parameters than can be measured from the physical samples of the material.

Recent examples of this are marble [JMLH01], human hair [MJC+03], wood [MWAM05],

and smoke [HED05b]. However, some materials are hard to describe using analytical mod-

els, for example human skin. Others like woven cloth, are combinations of various sub-

species. In order to render such materials, the bulk opticalproperties of a physical sample

of the material can be measured under a sufficiently wide range of viewing and illumina-

tion conditions to create a high-dimensional lookup table.This table can then be indexed

to make a new rendering of the object from an arbitrary viewpoint and under arbitrary il-

lumination, without the need for an analytical model. This is the idea behind capturing

reflectance fields, which we explore in this dissertation.

Researchers have proposed numerous devices for performingthe measurements out-

lined above. Devices for measuring 4D BRDF are called scatterometers or gonioreflec-

tometers. In applied physics, the emphasis has been on accuracy, and as a result most

of these devices employ lasers, cooled sensors, and precision mechanical movements. In

computer graphics, the emphasis has been on speed rather than accuracy, spurring a trend

towards optoelectronic solutions (having fewer moving parts). For example, Ward [War92]

captures a BRDF using a movable light source, half-silveredhemisphere, and wide-angle

camera. Marschner et al. [MWLT00] constructed another significant BRDF measurement

system. This system, although limited to only isotropic BRDF measurements, was both

faster and robust than Ward’s. In particular, the system took unique advantage of reci-

procity, bilateral symmetry, and multiple simultaneous measurements to achieve unprece-

dented leverage from each reflection measurement. The system used two cameras and a

movable light source for this purpose. Dana et al. [Dan01] measure SBRDF by using

curved mirrors which remove the need for hemispherical positioning of the camera and

illumination source. Instead, simple planar translationsof optical components are used to

vary the illumination direction and to scan the surface. Recently, Han and Perlin [HP03]

have captured SBRDF using a stationary camera, a video projector and a kaleidoscope to
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redirect the incoming and outgoing light. This system has nomoving parts, but it pro-

duces datasets of low directional resolution. Because of its daunting size, few research

groups have undertaken to measure a BSSRDF. The Stanford Spherical Gantry has been

used to capture subsets of this function [JMLH01, MJC+03], but measurement of an entire

BSSRDF has never been tried.

1.2.2 Measurement of Reflectance Fields

Bidirectional reflectance functions specify the optical properties of a particular surface, but

if the scene is composed of many objects then the optical properties of the whole scene can

be specified using the 4D, 6D, or 8D reflectance field dependingon how much variation

is permitted in the illumination and viewer position. The 8Dreflectance field can also be

described as a transport matrix describing the transfer of energy between the illumination

rays and the view rays. 4D and 6D reflectance fields are projection of this matrix into lower

dimensions. For obvious reasons, the work on measuring reflectance fields has focused on

capturing various lower dimensional projections.

If the illumination is fixed and the viewer allowed to move, the appearance of the scene

as a function of outgoing ray position and direction is a 4D slice of the reflectance field. The

light field [LH96] and the lumigraph [GGSC96] effectively describe this exitant reflectance

field. By extracting appropriate 2D slices of the light field,one can virtually fly around a

scene but the illumination cannot be changed. Light fields can be captured by a single

moving camera [LH96] or an array of cameras [WJV+05]. If the viewpoint is fixed and the

illumination is provided by a set of point light sources, oneobtains another 4D slice of the

8D reflectance field. Various researchers [ZWCS99, CZH+00, DHT+00, MGW01, SNB03,

HED05a] have acquired such data sets where a weighted sum of the captured images can

be combined to obtain relit images from a fixed viewpoint only. However, since point light

sources radiate light in all directions, it is impossible tocast sharp shadows onto the scene

with this technique.

If the illumination is provided by an array of video projectors, and the scene is captured

as illuminated by each pixel of each projector, but still as seen from a single viewpoint, then

one obtains a 6D slice of an 8D reflectance field. By extractingappropriate slices from this
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function, one can render views under lighting that includeslocal light source and shadows.

Masselus et al. [MPDW03] capture such data sets using a single moving projector. At each

position of the projector, the scene is captured under a set of illumination basis functions

rather than one pixel at a time, to increase speed. Nevertheless, the necessity to move the

projector limits the resolution of data that can be capturedusing such a system. Goesele et

al. [GLL+04] use a scanning laser, a turntable and a moving camera to capture a reflectance

field for the case of translucent objects under a diffuse sub-surface scattering assumption.

Although one can view the object from any position and relight it with arbitrary light fields,

the captured data set is still essentially 4D because of their assumption.

In this dissertation, we extend this previous work by describing a system that requires

at least one projector/camera pair, an array of mirrors and abeam-splitter for measuring 8D

reflectance fields. Our system has no moving parts. Having produced such a system, we

next look at prior attempts to efficiently storing this data.

1.2.3 Use of Hierarchical Data Structures for Reflectance Field

Hierarchical data structures have been previously used forrepresenting reflectance fields.

These representations provide greater efficiency both in terms of storage and capture time.

A typical setup for capturing reflectance fields consists of ascene under controlled illu-

mination, as imaged by one or more cameras. Peers and Dutré [PD03] illuminate a scene

with wavelet patterns in order to capture environment mattes (another 4D slice of the re-

flectance field). A feedback loop determines the next patternto use based on knowledge

of previously recorded photographs. The stopping criteriais based on the error of the cur-

rent approximation. Although their scheme adapts to the scene content, it does not try to

parallelize the capture process. Matusik et al. [MLP04] use a kd-tree based subdivision

structure to represent environment mattes. They express environment matte extraction as

an optimization problem. Their algorithm progressively refines the approximation of the

environment matte with an increasing number of training images taken under various il-

lumination conditions. However, the choice of their patterns is independent of the scene

content.

In this dissertation, we also use a hierarchical data structure to represent the reflectance
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field. It is a subdivision structure with a low-rank representation for nodes. Also, our

subdivision is adaptive and is based on the scene content.

1.2.4 Helmholtz Reciprocity

Helmholtz reciprocity is the idea that the flow of light can beeffectively reversed without

altering its transport properties. There has been some previous work in the computer vision

community that takes advantage of Helmholtz reciprocity. Zickler et al. used reciprocity

to reconstruct the geometry of surfaces with arbitrary BRDFs in what they call Helmholtz

stereopsis [ZBK02]. The authors observed that by interchanging light source and cam-

era during acquisition, they can use Helmholtz reciprocityto guarantee that points on the

surface would have exactly the same transfer characteristic in both configurations. This

simplifies stereo matching, even for surfaces with complex BRDFs. A similar approach

was taken by Tu et al. [TMRM03], who utilized reciprocity for the task of 3D to 2D reg-

istration. Finally, reciprocity has been used in a manner analogous to the duality explained

in this dissertation by Zotkin et al. [ZDGG04] in order to model sound transfer through

the human head. In this work, the authors noted that an array of microphones and a single

speaker can be used to replace the more common setup of a single microphone and multi-

ple speakers because of the duality of the sound transport between the microphone and the

speaker. In this dissertation, we take advantage of helmholtz reciprocity to speed-up our

acquisition algorithm.

1.3 Contributions

This dissertation makes two contributions to the area of acquisition of reflectance fields:

• On thetheoretical side, it observes that the reflectance field, when expressed as a

transport matrix, is data-sparse and symmetric. This meansthat it can be captured

efficiently by separately measuring the row sums and the column sums, i.e. by co-

locating a camera and a projector.

• On thesystemside, we present a prototype system for acquiring reflectance fields.

Our system uses the properties of reflectance field matrix to achieve faster acquisition
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using a hierarchical adaptive scheme. The heart of this system is a novel representa-

tion of the matrix using local low rank approximation.

Part of the work presented in this dissertation has been described in previous publica-

tions. The dual photography work was presented at SIGGRAPH 2005 [SCG+05] and the

symmetric photography work was presented at the Eurographics Symposium on Rendering

(EGSR) 2006 [GTLL06].

1.4 Outline of the Dissertation

This dissertation is organized as follows. Chapter2 defines the reflectance field and de-

scribes how to abstract it as a matrix, called the light transport matrix, for the purpose of

this thesis. Three important properties of the transport matrix - data-sparseness, symmetry

and duality are also explained. Chapter3 describes dual photography, our first technique

to measure the transport matrix. This method exploits sparseness in the matrix. Chap-

ter4 introduces a hierarchical tensor structure for representing data-sparse matrices/tensors.

Chapter5 describes a second technique to measure the transport matrix - symmetric pho-

tography - which exploits data-sparseness in the matrix. Finally, Chapter6 presents the

conclusions about our acquisition system, and suggestionsfor future work.



Chapter 2

Reflectance Field as the Light Transport

Matrix: Theory and Properties

In this chapter, we formally define the reflectance field and the light transport matrix. We

also describe three important properties of the transport matrix; data-sparseness, symmetry

and duality. These properties will be used to develop our acquisition algorithm in subse-

quent chapters.

2.1 Definitions: Reflectance Field and

Light Transport Matrix

The light field [LH96], plenoptic function [AB91], and lumigraph [GGSC96] all describe

the flow of light within space. These ideas were first introduced in the classic work of

Gershun on the vector irradiance field [Ger36] and Moon’s paper on the scalar irradiance

field, which he called the photic field [MS81]. Light fields are used to describe the radiance

at each pointx and in each directionω in a scene. Ignoring wavelength and fixing time,

this is a 5D function which we denote bỹL(x,ω). Thus,L̃(x,ω) represents the radiance

leaving a pointx in directionω. (A complete table of the mathematical terms used in this

chapter is provided in Table2.1.)

Levoy and Hanrahan [LH96], and Gortler et al. [GGSC96] observed that if the viewer

9
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V 3D space of all points in a volume, domain of functions
Ω 2D space of all directions at a point, domain of functions
x, x′ two points in domainV, e.g.,(x,y,z),(x′,y′,z′)
ω, ω ′ two points in domainΩ, e.g.,(θ ,φ),(θ ′

,φ ′)
dx′ a differential volume atx′, i.e.,dx′dy′dz′

dω ′ a differential direction atω ′, i.e.,dθ ′dφ ′

L̃(x,ω) 5D light field function on domainsV andS, radiance at(x,ω)

L̃i(x,ω) 5D incoming light field
L̃o(x,ω) 5D outgoing light field
K(x,ω;x′,ω ′) the direct light transport from(x′,ω ′) to (x,ω)

L̃ i 5D discrete incoming light field
L̃o 5D discrete outgoing light field
K matrix of the direct light transport coefficients
T̃ matrix of the light transport coefficients for 5D representation
Ψ 4D space of all incoming directions on all points of a sphere,

domain of functions
ψ a point in domainΨ, e.g.,(u,v,θ ,φ)
ψi ,ψo two points in domainΨ, e.g.,(ui,vi ,θi ,φi), (uo,vo,θo,φo)
L(ψ) 4D light field function on domainΨ, radiance at a pointψ
Li(ψi) 4D incoming light field
Lo(ψo) 4D outgoing light field
R(ψi ,ψo) 8D reflectance field mappingLi(ψi) to Lo(ψo)
L i 4D discrete incoming light field
Lo 4D discrete outgoing light field
t i impulse response to unit illumination along a rayi
T matrix of the light transport coefficients for 4D representation,

symmetric
T̂ a sub-block ofT, not necessarily symmetric

Table 2.1: Table of terms and variables
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is moving within the unoccluded space, then the 5D representation of the light field can be

reduced to 4D. We can characterize this function asL(ψ) whereψ specifies a point and

an incoming direction on a sphere [DHT+00]. A 4D light field can be used to generate an

image from any viewing position and direction, but it will always show the scene under

the same lighting. In general, each field of incident illumination on a scene will induce a

different field of exitant illumination from the scene. Debevec et al. [DHT+00] showed

that the exitant light field from the scene under every possible incident field of illumination

can be represented as an 8D function called thereflectance field:

R(Li(ψi);Lo(ψo)) = R(ψi ;ψo) (2.1)

Here, Li(ψi) represents the incident light field on the scene, andLo(ψo) represents the

exitant light field reflected off the scene.

We have so far described the light field concepts using continuous functions, but for

actual measurements, we work with discrete forms of these functions. In order to do so,

let us parameterize the domainΨ of all incoming directions by an array indexed byi. The

outgoing direction corresponding to an incoming directionis also parameterized by the

same index,i. Now, consider emitting unit radiance along rayi towards the scene (e.g.,

using a laser beam or a projector). The resulting light field,which we denote by vectort i ,

captures the full transport of light in response to this impulse illumination. This is called the

impulse response [GLL+04] or the impulse scatter function [SMK05]. We can concatenate

all the impulse responses into a matrixT which we call thelight transport matrix:

T = [t1t2 . . . tn] (2.2)

Since light transport is linear, any outgoing light field represented by a vectorLo can be

described as linear combination of the impulse responses,t i . Thus, for an incoming illumi-

nation described by vectorL i , the outgoing light field can be expressed as:

Lo = TL i (2.3)

The light transport matrixT, is thus the discrete analog of the reflectance fieldR(ψi ;ψo).
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Seitz et al. [SMK05], in work contemporaneous to our own, also use transport matrices

to model the light transport. Their work provides a theory for decomposing the transport

matrix into individual bounce light transport matrices, while our work describes efficient

techniques to measure it.

2.2 Data-Sparseness

2.2.1 Sparseness, Smoothness and Data-sparseness

To efficiently store large matrices, sparseness and smoothness are two ideas that are typ-

ically exploited. A sparse matrix has only a small number of non-zero elements in it and

hence can be represented compactly. A data-sparse matrix onthe other hand may have

many non-zero elements, but the actual information contentin the matrix is small enough

that it can still be expressed compactly. A simple example will help convey this concept.

Consider taking the cross product of two vectors, each of length n. Although the resulting

matrix (which is rank-1 by construction) could be non-sparse, we only need two vectors

(O(n)) to represent the contents of the entire(O(n2)) matrix. Such matrices are data-

sparse. More generally, any matrix in which a significant number of sub-blocks can have

a low-rank representation is data-sparse. Note that a low-rank sub-block of a matrix need

not be smooth and may contain high frequencies. A frequency or wavelet-based technique

would be ineffective in compressing this block. Therefore,the concept of data-sparseness

is more general and powerful than sparseness or smoothness.

Ramamoorthi and Hanrahan [RH01] analyze the smoothness in BRDFs and use it for

efficient rendering and compression. A complete frequency space analysis of light transport

has been presented by Durand et al. [DHS+05]. The idea of exploiting data-sparseness for

factorizing high dimensional datasets into global low-rank approximations has also been

investigated, in the context of BRDFs [KM99, MAA01, LK02] and also for light fields and

reflectance fields [VT04, WWS+05]. In contrast to these global approaches, we have de-

veloped a technique called symmetric photography that useslocal low-rank factorizations

to exploit the data-sparseness of the transport matrices. We tie in the factorization with

a hierarchical subdivision scheme (see Chapter5). This hierarchical subdivision allows
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us to exploit the data-sparseness locally. We also present another method for acquiring

reflectance fields called dual photography. This method onlyexploits the sparseness in

transport matrices (see Chapter3). The exposition of the techniques should make it clear

that symmetric photography, which exploits data-sparseness, is more powerful and general

than dual photography, which exploits only sparseness.

2.2.2 Data-Sparseness of the Transport Matrix

In order to understand the data-sparseness of transport matrices, we will work with the

5D representation of the light fields. Under the light field’sparadigm, the appearance of a

scene can be completely described by an outgoing radiance distribution function,̃Lo(x,ω).

Similarly, the illumination incident on the scene can be described by an incoming radiance

distribution function,̃Li(x,ω).

The relationship betweeñLi(x,ω) andL̃o(x,ω) can be expressed by an integral equa-

tion, the well known rendering equation [Kaj86]:

L̃o(x,ω) = L̃i(x,ω)+
∫

V

∫

Ω
K(x,ω;x′,ω ′)L̃o(x′,ω ′)dx′dω ′ (2.4)

The functionK(x,ω;x′,ω ′) defines the proportion of flux from(x′,ω ′) that gets transported

as radiance to(x,ω). It is a function of the BSSRDF, the relative visibility of(x′,ω ′) and

(x,ω) and foreshortening and light attenuation effects. Whenx = x′, K(x,ω;x′,ω ′) = 0.

If we assume that the scene is composed of a collection of small planar facets, and if

we discretize the space of rays, eq. (2.4) can be expressed in discrete form as:

L̃o[i] = L̃ i [i]+∑
j

K [i, j]L̃o[ j] (2.5)

whereL̃o andL̃ i are discrete representations of outgoing and incoming light fields respec-

tively, andK [i, i] = 0. We can rewrite eq. (2.5) as a matrix equation:

L̃o = L̃ i +KL̃o (2.6)
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(I) (II) (III) (IV)

(a)

(b)

(c)

(d)

(e)
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Figure 2.1: Understanding the transport matrix. To explain the intrinsic structure of
reflectance fields, we capture the transport matrix for 4 realscenes shown in row (a) with
a coaxial projector/camera pair. The scenes in different columns are: (I) a diffuse textured
plane, (II) two diffuse white planes facing each other at an angle, (III) a diffuse white plane
facing a diffuse textured plane at an angle, and (IV) two diffuse textured planes facing each
other at an angle. Row (b) shows the images rendered from the captured transport matrices
under floodlit illumination. A 2D slice of the transport matrix for each configuration is
shown in row (c). This slice describes the light transport between every pair of rays that
hits the brightened line in row (b). Note that the transport matrix is symmetric in all 4
cases. Since (I) is a flat diffuse plane, there are no secondary bounces and the matrix is
diagonal. In (II), (III) and (IV) the diagonal corresponds to the first bounce light and is
therefore much brighter than the rest of the matrix. The top-right and bottom-left sub-
blocks describe the diffuse-diffuse light transport from pixels on one plane to the other.
Note that this is smoothly varying for (II). In case of (III) and (IV), the textured surface
introduces high frequencies but these sub-blocks are stilldata-sparse and can be represented
using rank-1 factors. The top-left and bottom-right sub-blocks correspond to the energy
from 3rd-order bounces in our scenes. Because this energy isaround the noise threshold in
our measurements we get noisy readings for these sub-blocks. Row (d) is a visualization of
the level in the hierarchy when a block is classified as rank-1. White blocks are leaf nodes,
while darker shades of gray progressively represent lower levels in the hierarchy. Finally,
row (e) shows the result of relighting the transport matrix with a vertical bar. Note the
result of indirect illumination on the right plane in (II), (III) and (IV). Since the left plane
is textured in (IV) the indirect illumination is dimmer thanin (III). Note that the matrix for
a line crossing diagonally through the scene would look similar.
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Eq. (2.6) can be directly solved [Kaj86] to yield:

L̃o = (I −K)−1L̃ i (2.7)

The matrixT̃ = (I −K)−1 describes the complete light transport between the 5D incom-

ing and outgoing light fields as a linear operator1. Heckbert [Hec91] uses a similar matrix

in the context of radiosity problems and shows that such matrices are not sparse. This

is also observed by Börm et al. [BGH03] in the context of linear operators arising from

an integral equation such as eq. (2.4). They show that even though the kernelK might

be sparse, the resulting matrix(I −K)−1 is not. However, it is typically data-sparse. In

particular, the kernel is sparse because of occlusions, butdue to multiple scattering events

one typically observes light transport between any pair of points in the scene, resulting in

a densẽT. On the other hand, we observe that a diffuse bounce off a point on the scene

contributes the same energy to large regions of the scene in asimilar fashion. Therefore,

large portions of the transport matrix, e.g. those resulting from inter-reflections of diffuse

and glossy surfaces, aredata-sparse. One can exploit this data-sparseness by using local

low-rank approximations for sub-blocks ofT̃. We choose a rank-1 approximation.

Figure2.1 illustrates this data-sparseness for a few examples of transport matrices that

we have measured, and also demonstrates the local rank-1 approximation. To gain some

intuition, let us look at the light transport between two homogeneous untextured planar

patches. The light transport between the two is smooth and can be easily factorized. It

can be seen in the top-right and bottom-left sub-blocks of the transport matrix for scene

(II). Even if the surfaces are textured, it only results in appropriate scaling of either the

columns or rows of the transport matrix as shown in (III) and (IV). This will not change the

factorization. If a blocker is present between the two patches, it will introduce additional

diagonal elements in the matrix sub-blocks. This can only behandled by subdividing the

blocks and factorizing at a finer level, as explained in Chapter 5.

1Note that our derivation is similar to that of Seitz et al. [SMK05]. They derive the formula for light
transport between the first bounce 4D light field and outgoing4D light field, whereas our derivation is for
complete 5D radiance transfer.
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2.3 Symmetry of the Transport Matrix

Helmholtz reciprocity, the idea that the flow of light can be effectively reversed without

altering its transport properties, was proposed by von Helmholtz in his original treatise in

1856 [vH56]. He proposed the following reciprocity principle for beams traveling through

an optical system (i.e., collections of mirrors, lenses, prisms, etc.):

Suppose that a beam of lightA undergoes any number of reflections or refractions,

eventually giving rise (among others) to a beamB whose power is a fractionf of beamA.

Then on reversing the path of the light, an incident rayB′ will give rise to a beamA′ whose

power is the same fractionf of beamB′.2

In other words, the path of a light beam is always reversible,and furthermore the rela-

tive power loss is the same for the propagation in both directions. Although Helmholtz

only made this claim for specular interactions, Rayleigh later extended the reciprocity

to include non-specular interactions [Ray00]. Helmholtz reciprocity has been exploited

in many graphics applications to reduce computational complexity, for example, in ray-

tracing systems [Whi80]. For a more complete discussion on reciprocity, interested readers

are referred to Veach [Vea97].

For the purpose of this work, this reciprocity can be used to derive an equation describ-

ing the symmetry of the radiance transfer between incoming and outgoing directionsψi

andψo:

R(ψi ;ψo) = R(ψo;ψi) (2.8)

whereR is the reflectance field (see AppendixA for a detailed proof). For the light transport

matrix defined in Section2.1, this implies that the transport of light between a rayi and and

a ray j is equal in both directions, i.e.

T[i, j] = T[ j, i] (2.9)

⇒ T = TT (2.10)

Therefore,T is a symmetric matrix. This is also clear from Figure2.1 row (c). Also, note

that since we are looking at a subset of rays (4D from 5D),T is just a sub-block of̃T.

2Paraphrased from Chandrashekhar [Cha60]
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Figure 2.2: Duality of the transport matrix. The left diagram shows the primal config-
uration, with light being emitted by a real projector and captured by a real camera. Matrix
T̂ describes the light transport between the projector and thecamera (element̂T[i, j] is the
transport coefficient from projector pixelj to camera pixeli). The right diagram shows the
dual configuration, with the positions of the projector and camera reversed. SupposeT̂′′

is the transport matrix in this dual configuration, so thatT̂′′[ j, i] is the transport between
pixel i of the virtual projector and pixelj of the virtual camera. As shown in AppendixA,
Helmholtz reciprocity specifies that the pixel-to-pixel transport is equal in both directions,
i. e. T̂′′[ j, i] = T̂[i, j], which meanŝT′′ = T̂T . As explained in the text, given̂T, we can use
T̂T to synthesize the images that would be acquired in the dual configuration.

Therefore,T is also data-sparse.

2.4 Duality of the Transport Matrix

The symmetry property of the transport matrix holds when ouracquisition system can mea-

sure the outgoing ray corresponding to each incoming ray. Ifthe acquisition setup is such

that the source of radiation (e.g. a projector) and the sensor (e.g. a camera) sample dif-

ferent subsets of incoming and outgoing rays respectively,then the transport matrix which

describes this light transport is not symmetric. It turns out that the transport matrix exhibits

an interesting duality property in this case.

We explain this with reference to Figure2.2. We have a projector of resolutionp×q

shining light onto a scene and a camera of resolutionm×n capturing the reflected light.

Since the light transport is linear, we can express the lighttransport from the projector

through the scene and into the camera with the following simple equation:

c′ = T̂p′ (2.11)
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Figure 2.3: Duality as a corollary of symmetry. The duality of the light transport can be
seen as a corollary of the symmetry of the transport matrix. BecauseT = TT , therefore, if
T̂ describes the light transport fromp′ to c′, thenT̂T describes the light transport fromc′′

to p′′.

The column vectorp′ is the projected pattern (sizepq×1), andc′ (sizemn×1) repre-

sents the image captured by the camera. MatrixT̂ (sizemn× pq) is the transport matrix

that describes how light from each pixel ofp′ arrives at each pixel ofc′.

We use the prime subscript (′) to indicate that we are working in the primal space to

distinguish it from its dual counterpart, which we will introduce in a moment. Then, by

using the principle of Helmholtz reciprocity as described in the previous section, we can

represent the dual of eq.2.11as follows:

p′′ = T̂Tc′′ (2.12)

In this equation, the transport matrix̂T of the scene is the same as before except that

we have now transposed it to represent the light going from the camera to the projector.

We shall refer to eq.2.11as the “primal” equation and eq.2.12as the “dual” equation. In

the dual space,p′′ represents the virtual image that would be visible at the projector if the

camera were “projecting” patternc′′. We can also derive this duality as a corollary to the

symmetry of full transport matrixT of which T̂ is just a sub-block. This is described in

Figure2.3

Thus, because of the duality, thêT matrix can be acquired in either space and then
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transposed to represent the light transport in the other space. It is important to note that the

two equations are not mathematical inverses of each other (i.e. T̂T̂T 6= I ). This is because

energy is lost in any real system through absorption or scattering. Therefore, if we measure

c′ after applyingp′, we cannot put this back inc′′ and expect the resultingp′′ to equal the

originalp′.



Chapter 3

Dual Photography: Exploiting

Sparseness

The full transport matrix between a single camera and projector pair is extremely large (on

the order of 106×106 for conventional projector/camera resolutions). Thus, asdescribed

in the introduction (Chapter1), a brute-force scan, in which each projector pixel is illumi-

nated individually, would take days to acquire it. In this chapter, we develop a technique

calleddual photographywhich exploits the sparseness in the transport matrix to speed-up

the acquisition process. The basic idea of this scheme is that instead of sequentially illu-

minating the projector pixels, we would multiplex the illuminated pixels spatially over the

projector pattern, i.e. illuminate multiple pixels at the same time. In order to understand

when we can do this multiplexing, let us analyze the following instance of the transport

matrix:

T̂ =

[
U1 0

0 U2

]
(3.1)

whereU1 andU2 are unknown. As per our abstraction of the transport matrix,the row in-

dices correspond to the camera pixels while the column indices correspond to the projector

pixels. For the above matrix, we observe that the blocksU1 andU2 are radiometrically

isolated, i.e. the projector pixels corresponding toU1 do not affect the camera pixels corre-

sponding toU2; and vice versa. Thus, we can illuminate the projector pixels corresponding

toU1 in parallel with projector pixels corresponding toU2without mixing the contributions

21
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due to both in the camera image. The demultiplexing would simply require identifying the

pixels corresponding toU1 andU2 in the camera image. The dual photography technique

is based on this idea and it tries to identify such radiometrically isolated regions in the

matrix. A sparse transport matrix will have many such regions and hence can be acquired

efficiently by this technique. We describe the technique in subsequent sections.

3.1 Adaptive Multiplexed Illumination

Our algorithm tries to acquire the transport matrix with as few patterns as possible while

ensuring that projector pixels affecting the same camera pixel are never illuminated simul-

taneously. We avoid such conflicts by subdividing the projector space adaptively; starting

with the floodlit projector image, we subdivide it into four blocks, which are refined recur-

sively until we reach the pixel level. Whenever we subdividea block, we illuminate the

four children in sequence. A walk-through example of the algorithm is given in Figure3.1.

Two blocks can be investigated/subdivided in parallel if nocamera pixel received a

contribution from both blocks. At each level of the subdivision, we determine for each

camera pixelk the blocksBk = {B0, . . . ,Bn} which illuminate pixelk either indirectly or

directly. For all possible pairs of blocks contributing to the same camera pixel, we generate

a conflict setCk = {(Bi,B j) : Bi ,B j ∈ Bk}. In the next iteration, the only blocks that need

to be subdivided are inB =
⋃

kBk, i.e. only the blocks that contributed to any camera pixel.

In this manner, blocks that do not contribute to the final image in any way are immediately

culled away.

Given the set of all generated conflicts across all camera pixelsC =
⋃

k Ck, we define

a graph(B,C). A graph coloring scheme is used to determine conflict-free subsets ofB

which can be investigated in parallel. While there might be aconflict for two blocks in one

iteration, further subdivision might allow sub-blocks to be parallelized.

At the final subdivision level, each block is the size of a pixel. However, we can guar-

antee that no two projector pixels have a conflict in the camera image because these pixels

would not have been scheduled in the same pattern otherwise.Because we know the history

of the subdivisions for that pixel, we can determine the exact correspondence between pro-

jector and camera pixels. Using this fact, we can fill in the entries of theT̂ matrix with the
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Figure 3.1: Example of adaptive algorithm. This example shows patterns that would
be displayed on an 8× 8 pixel projector for each level of subdivision. The numbersin
each block indicate the frame when it is lit. In the first frame(level 1), all pixels are on.
We subdivide it in level 2 into four children, which are acquired sequentially in clockwise
order (frames 2-5). In this example, we assume some camera pixels respond to both blocks
2 and 4, e.g. due to inter-reflection within the scene. We denote the conflict between these
blocks with red X’s. In level 3 (frames 6-13), we ensure that the children of these two
blocks are not scheduled for acquisition during the same frame. While acquiring level 3,
we discover two additional conflicts: (6 and 12) and (8 and 10). Suppose also that block
9 in the lower left measured nothing, so it is culled. We now schedule level 4, avoiding
scheduling the children of conflicting blocks together, which brings us to frame 21. Thus,
we can acquire the transport matrix in this example with only21 frames when 64 would
be required with the brute-force scan. Had there been no conflicts, the number of frames
would be the number of subdivision levels times four (4 children at each level) plus one for
the floodlit image. This gives us 4× log4(pq)+1 = 13 for this example.
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Figure 3.2: Adaptively parallelized patterns. This figure demonstrates that how our
algorithm adapts to the scene content. Because of the complex light transport within the
bottle visible in the left image, only a few pixels can be investigated in parallel in this
region. Thus, the bottle remains relatively dark when we project an adaptive pattern as
shown on the right.

values measured at the camera. Figure3.2shows the projection of one of the patterns onto

the scene. The large number of white projector pixels highlights the efficient parallelization

of the acquisition.

Although the adaptive parallelization algorithm just described works on most scenes,

it may perform poorly in scenes where diffuse inter-reflections or subsurface scattering

dominates the appearance. These scenes are particularly challenging because the energy

emitted by a single projector pixel might be spread over large areas in the scene. In an

extreme case, this overlap might cause the algorithm to schedule every pixel of the projector

in a separate frame, thereby degenerating into the brute-force scan algorithm.

The adaptive scheme just presented can also fail to capture all of the energy measured

by the projector. In certain cases, a point in the scene mightreflect only a small fraction

of its energy towards the camera. If this contribution is below the noise threshold of the

camera, some blocks may be erroneously culled and their energy lost. This causes the

technique to fail to capture diffuse-diffuse inter-reflections, as shown in Figure3.3. We

show in the next section that by modifying the adaptive algorithm to store the energy in a

hierarchical fashion, we can avoid this problem.
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Figure 3.3: The problem of capturing diffuse inter-reflections. Applying the adaptive
parallelization algorithm described in Section3.1and subdividing down to the pixel level,
we produce the dual image on the left. The contribution of thediffuse inflections between
the box and the red wall are nearly lost in the camera noise. Using the hierarchical assembly
of the transport matrix described in Section3.2, we preserve the energy from higher levels
in the subdivision, leading to the improved dual image on theright.

3.2 Hierarchical Assembly of the Transport Matrix

To address the problem of signal loss for scenes with significant non-localized light trans-

port, we employ a hierarchical representation of the transport matrix. This method is related

to the wavelet environment matting technique by Peers and Dutré [PD03]. It is also similar

to the hierarchical technique of Matusik et al. [MLP04], with adaptation added. Specifi-

cally, we follow the subdivision scheme of the previous section, but build a finer and finer

representation of̂T at every subdivision level. At level 1, our approximation ofT̂ is sim-

ply a column vector of lengthmn representing the imagec′ captured while illuminating a

floodlit imagep′. We call this approximation̂T1. Intuitively, T̂1 represents the light trans-

port between the camera and a one-pixel projector. At the next level, our approximation

T̂2 contains four columns, one for each of the four subdivided regions. This continues

down to the pixel level where the matrix̂Tk with 4k−1 columns matches the resolution of

the originalT̂. The energy for each element of the matrix is stored at only one level (at

the highest possible resolution that still returns a measured value) since we do not want to

double-count the energy. For a complete overview of the algorithm, readers are referred to

the pseudocode in AppendixC.1.

The benefit of this hierarchical representation is that the energy is stored at the last
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primal level 1 level 2 level 3 level 4 level 5

dual level 6 level 7 level 8 level 9 level 10

Figure 3.4: Construction of the dual image with a hierarchical representation. The
primal and dual image show diffuse to diffuse inter-reflections which could only be cap-
tured by use of the hierarchical acquisition. Energy that might have been lost when further
subdividing a block is deposited at a coarse level of theT̂ matrix. To synthesize the dual
image, the levels are individually reconstructed by applying the appropriate basis functions,
then added together to obtain the image on the left. In this figure the intensity of the images
for level 1 to 9 has been increased to visualize their contribution.

level where it can still be accurately measured. A thresholdis used to decide whether to

subdivide a specific block or to store its contribution at thecurrent level of the hierarchi-

cal structure. If the contribution is stored, we terminate subdivision of that block. The

threshold is set empirically and depends on the characteristics of the measurement system.

In order to synthesize an image from the acquired transport data, the contribution of the

different levels of the hierarchy need to be added together for each pixel in the final image.

This reconstruction can be expressed in the following mathematical form:

c′ = ∑
k

f (T̂kp
′) (3.2)

p′′ = ∑
k

f (T̂T
k c′′) (3.3)

where eq. (3.2) is the rendering equation for primal configuration and eq. (3.3) is the ren-

dering equation for the dual configuration.

We will explain the elements of these equations as we describe our rendering algorithm

for the dual case, eq. (3.3) (note that the primal case is analogous). First, the desired

light patternc′′ is applied to thêT approximation at each level to illuminate the scene
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Figure 3.5: Setup for dual photography. A pattern loaded into projector on the right
illuminates the scene and the camera on the left records the outgoing radiance. The camera
used is a Basler A504kc (1280× 1024 pixels) and the projector is a Mitsubishi X480U
(1024×768 pixels). The setup is computer controlled, and we capture HDR images every
2.5 seconds.

for that level of the hierarchy. This is expressed by the dot product T̂T
k c′′ which results

in a 4k−1 × 1 column vector. Referring to eq. (2.12), we see that this vector represents

the 4k−1−pixel image that would be viewed at the projector under lighting c′′. Figure3.4

shows a visualization off (Tk
Tc′′) of levels 1 through 10 for one of our scenes.

We must now add up the energy at each level to generate the finalimage. Because each

of these vectors is of different dimensions, they must be resized to the final resolution of

the image in order to be added up. We represent this resizing operation by the function

f . The functionf is needed to generate a continuous waveform from the discrete samples.

In our present implementation, we use bi-cubic interpolation for f . Once the vectors have

been resized, we simply add them to get the final image.

3.3 Acquisition Setup

The capture setup for the dual photography algorithm requires a projector and a camera.

There is no restriction on the location of the camera and the projector. Also there is no

geometric calibration required. Our particular capture setup is shown in Figure3.5. The

capture system is controlled by a computer. For a detailed description of the capture system
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architecture and the pre-processing steps involved beforegetting the image data, the reader

is referred to AppendixB.

3.4 Results

The technique presented allows us to efficiently capture thetransport matrix̂T of a scene

and measure many global illumination effects using only a moderate number of patterns

and images. Figure3.6 is an example of an image acquired with this technique. Note the

capability of the algorithm to capture the complex refraction through the bottle. This image

is 578×680 pixels and was acquired in a little over 2 hours. In contrast, a brute-force pixel

scan would take almost 11 days at the same resolution (assuming 25 HDR images/min).

Figure 3.7 shows two more scenes that were acquired using the hierarchical technique.

To show that the algorithm accelerates our acquisition and results in a manageable size of

the T̂ matrix, we list relevant data for various scenes in Table3.1. We compare it against

calculated values for a brute-force pixel scan acquisition, assuming a capture rate of ap-

proximately 25 patterns/minute. The data is stored as three32-bit floats for each matrix

element. We can see that our technique is several orders of magnitude more efficient in

both time and storage space, although further compression is still possible.

To characterize the effect of projector resolution on our hierarchical adaptive algorithm,

we plot the number of acquired frames against projector resolution in Figure3.8for the box

scene (Figure3.4) and the bottle scene (Figure3.6). As we increase the resolution expo-

nentially, the curves approximate a straight line. This shows that the adaptive multiplexed

illumination approach operates inO(logpq) time wherepq is the projector resolution.

3.4.1 Scene Relighting

Once the transport matrix between the projector and the camera has been acquired, it can

be used to relight the primal and dual images by multiplyingT̂ and T̂T by the desired

illumination vectorsp′ andc′′ respectively.

In Figure3.6, we demonstrate this by relighting the dual image of the scene with a

high frequency light pattern and can see that the caustics generated by the glass bottle vary
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(a) (b)

(c) (d)

Figure 3.6: Complex light transport example. (a) Conventional photograph of a scene,
illuminated by a projector with all its pixels turned on. (b)After measuring the light trans-
port between the projector and the camera using structured illumination, our technique is
able to synthesize a photorealistic image from the point of view of the projector. This im-
age has the resolution of the projector and is illuminated bya light source at the position
of the camera. The technique can capture subtle illumination effects such as caustics and
self-shadowing. Note, for example, how the glass bottle in the primal image (a) appears as
the caustic in the dual image (b) and vice versa. Because we have determined the complete
light transport between the projector and camera, it is easyto relight the dual image using
a synthetic light source (c) or a light modified matte captured later by the same camera (d).
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Figure 3.7: Sample scenes.The acquired primal image is on the left, the synthesized dual
image on the right. Note for example the detail on the pillar in the dual image of the bottom
row which is barely visible in the primal due to foreshortening.
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Brute-force scan Dual photography
SCENE SIZE TIME SIZE TIME PATTERNS

(TB) (days) (MB) (min) (#)
Fig. 3.4 3.7 7.3 179 14 352
Fig. 3.7(top) 1.6 8.3 56 19 501
Fig. 3.7(bottom) 1.4 8.3 139 15 369
Fig. 3.6 5.4 10.9 272 136 3397
Fig. 3.9(80 positions) 114 362 6,675 1,761 19,140

Table 3.1: Table of relevant data (size, time and number of patterns) for different example
scenes captured using the dual photography technique.

.

.

Figure 3.8: Logarithmic behavior of adaptive algorithm. Plot of the number of required
patterns for the scenes in Figure3.6and Figure3.4against the projector resolution reveals
that the algorithm operates inO(logpq) time.
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spatially with illumination.

Since our adaptive algorithm is fast, we can also use a singlecamera to acquire the 6D

reflectance field of a scene by moving it in a manner analogous to that of Masselus et al.

[MPDW03] where they moved the projector. Figure3.9 shows the relighting of a scene

which was acquired in this manner by mounting the camera on a computerized gantry.

3.5 Discussion and Conclusions

In this chapter, we have developed an adaptive algorithm that looks for regions of the scene

whose transport paths do not interact. This permits us to project many beams into the scene

at once, letting us measure multiple entries of the transport matrix in parallel. Once we

acquire the transport matrix, we have shown that the scene can be relit by multiplying the

transport matrix by the appropriate vector. This allows us to illuminate a scene with a point

light with directional control or an arbitrary light field.

There are some limitations of our technique, however. Scenes with significant global

illumination would reduce the parallelism that the adaptive algorithm exploits. Since mul-

tiple projector pixels can affect overlapping regions in the camera after several bounces,

they would be scheduled in separate passes. In the limit, thetechnique degenerates to a

brute force scan.

Measuring inter-reflected transport paths accurately is also a problem, especially when

the angle of view of the projector and the camera is large withrespect to the scene. Fig-

ure3.10shows an example of a difficult scene to relight because the camera and the pro-

jector were at right angles to one another. In the next chapters we will use a data-sparse

assumption on the matrix instead of sparseness assumptionsand present the acquisition

algorithm called symmetric photography based on this assumption in Chapter5. This will

alleviate the above mentioned problems.
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(a) (b)

(c) (d)

Figure 3.9: Scene relit from multiple directions. Using a camera mounted on a com-
puterized gantry, we acquired the transport matrix for thisscene at 80 different camera
positions. We can then relight the dual image with a light source located at these positions,
e.g. (a) one on the left or (b) on the right. By combining the contributions of these lights,
we can illuminate the scene with an area light source (c) thatcasts soft shadows. Finally,
because each transport is captured at high resolution, we can relight the scene using a high
resolution matte as shown in (d).
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mirror

(a) (b)

Figure 3.10: Limits of the hierarchical assembly of theT̂ matrix. In this example, the
camera is above the box looking down while the projector is onthe right illuminating from
the front, as can be seen in the primal image (a). Because of the large difference in the angle
between the camera and projector viewpoints, there are manyregions in the scene where
there is no direct light transport. In these regions we are unable to resolve the transport
matrix to the full resolution, and thus have to fall back to higher levels of the hierarchical
tree. This results in a blurred dual image (b). Nevertheless, it is remarkable that the mirror
reflection is captured, even though the mirror is barely visible in the primal image.



Chapter 4

Hierarchical Tensors: A Data Structure

for Data-sparse Tensors

The dual photography technique described in Chapter3 exploits the sparseness in the trans-

port matrix (the fact that there are a lot of zeros) to speed-up the acquisition process. How-

ever, it has its limitations as the transport matrix is not necessarily sparse in many cases.

But it turns out that the matrix is data-sparse, as explainedin Section2.2. We exploit this

data-sparseness in the acquisition algorithm presented inChapter5. In this chapter, we will

describe the data-structure that we will use to represent data-sparse matrices/tensors.

We introduce a new data structure calledhierarchical tensorsto represent data-sparse

tensors. Hierarchical tensors are a generalization of hierarchical matrices (orH -matrices)

which we will explain first.

4.1 Hierarchical Matrices

Hierarchical matrices (orH -matrices) were introduced by Hackbush [Hac99] in the ap-

plied mathematics community to represent arbitrary data-sparse matrices. The basic idea

is to split a given matrix into a hierarchy of rectangular blocks and approximate each of the

blocks by a low-rank matrix (see Figure4.1). Specifically, at each level of the hierarchy,

sub-blocks in the matrix are subdivided into 4 children (as in a quadtree). If a sub-block at

35
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Level 1 Level 2

Level 3 Level 4

Block further subdivided Low-rank approximation

Figure 4.1: Example of a hierarchical matrix. This example shows 4 levels of a hierar-
chical matrix. The matrix is sub-divided like in a quadtree.Purple blocks are the sub-blocks
for which a low-rank approximation is possible. They are notsubdivided any further in the
hierarchy. On the other hand, for green blocks a low-rank approximation is not possible.
They are subdivided and investigated further. At level 1, the full matrix is investigated
and it does not have a low-rank representation. Therefore, it is subdivided into 4 children
which are investigated in level 2. At level 2, the top-right and bottom-left blocks are clas-
sified as low-rank and not subdivided any further whereas top-left and bottom-right blocks
are scheduled for further investigation.
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any level in the tree can be represented by a low-rank approximation, then it is not subdi-

vided any further. Thus, a leaf node in the tree contains a low-rank approximation for the

corresponding sub-block, which reduces to just a scalar value at the finest level in the hier-

archy. Based on this structure, approximative algorithms for matrix arithmetic, inversion,

preconditioning and even matrix equations can be introduced that work in almost optimal

complexity. For a more complete discussion onH -matrices, interested readers are referred

to [BGH03].

4.2 Hierarchical Tensors

Consider the 4D reflectance field that describes the light transport for a single projec-

tor/camera pair. We have a 2D image representing the illumination pattern and a resulting

2D image captured by the camera. The connecting light transport can therefore be repre-

sented by a 4th-order tensor. One can alternatively flatten out the 2D image into a vector

and represent the reflectance field with a matrix (a 2nd-ordertensor), but that would destroy

the spatial coherency present in a 2D image [WWS+05]. To preserve coherency we rep-

resent the light transport by a 4th-order hierarchical tensor. Analogous to the hierarchical

matrix representation, a node in the 4th-order hierarchical tensor is divided into 16 children

at each level of the hierarchy. Thus, we call the hierarchical subdivision for a 4th-order ten-

sor, asedectree1. This is in continuation of the tradition of deriving the tree names from

their Latin counterparts. e.g.quadtreefrom 4 nodes in a 2nd-order tensor subdivision and

octreefrom 8 nodes in a 3rd-order tensor subdivision. Quadtree andoctree were first intro-

duced in the graphics community by Warnock [War69]; and Hunter and Steiglitz [Hun78]

respectively and have been comprehensively surveyed in [Sam84].

Unlike in the case of a matrix where a unique low-rank approximation can always

be obtained using SVD (Singular Value Decomposition), there is no analogous SVD for

higher order tensors. Thus, there is no unique way to define the rank of a higher or-

der tensor. There are two tensor decompositions that are commonly used. One is called

the CANDECOMP-PARAFAC decomposition (CANonical DECOMPosition or PARAl-

lel FACtors model) which was independently proposed by Carroll and Chang [CC70] and

1derived fromsedecim, Latin equivalent of 16
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Figure 4.2: Rank-1 approximation of a 4th-order tensor. The figure illustrates how
to represent a sub-block of a 4th-order tensor by a rank-1 approximation. The tensor is
described by the tensor product of two 2D images. It is a rank-1 approximation because
only one pair of images is needed.

Harshman [Har70]. This decomposition does not impose any orthogonality constraint on

the vectors resulting from the decomposition but provides the concept of the rank of a

tensor. The other commonly used tensor decomposition is called the HOSVD (Higher Or-

der Singular Value Decomposition) which was proposed by [LMV00]. It is based on the

Tucker decomposition form of a tensor proposed by [Tuc66]. Although this decomposi-

tion imposes orthogonality constraint on the vectors, there is no concept of tensor rank.

HOSVD has been used in graphics community for efficient rendering [VT04] and com-

pression [WWS+05] from high dimensional data.

Under the general hierarchical tensor framework proposed here, any appropriate tensor

decomposition can be used depending upon the demands of the application. In order to

capture the data-sparseness in a tensor, for the purpose of this work, we represent the 4th-

order tensor as a tensor product of two 2D images, one from thecamera side and the other

from the projector side, see Figure4.2. We call it a rank-1 approximation, where the rank

is defined by the number of 2D image pairs used for representing the tensor.

A hierarchical tensor offers many benefits for our purpose. Because of our rank-1

approximation, a sub-block of the 4th-order tensor can be stored compactly using just two

2D images. By using a clever hierarchical structure, the overhead of using a hierarchy can

also be minimized. The worst case storage complexity of thisrepresentation is(O(n4))

while the best case is(O(n2)), wheren×n is the image resolution. In practice, we will get

something in between depending on the data-sparseness of the tensor. The data structure
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also provides constant time data-access during rendering from the data. This is because the

depth of the tree in our hierarchical representation is constant.

4.3 Discussion and Conclusions

In this chapter we have introduced a new data structure called hierarchical tensorsthat can

be used to efficiently represent data-sparse tensors. Hierarchical tensors are a generalization

of hierarchical matrices. Besides providing an efficient representation for storage, it enables

fast acquisition of the approximated transport matrix and fast rendering of the images from

the captured matrix. Thus, the hierarchical tensor turns out to be a natural data-structure

for our acquisition algorithm that we will explain in Chapter 5.
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Chapter 5

Symmetric Photography: Exploiting

Data-sparseness

In this chapter we will explain our symmetric photography technique for acquiring re-

flectance fields. Symmetric photography generalizes dual photography by exploiting data-

sparseness rather than just sparseness. Here again, the goal is to be able to illuminate

multiple projector pixels at the same time rather than illuminating them sequentially.

In order to understand how we can illuminate multiple projector pixels at the same time,

let us assume that the transport matrix is:

[
U1 M

MT U2

]
=

[
U1 0

0 U2

]
+

[
0 M

MT 0

]
(5.1)

whereU1 andU2 have not been measured yet. Note that here we are dealing withsym-

metric transport matrix. In Chapter3 we utilized the fact that ifM = 0, then the unknown

blocksU1 andU2 are radiometrically isolated, i.e. the projector pixels corresponding to

U1 do not affect the camera pixels corresponding toU2 and vice versa. Thus, we can illu-

minate the projector pixels corresponding toU1 andU2 in parallel in such cases. Here, we

observe that if the contents ofM are known but not necessarily0, we can still radiomet-

rically isolateU1 andU2 by subtracting the contribution of knownM from the captured

images. The RHS of eq. (5.1) should make this clear. We use this fact to illuminate the

projector pixels corresponding toU1 andU2 in parallel whenM is known.

41
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Figure 5.1: Obtaining a rank-1 approximation. An image captured by the camera is
the sum of the columns in the transport matrix correspondingto the pixels illuminated by
the projector. Therefore, on illuminatingpc the camera imagec would be the sum of the
columns of the matrixM ; and on illuminatingpr the camera imager would be the sum
of the columns of the matrixMT or the sum of the rows of the matrixM as shown in the
capture part. The tensor product ofc andr after normalization withm provides a rank-1
approximation ofM .
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Now, consider a sub-blockM of the transport matrix that is data-sparse and can be

approximated by a rank-1 factorization. We can obtain this rank-1 factorization by just

capturing two images. An image captured by the camera is the sum of the columns in the

transport matrix corresponding to the pixels illuminated by the projector. Because of the

symmetry of the transport matrix, this image is also the sum of corresponding rows in the

matrix. Therefore, by shining just two projector patterns,pc andpr , we can capture images

such that one provides the sum of the columns,c and the other provides the sum of the

rows, r of M (c = Mpc and r = MTpr ). A tensor product ofc and r after appropriate

normalization directly provides a rank-1 factorization for M (see Figure5.1). Thus, the

whole sub-block can be constructed using just two illumination patterns. This is the key

idea behind our algorithm. The algorithm tries to find such sub-blocksM in T that can

be represented as a rank-1 approximation by a hierarchical subdivision strategy. Once

measured, these sub-blocks can be used to parallelize the acquisition as described above.

5.1 Hierarchical Acquisition Scheme

Our acquisition algorithm follows the structure of the hierarchical tensor described in Chap-

ter 4. At each level of the hierarchy we illuminate the scene with afew projector patterns.

We use the captured images to decide which nodes of the tensorin the previous level of

hierarchy are rank-1. Once a node has been determined to be rank-1, we do not subdivide

it any further as its entries are known. The nodes which fail the rank-1 test are subdivided

and scheduled for investigation during the next iteration.The whole process is repeated

until we reach the pixel level. We initiate the acquisition by illuminating with a floodlit

projector pattern. The captured floodlit image provides a possible rank-1 factorization of

the root node of the hierarchical tensor. The root node is scheduled for investigation in the

first iteration.

For each level, the first step is to decide what illumination patterns to use. In order to

speed-up our acquisition, we need to minimize the number of these patterns. To achieve

this, our algorithm must determine the set of projector blocks which can be illuminated in

the same pattern. To determine this, we divide each scheduled node into 16 children and

the 4 blocks in the projector corresponding to this subdivision are accumulated in a list
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Bi and Bj can be scheduled together iff

(Tik is known ∨ Tjk is known) ∀ Bk∈

i

B :

Bi
B

B

Projector Pattern

j

i jk

Tik Tjk

Tjk

Tik

k

Bi and Bj cannot be scheduled together iff

(Tik is unknown ∧ Tjk is unknown) ∃ Bk∈B :

Figure 5.2: Determining block scheduling.Two blocksBi andB j can be scheduled in the
same frame if and only if,∀Bk ∈ B, the light transportTik or Tjk is known. Therefore, two
blocksBi andB j cannot be scheduled in the same frame if and only if,∃Bk ∈ B, such that
the light transportsTik andTjk are both unknown. This is because upon illuminatingBi and
B j simultaneously, the blockBk in the camera will measure the combined contribution of
bothTik andTjk. If both of these are unknown at this point there is no way to separate them
out.

B = {B1,B2, ...,Bn}. Figure5.2describes the condition when two blocksBi andB j can be

scheduled in parallel. It can be written as the following lemma:

Lemma 1 (Block Scheduling Lemma)Two blocks Bi and Bj can be scheduled together

if and only if,∀Bk ∈ B, at least one of Tik or Tjk are known.

We can use this lemma to derive a corollary for when two blocksBi andB j cannot be

illuminated in parallel. We will use this corollary for our block scheduling algorithm.

Lemma 2 (Block Scheduling Lemma Corollary) Two blocks Bi and Bj can not be sched-

uled together if and only if,∃Bk ∈ B, such that both Tik and Tjk are not known.

Since the direct light transportTii is not known until the bottom level in the hierarchy,

any two blocksBi andB j for which Ti j is not known cannot be scheduled in parallel. For

all such possible block pairs for which the light transport has not been measured yet, let us

construct a setC = {(Bi,B j) : Bi ,B j ∈ B}. Given these two sets, we define an undirected

graphG = (B,C), whereB is the set of vertices in the graph andC is the set of edges.
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Thus, the vertices in the graph have an edge between them if the light transport between

the corresponding blocks is not known. In this graph, any twoverticesBi andB j which do

not have an edge between them, but have a direct edge with a common blockBk (as shown

in Figure5.2), also satisfy the lemma. Therefore, we cannot schedule them in parallel.

Such blocks correspond to vertices at a distance two from each other in our graphG. In

order to capture these blocks as direct edges in a graph, we construct another graphG2

which is the square of graphG [Har01]. The square of a graph contains an edge between

any two vertices which are at most distance two away from eachother in the original graph.

Thus, in the graphG2, any two vertices which are not connected can be scheduled together.

We use a graph coloring algorithm onG2 to obtain subsets ofB which can be illuminated

in parallel. Once the images have been acquired, the known intra-block light transport is

subtracted out for the blocks that were scheduled in the sameframe.

In the next step, we use these measurements to test if the tensor nodes in the previous

level of the hierarchy can be factorized using rank-1 approximation. We have a current

rank-1 approximation for each node from the previous level in the hierarchy. The 8 mea-

sured images, corresponding to 4 blocks from the projector side and 4 blocks from the

camera side of a node, are used as test cases to validate the current approximation (note

that there are only 4 measured images if the tensor node is on-diagonal and hence symmet-

ric). This is done by rendering estimate images for these blocks using the current rank-1

approximation. The 8 estimated images are compared againstthe corresponding measured

images and an RMS (root mean square) error is calculated for the node. A low RMS error

indicates our estimates are as good as our measurements and we declare the node as rank-1

and stop any further subdivision on this node. If on the otherhand the RMS error is high,

the 16 children we have measured become the new nodes. The 4 images from the projector

side and the 4 images from the camera side are used to construct the 16 (4× 4) rank-1

estimates for them. These nodes are scheduled for investigation in the next iteration.

A tensor node containing just a scalar value is trivially rank-1. Therefore, the whole

process terminates when the size of the projector block reduces to a single pixel. Upon

finishing, the scheme directly returns the hierarchical tensor for the reflectance field of the

scene. For a complete overview of the algorithm, readers arereferred to the pseudocode in

AppendixC.2.
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projector
camera

beamsplitter

scene

Figure 5.3: Schematic of symmetric photography setup.A coaxial array of projectors
and cameras provides an ideal setup for symmetric photography. The projector array illu-
minates the scene with an incoming light field. Since the setup is coaxial, the camera array
measures the corresponding outgoing light field.

Once the tensor has been created, the rendering from it is quite straightforward. Any

incoming light pattern is partitioned according to the hierarchy and multiplied by the ap-

propriate sub-block in the tensor. Since the size of the hierarchy is constant the worst case

access time for any entry of the tensor is constant.

5.2 Acquisition Setup

In order to experimentally validate our ideas we need an acquisition system that is capable

of simultaneously emitting and capturing along each ray in the light field. This suggests

having a coaxial array of cameras and projectors. Figure5.3shows the schematic of such a

setup. Our actual physical implementation is built using a single projector, a single camera,

a beam-splitter and an array of planar mirrors. The projector and the camera are mounted

coaxially using the beam splitter on an optical bench as shown in Figure5.4, and the mirror

array divides the projector/camera pixels into 9 coaxial pairs. Once the optical system has

been mounted it needs to be calibrated. First, the center of projection of the camera and

projector is aligned. The next task is to find the per pixel mapping between the projector

and camera pixels. We use a calibration scheme similar to that used by Han and Perlin
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Figure 5.4: Coaxial setup for capturing 8D reflectance fields.A pattern loaded into
projector atA illuminates a 3× 3 subset of the 4× 4 array of planar mirrors atB. This
provides us with 9 virtual projectors which illuminate our scene atC. The light that returns
from the scene is diverted by a beam-splitter atD towards a camera atE. Any stray light
reflected from the beam-splitter lands in a light trap atF . The camera used is an Imperx
IPX-1M48-L (984× 1000 pixels) and the projector is a Mitsubishi XD60U (1024×768
pixels). The setup is computer controlled, and we capture HDR images every 2 seconds.

29˚

37˚

3x130 px

3x200 px

Illumination Viewing

Figure 5.5: Region of the sphere sampled by our setup.Our setup spans an angular
resolution of 37◦×29◦ on the sphere both for the illumination and view directions.The
spatial resolution in each view is 130×200 pixels. This accounts for about 2% of the total
rays in the light field at the current sampling rate of the capture system.
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Symmetric photography Brute-force
SCENE SIZE TIME PATTERNS PATTERNS

(MB) (min) (#) (#)
Fig. 2.1(I) 255 44 809 108,500
Fig. 2.1(II) 371 70 1,085 108,500
Fig. 2.1(III) 334 65 1,081 108,500
Fig. 2.1(IV) 274 46 841 108,500
Fig. 5.6 337 151 2,417 91,176
Fig. 5.8 1,470 484 3,368 233,657

Table 5.1: Table of relevant data (size, time and number of patterns) for different example
scenes captured using our technique. Note that the algorithm requires about 2 orders of
magnitude fewer patterns than the brute-force scan.

[HP03] and Levoy et al. [LCV+04] in their setup to find this mapping. Figure5.5 illus-

trates the angular and spatial resolution of reflectance fields captured using out setup. The

capture system is controlled by a computer. For a detailed description of the capture system

architecture and the pre-processing steps involved beforegetting the image data, the reader

is referred to AppendixB.

5.3 Results

We capture reflectance fields of several scenes using this technique. For reference, Table5.1

provides statistics (size, time and number of patterns required for acquisition) for each of

these datasets.

In Figure2.1, we present the results of our measurement for four simple scenes consist-

ing of planes. This experiment has been designed to elucidate the structure of theT matrix.

A coaxial projector/camera pair is directly aimed at the scene in this case. The image res-

olution is 310×350 pixels. Note the storage, time and number of patterns required for the

four scenes (listed in Table5.1). A brute-force scan, in which each projector pixel is illumi-

nated individually, to acquire theseT matrices would take at least 100 times more images.

Also, since the energy in the light after an indirect bounce is low, the camera would have to

be exposed for a longer time interval to achieve good SNR during brute-force scanning. On

the other hand, in our scheme, the indirect bounce light transport is resolved earlier in the
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hierarchy (see rows (c) and (d) in Figure2.1). At higher levels of the hierarchy, we are illu-

minating with bigger projector blocks (and hence throwing more light into the scene than

just from a single pixel), therefore we are able to get good SNR even with small exposure

times. Also, note that the high frequency of the textures does not affect the data-sparseness

of reflectance fields. The hierarchical subdivision followsalmost the same strategy in all

four cases as visualized in row (d). In row (e), we show the results of relighting the scene

with a vertical bar. The smooth glow from one plane to the other in column (II), (III) and

(IV) shows that we have measured the indirect bounce correctly.

Figure 5.6 demonstrates that our technique works well for acquiring the reflectance

fields of highly sub-surface scattering objects. The image (240×340 pixels) reconstructed

from relighting with a spatially varying illumination pattern (see Figure5.6(b)) is validated

against the ground-truth image (see Figure5.6(c)). We also demonstrate the result of recon-

structing at different levels of the hierarchical tensor for this scene in Figure5.7. This figure

also explains the difference between our hierarchical tensor representation and a wavelet

based representation.

Figure5.8 shows the result of an 8D reflectance field acquired using our setup. The

captured reflectance field can be used to view the scene from multiple positions (see Fig-

ure5.8(b)) and also to relight the scene from multiple directions (see Figure5.8(a)). The

resolution of the reflectance field for this example is about 3× 3× 130× 200× 3× 3×

130×200. The total size of this dataset would be 610 GB if three 32-bit floats were used

for each entry in the transport matrix. Our hierarchical tensor representation compresses

it to 1.47 GB. A brute force approach would require 233,657 images to capture it. Our

algorithm only needs 3,368 HDR images and takes around 8 hours to complete. In our cur-

rent implementation, the processing time is comparable to the actual image capture time.

We believe that the acquisition times can be reduced even further by implementing a paral-

lelized version of our algorithm. Rendering a relit image from our datasets is efficient and

takes less than a second on a typical workstation.
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(a) (b) (c) (d)

Figure 5.6: Subsurface scattering scene.The reflectance field of a glass full of gummy
bears is captured using two coaxial projector/camera pairsplaced 120◦ apart. (a) is the
result of relighting the scene from the front projector, which is coaxial with the presented
view, where the (synthetic) illumination consists of the letters “EGSR”. Note that due to
their sub-surface scattering property, even a single beam of light that falls on a gummy bear
illuminates it completely, although unevenly. In (b) we simulate homogeneous backlighting
from the second projector combined with the illumination used in (a). For validation, a
ground-truth image (c) was captured by loading the same projector patterns into the real
projectors. Our approach is able to faithfully capture and reconstruct the complex light
transport in this scene. (d) shows a typical frame captured during the acquisition process
with the corresponding projector pattern in the inset.
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Level 1 Level 2 Level 3 Level 4 Level 5

Level 6 Level 7 Level 8 Level 9 Level 10

Figure 5.7: Reconstruction results for different levels of hierarchy. This example il-
lustrates the relighting of the reflectance field of the gummybears scene (Figure5.6) with
the illumination pattern used in Figure5.6(a), if the acquisition was stopped at different
levels of the hierarchy. Note that at every level, we still get a full resolution image. This
is because we are approximating a node in the hierarchy as a tensor product of two 2-D
images. Therefore, we sill have a measurement for each pixelin the image, though scaled
incorrectly. This is different from wavelet based approaches where a single scalar value is
assigned for a node in the hierarchy implying lower resolution in the image at lower levels.
Note that at any level, the energy of the projected pattern isdistributed over the whole block
that it is illuminating. This is clear from the intensity variation among blocks, especially in
the images at levels 3, 4, and 5.
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(a) Fixed viewpoint (b) Fixed light source position
Different light source positions Different viewpoints

Figure 5.8: 8D reflectance field of an example scene.This reflectance field was captured
using the setup described in Figure5.4. A 3×3 grid of mirrors was used. In (a) we see
images rendered from the viewpoint at the center of the grid with illumination coming from
9 different locations on the grid. Note that the shadows moveappropriately depending upon
the direction of incident light. (b) shows the images rendered from 9 different viewpoints on
the grid with the illumination coming from the center. In this case one can notice the change
in parallax with the viewpoint. Note that none of these images were directly captured
during our acquisition. The center image in each set looks slightly brighter because the
viewpoint and lighting are coincident in this case.
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5.3.1 Comparison with Dual Photography

It is instructive to compare the symmetric photography technique against the dual pho-

tography technique presented earlier. Dual photography reduces the acquisition time by

exploiting only sparseness (the fact that there are regionsin a scene that are radiometrically

independent of each other). These regions are detected and measured in parallel in dual

photography. However, for a scene with many inter-reflections or sub-surface scattering,

such regions are few and the technique performs poorly. In order to resolve the transport at

full resolution, the technique would reduce to brute-forcescanning for such scenes. Illumi-

nating with single pixel for observing multiple scatteringevents has inherent SNR problems

because the energy of indirect bounce light transport coefficients could be extremely low.

The measurement system, which is limited by the black level of the projector and dark

noise of the camera cannot pick up such low values. The schemetherefore stops refining

at a higher level in the hierarchy and measures only a coarse approximation of the indirect

bounce light transport. This essentially results in a low-frequency approximation for in-

direct bounce light transport. Thus, the fidelity of the images generated using symmetric

photography is better than those generated using dual photography. The comparison of the

two techniques in Figure5.9confirms this behavior. Since symmetric photography is prob-

ing the matrix from both sides, the high frequencies in indirect bounce light transport are

still resolved whereas, dual photography can only produce alow frequency approximation

of the same. Furthermore, while symmetric photography tookjust 841 HDR images for this

scene, dual photography required 7382 HDR images. Note thatupon comparing Tables3.1

and5.1, one might think that we are getting better speedups in case of dual photography,

but the example scenes used in dual photography are easier than those used in symmetric

photography. Symmetric photography will perform atleast as well on such scenes.

Finally, Figure5.10 illustrates the relative percentage of rank-1 vs empty leafnodes

at various levels of the hierarchy for the transport matrices that we have captured. The

empty leaf nodes correspond to sparse regions of the matrix while the rank-1 leaf nodes

correspond to data-sparse regions of the matrix. While dualphotography only exploits

sparseness and hence culls away only empty leaf nodes at a particular level, symmetric

photography exploits both data-sparseness and sparsenessand culls away both rank-1 and
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(a) Symmetric (b) Dual

Figure 5.9: Symmetric vs. Dual Photography. The figure illustrates the strength of
the symmetric photography technique (a) when compared against the dual photography
technique (b) of Chapter3. The setup is similar to the book example of Figure2.1 (IV).
In both cases, the right half of the book is synthetically relit using the transport matrices
captured by the respective techniques. Note that in the caseof symmetric photography
(a), the high frequencies in the left half of the book are faithfully resolved while in dual
photography (b), the frequencies cannot be resolved and just appear as a blur. The light
transport for (a) was acquired using 841 images, while that for (b) was acquired using 7382
images. The slight difference in overall color of the two images is due to the fact that the
two images store the energies slightly differently.
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Hierarchy Level
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0% 75% 3% 44% 15% 62% 32% 50% 46% 35% 53% 25% 56% 29% 69% 23% 33% 17%

0% 75% 14% 56% 8% 70% 35% 42% 50% 34% 40% 37% 58% 20% 71% 10% 29% 3%

0% 75% 22% 44% 8% 70% 50% 32% 49% 28% 68% 8% 73% 5% 72% 5% 35% 2%

0% 75% 25% 44% 8% 69% 46% 34% 54% 28% 59% 18% 63% 15% 72% 8% 34% 3%

0% 75% 19% 44% 10% 71% 44% 35% 51% 34% 51% 26% 62% 17% 72% 10% 36% 4%

0% 0% 0% 68% 16% 33% 22% 54% 20% 59% 16% 64% 24% 55% 40% 42% 30% 23%

% rank−1 leaf nodes % empty leaf nodes % nodes further subdivided

Figure 5.10: Comparison of rank-1 vs empty leaf nodes.The figure empirically com-
pares the percentage of rank-1 vs. empty leaf nodes in the hierarchical tensor at different
levels of the hierarchy for various scenes captured using our acquisition scheme. The blue
area in each bar represents the percentage of rank-1 nodes while the gray area corresponds
to the percentage of empty nodes. The white area represents the nodes which are subdi-
vided at next level. Note that at levels 4, 5, 6, 7, 8 and 9 a significant fraction of leaf nodes
are rank-1. Also note that for Figures2.1(I) and 2.1(II), at levels 6, 7, and 8, there are
far more empty nodes in2.1(I) than in 2.1(II). This is what we expected as the transport
matrix for 2.1(I) is sparser than that for2.1(II).

empty leaf nodes. Note that between levels 4 and 9, there is a significant fraction of rank-1

nodes which are culled away by symmetric photography in addition to empty leaf nodes.

This results in large reduction of nodes that still have to beinvestigated and results in a

significantly faster acquisition as compared to dual photography.

5.4 Discussion and Conclusions

In this chapter we have presented a framework for acquiring 8D reflectance fields. The

method is based on the observation that reflectance fields aredata-sparse. We exploit the

data-sparseness to represent the transport matrix by localrank-1 approximations. The sym-

metry of the light transport allows us to measure these localrank-1 factorizations efficiently,

as we can obtain measurements corresponding to both rows andcolumns of the transport
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matrix simultaneously. We have also introduced a new data structure called a hierarchi-

cal tensor (in Chapter4) that can represent these local low-rank approximations efficiently.

Based on these observations, we have developed a hierarchical acquisition algorithm, which

looks for regions of data-sparseness in the matrix. Once a data-sparse region has been mea-

sured, we can use it to parallelize our acquisition resulting in tremendous speedup.

There are limitations in our current acquisition setup (Figure5.4) that can corrupt our

measurements. To get a coaxial setup we use a beam-splitter.Although we use a 1mm thin

plate beam-splitter, it produces the slight double images inherent to plate beam-splitters.

This, along with the light reflected back off the light trap, reduces the SNR in our measure-

ments. The symmetry of our approach requires projector and camera to be pixel aligned.

Any slight misalignment adds to the measurement noise. Cameras and projectors can also

have different optical properties. This can introduce non-symmetries such as lens flare,

resulting in artifacts in our reconstructed images (see Figure5.11).

By way of improvements, in order to keep our implementation simple, we use a 4th

order hierarchical tensor. This means that we are flatteningout 2 of the 4 dimensions of the

light field, thereby not exploiting the full coherency in thedata. An implementation based

on 8th order tensor should be able to exploit it and make the acquisition more efficient.

We introduce the hierarchical tensor as a data structure forstoring reflectance fields.

The concept may have implications for other high dimensional data-sparse datasets as well.

The hierarchical representation also has some other benefits. It provides constant time ac-

cess to the data during evaluation or rendering because of the finite depth of the hierarchical

structure. At the same time, it maintains the spatial coherency in the data, making it attrac-

tive for parallel computation.
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(a) (b)

Figure 5.11: Artifacts due to non-symmetry in measurement.The lens flare around the
highlights in (b) is caused by the aperture in the camera. Since this effect does not occur
in the incident illumination from the projector, the measurements are non-symmetric. Ap-
plying a strong threshold for the rank-1 test subdivides theregion very finely and produces
a corrupted result in the area of the highlights in (a). If theinconsistencies in measurement
are stored at a higher subdivision level by choosing a looserthreshold for the rank-1 test,
these artifacts are less noticeable as in (b).
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Chapter 6

Conclusions and Future Work

This dissertation describes a system for efficient acquisition of reflectance fields. To our

knowledge this is the first system that acquires an 8D reflectance field, and has therefore

advanced research in the area of reflectance field acquisition. The key challenge in acquir-

ing reflectance fields efficiently is that a reflectance field isextremely large. Even if state of

the art techniques are used for acquisition, the time required to acquire a reflectance field

is still intractable. Our system reduces the storage and time requirements by at least two

orders of magnitude. This reduction is enabled by leveraging two important properties of

the transport matrix: symmetry and data-sparseness. Basedon these properties, we have

developed algorithms for acquiring the transport matrix data which allow us to represent

the transport matrix using a low rank approximation. This approach results in a hierarchical

adaptive acquisition algorithm.

In this work, we have demonstrated techniques for acquiringreflectance fields. How-

ever, the reflectance fields captured are sparse and incomplete. In order to smoothly change

both the lighting and the viewpoint the acquired reflectancefield needs to be dense. Regard-

ing sparseness, techniques have been proposed for interpolating slices of the reflectance

fields, both from the view direction [CW93] and from the illumination direction [CL05],

but the problem of interpolating reflectance fields is still open. By applying similar flow

based techniques to the transport matrix, one should be ableto create densely sampled

reflectance fields. One can also sample incoming and outgoinglight fields more densely

by replacing the small number of planar mirrors with an arrayof lenslets or mirrorlets

59
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[UWH+03]. This will increase the number of viewpoints in the light field, but at the cost

of image resolution.

Regarding completeness, if the mirror array setup is replicated to cover the whole

sphere, then extrapolating from the numbers in Table5.1, we would expect the transport

matrix to be around 75GB in size and acquisition would take roughly two weeks. It should

be noted that faster processing and use of an HDR video cameracould significantly reduce

this time significantly in the future.

We have built a prototype system for acquiring reflectance fields. The acquisition sys-

tems could be developed further with improvements in the hardware technology. Depend-

ing on the demands of the application, designs can also be adapted, e.g., a possible design

could be based on Han and Perlin’s [HP03] kaleidoscope.

The compression achieved by the hierarchical tensor representation depends on the co-

herency in the incoming and outgoing light fields. This coherency depends on the underly-

ing parameterization used for representing the light field.The parameterization used in our

work does not guarantee the best coherence. Instead, a parameterization based on surface

light fields [WAA+00] would provide the best compression of the reflectance field data.

However, this would require range scanning the object priorto reflectance field acquisition.

Finally, once a reflectance field has been acquired, we must beable to edit both the spa-

tial and directional behavior of the reflectance data to change appearance. Recent research

[LBAD+06] in this direction already looks promising and will furthertake off with easier

systems for acquisition.
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Proof of Symmetry of Light Transport

Here we prove that the pixel-to-pixel transport from the source (projector) to the destination

(camera) is the same in both directions. Assume we have a flat surface patchSwith arbitrary

BRDF fr viewed/illuminated by a camera/projector pair, as shown inFigureA.1. Let us

assume that the projector is at point 1 with distanced1, far enough from the surface so that

the rays within a patch can be assumed to be parallel at angleθ1. Similarly, the camera is at

point 2 with distanced2 and angleθ2. We call the area illuminated by the single projector

pixel S1, and the region viewed by the camera pixelS2.

If the projector produces radiant intensityI , the reflected radiance in directionθ2 from

a point inS1 due to the projector pixel is:

Ls = I
fr(θ1 → θ2)cosθ1

d2
1

(A.1)

The irradiance received by the camera pixel at position 2 is the integral of this radiance

over the solid angle subtended by the intersection ofS1 andS2:

E12 =
Ls|S1∩S2|cosθ2

d2
2

=
I f r(θ1 → θ2)cosθ1|S1∩S2|cosθ2

d2
1d2

2

(A.2)

We specify the area of the intersection ofS1 andS2 (denoted by|S1∩S2|) because the

transfer of energy between the projector and camera pixel only happens in the region of in-

tersection. This defines the transfer of energy between one pixel of the projector in position
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Figure A.1: Proof of symmetry of light transport. The transport of light from point 1 to
point 2 via surfaceS.

1 and one pixel of the camera in position 2. Note that there exists a relationship between the

surface area covered by a pixel and its solid angle (Ω), as given by the following equations

for the projector and camera respectively:

Ωp =
|S1|cosθ1

d2
1

and Ωc =
|S2|cosθ2

d2
2

(A.3)

Note thatΩp andΩc are constant for our given projector and camera — they represent

the solid angle for the pixel of each device. We now define a projection operatorΠ:

S1 = Π1
SΩp and S2 = Π2

SΩc (A.4)

so thatS1 is the projection ontoS from position 1 of the solid angleΩp, for example. We

can now rewriteS1 andS2 as:

|S1| = |Π1
SΩp| =

Ωpd2
1

cosθ1
and |S2| = |Π2

SΩc| =
Ωcd2

2

cosθ2
(A.5)

Thus EquationA.2 can be rewritten as:

E12 =
I f r(θ1 → θ2)cosθ1|Π1

SΩp∩Π2
SΩc|cosθ2

d2
1d2

2

(A.6)

We can now see that this equation will be the same if the camerais at point 1 and the
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projector is at point 2. The key is to remember that the virtual projector will take on the the

camera parameters (in this case theΩc) and vice-versa. Thus the transfer of energy in the

dual space is given by:

E21 =
I f r(θ2 → θ1)cosθ2|Π2

SΩc∩Π1
SΩp|cosθ1

d2
2d2

1

(A.7)

Becausefr(θ1 → θ2) = fr(θ2 → θ1) by Helmholtz reciprocity, we haveE12 = E21. This

means that the pixel-to-pixel transport is equal in both directions.
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Appendix B

System Overview

B.1 System Architecture

The algorithms presented in this dissertation require capturing thousands of images under

patterned illumination from a projector. Therefore, we need to build a capture system

which can handle the image capture process in a robust and scale able way. There are

various requirements from the system.

The dynamic range of the scenes that we wish to acquire could be extremely high. In

order to capture this entire range, we need to take multiple photographs of the scene under

different exposure settings. Therefore, we would want to change the exposure time of the

camera for every illumination pattern. This governed the choice of the camera we used.

We use a camera which is computer controlled and the exposuretime can be programmed

for each acquired frame using the computer.

Second, we want high signal to noise ratio (SNR) from our capture system. For this

purpose we use a high contrast projector. This ensures a significant difference between the

lit and dark pixels of the projector resulting in high SNR. Furthermore, we subtract the

image due to projector’s black level to reduce the noise in the capture process.

Finally, we want the system to run completely automaticallyin a dark room without

any interference. This is to allow for acquisitions which can take several hours to finish.

Therefore, we have built a capture system in which the acquisition server (which controls

the projector and the camera) can be controlled remotely. A daemon runs on the server
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machine which accepts requests from any client machine. A client machine can send any

pattern that it wants the scene to be illuminated with. The daemon projects the pattern

and captures images for various exposure settings. These images are then sent back to the

requesting client machine which assembles them in to a single HDR image. The HDR

combination process and other pre-processing steps are explained in the next section.

B.2 Pre-processing

The dynamic range of the scenes that we capture can be very high. This is because the light

transport contains not only the high energy direct bounce effects but also very low energy

secondary bounce effects. In order to capture this range completely, we take multiple

images of the scene and combine them into a single high dynamic range image [DM97,

RBS99]. Additionally, before combining the images for HDR, we subtract the projector’s

black level from our captured images, which was acquired by photographing the scene

while projecting a black image. Subtracting this black-level image from every input image

reduces the contribution by stray projector light to our matrix entries, as well as partially

compensates for fixed-pattern noise in the camera. Upon experimentation, we found the

black level to vary slightly with the number of pixels illuminated at a time, but this was not

a problem for our acquisitions.

Another aspect of the measurement procedure that required care was the impact of the

Bayer color mosaic in both cameras. These depend on having enough samples at the CCD

to be able to properly interpolate the color components fromthe pixel values. We found

that this introduced artifacts when illuminating the scenewith individual projector pixels.

A focused projector beam can illuminate very few pixels on the camera CCD, yielding

errors when the samples are interpolated during demosaicing. When this happened, color

contrast was significantly reduced and the images appeared darker than they should.

To remove these darkening and desaturation artifacts, we normalized the final images

by forcing the individual images to add up to the floodlit image. First, all color values

of the individual images were summed up so that we could see per-pixel how much of

the total energy each image contained. Then the color energyof the floodlit image was

distributed to the individual images in proportion to theircontribution to the total energy.
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Figure B.1: The effect of color normalization. The sum of all images where individual
pixels are illuminated (left) is dimmer and exhibits a reduced color contrast compared to the
floodlit image (right). By normalization the color values ofthe floodlit image are distributed
proportional to the observed pixel values.

This normalization improved the colors of the image, as demonstrated in FigureB.1.
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Appendix C

Pseudocode

C.1 Pseudocode of Dual Photography Algorithm

Initialization() ;

repeat{

// construct a conflict-free lists of blocks that can be processed in parallel

ConstructConflictFreeLists() ;

// illuminate scene with patterns constructed from each list and acquire with camera

AcquireImages() ;

// process images, store results, generate new lists of blocks for next iteration

ProcessResults();

} until lowest level in hierarchy is reached

Initialization() {

for each camera pixelk {

// initially assume every camera pixel is affected by block 0, the floodlit image

Bk = {0};

}

C = empty; // initialize set of conflicts to empty

}
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ConstructConflictFreeLists() {

// form graph structure

B = Union(Bk); // nodesB, edgesC

(L[0], ...,L[N−1]) = GraphColor(graph(B, C)); // N lists of nodes returned

}

AcquireImages(){

// we now haveN conflict-free listsL[]’s

for i = 0 toN−1 {

generate patternP[i] from L[i]; // light pixels for all blocks inL[i]

illuminate patternP[i];

capture HDR imageI [i];

}

}

ProcessResults(){

C = empty;

for each camera pixelk {

new Bk = empty;

for i = 0 toN−1 {

// find block (if any) that affects current pixel

currentblock = intersect(Bk, L[i]); // because L[i] was conflict-free,

// this can be at most one block

if (current block = empty){

continue; // pixelk not affected byL[i]

}

else{

if (pixel k in I [i] = 0) {

continue; // no value measured, do nothing

}

else if (pixelk in I [i] < threshold) or last iteration{

// below the threshold so store the energy here.
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// T() is the hierarchical representation of the matrix

// indexed by block in the subdivision tree and camera pixelk

T(currentblock,k) = pixel k in I [i];

continue; // no further subdivision

}

else{

// request subdivision for this block

insert 4 children of currentblock intonew Bk;

}

}

}

// setBk for the next iteration

Bk = new Bk;

// collect conflicts and add toC for next iteration

for each pair(s, t) wheresandt are inBk ands 6= t {

insert(s, t) into C; // sandt conflict and can’t

// be measured in parallel

}

}

}

C.2 Pseudocode of Symmetric Photography Algorithm

Initialization() ;

repeat{

// construct a conflict-free lists of blocks that can be processed in parallel

ConstructConflictFreeLists() ;

// illuminate scene with patterns constructed from each list and acquire with camera

AcquireImages() ;

// process images, store results, generate new lists of blocks for next iteration

ProcessResults();

} until lowest level in hierarchy is reached
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Initialization() {

// capture image from floodlit illumination

illuminate floodlit patternP[0];

capture HDR imageI [0];

// initialize the tensor root node as tensor product ofI [0]

T00 = I [0]× I [0];

// schedule the root node, i.e. block 0 for investigation

old B = {0};

}

ConstructConflictFreeLists() {

// form graph structure

B = empty;

for each blockb in old B {

// request uniform subdivision for this block

insert 4 children ofb into B;

}

// determine conflicts and add toC

C = empty;

for each pair(i, j) wherei and j are inB andi 6= j {

// i and j conflict and can’t be measured in parallel

if Ti j is unknown{

insert(i, j) into C;

}

}

graphG = (B, C); // nodesB, edgesC

graphG2 = squareG; // construct the square graph ofG

(L[0], ...,L[N−1]) = GraphColor(G2); // N lists of blocks returned

}
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AcquireImages(){

// we now haveN conflict-free listsL[]’s

for i = 0 toN−1 {

generate patternP[i] from L[i]; // light pixels for all blocks inL[i]

illuminate patternP[i];

capture HDR imageI [i];

// compensate for known intra-block light transport T from previous level

multiply knownT with P[i] and subtract fromI [i];

// generate estimateIe images usingT

Ie[i] = T.P[i];

multiply knownT with P[i] and subtract fromIe[i];

}

}

ProcessResults(){

old B = empty;

for each estimated tensor nodeTi j in T {

partitionbi into 4 children (bi1,bi2,bi3,bi4);

partitionb j into 4 children (b j1,b j2,b j3,b j4);

// calculate the rms error between measured and estimated images

rms error = 0;

for l = (i1, i2, i3, i4, j1, j2, j3, j4) {

// calculate sum of squared difference (ssd)

rms error = rmserror + ssd(intersect(bl , I [l ]), intersect(bl , Ie[l ]));

}

// check whether rank-1 approximation valid

if (rms error< threshold){

continue; // stop at previous level

} else{

for l = (i1, i2, i3, i4) {

for m= ( j1, j2, j3, j4) {

// set the rank-1 estimate for the children
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Tlm = intersect(bl , I [l ]) × intersect(bm, I [m]);

}

}

// schedule the children for investigation

old B = union(new B; (bi1,bi2,bi3,bi4));

old B = union(new B; (b j1,b j2,b j3,b j4));

}

}

}
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