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Abstract

Utilizing graphics hardware for general purpose numerical computations has become a topic of considerable
interest. The implementation of streaming algorithms, typified by highly parallel computations with little reuse
of input data, has been widely explored on GPUs. We relax the streaming model’s constraint on input reuse and
perform an in-depth analysis of dense matrix-matrix multiplication, which reuses each element of input matrices
O(n) times. Its regular data access pattern and highly parallel computational requirements suggest matrix-matrix
multiplication as an obvious candidate for efficient evaluation on GPUs but, surprisingly we find even near-
optimal GPU implementations are pronouncedly less efficient than current cache-aware CPU approaches. We find
the key cause of this inefficiency is that the GPU can fetch less data and yet execute more arithmetic operations
per clock than the CPU when both are operating out of their closest caches. The lack of high bandwidth access to
cached data will impair the performance of GPU implementations of any computation featuring significant input
reuse.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Graphics processors

1. Introduction

The emergence of programmable graphics hardware has led
to increasing interest in offloading numerically intensive
computations to GPUs. The combination of high-bandwidth
memories and hardware that performs floating-point arith-
metic at significantly higher rates than conventional CPUs
makes graphics processors attractive targets for highly par-
allel numerical workloads. Many applications beyond tra-
ditional graphics specific ones have been demonstrated to
run on GPUs [HCSL02, BFGS03, KW03, MA03, BFH∗04].
Particularly, algorithms that can be structured as stream-
ing computations often realize notable performance gains.
Streaming computations walk over a set of independent in-
puts and independently evaluate a kernel on each value. The
combination of regular, predictable data access with the in-
dependence of each kernel invocation maps very nicely to
graphics architectures.

Streaming computations can be characterized as being
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highly parallel and numerically intensive with little reuse
of input data. However, many computations are both highly
parallel and numerically intensive, but exhibit significant per
element reuse. We study the efficiency of current graphics
architectures in computations where each input contributes
to many outputs. Optimized approaches to these problems
on traditional CPUs are able to exploit cache hierarchies to
effectively amplify memory bandwidth and keep processor
functional units busy. We question whether calculations that
benefit from memory “blocking” strategies will perform ef-
ficiently on GPUs and if analogous blocking strategies are
necessary, or even possible, given the programming model
and capabilities of current graphics architectures.

Specifically, we investigate dense matrix-matrix multipli-
cation. It offers regular memory access and abundant par-
allel computation but features O(n) data reuse and seems
a natural candidate for a fast GPU implementation. More-
over, dense matrix-matrix multiplication is a building block
of numerical libraries such as LAPACK [ABB∗99]. These
libraries are widely used in the development of scientific ap-
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plications and must run efficiently if GPUs are to become a
useful platform for numerical computing.

Cache-aware implementations for CPU architectures have
been well studied [TCL98, WPD01] and several GPU algo-
rithms have been developed. Larsen and McAllister [LM01]
initially proposed an approach for computing matrix prod-
ucts on graphics hardware. They observed performance
equaling that of CPUs but their computations were lim-
ited to 8-bit fixed-point data. Both Hall et al. [HCH03]
and Moravánszky [Mor03] describe improved algorithms for
modern hardware. Moravánszky reports his implementation
is outperformed by optimized CPU code. Despite these re-
sults, little work has been done to analyze the performance
limiting factors of these GPU implementations. We perform
such an analysis and determine that the algorithms are band-
width limited due to the inability of GPUs to provide high
bandwidth access to frequently accessed data. Surprisingly,
we find that existing algorithms are near-optimal for current
hardware. That is, better performance will require architec-
tural changes.

2. Implementations of Matrix-Matrix Multiplication

We consider the problem of computing the product, C = AB,
of two large, dense, N×N matrices. We quickly describe
naive and optimized CPU algorithms and then delve more
deeply into solutions for a GPU.

2.1. Matrix-Matrix Multiplication on CPUs

The following CPU algorithm for multiplying matrices ex-
actly mimics computing the product by hand:

for (i=0;i<N;i++)
for (j=0;j<N;j++)

C[i,j] = 0;
for (k=0;k<N;k++)

C[i,j] += A[i,k]*B[k,j];

Unfortunately, while simple, this algorithm suffers from
poor locality. Elements of B are accessed columnwise, and
therefore not in sequential order in memory (if matrices are
stored in row-major order). While each iteration in j reuses
row i of A, that row may have been evicted from the cache by
the time the inner-most loop completes. As a result, the al-
gorithm is bandwidth limited and displays poor performance
and low efficiency (i.e. time spent doing computation versus
loading data).

When sustaining cached accesses, the Pentium 4 can fetch
a 128 bit SSE value (4 packed 32 bit floats) in a single cycle
[HSU∗01]. The basic flaw of the naive triple-for-loop imple-
mentation is that the size of its per-loop working set prevents
bandwidth amplification from the closest (and fastest) levels
of the memory hierarchy. A standard solution “blocks” the
inputs into small submatrices that fit in the processor caches,
and decomposes the computation of C into subcomputations

on the submatrices. Additionally, B is often stored trans-
posed to offer a more cache-friendly representation when
walking its columns. The ATLAS [WPD01] software pack-
age, benchmarked in section 3, works even harder to achieve
cache efficiency. ATLAS tests the host CPU to determine the
sizes of system caches, then self-tunes its algorithms to use
code snippets that are optimal for the detected cache sizes.
Effective cache-aware implementations of matrix multipli-
cation on CPUs achieve much higher effective bandwidth
and hence numerical efficiency.

2.2. Matrix-Matrix Multiplication on the GPU

A simple approach to compute the product of two matri-
ces on a GPU, although feasible only on architectures that
support sufficiently long shaders, is to compute elements of
the resulting matrix in a single rendering pass. We refer to
this approach as NV Single. We store 2×2 blocks of matrix
elements in 4 component texels as described by [HCH03].
This packing allows each input fetched from memory to be
used twice in a fragment program. Thus the access of data
used in the second operation is performed at register speed.
Our shader, given below, reads 2 rows from matrix A and 2
columns of B to compute 4 elements of the output matrix.
The values of variables i and j are provided to the shader via
interpolated texture coordinates.

for (k=0;k<N/2;k++)
C[i,j].xyzw += A[i,k].xxzz*B[k,j].xyxy +

A[i,k].yyww*B[k,j].zwzw;

Each shader program performs 4 inner loop iterations of
the CPU algorithm given in section 2.1. GPU texture caches
are organized to capture 2D locality, so sequential accesses
along either axis are cache coherent. Additionally, shaders
executing in parallel on adjacent fragments will fetch the
same data from a row or column of the inputs simultane-
ously. In practice, for sufficiently large matrices, instruction
counts exceed the limits of all architectures and a small num-
ber of passes are required to complete the computation.

In contrast, multipass algorithms are potentially more
cache friendly with respect to inputs at the cost of perform-
ing extra framebuffer reads and writes. We implement a vari-
ation of the multipass algorithm presented by Larsen and
McAllister [LM01]. Our implementation packs 4 consecu-
tive elements from a matrix column into a texel, and thus per-
forms a small number of 4×4 matrix by 4×1 vector products
in a shader as described in detail by [Mor03]. This method
makes 4x reuse of data in the texel obtained from matrix B,
but only uses data fetched from A once. 6 fetches are needed
to retrieve the operands needed for 4 mad operations, so in
total this approach requires 1.5x more texture fetches than
NV Single. However, since only a few rows and columns
of the input textures are accessed in a given rendering pass,
cache hit frequency is expected to be higher. A shader per-
forming a single matrix-vector product is given given below.
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It accepts i, j, and k arguments via interpolated texture coor-
dinates. accum[i, j] holds the partial result of C[i, j] from the
previous rendering pass. In each pass, k is incremented by 4.

C[i,j].xyzw = accum[i,j].xyzw +
A[i,k].xyzw * B[k/4,j].xxxx +
A[i,k+1].xyzw * B[k/4,j].yyyy +
A[i,k+2].xyzw * B[k/4,j].zzzz +
A[i,k+3].xyzw * B[k/4,j].wwww;

Our NVIDIA implementation, NV Multi, computes a sin-
gle matrix-vector product per shader. We unroll this kernel
3 to 6 times (the maximum possible amount allowed by the
driver) to construct our shader for the ATI hardware, ATI
Multi. We tested various amounts of unrolling on each plat-
form. The chosen values maximized algorithm performance.

Performance tuning of algorithms on graphics hardware
is difficult because vendors do not disclose specific architec-
tural details, such as cache parameters or the physical lay-
out of texture data in memory. We tested a variety of tech-
niques intended to increase cache efficiency and leverage the
parallel fragment processing architecture of the GPU. We
varied the packing of matrix elements into textures, the un-
rolling of loops in shaders to reduce rendering passes, and
utilized multiple render targets to perform multiplication of
4×4 submatrices of data within each shader. Additionally,
we attempted to force blocked texture and framebuffer ac-
cess across fragments by altering the size and order of ge-
ometric primitives sent to the card. We observed that the
rasterization order of fragments produced by a single prim-
itive covering the entire framebuffer is as efficient as any
ordering created as a result of tiling the screen with geome-
try. Utilizing multiple shader outputs, despite allowing more
computation to be performed per data access, yielded unsat-
isfactory results. Despite our optimization attempts, the two
algorithms described above yielded the best performance.

3. Performance Results

We benchmarked our GPU algorithms and the CPU based
matrix-matrix multiplication routine (sgemm) provided by
ATLAS. Experiments were performed on a 3 GHz Pentium
4 CPU (512 KB L2 cache) featuring peak performance of
12 GFLOPS and an L1 cache bandwidth of 44.7GB/sec.
We tested our GPU algorithms on the ATI Radeon 9800XT,
a prerelease Radeon X800XT (500mhz core clock/500mhz
mem), the NVIDIA GeForce FX 5900 Ultra, and a prere-
lease GeForce 6800 Ultra (350Mhz core/500Mhz mem), ca-
pable of achieving 26.1, 63.7, 40.0, and 43.9 GFLOPS re-
spectively. We only measured the NV Single algorithm on
the NVIDIA hardware because for large matrices its kernel
requires more instructions than the ATI card supports.

We seek to specifically evaluate the computational perfor-
mance of our GPU implementations and so explicitly ex-
clude the overhead of repacking input matrices in system
memory, transferring them to the graphics card, and initially
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Figure 1: Performance of multiplying square matrices on a
3 GHz Pentium 4, NVIDIA GeForceFX 5900 Ultra, prere-
lease GeForce 6800XT, ATI Radeon 9800XT, and prerelease
Radeon X800XT.
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Figure 2: Percentage computational and bandwidth effi-
ciency when multiplying 1024x1024 matrices.

loading and binding shader programs. In contrast, rather than
attempt to instrument ATLAS code, we measure the entire
time the ATLAS routine runs. ATLAS’ initial self-tuning
metacompilation, however, was performed during library in-
stallation and is not included in the timings. A summary of
algorithm performance on the different platforms is given
in Figure 1. GFLOPS values count each multiplication and
each addition as distinct floating point operations (a mad in-
struction using float4s is thus eight operations).

ATLAS outperforms all GPU implementations except
those running on the ATI X800XT despite being billed
for any repacking or setup overheads and despite the sig-
nificantly higher peak computational capability of all the
graphics adapters. As shown in Figure 2, the ATLAS im-
plementation achieves 65% efficiency while we observe no
more than 17% efficiency on the NVIDIA chips and 19%
on ATI platforms. Table 1 breaks down the multiplication
of 1024×1024 matrices in more detail. In addition to the
GFLOPS rate of each implementation, we computed effec-
tive input bandwidth. For the GPU implementations, we
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Time (s) GFLOPS BW (GB/s)

NV 5900 Single 0.781 2.75 7.22

NV 5900 Multi 0.713 3.01 9.07

NV 6800 Single 0.283 7.59 15.36

NV 6800 Multi 0.469 4.58 12.79

ATI 9800 Multi 0.445 4.83 12.06

ATI X800 Multi 0.188 11.4 27.5

P4 ATLAS 0.289 7.78 27.68

Table 1: Measurements from the multiplication of
1024x1024 matrices.

GFLOPS Cache BW Seq BW

NV 5900 40.0 11.4 4.1

NV 6800 43.9 18.3 3.8

ATI 9800 26.1 12.2 7.3

ATI X800 63.7 28.4 15.6

Table 2: Peak computation and bandwidth rates (cache hit
and sequential fetch, in GB/sec) from our microbenchmarks.

measure bandwidth as the total number of bytes fetched via
tex instructions divided by total time to run our algorithm
using a modified shader with nearly all math operations re-
moved (drivers eliminate texture instructions if data is never
used by shader, thus we cannot eliminate all math opera-
tions). Since we do not know the extent to which ATLAS is
able to avoid memory accesses by reusing operands in reg-
isters, we compute its bandwidth as if all 2n3 accesses were
from memory. In practice, we expect this significantly over-
estimates ATLAS’ effective memory bandwidth. On the ATI
platforms, bandwidth is computed assuming the transfer of
4 words per floating point value, although computation is
performed at 24 bit precision.

Table 2 shows the results from a trio of microbenchmarks
on our graphics cards. The first measures peak arithmetic
performance by running a shader consisting entirely of mad
instructions. The second measures peak bandwidth by re-
peatedly accessing texel (0, 0) from a number of input tex-
tures. We measure throughput approaching that of the theo-
retical peak bandwidth of the cards. The final microbench-
mark runs a similar test, but walks the input textures sequen-
tially by mapping each texel of the input textures to each ren-
dered fragment. This is essentially the bandwidth realized by
kernels that perform pure streaming over their inputs.

The key to the poor efficiency of the GPU algorithms can

be seen by comparing Tables 1 and 2. The implementations
are only able to utilize a small fraction of the GPUs’ com-
putational power despite data access patterns that yield high
bandwidth. This inefficiency does not result from poor al-
gorithm design or sub-optimal implementation. ATI Multi
achieves over 95% of the bandwidth of perfect cache ac-
cesses yet cannot keep the computation units busy. The
NVIDIA algorithms also leave chip arithmetic units idle de-
spite accessing data at a large percentage of peak bandwidth.
From the microbenchmarks and the cards’ clock rates we
compute that the 6800 Ultra and X800XT can perform 16
mad’s per clock and fetch 16 floats per clock. Since our
four component mad takes 8 floats as input (and one reg-
ister for the third operand), a shader with optimal memory
access would require in excess of 8 math operations per float
fetched in order to fully utilize the cards’ computational ca-
pacity. Our matrix-matrix multiplication kernels cannot ap-
proach this ratio given current hardware constraints on in-
struction counts, register space, and the number of shader
outputs.

4. Discussion and Conclusions

We expected that matrix-matrix multiplication would be a
natural fit for the GPU and instead observe that optimized
implementations achieve bandwidth approaching that of a
theoretically optimal access pattern and yet achieve no bet-
ter than 19% utilization of the arithmetic resources on our
ATI hardware and no better than 17% utilization on our
NVIDIA hardware. Our intuition proved completely mis-
leading. Given current hardware designs, no algorithm will
perform significantly better than existing approaches.

Indeed, we discover that available floating point band-
width from the closest cache on a GPU is up to several times
lower than that of current CPUs to their L1 caches. Without
increasing this bandwidth (we expect the ratio of available
computation to bandwidth to slowly worsen unless architec-
tural design efforts specifically strive to reduce it), the ef-
ficiency of computing matrix-matrix products on graphics
hardware will remain low.

One obvious way to increase performance is to perform
more computation on data each time it is fetched by perform-
ing a level of blocking in the shader register file. The amount
of potential reuse increases with the size of the submatrix
multiplication performed in a shader. Current architectures
provide sufficient registers to multiply two 6×6 matrices in
a single shader, but do not permit shaders to generate more
than a small number of outputs. As a result, we cannot use
larger blocking within shaders to increase the compute to
fetch ratio of our algorithms.

Multipass algorithms rely upon the ability to accumulate
partial results into a final output. GPUs currently cannot ac-
cumulate into a full precision floating point framebuffer so
our kernels must explicitly fetch the intermediate results pro-
duced by prior passes. However, this only accounts for 1/6

c© The Eurographics Association 2004.



K. Fatahalian, J. Sugerman, & P. Hanrahan / Understanding the Efficiency of GPU Algorithms for Matrix-Matrix Multiplication

of the total input bandwidth of NV Multi and even less for
ATI Multi. The benefit of adding hardware support for ac-
cumulation into floating point buffers pales in comparison to
the advantages of significantly widening the path from the
texture fetch units to the arithmetic units or the ability to do
register level blocking.

We realize that when evaluating non-rendering algorithms
on GPUs, it is important to remember that the design of
graphics architectures is optimized for graphics workloads.
Graphics applications primarily use 8-bit fixed point for-
mats. Since four times as many values can be fetched per
clock, compute to fetch ratios are much closer to those of
conventional CPUs. Additionally, shaders often utilize in-
terpolated values and constant parameters instead of texture
memory for the majority of their inputs. Thus, graphics ap-
plications are more likely to perform many instructions per
texture fetch. In contrast, practical numerical applications
use full precision floating point values and depend upon iter-
ating through input textures for access to data. Rebalancing
GPUs to include wider or closer caches or an increased abil-
ity to operate on and output larger amounts of data per shader
would make GPU architectures better suited for numerical
workloads. Even streaming applications, already well suited
for GPU architectures, would benefit from bandwidth im-
provements for regularly patterned texture accesses.

Although we investigate only matrix-matrix multiplica-
tion in detail in this paper, our arguments apply to many
algorithms that feature data reuse. A wide variety of linear
algebra operations rely upon blocking to amplify bandwidth
and similar concerns apply to many general algorithms that
repeatedly compute on large 2D (or n-D) pieces of memory.
So long as graphics architectures continue to provide a low
bandwidth connection between arithmetic units and nearby
local memories, such algorithms will continue to suffer in
efficiency when adapted to GPUs, despite increases in GPU
clock rates and raw computational power, and despite the
high levels of parallelism and numerical complexity inher-
ent in the operations. Addressing these issues in future hard-
ware designs will make GPUs a significantly more powerful
platform for this broad class of applications.
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