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Abstract

Media applications, such as signal processing, image and video processing, and graphics,

are an increasing and important part of the way people use computers today. However,

modern microprocessors cannot provide the performance necessary to meet the demands

of these media applications, and special purpose processors lack the flexibility and pro-

grammability necessary to address the wide variety of media applications. For the proces-

sors of the future, we must design and implement architectures and programming models

that meet the performance and flexibility requirements of these applications.

Streams are a powerful programming abstraction suitable for efficiently implement-

ing complex and high-performance media applications. This dissertation focuses on the

design, implementation, and analysis of a computer graphics pipeline on a stream architec-

ture using the stream programming model. Rendering on a stream architecture can sustain

high performance on stream hardware while maintaining the programmability necessary to

implement complex and varied programmable graphics tasks.

We demonstrate a complete implementation of an OpenGL-like pipeline in the stream

programming model, and that the algorithms developed for this implementation are both

well-suited for the stream programming model and make efficient and high-performance

use of stream hardware. We identify and discuss aspects of our system that impact its

performance, including triangle size, rasterization algorithm, batch size, and short stream

effects, and discuss the implications of programmability in the pipeline. We demonstrate

and analyze the scalability of the algorithms and the implementation in order to anticipate

performance on future generations of stream processors. And finally, we describe, imple-

ment, and analyze a second rendering pipeline, the Reyes pipeline, and compare it to our

OpenGL pipeline in order to show the flexibility of the programming model and to explore

alternative directions for future stream-based rendering pipelines.
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Foreword

Rendering of photorealistic scenes from geometric models is a pervasive and demanding

application. Over a hundred times more arithmetic operations are performed in the graphics

processor of a modern PC than in its CPU. As powerful as modern graphics processors

are, their flexibility is limited. They perform a fixed function pipeline with just one or

two programmable stages. Rendering tasks that fit within this pipeline they perform with

blinding speed; rendering tasks that don’t conform to the fixed pipeline cannot be handled

at all.

In this pioneering work, John Owens shows how a programmable stream processor can

achieve performance comparable to modern fixed-function graphics processors while hav-

ing the flexibility to support arbitrary rendering tasks. John demonstrates the performance

and flexibility of stream-based rendering by implementing diverse rendering pipelines: an

OpenGL pipeline that renders polygons and a Reyes pipeline that uses subdivision surfaces

on the Imagine stream processor. He also demonstrates flexibility by compiling several

shaders, described in a programmable shading language, to execute on a stream processor.

The techniques John demonstrates go far beyond the capabilities of contemporary graphics

hardware and show that programmable hardware can smoothly tradeoff frame rate against

rendering features.

A number of novel methods were developed during the implementation of these render-

ing pipelines. The use of barycentric rasterization was employed to reduce the burden of

carrying large numbers of interpolants through the rasterization process. A novel load bal-

ancing mechanism using conditional streams was developed to maintain high duty factor in

the presence of unequal-sized triangles. Also, a compositor based on hashing and sorting

was developed to ensure in-order semantics when triangles are rendered out-of-order.
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John deeply analyzes the pipelines he has developed shedding considerable insight onto

the behavior of streaming graphics and of stream processing in general. He looks at issues

such as short-stream effects to show how performance is gained and lost in a typical stream

pipeline. He also looks beyond the Imagine processor to study how well these pipelines

would work as stream processors are scaled or are augmented with special-purpose units—

such as a rasterizer or texture cache.

Contemporary graphics processors have already adopted some of the technology of

stream processors. They incorporate programmable vertex and fragment shading stages

that are in effect small stream processors embedded in a fixed-function pipeline. As time

goes on, one can imagine more pipeline stages becoming programmable until commercial

graphics processors become general purpose stream processors capable of performing a

wide range of intensive streaming computations.

William J. Dally

Stanford, California
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Chapter 1

Introduction

It is said that “a picture is worth a thousand words”. Computer graphics is the study of con-

structing computer-generated images from descriptions of scenes, images that are produced

both quickly and with realistic detail.

The last decade has brought significant change to the systems through which computers

produce graphics. Ten years ago, dedicated hardware for computer graphics was only

available in expensive workstations. This hardware was implemented with multiple chips

or boards and typically cost thousands of dollars.

Today, the vast majority of personal computers include high-performance graphics

hardware as a standard component. Graphics accelerators are typically implemented on

a single chip, implement popular programming interfaces such as OpenGL or Direct3D,

and cost in the hundreds of dollars. And despite their smaller size and modest cost, they

deliver performance several orders of magnitude above their counterparts of ten years ago.

High performance is necessary to meet the demands of many applications: entertain-

ment, visual simulation, and other tasks with real-time interactive requirements. Systems

that produce real-time performance must render many images per second to achieve inter-

active usage. Performance, however, is only half of the story.

Together with the goal of real-time performance has been continued progress toward

high visual fidelity and in particular photorealistic images. A major user of such func-

tionality is the entertainment industry, both for special effects and for computer-generated

motion pictures.

1
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In these applications, the production of high-quality images typically take on the order

of hours. An example is computer-generated movies: frames from Pixar’s animated motion

pictures usually take several hours to render. These images are not produced by special-

purpose graphics hardware but instead by general purpose processors, because special-

purpose hardware lacks the flexibility to render all the effects necessary for these images.

Traditionally, the goals of high performance and high fidelity have been considered

mutually exclusive. Systems that deliver real-time performance are not used to render

scenes of the highest complexity; systems that can render photorealistic images are not

used in performance-critical applications. With this work, we describe a system that will

deliver both high performance and high flexibility, one that will meet the demands of a

wide variety of graphics applications in future computing systems.

To accomplish this goal, we implement our graphics system on a computer system

with both software and hardware components. Programs in our system are described in

the stream programming model and run on a stream processor. Specifically, we use the

Imagine stream processor and its programming tools as a basis for our implementation.

1.1 Contributions

This dissertation makes several contributions to the areas of stream processing and com-

puter graphics.

• Our system is the first instance of a graphics pipeline developed for a stream pro-

cessor. We have elegantly expressed the system in the stream programming model,

using stream algorithms exploiting the parallelism of the rendering tasks in each

stage of the graphics pipeline, and we have developed an efficient, high-performance

implementation on stream hardware.

• Our pipelines mirror the functionality of the popular OpenGL and Reyes rendering

pipelines. Doing so allows us to both compare our implementation with commercial

implementations as well to demonstrate that we can efficiently implement a com-

plex interface. We also develop a backend for our system to the Stanford Real-Time
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Shading Language, demonstrating our system’s suitability as a target for higher-level

shading languages.

• We analyze the performance of our system in detail and pinpoint aspects of the hard-

ware and software that limit our performance.

• We demonstrate that our system is scalable to future generations of stream hardware.

As stream hardware becomes more capable, with a greater ability to perform compu-

tation, our implementation will continue to increase in performance.

1.2 Outline

We begin by describing the previous work in this area in Chapter 2. The stream program-

ming model and our stream architecture are then described in Chapter 3.

Our implementation is presented in Chapter 4 and evaluated and analyzed in Chapter 5.

Chapter 6 explores extensions to our stream architecture to achieve higher performance.

Chapter 7 discusses several points topical to the dissertation: a comparison of our ma-

chine organization against commercial processors, a discussion of programmability, and a

set of lessons for hardware designers based on our experience. In Chapter 8, our imple-

mentation of the Reyes rendering pipeline is compared to our base implementation.

Finally, Chapter 9 offers conclusions, enumerates the contributions of this dissertation,

and suggests directions for future work.



Chapter 2

Previous Work

Previous work related to the work in this dissertation falls into four categories. First, hard-

ware and software has previously been optimized for media applications such as graphics.

Second, the implementation of this thesis was built using the architecture and tools of

the Imagine project, which have been described in other work. Third, high-performance

graphics systems are primarily built from special-purpose graphics hardware, and the ar-

chitectures of those systems have been influential in this work. And finally, previous work

involving programmability in graphics has inspired the programmable features of the im-

plementation described in this dissertation.

An earlier version of the core pipeline described in this dissertation was summarized in

work published at the Eurographics Hardware Workshop in 2000 [Owens et al., 2000]; the

Reyes work of Chapter 8 [Owens et al., 2002] was published at the same conference two

years later.

2.1 Media Architectures and Tools

Many architectural features have exploited the parallelism inherent in media applications.

First, SIMD extensions to microprocessor instruction sets are used to exploit subword data-

level parallelism and provide the option of more, lower-precision operations, which are

useful in a number of multimedia applications. Representative examples are Sun Microsys-

tems’ VIS [Tremblay et al., 1996] and Intel’s MMX [Peleg and Weiser, 1996].

4
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VLIW architectures [Fisher, 1983] have been common in programmable media pro-

cessors due to their ability to effectively exploit instruction-level parallelism. The Equator

MAP1000A [O’Donnell, 1999], for instance, uses both VLIW and SIMD organizations in

its hardware.

And finally, data parallelism is used in vector processor architectures. An early vector

machine is the CRAY-1 [Russell, 1978]; a more recent vector architecture is the Berkeley

VIRAM [Kozyrakis, 1999]. (However, vector machines lack the local register level of

the bandwidth hierarchy and do not have the kernel-level instruction bandwidth savings of

Imagine.)

All three of these techniques—subword parallelism, instruction-level parallelism, and

data-level parallelism–are used in the Imagine architecture and in the implementation de-

scribed in this dissertation.

The use of streams as programming elements in media applications is common; Gabriel

[Bier et al., 1990] and its successor Ptolemy [Pino, 1993] are representative examples.

Imagine’s contribution to the field is its use of streams as architectural primitives in hard-

ware.

The MIT Raw Architecture Workstation (RAW) [Taylor et al., 2002] and StreamMIT

[Gordon et al., 2002] projects have addressed similar application domains as the Imagine

project. RAW is a simple, highly parallel VLSI architecture that exposes low-level details

to the compiler. It features many connected processors on a single chip and hence divides

its tasks in space rather than time like Imagine (discussed further in Section 7.1). StreaMIT

is a language for streaming applications; instead of extending C++ like Imagine’s StreamC

and KernelC, it implements a new, more abstract language. Like Imagine’s languages,

StreaMIT uses a stream programming model, exposing both the native parallelism and the

communication patterns inherent in the computation.

2.2 Imagine Hardware and Software

The Imagine project, used as the platform for the work in this dissertation, includes an

architecture and physical implementation as well as a set of software tools used to write

and test stream programs on Imagine simulations or hardware. Portions of the Imagine
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system have been described in previous publications.

An overview of the Imagine project is presented by Khailany et al. [Khailany et al.,

2001]. The Imagine Stream Processor was first described by Rixner et al. [Rixner et al.,

1998]; this work introduced the data bandwidth hierarchy and described Imagine at an ar-

chitectural level. Imagine’s memory access scheduler [Rixner et al., 2000a] and register

organization [Rixner et al., 2000b] were described by Rixner et al. in later work. Kapasi et

al. describes the conditional stream mechanism used to support data-dependent condition-

als in kernels [Kapasi et al., 2000]. Kapasi et al. also discuss SIMD efficiency using in part

data from Section 5.2.4 [Kapasi et al., 2002].

Imagine’s kernel compiler schedules kernels to run on the Imagine clusters [Mattson et

al., 2000]; its stream scheduler compiles stream-level code on the Imagine hardware and

host [Kapasi et al., 2001]. Both are described in more detail in Mattson’s dissertation [Matt-

son, 2002].

2.3 Graphics Hardware

The field of computer graphics has seen both architectures of varying programmability and

architectures which use custom, special-purpose hardware. Möller and Haines summarize

real-time rendering techniques, including graphics hardware, in their 1999 book [Möller

and Haines, 1999].

One of the hallmarks of special-purpose graphics hardware is its ability to exploit the

parallelism in rendering applications. Pixar’s Chap [Levinthal and Porter, 1984] was one

of the earliest processors to explore a programmable SIMD computational organization,

on 16-bit integer data; Flap [Levinthal et al., 1987], described three years later, extended

Chap’s integer capabilities with SIMD floating-point pipelines. Our implementation also

uses SIMD parallelism across clusters as well as limited subword parallelism in working

on multiple stream elements at the same time.

Other approaches to exploiting parallelism include the Pixel-Planes [Fuchs et al., 1989]

and PixelFlow [Molnar et al., 1992] family of architectures. They employ both custom
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SIMD processors built into enhanced memory chips that evaluate linear equations to ac-

celerate rasterization and more general-purpose processors for other tasks and pipeline en-

hancements (such as programmable shading [Olano and Lastra, 1998]). Our implementa-

tion has no specialization for rendering but does take advantage of the SIMD nature of the

rendering tasks (though not to the degree of Pixel-Planes and PixelFlow) in a similar way.

The Chromatic Mpact architecture [Foley, 1996] employs a VLIW processor together

with a specialized rendering pipeline to add some degree of flexibility to rendering. More

recently, the vector units in the Sony Emotion Engine [Diefendorff, 1999] use a single

cluster of VLIW-controlled arithmetic units fed with vectors of data. The functional units

are connected to either an integer or a floating-point centralized register file. Imagine’s

clusters also feature an internal VLIW organization; however, Imagine’s intercluster SIMD

organization allows greater computation rates by also utilizing the data parallelism of the

rendering tasks.

Historically, special-purpose rendering hardware has used separate hardware to imple-

ment each stage in the pipeline with little programmability exposed to the user. The SGI

InfiniteReality [Montrym et al., 1997] is a representative example, and a more recent single-

chip graphics processor is the Digital Neon [McCormack et al., 1998]. Many of these

machines were internally programmable through the use of microcoded computational en-

gines (such as the LeoFloat unit, which implements the geometry stages of the pipeline in

the Leo graphics system [Deering and Nelson, 1993]), but did not expose this programma-

bility to the user. Besides the fixed function of the pipeline stages, these machines use a

task-parallel machine organization as opposed to Imagine’s time-multiplexed organization

(discussed further in Section 7.1). More recent machines offer more programmability and

are described in the next section.

Humphreys et al. describe a streaming framework for cluster rendering [Humphreys

et al., 2002] in which both data and commands are treated as streams on a multi-node

compute cluster. Such an approach would be applicable to networks of stream processing

nodes, such as the planned 64-Imagine network.
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2.4 Programmability and Graphics

Programmable graphics systems allow users to model the complexities of the natural world.

One of the first efforts toward formalizing a programmable framework for graphics was

Rob Cook’s seminal work on shade trees [Cook, 1984], which generalized the wide variety

of shading and texturing models at the time into an abstract model. He provided a set

of basic operations which could be combined into shaders of arbitrary complexity. His

work was the basis of today’s shading languages, including Hanrahan and Lawson’s 1990

paper [Hanrahan and Lawson, 1990], which in turn contributed ideas to the widely-used

RenderMan shading language [Upstill, 1990], which is mostly used for offline rendering.

RenderMan shaders are closely tied to the Reyes rendering pipeline; our implementation

of Reyes is presented in Chapter 8.

RenderMan is primarily used for non-real-time rendering. However, programmabil-

ity has also entered the real-time arena. Recently special purpose hardware has added

programmability to the rendering pipeline, specifically at the vertex and fragment levels.

NVIDIA’s GeForce 4 and ATI’s Radeon processors are representative examples of cur-

rent graphics chips with vertex and fragment programmability. NVIDIA’s OpenGL exten-

sions NV vertex program, NV texture shader, and NV register combiner

[NVIDIA, 2001], and Lindholm et al.’s description of vertex programs [Lindholm et al.,

2001], describe some of their most recent features. The programmable features of mod-

ern graphics hardware are increasingly used for rendering and scientific tasks (such as

raytracing [Purcell et al., 2002]) that are far afield from the traditional polygon rendering

algorithms implemented by their non-programmable predecessors. This programmability

is accessible through high-level shading languages such as the Stanford RTSL [Proudfoot et

al., 2001]. The pipelines in this dissertation use the RTSL to describe their programmable

shaders and lights, though Imagine can support a superset of the features provided by this

programmable hardware.

Though we write separate pipelines for OpenGL and Reyes in this dissertation, either

can be described in terms of the other. RenderMan is much more complex than OpenGL

and can easily describe its functionality. But the converse is also true: two years ago, Peercy

et al. implemented general RenderMan shaders on OpenGL hardware [Peercy et al., 2000].
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They made two key contributions relevant to this work. First, they developed a framework

for mapping RenderMan shaders onto multiple passes of OpenGL hardware. Second, they

identified extensions to OpenGL, color range and pixel texture, which are necessary and

sufficient to support RenderMan and other fully general shading languages.

Other abstractions supporting programmability in the pipeline include those of Olano

and McCool. Olano extended the concept of programmability in his dissertation [Olano,

1998], which presented an abstract pipeline that was programmable at each stage and hid

the details of the target machine from the programmer. Another programmable API is

SMASH [McCool, 2001], which is targetted to extend modern graphics hardware. Both

of these pipelines would also be implementable on Imagine using similar techniques and

algorithms to those described in this dissertation.



Chapter 3

Stream Architectures

Computer graphics tasks, such as the rendering systems described in this dissertation, are

part of a broad class of applications collectively termed “media applications”. These appli-

cations comprise a major part of the workload of many modern computer systems.

Typically, media applications exhibit several common characteristics:

High Computation Rate Many media applications require many billions of arithmetic

operations per second to achieve real-time performance. Modern graphics proces-

sors advertise computation rates of over one trillion operations per second.

High Computation to Memory Ratio Structuring media applications as stream programs

exposes their locality, allowing implementations to minimize global memory usage.

Thus stream programs, including graphics applications, tend to achieve a high com-

putation to memory ratio: most media applications perform tens to hundreds of arith-

metic operations for each necessary memory reference.

Producer-Consumer Locality with Little Global Data Reuse The typical data reference

pattern in media applications requires a single read and write per global data element.

Little global reuse means that traditional caches are largely ineffective in these appli-

cations. Intermediate results are usually produced at the end of a computation stage

and consumed at the beginning of the next stage.

Graphics applications exhibit this producer-consumer locality: the graphics pipeline

10
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is divided into tasks which are assembled into a feed-forward pipeline, with the out-

put of one stage sent directly to the next. Global input data—vertex and connectivity

information—is typically read once and only once. Output data exhibits little local-

ity. Texture data, in contrast to most streaming data, does cache well.

Parallelism Media applications exhibit ample parallelism at the instruction, data, and task

levels. Efficient implementations of graphics workloads certainly take advantage of

the “embarrassingly parallel” nature of the graphics pipeline.

To effectively support these applications with high performance and high programma-

bility, we have developed a hardware/software system called Imagine based on the concept

of stream processing. Stream programs are structured as streams of data passing through

computation kernels. Our system consists of a programming model, an architecture, and a

set of software tools and is described below.

3.1 The Stream Programming Model

In the stream programming model, the data primitive is a stream, an ordered set of data of

an arbitrary datatype. Operations in the stream programming model are expressed as oper-

ations on entire streams. These operations include stream loads and stores from memory,

stream transfers over a multi-node network, and computation in the form of kernels.

Kernels perform computation on entire streams, usually by applying a function to each

element of the stream in sequence. Kernels operate on one or more streams as inputs and

produce one or more streams as outputs.

One goal of the stream model is to exploit data-level parallelism, in particular SIMD

(single-instruction, multiple-data) parallelism. To do so requires simple control structures.

The main control structure used in specifying a kernel is the loop. Kernels typically loop

over all input elements and apply a function to each of them. Other types of loops include

looping for a fixed count or looping until a condition code is set or unset. Arbitrary branches

within a kernel are not supported. Imagine extends the SIMD model with its conditional

streams mechanism [Kapasi et al., 2000] that allows more complex control flow within

kernels. Conditional streams are described in more detail in Section 3.3.3.
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A second goal of the stream model is fast kernel execution. To accomplish this goal,

kernels are restricted to only operate on local data. A kernel’s stream outputs are func-

tions only of their stream inputs, and kernels may not make arbitrary memory references

(pointers or global arrays). Instead, streams of arbitrary memory references are sent to the

memory system as stream operations, and the streams of returned data are then input into

kernels.

A stream program is constructed by chaining stream operations together. Programs

expressed in this model are specified at two levels: the stream level and the kernel level.

A simple stream program that transforms a series of points from one coordinate space to

another, for example, might consist of three stream operations specified at the stream level:

a stream load to bring the input stream of points onto the Imagine processor, a kernel to

transform those points to the new coordinate system, and a stream save to put the output

stream of transformed points back into Imagine’s memory.

Implementing more complex stream programs requires analyzing the dataflow through

the desired algorithm and from it, dividing the data in the program into streams and the

computation in the program into kernels. The programmer must then develop a flow of

computation that matches the algorithm.

3.1.1 Streams and Media Applications

The stream programming model is an excellent match for the needs of media applications

for several reasons. First, the use of streams exposes the parallelism found in media appli-

cations. Exploiting this parallelism allows the high computation rates necessary to achieve

high performance on these applications. Parallelism is exposed at three levels:

Instruction level parallelism Kernels typically perform a complex computation of tens to

hundreds of operations on each element in a data stream. Many of those operations

can be evaluated in parallel. In our transformation example above, for instance, the x,

y, and z coordinates of each transformed point could be calculated at the same time.

Data level parallelism Kernels that operate on an entire stream of elements can operate

on several elements at the same time. In our example, the transformation of each
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point in the stream could be calculated in parallel. Even calculations that have de-

pendencies between adjacent elements of a stream can often be rewritten to exploit

data parallelism.

Task level parallelism Multiple stream processor nodes connected by a network can eas-

ily be chained to run successive kernels in a pipeline, or alternatively, to divide the

work in one kernel among several nodes. In our example, the stream of points could

be divided in half and each half could be transformed on separate stream nodes. Or,

if another kernel was necessary after the transformation, it could be run on a second

stream node connected over a network to the stream node performing the transfor-

mation. This work partitioning between stream nodes is possible and straightforward

because the stream programming model makes the communication between kernels

explicit.

Next, as communication costs increasingly dominate achievable processor performance,

high-performance media applications require judicious management of bandwidth. The

gap between deliverable off-chip memory bandwidth and the bandwidth necessary for the

computation required by these applications motivates the use of a data bandwidth hierar-

chy to bridge this gap [Rixner et al., 1998]. This hierarchy has three levels: a main memory

level for large, infrequently accessed data, an intermediate level for capturing the on-chip

locality of data, and a local level for temporary use during calculations. Media applications

are an excellent match for this bandwidth hierarchy.

In addition, because kernels in the stream programming model are restricted to oper-

ate only on local data, kernel execution is both fast and efficient. Kernel data is always

physically close to the kernel’s execution units, so kernels do not suffer from a lack of data

bandwidth due to remote data accesses.

Finally, kernels typically implement common tasks such as a convolution or a fast

Fourier transform. A library of common kernels can be used as modular building blocks to

construct new media applications.
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Figure 3.1: The Imagine Stream Processor block diagram.

3.2 The Imagine Stream Processor

The Imagine stream processor is a hardware architecture designed to implement the stream

programming model [Khailany et al., 2001]. Imagine’s block diagram is shown in Fig-

ure 3.1. Imagine is a coprocessor, working in conjunction with a host processor, with

streams as its hardware primitive.

The core of Imagine is a 128 KB stream register file (SRF). The SRF is connected to

8 SIMD-controlled VLIW arithmetic clusters controlled by a microcontroller, a memory

system interface to off-chip DRAM, and a network interface to connect to other nodes of

a multi-Imagine system. All modules are controlled by an on-chip stream controller under

the direction of an external host processor.

The working set of streams is located in the SRF. Stream loads and stores occur between

the memory system and the SRF; network sends and receives occur between the network

interface and the SRF. The SRF also provides the stream inputs to kernels and stores their
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Figure 3.2: Cluster Organization of the Imagine Stream Processor. Each of the 8 arithmetic
clusters contains this organization, controlled by a single microcontroller and connected
through the intercluster communication unit.

stream outputs.

The kernels are executed in the 8 arithmetic clusters. Each cluster contains several

functional units (which can exploit instruction-level parallelism) fed by distributed local

register files. The 8 clusters (which can exploit data-level parallelism) are controlled by the

microcontroller, which supplies the same instruction stream to each cluster.

Each of Imagine’s eight clusters, shown in Figure 3.2, contains six arithmetic functional

units that operate under VLIW control. The arithmetic units operate on 32-bit integer,

single-precision floating point, and 16- and 8-bit packed subword data. The six functional

units comprise three adders that execute adds, shifts, and logic operations; two multipliers;

and one divide/square root unit. In addition to the arithmetic units, each cluster also con-

tains a 256-word scratchpad register file that allows runtime indexing into small arrays, and

a communication unit that transfers data between clusters. Each input of each functional

unit is fed by a local two-port register file. A cluster switch routes functional unit outputs

to register file inputs. Across all eight clusters, Imagine has peak arithmetic bandwidth of

20 GOPS on 32-bit floating-point and integer data and 40 GOPS on 16-bit integer data.

The three-level memory bandwidth hierarchy characteristic of media application behav-

ior consists of the memory system (2.62 GB/s), the SRF (32 GB/s), and the local register

files within the clusters (544 GB/s).

On Imagine, streams are implemented as contiguous blocks of memory in the SRF or
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in off-chip memory. Kernels are implemented as programs run on the arithmetic clusters.

Kernel microcode is stored in the microcontroller. An Imagine application consists of a

chain of kernels that process one or more streams. The kernels are run one at a time,

processing their input streams and producing output streams. After a kernel finishes, its

output is typically input into the next kernel.

3.3 Imagine’s Programming System

3.3.1 StreamC and KernelC

The stream programming model specifies programs at two levels, stream and kernel. At

the stream level, the programmer specifies program structure: the sequence of kernels that

comprise the application, how those kernels are connected together, and the names and

sizes of the streams that flow between them.

Stream programs are programmed in C++ and use stream calls through a stream library

called StreamC. StreamC programs usually begin with a series of stream declarations then

a series of kernels (treated as function calls) that take streams as arguments. StreamC

programs are scheduled using a stream scheduler [Kapasi et al., 2001; Mattson, 2002].

StreamC abstracts away the distinction between external memory and the SRF and

makes all allocation decisions and handles all transfers for both. The system used in

this dissertation first runs the stream programs to extract profile information of applica-

tion behavior then uses the profile to make allocation decisions. However, a system under

development removes the profiling requirement and makes allocation decisions based on

compile-time information alone.

The kernel level specifies the function of each kernel. Kernels are written in KernelC, a

subset of C++. KernelC lacks most control constructs of C++ (such as if and for state-

ments), instead supporting a variety of loop constructs and a select operator (analogous

to C’s ?:). It also does not support subroutine calls. Stream inputs and outputs are spec-

ified using the >> and << operators, respectively. KernelC programs are compiled using

a kernel scheduler [Mattson et al., 2000] that maps the kernels onto the Imagine clusters,

producing microcode that is loaded during program execution into the microcontroller’s
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program store.

3.3.2 Optimizations

Inputs to graphics pipelines—typically lists of vertices—are usually many thousands of el-

ements long. In our system, these inputs are divided into “batches” so that only a subset

of them are processed at one time. This common vector technique is called “stripmin-

ing” [Lamport, 1974; Loveman, 1977]; it allows the hardware to best take advantage of

the producer-consumer locality in the application by keeping the working set of data small

enough to fit in the SRF.

The second optimization we perform is used at both the kernel and stream levels. This

optimization is applied to loops and is called “software pipelining”. Software pipelining

raises the instruction-level parallelism in a loop by scheduling more than one loop iteration

at the same time. For example, the second half of one loop iteration can be scheduled at

the same time as the first half of the next loop iteration.

Software pipelining has a cost: because more than one iteration is run at a time, the

loop must run more times overall than if the loop was not software pipelined. The extra

cost is due to the need to prime and drain the loop to account for the overlap in execution.

However, software-pipelining a loop often makes the loop faster because the critical

path for the loop is reduced. Software pipelining is effective when the loop is run many

times because the reduction in critical path saves more time than the cost of the priming

and draining.

Software pipelining can be applied to both kernel loops and stream loops. All ker-

nels in this work are software pipelined, as are all stream programs. Software-pipelining

stream programs has an additional advantage in that kernel execution for one iteration over-

laps memory traffic for the other iteration, allowing latency tolerance for the results of the

memory operation.

3.3.3 Conditional Streams

Imagine’s 8 SIMD-controlled clusters are ideal for processing long streams of independent

data elements. If the same function is to be applied to each element in the stream, and no
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element in the stream is dependent on another element, then the elements can be evenly

divided among the clusters with no necessary inter-cluster communication. However, this

simple model is not true in general for stream programs.

The conditional streams mechanism [Kapasi et al., 2000] addresses this problem by in-

troducing two new primitives: conditional input and conditional output. With a conditional

input operation, a new data element is fetched from the input stream into a cluster only if a

local condition code corresponding to that data element is true. Conditional outputs work

in a similar fashion: they append data elements to an output stream only if a local condi-

tion code corresponding to that data element is true. These condition codes are typically

calculated along with the data elements. The conditional stream primitives are conceptu-

ally simple for the programmer but are powerful enough to handle complex data-dependent

behavior such as the examples below:

switch This operation is an analog to the C case statement. Of n possible types of data

elements, each type must be processed differently. The switch operator sends a data

element to one (or none) of n different output streams. The switch operator ensures

that all elements in the same output stream are of the same type so that the processing

for all elements in the same output stream will be identical. Thus, these streams can

be processed efficiently by a processor without the need for a conditional that is

evaluated based on the type of the data element.

In the rendering pipeline discussed in Chapter 4, for instance, switch is used to sepa-

rate the fragments with conflicting and unique addresses within a stream and also to

cull triangles that face away from the camera.

combine The converse of switch, a combine operation merges several input streams into

a single output stream. In our pipeline, the sort stage merges two sorted streams of

fragments into a single sorted stream.

load-balance Each data element in an input stream may require a different amount of

computation. The load-balance mechanism allows each cluster to receive a new

input to process as soon as it is finished processing its previous element. In our

pipeline, our triangle rasterization implementation ensures that clusters processing
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triangles of different size do not have to wait for all clusters to be complete before

starting the next triangle.

Traditional mechanisms for implementing these conditional operations on parallel ma-

chines result in inefficient use of the processing elements (in this case the clusters). The key

to implementing conditional streams on Imagine is to perform the necessary data routing

in the clusters by leveraging the inter-cluster communication switch already present in the

clusters. The conditional stream mechanism can be implemented either fully in software or

accelerated with minimal hardware support. Kapasi et al. show that one scene in our pipe-

line (a scene similar to ADVS-1) ran 1.8 times faster on a conditional stream architecture

than on an equivalent traditional data-parallel architecture.



Chapter 4

The Rendering Pipeline

A renderer produces an image from the description of a scene. Rendering is a computation-

ally intense, complex process and in recent years has been an integral part of workstation

and consumer level computer hardware.

In this section, we describe the design and implementation of a rendering pipeline. Our

design aims for flexible, high-performance rendering on programmable stream architec-

tures such as Imagine.

Trends The performance of special-purpose rendering hardware has increased markedly

in recent years. This increase in performance has resulted in several trends:

• Input primitives are increasing in detail. Because we have more performance with

each succeeding generation of graphics hardware, we can make our input models

more detailed, with finer geometric resolution.

The primary geometric primitive is a triangle, and as a result of this trend, screen-

space triangles cover an ever-smaller number of pixels.

• More information is used to render each primitive. Instead of using a single color or a

single texture address to render a primitive, for example, we now often carry several

colors or texture addresses, or a combination of both. Consequently, the amount of

processing per primitive is increasing.

20
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• With more information available per primitive, we would like to do more flexible op-

erations on primitives and on their generated fragments. It is this desire which has led

to shading languages such as the Stanford Real-Time Shading Language (described

in Section 4.1).

Design goals We aimed to create and develop algorithms that:

• Elegantly fit into the stream programming model;

• Make efficient and high-performance use of stream programming hardware;

• Have similar pin bandwidth requirements to today’s commercial graphics processors;

• Work with the limitations of our hardware and programming tools;

• Use a programming abstraction similar to established APIs.

Our system has a similar interface to the OpenGL API. Both our system and OpenGL

offer immediate mode semantics, carry state, and respect the ordering of input primitives.

In a parallel architecture such as ours, the ordering requirement in particular requires spe-

cial care and will be discussed in later sections.

4.1 Stanford RTSL

As the amount of programmability in graphics hardware increases, the task of programming

graphics hardware using existing APIs becomes more difficult. Moreover, current APIs are

hardware-centric and do not allow much portability between hardware platforms. Shading

languages solve the ease-of-use and portability problems by providing a higher level of

abstraction. Languages are inherently easier to use than lower-level APIs, and the process

of compilation allows computations to be mapped to multiple hardware platforms.

The Stanford real-time programmable shading system is used to specify programmable

lights and shaders, targetting the current generation of programmable graphics hardware

[Proudfoot et al., 2001]. This system has several major components: a hardware abstrac-

tion appropriate for programmable graphics hardware, a shading language for describing
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constant primitive group vertex fragment

Figure 4.1: RTSL computation frequencies. The Stanford shading system supports four
computation frequencies. In the illustrations above, individual elements at each computa-
tion frequency are depicted by shade.

shading computations, a compiler front end for mapping the language to the hardware

abstraction, a modular retargetable compiler back end for mapping the abstraction to hard-

ware, and a shader execution engine for managing the rendering process.

The shading system organizes its hardware abstraction around multiple computation

frequencies, illustrated in Figure 4.1. Computation frequencies reflect the natural places

to perform programmable computations in the polygon rendering pipeline. In particular,

programmable computations may be performed once per primitive group, once per vertex,

or once per fragment, where a primitive group is defined as the set of primitives specified by

one or more OpenGL Begin/End pairs, a vertex is defined by the OpenGL Vertex command,

and a fragment is defined by the screen-space sampling grid.

The shading language provided by the Stanford system is loosely based on Render-

Man. Many of the differences between the two languages are accounted for by the features

and limitations of real-time hardware. In particular, the language omits support for data-

dependent loops and branches and random read/write access to memory, since hardware

pipelines do not support these features, and the language includes a number of data types

(such as clamped floats) specific to graphics hardware. Like RenderMan, the language

provides support for separate surface and light shaders. The language also has features to

support the management of computation frequencies.

The shading system used in this paper is a modified version of the Stanford shading

system. In particular, we made two changes to the original system:

Removed computation frequency restrictionsThe Stanford system restricts many oper-

ations to a subset of the available computation frequencies to account for limited
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hardware capabilities. For example, the system does not allow per-fragment divides,

per-vertex textures, or fully-general dependent texturing. Since our hardware is flex-

ible enough to support all operations at all computation frequencies, our shading sys-

tem omits almost all of the computation frequency restrictions present in the original

system.

Unlike the original Stanford system, the Imagine backend also supports floating-

point computation throughout the pipeline, including the fragment program.

New backend for Imagine We added a new backend to the Stanford shading system to

support compilation to our hardware architecture. This backend inputs a parsed rep-

resentation of the lights and shaders and generates Imagine stream and kernel code.

Because global memory accesses (such as texture lookups) in the stream program-

ming model require stream loads from memory outside of the kernel, the Imagine

backend also must split computation frequencies with global memory accesses into

multiple kernels with intermediate stream loads. Section 4.4 describes this operation

in more detail.

4.2 Pipeline Organization

In designing our pipeline, first we define its inputs and outputs. The inputs to the pipeline

are a stream of vertices with connectivity information, a stream consisting of all texture

data, and a stream of parameters which apply to the whole input stream (such as transfor-

mation matrices, light and material information, and so on).

The vertex and connectivity inputs are stripmined into “batches” so that only a subset

of them are processed at one time, as described in Section 3.3.2. The stream scheduler,

based on triangle size estimates, suggests an efficient batch size. Batches which are too

small suffer from short-stream effects (see Section 5.2.3), while batches which are too

large overflow the SRF (requiring spills to memory) and degrade performance. Batches are

sized so that in the common case all intermediate streams used in processing a batch will

fit into the SRF; this issue is discussed further in Section 4.6.
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Figure 4.2: Top-Level View of the Rendering Pipeline.

The pipeline’s output is an image stored in the color buffer. The color buffer, depth

buffer, and all texture maps are stored in Imagine’s main memory and are each treated as

a single linear stream. To access one of them, we use a stream load of an index stream of

indexes into the linear buffer, which returns a data stream. To do a depth buffer read, for

instance, we generate a stream of depth buffer addresses and send it to the memory system,

which returns a stream of depths from the depth buffer. Writes into these buffers have two

input streams, an index stream and a data stream.1

Next, the pipeline is mapped to streams and kernels to run on a stream architecture such

as Imagine. This organization is described below: Section 4.2.1 evaluates the per-primitive-

group work, and the geometry, rasterization, and composition steps of the pipeline are

detailed in Sections 4.3, 4.4, and 4.5. The top-level view of the pipeline is illustrated in

Figure 4.2.

1Stream loads, such as depth buffer reads, are vector gather operations; stream saves, such as color buffer
writes, are vector scatter operations. Both are supported in the stream programming model.
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4.2.1 Primitive Group Work

Section 4.1 described the RTSL’s four computation frequencies. The second computation

frequency is “per primitive group” and we call its resulting program the perbegin kernel.

All shading work that can be performed once per primitive group instead of on each vertex

or on each fragment is executed in this kernel.

Consequently, even if the geometry data is complex enough to be stripmined into sev-

eral batches, this kernel only needs to be run once. Its input usually includes transformation

matrices, lighting parameters, and texture identifiers. Its output is divided into several out-

put streams, each of which is an input to a vertex or fragment program kernel.

Unlike the vertex and fragment programs, the perbegin kernel does not loop over

a large set of primitives (vertices or fragments). It has no data parallelism to exploit in

Imagine’s SIMD clusters, so as a result, when it is run, it is run redundantly in parallel

across all 8 clusters. Because it is executed only once per primitive group, the resulting

loss of efficiency is negligible.

4.3 Geometry

The first stage of the rendering pipeline is the geometry stage, which transforms object-

space triangles into screen-space and typically performs per-vertex lighting as well as

other per-vertex or per-triangle calculations. The operations in this stage are primarily

on floating-point values and usually exhibit excellent data parallelism.

Our geometry stage consists of five steps: the vertex program, primitive assembly, clip,

viewport, and backface cull. The geometry kernels in our implementation are shown in

Figure 4.3.

4.3.1 Vertex Program

The real work in programmable shading is done at the vertex and fragment frequencies.

The third computation frequency is “per vertex” and in the resulting vertex kernel, we run

a program on each vertex.
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Figure 4.3: Geometry Stage of the Rendering Pipeline.

The main input to this kernel is a stream of vertices; usually each vertex carries its

object-space position, normal, and texture coordinate information, and may also contain

color, tangent, binormal, or other arbitrary per-vertex information. In practice, the RTSL

compiler specifies which information is required for each vertex and we simply specify

that information as part of each vertex in the stream. This information is almost always

specified in 32-bit floating-point. The vertex program also takes the output of the perbegin

kernel as a second input.

When the kernel is run, it first streams in the perbegin information. Then it loops over

its stream of input vertices. Because the number of vertices is large (usually on the order

of many tens to hundreds), and because the same program must be run on each vertex

with no intervertex dependencies, the vertices can be processed in parallel. Imagine’s eight

SIMD-controlled clusters evaluate the vertex program on eight vertices at the same time.

The vertex program encompasses the traditional OpenGL stages of modelview trans-

form, the application of the GL shading model, and the projection transform. Because
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it is programmable, however, it can do anything the programmer desires, including more

complex lighting models, vertex displacements, vertex textures, and so on. The vertex pro-

gram is similar in structure to the fragment program, which is described in more detail in

Section 4.4.4.

The kernel’s output is a stream of transformed vertices. Each vertex includes its po-

sition in clip coordinates and an arbitrary number of floating-point interpolants. Typical

interpolants include one or more colors and one or more texture coordinates. Each inter-

polant is then perspective-correct interpolated across the triangle during the rasterization

stage of the pipeline.

4.3.2 Primitive Assembly

After vertex processing is complete, the vertices must be assembled into triangles. (This

step is skipped if the input vertices are specified in separate triangles.) The most common

types of input primitives are triangle meshes and polygons, and to assemble them, we use

the assemble mesh and assemble poly kernels.

On each loop, each cluster inputs a vertex and mesh information for that vertex. For

the purposes of assembly, each vertex is assumed to be the third vertex in a triangle. The

mesh information is encoded (in a single 32-bit word) as two 16-bit integer offsets. The

first offset specifies how many vertices must be “counted back” to find the first vertex of

the triangle, and the second offset does the same for the second vertex. If either offset is

zero, no valid triangle is produced. Only valid triangles are conditionally output into the

output stream.

If both offsets are positive, then each cluster fetches its other two vertices from the other

clusters via Imagine’s intercluster communication mechanism. If the current cluster minus

the offset is a negative number (meaning the vertex in question was not input on this cycle),

then it is retrieved from a stored vertex kept as state from the previous loop.

For polygons, two vertices must be kept as state: the root of the polygon and the last-

seen vertex. For meshes, two vertices are also kept as state, but instead the last-seen and

second-to-last-seen vertices are kept.
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4.3.3 Clipping

Once the triangles are assembled, they must be clipped. Originally we did a general clip at

this point, clipping all triangles to the view frustum. This operation was quite complex on

a SIMD machine, put triangles out of order, and presented severe allocation problems for

stream-level allocation.

Instead, we do a trivial clip with a clip kernel, discarding all triangles which fall fully

outside of the view frustum. The remainder of the clip is done during rasterization using

homogeneous coordinates [Olano and Greer, 1997].

Assembly and clipping are combined into a single kernel in our implementation.

4.3.4 Viewport

The viewport transform is simple: on each vertex of each input triangle, perform the per-

spective divide by the homogeneous coordinate w on the x, y, and z values, and apply the

viewport transformation from clip coordinates to screen-space coordinates.

With the scanline rasterizer (described in Section 4.4.1), each interpolant is also di-

vided by w to ensure perspective correctness. The barycentric rasterizer (described in Sec-

tion 4.4.2) does not require this divide.

4.3.5 Backface Cull

Finally, each triangle is tested for backface culling. Triangles which face toward the camera

are conditionally output in this kernel, and triangles which have zero area or face away are

discarded.

This kernel is completely bound by cluster input-output bandwidth, so (with no increase

in kernel loop length), to make the job of the rasterizer slightly easier, we also test to see

if the triangle crosses both a x and y scanline. If it does not, it produces no pixels, and we

can safely discard it as well.

The viewport transformation and the backface cull are combined into a single kernel in

our implementation.
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At this point, all triangles are in screen-space coordinates and in input order, and are

prepared for the rasterization stage.

4.4 Rasterization

The rasterization stage of the polygon rendering pipeline converts screen-space triangles to

fragments. Per-vertex values, such as texture coordinates or a color, must be interpolated

across the triangle during this stage.

Rasterization is a difficult task for SIMD architectures because each individual triangle

can (and does) produce different numbers of fragment outputs. This behavior makes the

design of an efficient rasterizer, and particularly its stream allocation, quite complex.

A second complication is ordering. The implementations described in this section do

not output their fragments in strict triangle order, which violates our ordering constraint.

The composite stage, described in Section 4.5, must rectify the situation, and the rasterizer

must provide the information necessary to do so.

Our rasterization stage has two main parts. The first is the rasterizer itself; it finds

the pixel locations for each fragment and calculates the interpolants. The second is the

fragment program generated by the RTSL compiler. It runs an arbitrary program on each

fragment to produce a final color per fragment, which then enters the composite stage.

Sections 4.4.1 and 4.4.2 describe two rasterization algorithms for stream architectures.

Section 4.4.4 describes the fragment program.

4.4.1 Scanline Rasterization

The traditional method to rasterize screen-space triangles is the scanline method. In this

method, triangles are first divided into spans, which are one-pixel-high strips running from

the left side to the right side of the triangle.

Typically, a scanline rasterizer begins at the bottom of the triangle and walks up the left

and right edges of the triangle, emitting a span each time it crosses a scanline. The scanline

algorithm is well-suited to special-purpose hardware implementations because it can use

incremental computation in calculating the linear interpolants.
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Figure 4.4: Scanline Rasterization in the Rendering Pipeline.

Stream Implementation

A scanline rasterizer maps logically into three kernels: a triangle setup kernel that does all

per-triangle prep work; a span generation kernel that produces spans from prepped trian-

gles; and a scan rasterization kernel that rasterizes spans into fragments. In our system,

these three kernels are called spanprep, spangen, and spanrast and are shown in

Figure 4.4.

spanprep The spanprep kernel inputs screen-space triangles and conditionally outputs

zero, one, or two valid screen-space half-triangles. Half-triangles are triangles that always

have one edge parallel to the x-axis. Using half-triangles allows us to keep track of only

two edges at a time instead of three and eases the control complexity without increasing
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the number of generated spans.

spanprep first sorts the triangle’s vertices by their y coordinates and assigns an ID

to the triangle (which is later passed to all its fragments) for future ordering steps. If

mipmapping is enabled, it then calculates the per-triangle coefficients used to generate the

screen-space derivatives of the texture coordinates. Next it constructs the left-to-right half-

triangle edges, calculates their start and end y-coordinates, and calculates the beginning

and delta values for each interpolant at the bottom of each edge. Finally, it conditionally

outputs only those half-triangles that span at least one y scanline.

spangen The spangen kernel conditionally inputs the prepped half-triangles from the

previous stage, then conditionally outputs spans for use in the next span rasterizer kernel.

First, each cluster that has completed its current triangle brings in a new triangle. Clus-

ters that are not yet done keep their current triangles. Each cluster keeps track of its own

current scanline, and the kernel next calculates a span on its current scanline. A span con-

sists of integer start and end x-coordinates and for each interpolant, a floating-point start

value (at the left side of the span) and the floating-point incremental delta value to be added

as the span is traversed in the next kernel. Mipmap calculations are also performed at this

point if necessary. At this point, the ordering constraint is violated, as spans are no longer

in triangle order.

After the span is calculated, the per-edge interpolant deltas are added for the left and

right edges. The span is then output if it will generate at least one valid pixel.

The loop can be unrolled easily; choosing the amount of unrolling involves balancing

the added efficiency from processing multiple spans per loop, the loss of efficiency when

the number of spans do not divide evenly by the number of spans per loop, and the extra

register pressure from processing multiple elements in the same loop iteration. In practice,

we usually generate two valid spans per loop.

spanrast The task of generating actual pixels falls to the spanrast kernel. spanrast

loops over its input spans, bringing in a new span per cluster when its current span is

exhausted. It conditionally outputs valid fragments with framebuffer address, triangle ID,

depth, and interpolant information.
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spanrast is the simplest of the three rasterization kernels. First, each cluster that has

completed its current span conditionally inputs a new span. Clusters that are not yet done

keep their current spans. Next it uses the span information to calculate the current frag-

ment’s depth, interpolant values, and framebuffer address. If mipmapping is enabled for

this fragment, it also computes the mipmap level. It then increments the span for the next

fragment. Like spangen’s inner loop, its inner loop can also be unrolled, with the number

of fragments per unrolled loop determined by similar considerations as in spangen; two

generated fragments per loop is our typical size.

Advantages of the Stream Implementation

Traditionally, scanline algorithms have been the preferred method of hardware rasterizers.

Mapping a scanline algorithm into streams and kernels has several advantages:

Factorization of problem size A renderer on a stream-programmed system would be most

efficient if every triangle was the same size and shape. As this is an undue burden

for the graphics programmer, our system must handle triangles of varying size. A

triangle with many interpolants carries with it a large amount of data, and we must

find an efficient way to distill that data to each of its constituent fragments. In effect,

we must construct a data funnel to take a complex triangle and map it to simpler,

more numerous fragments.

Our experience in attempting to do this operation in one step, from triangles to frag-

ments, has demonstrated that such an approach is difficult. Triangle traversal did

not parallelize well, and the huge amount of computation necessary in a one-step

algorithm overwhelmed our tools.

Using the intermediate step of spans helps manage this complexity. Roughly speak-

ing, a triangle has two dimensions as it stretches in both the x and y directions. A

point has zero dimensions. Using spans provides an intermediate step with one di-

mension. As we move from triangles to spans to fragments, our dimension decreases,

and while the number of primitives increases, the amount of data associated with each

primitive decreases.
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Efficient computation Interpolation is a linear operation and scanline algorithms exploit

this linearity. For example, in span rasterization, all the per-span work is done in

spangen, including preparing all spans with incremental delta values so that in

spanrast, moving from pixel to pixel only involves adding the delta to each inter-

polant. The triangle-to-spans conversion works in the same way.

In addition, triangle traversal is made much simpler by the scanline factorization, so

we do little rasterization work which does not contribute to covered pixels.

Problems with the Stream Implementation

Small triangle overhead Factoring so much of the work into setup operations for triangles

and spans is expensive for small triangles. If a triangle only covers a single pixel, it is

useless to prepare deltas for edges and spans because those deltas will never be used.

Span overheadThe intermediate step of spans is not without its costs. Spans are large:

each interpolant needs two words of space in the span, one for its initial value, one

for its delta. And because spans are conditionally output in spangen and condition-

ally input in spanrast, a stream architecture such as Imagine, with only limited

conditional stream bandwidth into and out of the cluster, suffers from a bandwidth

bottleneck on span input and output.

Mipmaps and derivatives difficult Adding texture mipmap derivative calculations made

the size of the prepped triangles and spans much larger. This reduces the number of

vertices we can handle per batch, making computation less efficient.

For instance, the ADVS scene, when point-sampled, allows 256 vertices per batch;

when mipmapped, only 24 [Owens et al., 2000]. In addition, extracting the neces-

sary information for arbitrary derivatives from the scanline rasterizer would be quite

difficult.

Large numbers of interpolants Finally, triangle and span sizes rapidly overwhelm the

Imagine scheduler and hardware as the number of interpolants becomes large.

In the original version of PIN, for instance, each vertex carried 30 floating-point in-

terpolants (five texture coordinates with four components per coordinate, two colors
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with four components per color, and a front and back floating-point value). Imagine

ran into a hardware limit in the spangen kernel, in which both triangles and spans

are conditional inputs/outputs.

Our conditional stream operations require 2 entries per conditional word in the 256-

entry scratchpad register file. Each half-triangle has two edges, and each edge a

initial and delta value per interpolant. Each span has an initial and delta value per

interpolant. Such a kernel would be difficult to schedule using the kernel scheduler,

but even if we could, we require (4 + 2) × 30 × 2 = 360 entries in the scratchpad,

which exceeds the limits of the Imagine hardware.

We must consider another method which avoids the difficulties above, in particular

the problems associated with the large number of interpolants. Our goal is an algorithm

in which the parts of the pipeline that scale with the number of interpolants are easily

separable into multiple parts with little to no loss of efficiency.

4.4.2 Barycentric Rasterization

To address the difficulties inherent in scanline rasterization, we moved to another algorithm:

barycentric rasterization. While the end result of a barycentric rasterizer is identical to that

of a scanline rasterizer, the intermediate calculations are structured differently. We analyze

the performance of the two algorithms in Section 5.2.6.

The key idea behind our implementation of the barycentric rasterizer is our separation

between pixel coverage and interpolation. Pixel coverage refers to the calculation of which

pixel locations are covered by a given triangle. Interpolation is the calculation of the value

of each interpolant at a given pixel location given the values of the interpolant at each

vertex.

In a scanline rasterizer, these two processes are intimately tied together. Processing a

triangle means processing each of its interpolants at the same time, leading to the problems

described above in Section 4.4.1.

In contrast, a barycentric rasterizer first calculates pixel coverage information. The

interpolants do not figure into this calculation. It is only after all pixel coverage is complete

and the barycentric coordinates for each pixel coordinate are calculated that the interpolants
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are considered. Moreover, the interpolant rasterization kernel is separable: if the number of

interpolants overwhelms the ability of our hardware or tools to handle them, the kernel can

be easily and cheaply split into multiple smaller kernels, each of which calculates a subset

of the interpolants.

The following explanation of barycentric rasterization follows Russ Brown’s treat-

ment [Brown, 1999].

We can describe the value of any interpolant within a triangle at screen location p as the

weighted sum of its value at the three vertices:

ip = b0i0 + b1i1 + b2i2 (4.1)

The weights b0 , b1, and b2 must add to 1. Geometrically, the weight b0 for vertex v0 at

screen location p = (x, y) is the area of the triangle formed by p, v1, and v2 (A0) over the

area of the triangle formed by v0, v1, and v2 (A):

b0 = �pv1v2

�v0v1v2
=

A0

A0 + A1 + A2

;

b1 = �pv0v2

�v0v1v2
=

A1

A0 + A1 + A2

;

b2 = �pv0v1

�v0v1v2
=

A2

A0 + A1 + A2

. (4.2)

An, in turn, is a linear function of x and y:

An = αnx + βny + γn. (4.3)

Adding correction for perspective distortion to Equation 4.2 is straightforward:

b0 =
w1w2A0

w1w2A0 + w2w0A1 + w0w1A2

;

b1 =
w2w0A1

w1w2A0 + w2w0A1 + w0w1A2

;

b2 =
w0w1A2

w1w2A0 + w2w0A1 + w0w1A2

. (4.4)
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Figure 4.5: Barycentric Rasterization in the Rendering Pipeline.

Stream Implementation

To map a barycentric rasterizer into the stream model, we first divide the work into per-

triangle and per-fragment work. The kernel flow is shown in Figure 4.5.

xyprep The per-triangle work is encapsulated in the xyprep kernel. Three tasks are

necessary in this kernel:

• First we calculate the α, β, and γ coefficients for each A in Equation 4.3 and the

premultiplied wmwn values needed in Equation 4.4.

• Next we set up the triangle for the xyrast kernel, which calculates pixel coverage

for the triangle.
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• Finally, each triangle receives an ID for use in later ordering steps. This ID is passed

to all its fragments.

xyrast Next the triangle must be rasterized into pixels. In the xyrast kernel, we condi-

tionally input a setup triangle and on each loop, unconditionally output a fragment covered

by that triangle. Along with the x and y pixel coordinate, each output fragment is marked

with flags indicating whether that fragment is valid and whether that fragment is the first of

its triangle. Fragments are invalid if they fall outside the triangle or if they fall outside the

viewport.

Another way to implement rasterization would be to conditionally output only valid

fragments. This would compress the output stream with no degradation in performance.

However, this would not place the output fragments in a useable order for future steps.

No matter how we do the rasterization, the OpenGL ordering constraint is violated, as

fragments are no longer in triangle order. But by using unconditional output, the output

stream of fragments obeys two important constraints used in later stages:

• All fragments from any given triangle are output by the same cluster. Because future

rasterization kernels have unconditional inputs, all the rasterization work for any

given triangle will be on the same cluster.

• The first fragments from each triangle are ordered in triangle order. Since those frag-

ments are marked with the “first” triangle flag, this flag can be used to conditionally

input corresponding per-triangle information in future kernels.

baryprep The next kernel, baryprep, calculates the screen-space areas An and the

perspective-corrected barycentric coordinates bn. The clusters unconditionally input a

fragment on each loop, and if the fragment is the first of its triangle, conditionally in-

put the triangle setup information calculated by xyprep. (It is because of this use of data

from two frequencies—the per-triangle frequency and the per-fragment frequency—that

the xyrast kernel must follow the two ordering constraints above.) On each loop, per

fragment, baryprep outputs the perspective-corrected barycentric coordinates assocated

with the pixel location and triangle.
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The three previous kernels, xyprep, xyrast, and baryprep, are all independent

of the number or type of interpolants and hence can be shared across all pipelines.

irast The pipeline-specific interpolation is contained in the irast kernel. For each in-

terpolant, irast simply evaluates the barycentric interpolation of Equation 4.1. If the

number of interpolants is too large to be supported by our tools or hardware, irast is

split into multiple kernels, each of which interpolates a subset of the interpolants.

The irast kernel compresses the stream of valid and invalid fragments into a stream

of valid fragments by conditionally outputting only the valid fragments.

Extension to mipmapping and derivatives

Producing smooth, non-aliased images requires careful consideration of the problems of

filtering, sampling, and reconstruction during the image synthesis process. The process of

texture mapping is fundamental to modern graphics pipelines and illustrates the challenges

of achieving proper filtering, sampling, and reconstruction.

Applying a texture map to a surface involves sampling the texture map for each pixel

location in screen space on the surface. If the texture map’s spatial frequency exceeds the

Nyquist limit for the screen space pixels, the texture-mapped surface will exhibit aliasing

artifacts.

To eliminate this problem, we can prefilter the texture map at a number of lower fre-

quencies (“levels”), then choose the appropriate filtered texture. This approach is called

mipmapping [Williams, 1983] and requires accessing 8 texels for each fragment. To choose

the appropriate level of the mipmap requires knowledge of the rate of change of texel co-

ordinates with respect to screen coordinates, or in short, a derivative.

With a barycentric rasterizer, obtaining derivatives of interpolants with respect to screen

space involves little additional work. Let us call the interpolant of interest u and the screen

space distance x. We would thus like to compute ∂u/∂x. u is a function of b0, b1, or b2 (or

equivalently, A0, A1, and A2), which are in turn functions of x. By the chain rule,

∂u

∂x
=

2∑

n=0

∂u

∂bn

∂bn

∂x
=

2∑

n=0

∂u

∂An

∂An

∂x
.
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The three ∂u/∂bn’s are already computed in Equation 4.1, and the ∂bn/∂x’s require

only a small amount of extra computation (to compute both ∂u/∂x and ∂u/∂y together

requires an additional 4 adds, 3 subtracts, and 8 multiplies per fragment).

The mipmap calculation requires 4 partial derivatives (∂u/∂x, ∂v/∂x, ∂u/∂y, and

∂u/∂y). The interpolated value calculated in irast might not be the final texture co-

ordinate; the fragment program (described below in Section 4.4.4) could do additional

computation on the interpolated value to produce a texture address. If so, we must calcu-

late the partial derivatives for each interpolant that contributes to the texture address. We

use the forward mode of automatic differentiation described by Nocedal and Wright [No-

cedal and Wright, 1999]; with it, we calculate the partial derivatives of each interpolant

and use the chain rule to combine these partial derivatives with their interpolant values to

produce the derivative used by the mipmap hardware.

For example, an interpolated texture address (t′ = {u, v, q}) produced by irast could

then enter the fragment program and there be multiplied by a matrix. The resulting texture

address would then be used for the texture lookup. For each fragment, we would do the

matrix multiplication (t = Mt′) to find the texture address and use the chain rule (∂t =

M∂t′ · t′∂M ) to find its derivative. This computation is automatically generated by the

RTSL compiler at compile time.

In today’s graphics chips, mipmapping hardware typically performs the derivative com-

putation, hiding it from the user. Derivatives are useful in a wide variety of filtering tech-

niques, however. RenderMan, for instance, provides two built-in variables and two func-

tions that aid in computing and using derivatives [Apodaca and Gritz, 2000]. du and dv

reflect the change in u and v between adjacent samples; Du(x) and Dv(x) provide the

derivative of x with respect to u and v.

4.4.3 Other Rasterization Alternatives

Handling derivatives has traditionally been done in a different manner, with multi-pixel

stamps. A stamp usually covers a 2 × 2 square of pixels. Derivative information is extracted

from the differences between adjacent pixels.

Such an approach is general and amenable to hardware acceleration; we chose not to
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use it for two reasons. First, it is not as accurate as implicit differentiation, providing a

coarser approximation only valid to the first term of the expansion. Second, rasterizing

four pixels at a time is inefficient unless all four pixels are used. With triangle screen size

decreasing with time, the hit rate of four-pixel stamps becomes smaller and smaller.

4.4.4 Fragment Program

The fragment program, specified by the programmer and compiled by the RTSL compiler,

generates a color per fragment. The program typically uses the perbegin information and

the per-fragment interpolants, such as lighting colors or texture coordinates, in computing

the final color. This program corresponds to the final and finest computation freqency,

“per fragment.” The code generator for the fragment program is the same as that for the

vertex program; their functionality is identical, and the discussion below applies to both the

fragment and vertex programs.

Logically, the fragment program corresponds to a single kernel: its inputs are the per-

fragment interpolants and the perbegin parameters. Each fragment is independent of each

other fragment, and the same operations are applied to each fragment, so it is a perfect

match for SIMD execution. However, because of texture accesses, the fragment program

is more complex, as described below.

Handling texture In the stream programming model, kernels cannot index into memory

directly. Instead, to retrieve a stream of data from memory (such as color, depth, or texture

data), the kernel must create a stream of memory addresses. The memory address stream

is then sent to Imagine’s off-chip memory, which returns a stream of data. This data is then

available to other kernels.

While this programming model has the disadvantage of splitting a task that is logically

one kernel into two, it allows considerably greater execution efficiency. Kernels are effi-

cient because they only operate on local data. Texels are certainly not local to execution

units and are possibly not even on-chip. By separating the texture access from the texture

use, we allow latency tolerance in the texture lookup. While the memory system is busy

satisfying the stream of texture requests, the clusters are free to execute another kernel and
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Figure 4.6: Mapping a Complex Fragment Program to Multiple Kernels. Each operation in
this sample fragment program is indicated by a circle, with dependencies shown as arrows.
Nodes indicating a texture access are marked with a “T”. Because of the texture accesses,
the program must be split across multiple kernels. This particular program has two levels
of texture accesses (as in a dependent texture), meaning it requires 3 kernels (shown as
levels 0, 1, and 2 in blue, red, and green) to implement.

not stall waiting for the texels to return from memory. When the texel stream is complete,

the kernel which uses the texel data can then be issued and process the texels. This kernel

will also have all of its data local to the clusters.

So, in the stream programming model, any fragment program with texture accesses

must be divided into multiple kernels. The shading language compiler handles this auto-

matically at compile time by labeling each texture access in the intermediate representation

with its “depth” (depth n for texture T indicates that a string of n dependent textures de-

pends on T ). All operations which contribute to calculating textures with depth n are

grouped into a single kernel, and operations which contribute to multiple depths simply

perform their calculations in the largest depth’s kernel and pass their values in a stream
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surface shader float4
textest (texref t, float4 uv) {
    return texture(t, uv);
}

Texture t

Fragment
Kernel 0

Fragment
Kernel 1

surface shader float4
tex2test (texref t1, texref t2,
              float4 uv) {
    float4 td = texture(t2, uv);
    return texture(t1, td);
}

uv

t[uv]

Texture t2

Fragment
Kernel 1

Fragment
Kernel 2 uv

td=t2[uv]

Texture t1

Fragment
Kernel 0

t1[td]

td

Figure 4.7: Mapping Texture Accesses to the Stream Model. The first example is a single
texture lookup, which compiles to two kernels with an intermediate memory access. The
second example is a dependent texture read, which requires three kernels and two lookups.
Note that while these examples perform no calculations on the texture addresses or their
returned texels, real shaders often manipulate either or both. In that case, the necessary
calculations are performed in the fragment kernels.

directly to lower depths. Figure 4.6 shows an example.

The kernel for depth n generates a single stream of texture accesses for all textures with

depth n, which are then sent as indexes into memory. The memory returns a texel stream

which is input into the kernel for depth n − 1. The final kernel, at depth 0, calculates the

final color. Figure 4.7 shows two examples of how the fragment program is divided into

kernels.

Vertex textures, when used, are handled in the same way. This scheme can both handle

an arbitrary depth of texture dependencies and perform arbitrary functions on the returned

texels at each step. While typically texture maps contain colors, in practice a texel can be

any datatype: a greyscale intensity, a texture address, a normal vector, and so on.

Procedural noise Vertex and fragment programs can efficiently implement complicated

functions such as procedural noise. Our system calculates noise procedurally without using

any textures, saving the texture bandwidth usually used in implementing noise in real-time
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systems. We use Greg Ward’s implementation of Ken Perlin’s noise function [Ward, 1991]

as a basis for our procedure; it uses a pseudorandom number generator, a gradient-value

noise function, and Hermite cubic spline interpolation between grid points. This algorithm

gives good image quality but is reasonably expensive in terms of computation; more or less

complex noise functions could easily be implemented if desired.

4.5 Composition

After the fragment program completes, we have a stream of processed fragments. Each

fragment carries an address into the framebuffer, a triangle ID tag for ordering, a depth

value, and a final color. The task of the composition stage is to use these fragments to

create an image in the color buffer.

Complicating this task is our ordering constraint: if triangle T1 is specified before trian-

gle T2, each of T1’s fragments must appear to be processed before any of T2’s. The phrase

“appear to be” is significant: fragments can be processed out of order, but the end result

must be the same as if they were processed in order.

Thus we begin our composite stage with a sort to reorder the fragments, then proceed to

a depth test for hidden surface elimination, and finally write into the color and depth buffer.

This kernel flow is shown in Figure 4.8.

4.5.1 Sort

At the beginning of the sort, we have an unordered list of fragments, each with a triangle

ID. We can thus sort the fragments by ID and put them back into order.

The sort algorithm is straightforward: first the fragments are divided into chunks of

32 fragments each. Each chunk is sorted locally within the clusters (sort32). Then the

sorted chunks are recursively merged using a merge sort (mergefrag). The cost of this

general sort over a typical batch size of 1000 fragments, however, is prohibitive: early

tests indicated it took about half the total run time of the batch. Clearly this presented an

unacceptable performance degradation.

To reduce the cost of the sort, we analyzed the characteristics of the fragments in a
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Figure 4.8: Composition in the Rendering Pipeline.

batch. If a fragment’s address into a framebuffer is unique within the batch, the fragment

can be processed in any order, because it conflicts with no other fragments in the batch.

The typical framebuffer has on the order of a million pixels, the typical batch about one

thousand, so conflicting fragments should be rare and unique fragments common.

In our implementation, we divide the stream of fragments into two streams, a unique

stream and a conflicting stream. We use a hash kernel, with an associated hash function,

to perform this operation. The bottom 5 bits of each of the x and y coordinates into the

framebuffer become a 10-bit index into the hash table (packed into 64 entries of each clus-

ter’s 256-entry scratchpad register file). Geometrically, the hash table is a 32 × 32 stamp

in screen space; any two fragments within 32 pixel locations of each other in either the
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x or y directions will hash to different values. We chose this function because adjacent

triangles often exhibit high spatial locality, particularly when expressed in triangle strips or

polygons. Other hash functions could easily be supported in the kernel, or at the cost of

more setup time and scratchpad space, the hash table could be made larger.

After the fragments are hashed, the conflicting stream is sorted using the sort32 and

mergefrag kernels and appended to the unique stream, resulting in a fragment stream

that obeys the ordering constraint.

4.5.2 Compact / Recycle and Depth Compare

We would now like to use the depth buffer to composite the fragment stream into the color

buffer. Each fragment must compare its depth against the current depth in the depth buffer

and, if closer to the camera, write its color and depth values into the color and depth buffers.

Because the fragments are batched, the natural way to evaluate the depth test is to send

the whole stream of addresses to the depth buffer, retrieve a stream of old depth values,

compare that stream against the new depth values, and composite only those fragments

which passed the depth test. But naively evaluating this sequence leads to a problem.

Consider two fragments, F1 and F2, with the same framebuffer address. F1 is ordered

before F2 and is also closer to the camera. Also suppose that the value currently in the

depth buffer at that framebuffer address is D, which is behind both F1 and F2.

If the two fragments are processed in a single pass, they will both retrieve the old depth

value D from the depth buffer. Both fragments will pass the depth test because both F1

and F2 are closer to the camera than D. The color buffer is then updated with a stream of

indices including F1 and F2. When this stream is sent to the color buffer, it first writes the

color value associated with F1 (because it is ordered first) then the value associated with

F2. At the end of the color store, the fragment of interest has the color from F2 instead of

F1.

To properly composite the sorted fragments, we must amend the above sequence. The

operations remain the same, but we cannot allow fragments with the same framebuffer

addresses to participate in the same pass. So instead, we execute multiple passes of this

sequence and process only a subset of the fragments on each pass. If the maximum depth
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complexity of all fragments in the batch is d, we will run the sequence d times. However,

given f total fragments, we will only process f fragments in aggregate across all d runs.

To choose the correct fragments for each pass, we run the compact recycle kernel.

It takes the sorted fragment stream as an input and outputs two streams: one compacted

stream of the first fragment at each unique framebuffer address and one recycled stream of

all other fragments, used as the fragment stream for the next pass. Making this determi-

nation is simple: because the fragments are sorted, each fragment looks at its immediate

predecessor in the stream. If the predecessor has the same address, the fragment is recycled

for the next pass. Otherwise, it is appended to the compacted stream and depth-composited.

The compacted fragment stream’s addresses are sent to the depth buffer, which returns

the old depth value. The zcompare kernel then inputs the compacted fragments and the

old depth values and outputs those fragments that pass the depth test. Finally, the color and

depth values of those fragments are written into the color and depth buffers.

The compact-recycle loop continues until the recycle stream is empty. In practice, in

our scenes, the loop usually runs only once because no fragments conflict, and almost never

more than twice.

More efficient composition

The compact-recycle loop allows the most general compositing, including blending, at the

expense of the loop overhead and the multiple loop iterations. Several common composit-

ing modes lend themselves to an optimization, however.

If fragments that fail the depth test are discarded and blending is disabled, the compact-

recycle loop can be entirely avoided. Instead of sorting by framebuffer address then by

triangle ID, we sort by framebuffer address then depth. Out of all fragments at any given ad-

dress, we only care about the one closest to the camera, and the other ones can be discarded

with no further processing. In this case compact recycle becomes simply compact

and the recycled output stream is discarded. Removing this data-dependent loop also makes

the job of the stream scheduler easier. However, all scenes described in this dissertation use

the full compact recycle loop.
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4.6 Challenges

4.6.1 Static vs. Dynamic Allocation

The scenes demonstrated in this dissertation were first profiled. The profile information was

then used to make allocation decisions. In particular, we sized batches so that intermediate

results fit in the SRF.

This strategy ensures maximum performance for our scenes, but it is based on static

information. To perform the same calculation dynamically, the drivers or hardware must

know the screen-space area of the primitives they render. While runtime bounding-box

estimates may be sufficient for this purpose, we have not yet investigated the ramifications

of doing all allocation dynamically.

4.6.2 Large Triangles

When triangles are dynamic, what do we do with large triangles, or equivalently, what do

we do when the allocation is insufficient to hold all the intermediate results? A single large

triangle can easily generated enough fragments to overflow the entire SRF.

Subbatching rasterization work

At first glance, we might think to just divide up the rasterization work into multiple sub-

batches: generate fragments until the allocated stream space is full, finish processing all

those fragments, and continue rasterizing more fragments from the same batch.

However, this approach violates our ordering constraint, as shown in Figure 4.9. Since

after rasterization, the generated fragments are out of order, and we process each subbatch

individually, fragments from a later triangle might land in an earlier subbatch than frag-

ments from an earlier triangle.

To remedy this problem, we begin by determining the ID of the last triangle to finish

rasterizing, Tf . We would toss out all fragments for triangles with ID’s greater than Tf and

rasterize them in the next subbatch, which would begin with triangle Tf+1. But what if

the first triangle in a subbatch, by itself, exceeds the allocated space? We then rasterize as
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Figure 4.9: Subbatching Rasterization Work Violates Ordering. Consider fragment batches
that are limited to 32 fragments. Triangle 0 is not complete when the batch is full. Out-
putting and processing the 32-fragment batch would violate the ordering constraint because
not all of Triangle 0’s fragments would be processed before the triangles that followed it.

much as we can, and maintain the screen location where we stopped rasterizing as the start

position for the next subbatch.

This algorithm is sound, but inefficient. In particular, with very large triangles, it loses

all data parallelism. Consider 8 identical triangles, each of which rasterizes into enough

fragments to take up slightly more than 1/8 of the allocated space. When these triangles are

rasterized, none of them will finish, and we will only be able to send the portion of the first

triangle which we have rasterized to the next stage. The (identical amount of) work done

on the other seven triangles will be discarded.

Geometry prepass

Another option is a prepass: the geometry is first streamed through the clusters, which

calculate triangle areas and dynamically stripmine the geometry into batches. After all the
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batches have been calculated, the renderer is then run on the batches.

This method has two main advantages: it does not depend on any profile information,

and it can size the batches to fill the entire SRF with intermediate results, giving the greatest

efficiency.

Unfortunately, it also has two major disadvantages. The first is that the geometry must

be sent through the system twice instead of once. Host-to-graphics bandwidth is the bot-

tleneck in many applications, and in sending the geometry twice, we violate our design

goal of matching the input-output bandwidth requirements of modern commercial graphics

chips.

The second disadvantage is the computation requirement. To calculate triangle areas is

relatively straightforward, involving two matrix multiplications to transform each vertex,

triangle assembly, and the area computation. However, the area is not sufficient to calculate

the number of fragments generated. Pathological cases such as long, thin triangles located

on a scanline will foil area calculations. To acquire an accurate fragment count requires

actually rasterizing the triangle, which significantly increases the amount of computation

required.

Spilling

A third algorithm involves rasterizing the common case with all intermediate results in

the SRF, but providing for spilling to memory for the uncommon case where too many

fragments are produced. Even though the runtime cost of each spilled batch is large, spilled

batches would be infrequent, and the overall runtime would not increase by very much. In

fact, by allowing the largest batches to spill instead of sizing the batches to accommodate

the largest batch size, we can increase the amount of work per batch and gain an overall

runtime benefit from longer streams.

We have a couple of options for how to spill:

Partial double buffering In partial double buffering, a stream is allocated for a certain

length. If that length is exceeded, the stream automatically spills to memory. When

used, the stream would automatically be loaded on demand from memory. Given
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sufficient support from hardware, this spilling could be made transparent to the pro-

grammer.

In the rasterizer, the fragment streams would be declared as partial double buffered

and sized for the common case. The batches with oversized fragment counts would

then automatically be spilled to memory if necessary.

Rasterization restart A less aggressive method is rasterization restart, which requires less

hardware support. In it, the rasterization kernel would keep track of the number of

generated fragments. If this number was less than the allocated number, the rest of

the pipeline would proceed normally. But if the number was reached or exceeded, a

different stream program would be executed, one which always spilled all intermedi-

ate streams to memory. This program would restart the rasterization work from the

beginning.

We have now described a rendering pipeline that begins with a geometric description

and ends with an image. In the next section, we describe and analyze the performance of

this pipeline.



Chapter 5

Results and Analysis

In this chapter we analyze the performance of our implementation on the Imagine Stream

Processor. We begin by describing our test scenes and our experimental setup. We then

look at the results of running these scenes on a cycle-accurate simulator: frames per sec-

ond, primitives per second, memory hierarchy performance, cluster occupancy, and kernel

breakdown.

Next we discuss some aspects of our implementation that impact its performance: batch

size, short stream effects, SIMD efficiency, fill and vertex rates, and our rasterizer choice.

Finally, we characterize the kernels by performance limit and scalability and compare the

theoretical bandwidth requirements against the achieved performance of our implementa-

tion.

5.1 Experimental Setup

For the results in this chapter we used two different simulators. The first simulator, the

cycle-accurate simulator called isim, models the complete Imagine architecture, including

computation, stream and kernel level control, and memory traffic and control, with cycle

accuracy and has been validated against our RTL models and circuit studies. The second

simulator is a functional simulator called idebug that is integrated into our development

environment. It gives accurate results of kernel runtime but does not take into account

kernel stalls, memory time, or contention between Imagine’s resources. Unless otherwise

51
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noted, the cycle-accurate simulator isim is used for all results; it models a 500 MHz

Imagine stream processor with external SDRAM clocked at 167 MHz.

Both simulators are configurable via a machine description file that specifies the com-

ponents of the processor and the delays in computation and communication between its

constituent parts. These delays have been validated against Imagine’s RTL description and

simulations of its physical implementation.

At the beginning of each simulation, all input data streams (the list of vertices, the input

to the perbegin kernel, the texture maps, and the color and depth buffers) were located in

Imagine’s main (off-chip) memory, and at the end, the complete output image was also in

Imagine’s main memory.

5.1.1 Test Scenes

To facilitate comparison between scenes, each of these scenes was rendered into a 24-bit

RGB color framebuffer with a window size of 720 × 720 pixels.

Scene 1: Sphere Our first scene is a Gouraud-shaded rendering of a finely subdivided

sphere, specified as separate triangles and lit with three positional lights with diffuse and

specular lighting components.

Scene 2: Advs-1 The ADVS dataset is the first frame of the SPECviewperf 6.1.1 Ad-

vanced Visualizer benchmark with lighting and blending disabled and all textures point-

sampled from a 512 × 512 texture map.

Scene 3: Advs-8 ADVS-8 is identical to ADVS-1, except all texture lookups are mip-

mapped with 8 samples per fragment.

Scene 4: Pin The bowling pin shader (from the UNC Textbook Strike dataset) has 5

fragment textures applied to it as well as a procedurally specified light with diffuse and

specular components. Each texture is sampled once per fragment. The pin geometry is a

pretessellated NURBS, diced to 200 by 200.
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Scene 5: Pin-8 PIN-8 is identical to PIN, except all five texture lookups are mipmapped

with 8 samples per fragment.

Scene 6: Marble This test uses the same geometry as PIN but uses procedural turbu-

lence involving 4 noise calculations per fragment to generate its appearance. The fragment

program applies over 1200 operations to each fragment. The shader’s noise function is

described in Section 4.4.4; the shader itself uses no texture maps and is courtesy of David

Ebert.

Scene 7: Verona VERONA perturbs the positions and normals of each vertex of a 200

× 200 tessellated sphere using a single combined per-vertex displacement/bump map tex-

ture lookup. It displaces the position along the normal, then perturbs the normal in tangent

space in directions parallel to the surface tangent and binormal vectors. It then performs

a per-fragment bump map lookup to perturb a per-fragment normal given interpolated bi-

normal and tangent vectors. The perturbed normal is used to compute a reflection vector

which is used to index into an environment map. This “environment-mapped-bump-map”

calculation involves a dependent texture read.

5.2 Results

5.2.1 Performance and Occupancy

We begin by looking at the performance in frames per second of our test scenes. Figure 5.1

shows the results for our scenes. All scenes run well above the 10 frames per second

traditionally considered the lower limit for interactivity and our fastest scene, ADVS-1,

runs at over 150 frames per second.
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SPHERE ADVS-1 ADVS-8 PIN PIN-8 MARBLE VERONA

Vertices 245,760 62,576 62,576 80,000 80,000 80,000 80,000
Triangles 81,920 25,704 25,704 80,000 80,000 80,000 80,000

Fragments 180,909 70,384 70,384 91,591 91,591 91,594 266,810
Frags/tri 4.4 5.5 5.5 2.3 2.3 2.3 6.7

Interpolants 5 4 4 16 16 13 20
Per-V BWa 32 28 28 44 44 32 84
Per-F BWb 12 16 44 32 172 12 28

Textures — 1 F 1 F 5 F 5 F — 1 V, 2 F
Batch size 480 288 48 120 32 112 40

FPS 39.76 150.33 62.88 54.82 23.38 45.64 21.41
Mem BWc 399 424 301 354 451 167 304

aPer-vertex memory traffic (bytes).
bPer-fragment memory traffic (bytes): texture accesses, depth buffer reads and writes, and color buffer

reads and writes.
cTotal memory traffic required to sustain peak Imagine performance (MB/s).

Table 5.1: Scene Characteristics.

Next we compare the performance of a subset of these scenes1 to representative hard-

ware and software graphics implementations.

Two configurations represent typical configurations of the year 2002: the hardware

implementation is a NVIDIA Quadro4 700XGL running on a 930 MHz Pentium 3 pro-

cessor with 512 MB of Rambus RDRAM under Microsoft Windows 2000 Professional

version 5.0.2195. The software implementation is the same system running with no hard-

ware acceleration, using the software NVIDIA drivers. The NVIDIA drivers are version

6.13.10.2942 and the Microsoft opengl32.dll version is 5.0.2195.4709.

1Comparing MARBLE to OpenGL implementations is impossible because of the requirement for floating-
point computation in the fragment states; comparing VERONA is also impossible because of VERONA’s
vertex textures. Neither of these features is supported in contemporary hardware OpenGL implementations,
though floating-point computation at the fragment level is imminent; even then, however, the large number
of operations (1200) on each fragment may make an efficient hardware implementation at least a hardware
generation away.
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Figure 5.1: Test Scenes: Frames per Second. All data was acquired using the cycle-accurate
simulator for an Imagine stream processor running at 500 MHz.

The two other configurations are typical configurations of the year 2000. The hardware-

accelerated system for 2000 is a 450 MHz Intel Pentium III Xeon workstation with 128 MB

of RAM running Microsoft Windows NT 4.0. Its graphics system is an NVIDIA Quadro

with DDR SDRAM on an AGP4X bus running NVIDIA’s build 363 of their OpenGL 1.15

driver. The software-only system is the same machine and graphics hardware with OpenGL

hardware acceleration disabled, using Microsoft’s opengl32.dll, GL version 1.1. Data from

the year 2000 configurations is taken from our previous work [Owens et al., 2000] and does

not reflect the PIN scenes.

We measured the performance on these scenes by implementing them in OpenGL. On

the PC systems, we ran these from immediate-mode arrays of vertices in system memory



CHAPTER 5. RESULTS AND ANALYSIS 56

(ADVS and SPHERE) or through Kekoa Proudfoot’s lightweight RTSL scene viewer, using

GL vertex arrays (PIN), to remove as many effects of application time on frame rate as pos-

sible. We eliminated startup costs by allowing the system to warm up (in particular, to load

textures into texture memory) and then averaging frame times over hundreds of frames.

Refresh synchronization costs were eliminated by disabling the vertical retrace sync, al-

lowing a new frame to begin immediately after the old frame completed. All windows

were single-buffered and neither flushes nor buffer clears were used. The ADVS scenes,

because they appeared to be limited by host effects, were also run separately with display

lists.

With this setup, we accurately model Imagine’s chip and memory performance but not

its performance in a complete system. A comparison against a commercial system in imme-

diate mode, then, is biased in favor of Imagine, because real systems have other bottlenecks

that are not present in the Imagine simulation. In particular, the interaction between the host

processor and the graphics subsystem is not modeled, and many hardware-accelerated sys-

tems are limited by the bus between the processor and the graphics subsystem. On the

scenes tested, we expect the bus communication overhead to be small, but more complex

scenes may have a greater cost associated with this communication. Running scenes on

the commercial systems with display lists eliminates many of the host effects because the

software drivers can more efficiently feed data to the graphics processor. Using display

lists in this manner would allow the fairest comparison between Imagine and the commer-

cial systems. However, display lists also perform compile-time optimizations on the data

stream that are unavailable to immediate-mode renderers or to Imagine. Thus running with

display lists biases the comparison in favor of the commercial systems, but does provide an

upper bound on commercial system performance.

Figure 5.2 shows the results of running this subset of our scenes against these soft-

ware and hardware commercial implementations. Broadly, Imagine is significantly faster

than software implementations (over an order of magnitude than the 2000 implementation

and on average, several times faster than the 2002 configuration). Imagine’s performance

is roughly comparable to the 2000 NVIDIA Quadro, a graphics processor with a similar

transistor count but lower clock speed (135 MHz) than Imagine. And NVIDIA’s latest pro-

cessor, the Quadro4 700XGL (with three times the number of transistors and a 275 MHz
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Figure 5.2: Test Scenes: Comparison Against Commercial Systems. Imagine is compared
against representative commercial software and hardware implementations of the years
2000 and 2002. The ADVS scene was also measured with display lists (marked DL) for
both 2002 commercial configurations.

internal clock), runs at worst 3 times slower than Imagine and at best more than 6 times

faster, with a geometric mean of 23.9% faster. The two display list tests (on the ADVS

scenes) run on average 139% faster. The reasons for the performance differences with to-

day’s special-purpose hardware are discussed more fully in the following sections of this

dissertation, particularly in Section 7.1.

Because the different scenes have different primitive counts and amounts of work per

primitive, it is difficult to draw many conclusions from only frames-per-second numbers.

However, these numbers do allow comparisons between scenes with identical (or similar)

input datasets. We can see that adding mipmapping to the ADVS-1 scene, resulting in
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Figure 5.3: Test Scenes: Primitives per Second. Bars show each scene’s delivered vertex-
per-second (green) and fragment-per-second (blue) rates.

ADVS-8, more than halved the runtime. And we can see that on the pin dataset, the complex

noise calculation in MARBLE is slightly more expensive than the 5 point-sampled texture

lookups in PIN, but less than half the cost of mipmapping each of those 5 texture lookups

in PIN-8.

Another measure of system performance is the achieved vertex and fragment rates of

the system, shown in Figure 5.3. Comparing the vertex and fragment rate for any given

scene just gives the ratio of vertices to fragments for that scene. More interesting is looking

at a specific rate across multiple scenes, which allows a comparison between the amount of

work per primitive across those scenes. However, this may be somewhat misleading if one

primitive has a disproportionate amount of work. A large amount of work in one primitive
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Figure 5.4: Test Scenes: Memory Hierarchy Bandwidth. Bars indicate the memory band-
width measured for scenes at all three levels of the memory hierarchy. Red indicates main
memory bandwidth, green SRF bandwidth, and blue cluster register file bandwidth.

(such as vertices) will push down the rate for the other primitive (fragments) because the

large amount of time spent processing vertices will leave less time for fragments2.

We achieve over 1.7 million vertices per second and over 2.1 million fragments per

second on every scene, with a peak rate for vertex rate on SPHERE (9.8 million vertices

per second) and for fragment rate on ADVS-1 (10.6 million fragments per second). Sec-

tion 5.2.5 describes a series of RATE benchmarks that feature peaks of 13.9 million vertices

per second and 20.4 million fragments per second.

Chapter 3 argued that a memory bandwidth hierarchy is a cornerstone of the efficiency

2In our scenes, for example, SPHERE spends most of its time doing vertex calculations, and MARBLE’s
runtime is dominated by fragment work. See Figure 5.6.
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Figure 5.5: Test Scenes: Cluster Occupancy. Each scene’s cluster occupancy is measured in
two ways, one including cluster stalls as active (green), one excluding cluster stalls (blue).

of stream architectures. Figure 5.4 shows the bandwidths at each level of the hierarchy on

Imagine. We see that each level of the memory hierarchy delivers an order of magnitude

more bandwidth than the level below it. The bandwidths for each level across all scenes

are relatively uniform, although textured scenes exhibit a higher memory bandwidth than

non-textured ones, and the heavy per-vertex work in SPHERE and per-fragment work in

MARBLE push down their main memory demands.

As we will see in Section 5.4, our scenes are computation bound rather than memory

bound. For efficiency, then, we would like to keep the clusters as busy as possible. Fig-

ure 5.5 shows the cluster occupancy for each of our scenes. Here, occupancy refers to the

percentage of the runtime in which the clusters are busy. Our measured occupancies range
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from 65% (72% counting cluster stalls as busy) to above 90%.

Ideally, the clusters would be busy 100% of the time. For several reasons, our achieved

occupancy is below this ideal figure.

First, the pipeline involves a number of memory transfers. Kernels cannot begin before

those transfers are complete. When run straight through, the pipeline is serialized, with the

clusters completely idle from the beginning of each memory operation to the end.

We remedy this by software-pipelining the stream program (described in Section 3.3.2).

We run two iterations of the loop at the same time, scheduled such that kernel execution for

one iteration overlaps memory traffic for the other iteration. Software pipelining is vital to

achieving high occupancies on this and other stream applications. All results presented in

this work are software-pipelined at the stream level.

However, software pipelining is not perfect. It is difficult to perfectly match memory

traffic in one iteration to kernels in the other. Making the job much more difficult is the

widely varying amounts of work per iteration. The generated software pipeline is static

and while it may be the best static pipeline for all iterations considered in total, for specific

iterations it may be a poor match. And when it matches a particular iteration poorly, the

cluster occupancy suffers3.

Several other reasons contribute to a non-ideal occupancy. A minimum kernel execution

time (described further in Section 5.2.3) leaves the clusters idle after running very short

kernels. Conditionals in the stream program take time to evaluate on the host while the

clusters wait. Conflicts in stream allocation in the SRF between the two active iterations

also sometimes force kernels to wait for their allocated output SRF space to become free (as

a result of a memory write, for instance) even though their inputs are all ready. The stream

scheduler optimizes for long streams at the expense of these conflicts, which is generally a

win for performance overall but a loss in occupancy.
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Figure 5.6: Each of the test scenes has its output normalized to 100%, and the respective
contributions of each kernel to each scene are displayed as a subset of the 100%. Kernels
shaded blue are in the geometry stage, red in rasterization, and green in composition. The
perbegin contribution is negligible.
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5.2.2 Kernel Breakdown

Figure 5.6 breaks down kernel usage for each of our scenes. In it we can see significant

variance in proportional runtime for many of the kernels.

In our scenes, in general, rasterization is the largest contributor to total runtime. Of

the rasterization kernels, xyrast is the most costly, especially for scenes with a modest

number of interpolants. The work done in the fragment program varies greatly across the

kernels. Of note is the noise kernel in MARBLE, a part of the fragment program, which

accounts for the most runtime in that entire scene.

Composition imposes relatively modest costs, with the lion’s share in hash, which

must traverse the entire fragment stream twice. The sort cost across all scenes is quite

small, and the compact and zbuffer kernels also have a small runtime.

The amount of work in the geometry kernels widely varies across scenes. The vertex

program is generally small, except for SPHERE, which has a large amount of per-vertex

lighting calculations that account for over half the overall runtime. The cost of primitive

assembly/clip averages 9% of the runtime over all scenes, with viewport/cull about 6%.

5.2.3 Batch Size Effects

For maximum efficiency, we would like to store all intermediate data produced and con-

sumed by the pipeline on-chip. By capturing this producer-consumer locality on-chip, this

intermediate data uses the high bandwidth of the SRF-to-cluster connection rather than the

lower bandwidth of external memory.

The entire stream of vertex inputs to the pipeline is much too large to ever fit in on-chip

storage. So to keep all intermediate data local and to take advantage of our producer-

consumer locality, as described in Section 4.2, the vertex stream is stripmined and pro-

cessed in batches. This section explores how those batches should be sized for maximum

performance. As we will see, the batch size yielding maximum performance is the maxi-

mum size before intermediate streams overflow the SRF and spill to main memory.

3Scenes with a large variance in work per primitive will suffer the highest losses in occupancy. The ADVS
dataset has the most variance of all our scene input data, and ADVS-8’s small batch size causes the variance
over all batches to be greatest for that scene. Figure 5.5 shows that ADVS-8 has the lowest occupancy for all
our scenes.
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We take a closer look at two representative scenes, ADVS-1 and VERONA. We ran each

scene through the functional simulator and the cycle-accurate simulator over a range of

batch sizes.

ADVS-1 has a small amount of information per vertex and fragment and does a small

amount of computation on each vertex and fragment. VERONA is the opposite: vertices and

fragments are large, and have a large amount of computation performed on them. ADVS-1

can be stripmined without spilling to 288 vertices per batch; VERONA, to 40 vertices per

batch.

Figure 5.7 shows the runtime and occupancy of each of these scenes as a function of the

batch size in vertices. Despite differing in computation requirements, they exhibit similar

behavior with respect to batch size. With small batch sizes, performance is considerably

poorer than at large batch sizes with no spilling. In addition, increases in performance are

more significant at smaller batch sizes than at large ones.

This behavior is common across a wide range of stream applications, including the two

scenes we show here. We can fit a model to the (unspilled) runtime data as a function of

batch size (the red dotted line in Figure 5.7). The model is quite simple: if r is runtime and

b is batch size,

r = c∞ + cb/b, (5.1)

where c∞ and cb are constants.

This model matches the measured data well; it is derived later in this section after our

discussion of short stream effects. The coefficient c∞ is of particular interest as it reflects

the performance asymptote as the batch size appoaches infinity. This asymptote indicates

the theoretical performance achievable when short stream effects disappear.

The results of the model are summarized in Table 5.2. This table provides the values of

c∞ and cb for our two scenes of interest as well as the best achieved value (for comparison

to c∞) and b1/2 (the “50% Batch Size”), which reflects the batch size at which performance

is half of the asymptote c∞. b1/2 is equal to cb/c∞.

Ideally, our achieved performance would be close to the asymptote. Our ADVS-1

achieved runtime is 28% larger than the asymptote, and VERONA’s is 49% larger. Both

scenes achieve considerably better performance than the performance at b1/2. This value
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Figure 5.7: Runtime and Occupancy vs. Batch Size for ADVS-1 and VERONA. The runtime
(upper) graphs indicate measured runtime as a function of batch size (blue, solid points)
and the runtime model fitted to those points (red, dotted line). The dashed grey line reflects
the theoretical best performance with an infinite SRF (c∞ from Equation 5.1). The maxi-
mum batch size that fits in Imagine’s SRF without spilling for ADVS-1 is 288 vertices; for
VERONA, 40. Batch sizes that require spilling intermediate streams to memory are indi-
cated in the runtime graphs. In the occupancy (lower) graphs, the upper line indicates the
percentage of time in which the clusters are executing kernels including stalls; the lower
line presents the same information but excludes stalls.



CHAPTER 5. RESULTS AND ANALYSIS 66

c∞ cb Best Achieved b1/2

ADVS-1 2.63M 232M 3.36M 88
VERONA 15.7M 283M 23.4M 18

Table 5.2: Runtime vs. Batch Size Model. The runtime model used here is r = c∞ + cb/b,
where r is runtime and b is batch size. c∞ indicates the theoretical performance asymptote
as batch size approaches infinity; “best achieved” indicates the best performance measured
(at the spilling point). b1/2, or the “50% Batch Size,” is the batch size at which performance
is half of the asymptote c∞.

indicates the relative amount of computation per primitive; a small b1/2 means the amount

of computation is relatively large per primitive, which mitigates the effects of small batch

sizes. For example, because VERONA has more computation per primitive (and a smaller

b1/2) than ADVS-1, its “short-stream effects” are less pronounced. These short-stream ef-

fects are the key to understanding the loss of performance at small batch sizes and are

described below.

Spilling imposes a significant and sudden penalty on runtime for two reasons. First,

spilling intermediate streams contributes nothing to the computation and uses the low-

bandwidth SRF-to-memory path, which is slow. Second, because of the increased load

on the memory system and the resulting increase in memory system occupancy, the clus-

ters must wait for more memory references, making the stream scheduler’s efforts to keep

the clusters busy much more difficult. Thus the cluster occupancy drops and the runtime

increases. The bottom graphs in Figure 5.7 show the dramatic drop in cluster occupancy

due to spilling.

Short Stream Effects

Imagine is optimized to operate on long streams of data. When input streams to kernels are

short, we see a degradation of performance for many reasons. These short-stream effects

are characteristic of both Imagine-style stream architectures as well as vector architectures.

Short-stream effects degrade performance in several ways:

Kernel dispatch Imagine kernels require 200–500 cluster cycles in the host processor to

dispatch on Imagine. This length of time is termed the “minimum kernel duration.”
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If a kernel runs for at least 500 cycles, its successor kernel can issue right away. But

if the kernel takes shorter than the minimum kernel duration, its successor still must

wait for the host to finish issuing it.

Prologue and epilogue blocksMost kernels involve a main loop that iterates over all ele-

ments of the input stream. The length of time spent in this loop scales with the length

of the stream.

However, in most kernels, per-kernel code is placed in basic blocks before and after

the main loop. This code sets up constants, initializes variables, flushes conditional

stream outputs, and so on. These blocks are run once per kernel call. If the main loop

is only run a small number of times, these prologue and epilogue blocks can account

for a significant proportion of the kernel runtime.

SWP prime and drain For efficiency, most kernel main loops are software pipelined. Us-

ing software-pipelined loops has the advantage of increasing functional unit usage

and shortening the effective critical path. However, their cost is the time used to

prime and drain the software pipeline. If a loop has software pipeline depth of d,

running the loop on a c-cluster machine over c ∗ n data elements results in n + d

iterations of the loop.

The software pipeline depth for a typical rendering kernel is 2–4 levels. So if a loop

with SWP depth of 3 is run on 800 elements on an 8-cluster Imagine, the cost of the

SWP setup and teardown is only 2 extra iterations with a total of 2% overhead. But

if it’s run on a 32-element loop, the 2 extra iterations are a 50% overhead.

Stream pipeline difficulties Kernels operating on short streams are more difficult to pipe-

line at the stream level than kernels operating on long streams. Software pipelining

at the stream level is most useful in covering the latency of a memory operation in

part of the pipeline with a kernel call in another part of the pipeline. Kernels which

run for a short duration do a poorer job in covering this latency.

Cluster stalls When a kernel is issued in the Imagine hardware, there is a delay between

issuing the kernel to the point at which data is ready for reading from the stream

buffers. This cost is a fixed once-per-kernel cost and is amortized across all stream
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elements processed in the kernel. Thus short streams have a larger per-element stall

cost than long streams.

Analysis Clearly, smaller batch sizes take longer to run. Why? The occupancy graphs

in Figure 5.7 explain part of the reason. They show cluster occupancy as a function of

batch size, measured by cycle-accurate simulation. They measure cluster occupancy in two

different ways.

The upper lines in the occupancy graphs of Figure 5.7 indicate in what fraction of the

runtime the clusters are executing kernels. Software pipelining at the stream level is used

primarily to increase this cluster occupancy; note that the smaller the batches (and thus

the shorter the streams), the poorer the software-pipelined stream code is able to keep the

clusters busy. The minimum kernel duration penalty would also influence this occupancy

metric.

The lower lines also show occupancy but do not count the clusters as occupied if they

are running a kernel but are stalled. The cost of the stall is the gap between the two lines in

the occupancy graphs in Figure 5.7. Like cluster idle time, the cost of stalls also increases

as batches become smaller.

So we see that cluster occupancy suffers from the effects of short streams4. But occu-

pancy is only half the story. The other important effect is within the kernels themselves:

the cost of prologue and epilogue blocks and the software-pipelined prime and drain time

in the main loops.

Figure 5.8 demonstrates the performance penalty for kernels due to short-stream ef-

fects over a range of batch sizes. It measures the percentage of kernel execution time

(ignoring stalls) devoted to priming and draining software-pipelined loops and to prologue

and epilogue (non-loop) blocks. These costs are noticeable for even long streams (7% for

ADVS-1 at its 288-vertex spilling point, 14% for VERONA at its 40-vertex spilling point)

but are crippling for short streams (totaling over half the kernel runtime for VERONA with

8-vertex batches and over 60% for ADVS-1 with 8-vertex batches).

Note that even though the runtime dramatically increases once batches begin to spill

4The marked decrease in cluster occupancy after 288-vertex batches for ADVS-1 and after 40-vertex
batches for VERONA is due to spilling and is described earlier in this section. Here we are concerned with
the short-stream behavior and consider batch sizes that do not spill.
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Figure 5.8: Loop Overhead Costs vs. Batch Size for ADVS-1 and VERONA. The lines
indicate the percentage of kernel runtime (ignoring stalls) that do not contribute to main-
loop computation. The upper line (“total”) is the sum of costs due to SWP prime and drain
for main loops (the middle line) and prologue and epilogue blocks bracketing the main
loops (the lower line).

their intermediate values, short-stream effects are not affected by the spilling and continue

to diminish as batches become larger. Figures 5.7 and 5.8 clearly show this behavior.

Derivation of our model Recall that we fit our batch size vs. runtime model as Equa-

tion 5.1. We now derive this relationship from the following assumptions:

• The kernel runtime of kernel j can be modeled as

rkj = c1j + c2j�j, (5.2)

where c1j and c2j are constants, and �j is the number of loop iterations required to run

kernel j to completion. The constant term c1j for kernel j is the sum of the prologue

and epilogue blocks and the setup and teardown of the software pipelined loop. These

factors do not change with loop size. The rest of the runtime is proportional to the

number of times the loop is executed.
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• The number of loop iterations run in kernel j, �j , is proportional to the batch size5:

�j = c3jb. (5.3)

This relation is generally true of stream computation and is certainly true of our

graphics kernels: having twice as many vertices in a batch means the vertex program

must loop twice as many times to process them all. And the size of our intermediate

data is proportional to the size of the input data—twice as many vertices implies

twice as many fragments.

• Finally, the number of batches i necessary to complete the entire scene is inversely

proportional to the batch size b:

i = c4/b. (5.4)

Since the input data is simply divided evenly among the batches, this assumption is

also valid. And the total runtime is the runtime for each batch times the number of

batches:

r = rki. (5.5)

Substituting for rk (with Equation 5.2), �j (with Equation 5.3), and i (with Equation 5.4)

gives the following translation of Equation 5.5:

r = (c1j + c2j(c3jb))(c4/b)

= c2jc3jc4 + c1jc4/b

= c∞ + cb/b. (5.6)

Extending this analysis to multiple kernels is straightforward:

rk =
∑

j

rkj =
∑

j

(c1j + c2j�j)

=
∑

j

(c1j + c2jc3jb)

5This relation between batch size and loop count does not include SWP setup and teardown; that factor is
already accounted for in Equation 5.2 in the c1j term.
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=
∑

j

c1j +
∑

j

(c2jc3jb)

= c1 + b
∑

j

(c2jc3j)

= c1 + bc23 (5.7)

r = rki = (c1 + bc23)(c4/b)

= (c23c4) + (c1c4/b)

= c∞ + cb/b, (5.8)

which is identical to Equation 5.6.

Discussion We have seen that the performance of our scenes is influenced heavily by

the size of the stripmined batches used in their computation. Smaller batches suffer more

heavily from short-stream effects. In particular we should strive to make our batch size

larger than the 50% batch size, b1/2, as batches sized below b1/2 have particularly poor

performance.

The simplest way to reduce short-stream effects is to have longer streams. Long streams

amortize the cost of dispatching the kernel, the cost of non-loop basic blocks preceding and

following the main loop across all of the elements in the stream, and the stall cost incurred

between starting the kernel and the arrival of the kernel’s data. In addition, if the main loop

is software pipelined, long streams mitigate the per-element cost of the setup and teardown

of the loop.

An alternative to having longer streams is to have more computation per stream ele-

ment. Spending more time doing useful computation in the main loop reduces the pro-

portional amount of time spent in overhead like setup/teardown loops and kernel dispatch.

Combining multiple small kernels into one large kernel is a performance win for the same

reasons.

In hardware, the size of the stream register file is the most important factor in having

longer streams. (Also, the cost of the minimum kernel duration could be greatly reduced

by having the host on the same chip as the stream processor.) In software, longer streams

are enabled by good allocation by the stream scheduler.
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The programmer can help reduce short-stream effects by making the prologue and epi-

logue blocks as short as possible and by reducing the software pipeline depth as much

as possible without sacrificing loop length. Depending on the application and its stream

lengths, it may be preferable to slightly elongate the loop length if such a change reduces

the software pipeline depth.

5.2.4 SIMD Efficiency

One of the major goals of our renderer was to design and implement algorithms that are

scalable to multiple SIMD-controlled clusters. In this section we look at the SIMD effi-

ciency of our algorithms: in moving from a scalar (1-cluster) to a n-way (n-cluster) SIMD-

parallel machine, we hope to achieve a speedup close to n. Chapter 6 explores the impact

of increasing the number of clusters.

Much of the pipeline will scale perfectly with the number of clusters: the vertex and

fragment programs, for instance, are purely SIMD-parallel. Many other kernels also scale

well with the number of clusters. But moving to a SIMD-parallel model imposes several

requirements on our algorithms that will hurt their efficiency:

• Primitive assembly is much simpler on a scalar machine. In a SIMD-parallel im-

plementation, assembly requires communication of whole vertices between clusters,

because the meshed vertices making up a triangle are processed on separate clus-

ters. A scalar machine processes all vertices on the same cluster and requires no

communication.

• Hash, sort, and merge are also considerably simpler in the 1-cluster implementa-

tion. With the 8-cluster version, these kernels must perform considerable amounts of

communication between clusters because these algorithms are not data-parallel. The

1-cluster versions are more efficient because all of their data is local to the cluster

without any communication necessary.

• Several kernels (particularly the interpolant rasterization kernel, irast) are bound

by conditional stream bandwidth. Imagine implements conditional streams by us-

ing the low-bandwidth intercluster communication units. When using conditional
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streams, scalar implementations do not have to use this low-bandwidth path, because

all stream elements must pass through the single cluster and no communication is

needed.

• Even identical kernels will not achieve perfect speedup because the input streams to

the scalar machine have eight times as many iterations and consequently suffer from

fewer short-stream effects.

Due to these differences, as we move from one to many clusters, we should not expect

a linear speedup but instead a more modest speedup.6

In our tests, we make comparisons between two runs of the ADVS-1 scene. First,

we look at kernel statistics for this scene on the cycle-accurate simulator for the 8-cluster

Imagine at its maximum batch size. The second run is the same scene with the same

batch and SRF sizes on a 1-cluster Imagine. Comparing these two runs allows us to look

specifically at how each kernel’s runtime changes when moving from 1 cluster to multiple

clusters.

Figure 5.9 shows our speedup for each kernel (in green) and each stage (in blue) when

moving from the 1-cluster implementation to the 8-cluster implementation. The overall

kernel speedup is 5.3, with the geometry stage at 5.1, rasterization at 5.8, and composition

at 4.2.

One major cause of the non-ideal speedup is the greater efficiency of the hash, sort,

and merge kernels in the scalar implementation. These three kernels account for 14.7%

of kernel runtime in the 8-cluster version but only 10.5% in the 1-cluster version. As

they account for the greatest share of the composition stage’s runtime, composition has the

smallest speedup of the three stages.

The other kernels with the poorest speedup were assemble clip and irast. Both

of these kernels are limited by their conditional stream bandwidth in a multi-cluster Imag-

ine, but can take advantage of the 4-times greater unconditional stream bandwidth in the

1-cluster version.

Overall, a kernel speedup of 5.3 for an 8-cluster machine is quite acceptable. We would

6One effect we do not model, a small one, is input batch padding (1-cluster machines do not need their
inputs padded to 8-cluster boundaries; we use the same padded inputs for all runs).
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Figure 5.9: SIMD Speedup for ADVS-1. Kernel speedups are in green, stage speedups in
blue. The overall kernel speedup from moving from 1 cluster to 8 clusters is 5.3 for kernel
runtime only and 4.6 for the entire application. The largest reasons for a non-ideal speedup
are the lower SRF-to-cluster bandwidth of conditional streams in a 8-cluster machine and
the loss of efficiency in hash/sort/merge in moving to a parallel implementation.

expect that if cluster count was to continue to increase that we would achieve similar in-

creases in speedup. With large cluster counts, this speedup would eventually be limited by

short stream effects (described in Section 5.2.3) as the streams are divided among more and

more clusters. To continue to achieve larger speedups as the cluster count increases, then,

requires that the streams grow at the same rate, which could be achieved by growing the

stream register file size at the same rate as the number of clusters. Chapter 6 looks more

closely at the performance issues associated with stream architectures with a larger cluster

count.

5.2.5 Triangle Rate and Fill Rate

To first order, the total runtime of a scene is the sum of its per-vertex work (roughly the

geometry stages of the pipeline) and its per-fragment work (roughly the rasterization and

composition stages). Although the exact number of operations for per-vertex and per-

fragment work varies significantly with the lighting, shading, and texturing algorithms used

in the scene, they are comparable in magnitude: Hanrahan and Akeley cite figures of 246
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Figure 5.10: RATE Stage Runtime Breakdown. Each stage’s total runtime is normalized to
100%. The majority of time for all triangle sizes is spent in rasterization.

operations per vertex and 149 operations per fragment [Hanrahan and Akeley, 2001].

In rendering a scene, then, the division of time between per-vertex and per-fragment

work is dependent on the proportion between the number of vertices and the number of

fragments. This proportion can be expressed with the average triangle size of the triangles

in the scene. Scenes with a large average triangle size have a large number of fragments per

vertex and consequently spend most of their time doing fragment work. Scenes with small

triangles, on the other hand, spend correspondingly more time doing per-vertex work.

We would like to render scenes with both small and large triangles efficiently. To do

this, we will analyze Imagine’s performance on scenes with a range of average triangle

sizes. As these scenes are designed to measure Imagine’s vertex and fragment rates, they

are named RATE and are characterized by the base length of their constituent triangles. In

each of the measured scenes, we used long strips of identically-sized, unlit, depth-buffered,

Gouraud-shaded triangles. The triangles completely fill the 720 × 720 window with a

depth complexity of 1. The same kernels were used for all measurements (although a new

software-pipelined StreamC loop was computed for each different scene to ensure that it

ran as efficiently as possible).

Figure 5.10 shows the runtime breakdown between the three major stages of the pipeline

for the RATE scenes: geometry (roughly, per-vertex work), rasterization, and composite

(both per-fragment).
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Figure 5.11: Primitives per Second vs. Triangle Size. The left graph shows the fragment
and vertex rates as a function of triangle size. The right graph normalizes the peak rates to
100% and plots percentage of peak rates against triangle size.

Performance Effects

The most important component of performance is the sum of the vertex work and the frag-

ment work. The fragment work was identical for all scenes, but the vertex work varies with

the size of the triangles. Beginning at scenes with huge triangles and moving to smaller

ones, we would expect to see frame rendering time gradually increase as triangles became

smaller (corresponding to an increasing cost in per-vertex work), finally increasing sharply

as per-vertex work arrives on par with then overtakes per-fragment work.

Indeed, this is what happens. Figure 5.11 shows the details. Our peak fragment rate

on RATE is about 20 million fragments per second, and our peak vertex rate is about 14

million vertices per second. One common measure of a graphics system is the triangle

size for which it is “balanced,” where the fragment rate and the vertex rate make equal

contributions to runtime. For our implementation, this point is between 1 and 2 pixel

triangles.

All RATE scenes have an identical amount of per-fragment work but a different amount

of per-triangle work. Making triangles larger, then, decreases the per-triangle work and

increase the overall performance. Figure 5.12 plots frame rate against triangle size.
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Figure 5.12: Frames per Second vs. Triangle Size. Enlarging triangles past 5 pixels per
triangle makes little difference in overall performance.

We also observe a number of second-order effects. The first is the effect of short

streams. As explained in Section 5.2.3, processing short streams incurs a loss of efficiency

because the fixed costs of running kernels are proportionally costlier with short streams

than long ones.

Short stream effects occur in both extremes of triangle sizes: both very small and very

large. With small triangles, the data streams associated with the fragment part of the pipe-

line are short. (This effect is largely hidden by the increasing cost of vertex work, however.)

With large triangles, the vertex streams are short, and so we see the largest triangles suffer

from some performance degradation when compared to those of medium size.

To achieve a maximum vertex rate, the triangles should be as small as possible; for a

maximum fragment rate, as large as possible. However, the combination of inefficiencies

with very small and very large average triangle sizes indicate that the ideal triangle size

for achieving maximum frame rates on Imagine would lie somewhere between these two

extremes. Fortunately, our implementation maintains a relatively constant frame rate over

all triangle sizes greater than about 5 pixels.

Figure 5.13 shows that our implementation’s sustained operations per second rate is

nearly constant across the entire range of RATE triangle sizes. This demonstrates that
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Figure 5.13: Ops per Cycle and Functional Unit Occupancy vs. Triangle Size. Across a
range of triangle sizes in the RATE benchmark, our implementation achieves a relatively
constant rate of between 28–32 operations per second across all clusters, 35–41% of Imag-
ine’s available operation issue slots. These rates translate to 14–16 billion raw operations
per second. Of those operations, between 5 and 6 billion are strictly arithmetic or logi-
cal operations (25-30% of Imagine’s peak of 20 billion 32-bit arithmetic/logical operations
per second); the remainder are communication, select, conditional stream, and scratchpad
operations.

Imagine’s clusters are kept equally busy during the wide range of triangle sizes in these

benchmarks. In other words, performance as measured by sustained operation throughput

is only barely affected by triangle size. Ultimately, we hope to maintain similarly high

operations-per-cycle rates for all scenes, whether or not those scenes achieve high frame

rates.

5.2.6 Scanline vs. Barycentric

Our rendering pipeline supports two different rasterizers, a scanline rasterizer (described

in Section 4.4.1) and a barycentric rasterizer (described in Section 4.4.2). What are the

performance effects of using these rasterizers?
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SRF Peak Space Requirements

Section 5.2.3 demonstrated that the best performance is achieved for a given task by mak-

ing batches as large as possible without spilling intermediate streams from the SRF. The

greatest use of SRF space is during rasterization, so in comparing scanline and barycentric

rasterizers one of our primary concerns is the amount of SRF space they require during

their execution.

To make the comparison, we compute the SRF space required per triangle at each step

during the pipeline of each of the two rasterizers. In doing so, we use a simple triangle

model. We specify f , the number of fragments per triangle. To derive the number of

scanlines for that triangle, we assume the triangle had a square bounding box, making

the number of scanlines in that triangle
√

2f . This figure is a conservative estimate for

scanlines (tall, thin triangles, for instance, would have many more scanlines), so using this

estimate likely underestimates the number of scanlines and favors the scanline rasterizer.

On the other hand, our Imagine implementation of the barycentric rasterizer produces

some invalid fragments7 (as described in Section 4.4.2). These invalid fragments are an

artifact of our implementation and are not inherent in the barycentric algorithm. Thus, in

our model, we do not account for these invalid fragments, which favors the barycentric

rasterizer. Both of these effects are second-order and should not significantly affect the

conclusions here.

Our triangle model assumes that each triangle always carries x, y, and homogeneous

coordinate w at each vertex. Most triangles carry additional per-vertex information, such

as depth, color, and texture; the number of these additional interpolants is parameterized in

our model by i. The triangle model does not consider the additional costs of mipmapping,

which requires more space in both rasterizers.

The SRF space required for each rasterizer is a function of the number of fragments per

triangle f , the number of interpolants i, and the number of scanlines s. Our triangle model

relates s to f , and we vary f and i in our experiments.

Figure 5.14 shows the peak SRF space required for both rasterizers over a variety of

triangle sizes and interpolant counts. We see that the barycentric rasterizer uses less space

7In our scenes with our current implementation, invalid fragments account for roughly 10–20% of all
fragments generated by xyrast.
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Figure 5.14: Per-Triangle SRF Space Requirements for Scanline and Barycentric Rasteriz-
ers. We compare space requirements for a variety of triangle sizes at 4 different interpolant
counts for both scanline and barycentric rasterizers. Scanline measurements are marked
with boxes and solid lines; barycentric, with circles and dashed lines. The inset graph
presents the same data on linear axes.

than the scanline rasterizer at all data points except one8. The gap between scanline and

barycentric grows with both triangle size and with the number of interpolants.

The peak in SRF demand for each rasterizer is not always in the same place in the

pipeline. Table 5.3 presents a simplified model for the peak demand, the condition under

which it occurs, and the place in the pipeline where it occurs.

For the scanline rasterizer, the pipeline location where the most SRF space is required

depends on triangle size. The usage due to small triangles peaks while the prepped triangle

and span streams are both still active. As triangles grow, they have more fragments per

triangle, so the point where span and generated fragment streams are active has the highest

8This point reflects a small number of interpolants (i = 4), and a large triangle (f = 128 fragments/triangle).
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Rasterizer Interpolants Triangle Size Location Bound
scanline — small during spangen (18 + 4i + (7 + 2i)s)t
scanline — large during spanrast ((7 + 2i)s + (2 + i)f)t

barycentric small — during baryprep (3i + 9 + 8f)t
barycentric large — during irast (3i + 5 + (2 + i)f)t

Table 5.3: Analytical Model for Peak SRF Usage for Barycentric and Scanline Rasterizers.
t indicates the number of triangles; i, the number of interpolants; s, the number of scanlines;
and f , the number of fragments.

demand for SRF space.

The pipeline location where the barycentric rasterizer’s SRF space requirements is

largest is dependent on the number of interpolants. When there are few interpolants, the

fixed costs of fragments are more significant, and the peak occurs during barycentric co-

ordinate preparation (the baryprep kernel). Barycentric rasterization with many inter-

polants, on the other hand, uses the most space during interpolant calculation (the irast

kernel).

Theoretical Op and Cycle Counts

In addition to space requirements, we can also create runtime models for the two rasterizers.

We derive these models from the loop lengths and op counts for the scheduled main loops

of the rasterizers’ kernels. Such a model ignores prologue and epilogue blocks, software-

pipeline setup and teardown, and cluster contention, but should provide a fairly accurate

estimate of runtime. Both rasterizers have no unrolling (one fragment per loop for the

barycentric rasterizer, one scanline per span loop and one fragment per fragment loop for

the scanline rasterizer).

Figure 5.15 shows the results of the models for the ADVS-1, SPHERE, and 9I 9 scenes.

In practice, the rasterizers’ performance is dependent only on the number of interpolants for

that scene, so the models for scenes with similar numbers of interpolants differ little. The

curves that fit these data are simple: a linear model for the barycentric rasterizer (c+g(i)f ,

where c is constant, f is the number of fragments per triangle and g(i) is a linear function in

9The 9I scene is MARBLE with several interpolants removed, leaving 9; its spanprep and spangen
failed register allocation during kernel scheduling but still could provide cycle and op data.
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Figure 5.15: Per-Triangle Theoretical Runtime and Op Counts for Scanline and Barycen-
tric Rasterizers. Scanline measurements are marked with boxes and solid lines; barycen-
tric, with circles and dashed lines. Lower lines have fewer cycles/ops. ADVS-1 has 4
interpolants, SPHERE has 5, and 9I has 9.
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the number of interpolants) and a linear-plus-square-root model for the scanline rasterizer

(h1(i) + h2(i)
√

f + h3(i)f , where hn(i) is a linear function in the number of interpolants).

This model offers several lessons:

• The barycentric rasterizer has a superior runtime for very small triangles (≤ 2–3

pixels) and the scanline rasterizer is better at larger triangles.

• We model the “cycle count” and the “op count” for each rasterizer. The cycle count

is the measure of how many Imagine cycles required by the rasterizer. The op count

is how many Imagine operations (per cluster) are required by the rasterizer.

The point at which both rasterizers have the same cycle count occurs at smaller trian-

gles than the point where both rasterizers have the same op count. This gap indicates

that the barycentric rasterizer does not achieve the same operations/cycle efficiency

as the scanline rasterizer. The barycentric rasterizer’s culprit is xyrast, whose 2

raw ops/cycle per cluster is far less than the 5–6 common in other kernels.

• Adding more interpolants pushes the break-even point toward larger triangles, which

indicates that the barycentric rasterizer will do comparatively better on scenes with

more interpolants than on scenes with fewer.

It would unquestionably be better to compare the models for several other real scenes

with more varied numbers of interpolants. Unfortunately, as described in Section 4.4.1,

the Imagine kernel scheduler scales poorly to larger numbers of interpolants, primarily

because of poor local register allocation. No other Imagine scenes with larger numbers

of interpolants than ADVS-1 or SPHERE are scheduleable using the kernel scheduler (and

ignoring register allocation [as in 9I] in our model offers increasingly dubious results as the

number of interpolants climbs). The barycentric kernels, on the other hand, only depend

on the number of interpolants in a single kernel, irast, which is easily decomposible

into multiple kernels10. For this practical reason, our overall scene performance data is

generated using the barycentric rasterizer.

10The irast kernel in PIN-8, for instance, would not schedule using the kernel scheduler, but was easily
separable into two irast kernels with negligible performance loss.
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Figure 5.16: Stage Breakdown for Scanline and Barycentric Rasterizers on ADVS-1 and
SPHERE. Total cycles are normalized to barycentric = 100%. The rasterization percent-
age only includes the kernels that are different between the two rasterizers; the fragment
program is separate.

Runtime Comparison

Finally, we ran the ADVS-1 and SPHERE scenes through the cycle-accurate Imagine simu-

lator with both scanline and barycentric rasterizers.

Figure 5.16 summarizes the breakdown of runtime for these two scenes. Because the

average triangle size for these scenes is larger than the breakeven point for the scene’s

number of interpolants, we would expect that the scanline rasterizer would demonstrate

superior performance. Indeed, this is what happens. The relevant figures are summarized

below.

ADVS-1 ADVS-1 SPHERE SPHERE

Scanline Barycentric Scanline Barycentric

Runtime 2,914,615 3,325,975 11,813,332 12,576,589

Rasterizer Runtime 795,768 1,267,194 1,974,065 2,783,481

Triangle Size 5.5 5.5 4.4 4.4

At triangle sizes near the breakpoint, the choice of rasterizer does not make a huge

difference in total runtime. ADVS-1, when run with a scanline rasterizer, runs in 83% of

the time as with the barycentric rasterizer; SPHERE runs in 93% of the time.
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In most of our test scenes, rasterization is the dominant stage in the total runtime. Over-

all, the rasterization kernels in total maintain similar op rates as other rendering kernels, but

their rate still falls far below rasterization rates in special purpose hardware. We explore

adding hardware rasterizer support to our stream architecture in Section 6.6.

5.3 Kernel Characterization

Future stream processors will contain more clusters, more functional units per cluster, and

more bandwidth into and out of the clusters. They will also have larger stream register files

to reduce short stream effects. Chapter 6 explores some of the effects of extending Imagine.

How will these changes affect the kernels in the current pipeline? Table 5.4 summarizes

how each kernel scales in performance with input size and what the hardware limit is to its

performance. By “scales with input size,” we mean that as the input stream length increases

as n, how is the runtime of the main loop affected?

Of note is the lack of a single bottleneck for the majority of kernels. They are lim-

ited in performance by many factors, none of them dominant. Imagine would seem to be

a well-balanced machine for this pipeline because the computational bottlenecks are not

concentrated in any specific part of the hardware.

All kernels scale as O(n) or better except for the fragment sorting step in the compo-

sition stage (in particular, the merge kernel). With current batch sizes, the sort/merge is

only a small part of the total runtime, so despite the n log n dependence of merge, the

performance of the pipeline is currently practically maximized on Imagine by making the

batches as large as possible without spilling.

However, future generations of stream processors might have the ability to handle sig-

nificantly larger batch sizes. Though a larger hash table in hash would mitigate the n log n

cost to some extent by eliminating false matches, it is possible that the cost of the sort would

eventually be the dominant performance factor for batches of a sufficiently large size. In

this case the best batch size for our pipeline would be found by balancing the short-stream

effects of small batches against the cost of the sort for large batches.

The kernels can be grouped by their performance limits:
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Performance
scaling as

Kernel input size n Hardware limit to performance
perbegin program O(1) Does not affect performance

vertex program O(n) Insufficient functional units
assemble O(n) Conditional stream bandwidtha

clip O(n) Conditional stream bandwidtha

viewport O(n) Divide latencyb

backfacecull O(n) Conditional stream bandwidthb

xyprep O(n) Insufficient functional units
xyrast O(n) Control complexity of algorithm, also

long critical path
baryprep O(n) Long critical path

irast O(n) Conditional stream bandwidth
filter8 O(n) Insufficient multipliers

fragment program O(n) Insufficient functional units
hash O(n) Scratchpad bandwidth, also insufficient

functional units (logical ops)
sort O(n) Intercluster communication bandwidth

merge O(n log n) Intercluster communication bandwidth
compact/recycle O(n) Long critical path

zcompare O(n) Long critical path

aBecause assemble and clip are both bound by conditional stream bandwidth and can
be easily composited, we combine them into a single kernel, one which is still conditional-
stream bandwidth bound.

bViewport and backfacecull are also easily combined; the resulting kernel is
conditional-stream bandwidth bound.

Table 5.4: Kernel Characterization. Each kernel in the pipeline is described by how its
performance scales with input size and the Imagine hardware limit to its performance.
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Insufficient functional units vertex program, fragment program, and xyprep

could run faster if given more functional units per cluster. These kernels have a

large amount of instruction-level parallelism in their computation. filter8 would

also benefit, particularly from more multipliers. hash is balanced between limited

scratchpad bandwidth and limited logical operation issue slots and would run faster

if both were increased.

Conditional stream bandwidth Few Imagine kernels are limited by the bandwidth of un-

conditional streams (four words per cluster per cycle), but kernels that input and out-

put large records conditionally suffer from Imagine’s one word per cluster per cycle

conditional stream bandwidth. In our pipeline, assemble, clip, backfacecull,

assemble clip, viewport cull, and irast each deal with large records (tri-

angles, except for irast, which processes fragments). These kernels are all limited

by conditional stream bandwidth related to processing these large records. Given

Imagine’s conditional stream implementation, increasing conditional stream band-

width requires increasing both intercluster communication bandwidth and scratchpad

bandwidth (by increasing individual scratchpad bandwidth or more likely, scratchpad

count).

Divide/square root unit Vertex programs often perform many vertex normalizations (for

example, SPHERE), which are limited by divide/square root performance. Our di-

vide/square root unit is not fully pipelined, so only two divide or square root oper-

ations can be in flight at the same time. Also, normalizations would benefit from

a reciprocal-square-root operation, which would cut the required number of opera-

tions in half. The viewport kernel, which performs 3 divides, is limited by divide

performance—having either a faster divider or one more deeply pipelined would aid

this kernel’s inner loop time.

Intercluster communication bandwidth The sort kernels, sort and merge, communi-

cate heavily between clusters and would benefit from increased intercluster commu-

nication bandwidth. Imagine implements conditional streams over the intercluster

communication paths, so if conditional stream bandwidth were increased, these ker-

nels’ performance would also improve.
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Long critical path These kernels are particularly interesting, because their performance

would not increase with additional hardware. Thus, they are candidates for improved

algorithms as stream hardware evolves and improves. We look at them individually:

• compact recycle and zcompare are simple and short kernels, merely

separating a single stream into two streams. They have little computation per

loop and are close to being limited by conditional stream bandwidth, so would

benefit little from new algorithms.

• More interesting is baryprep. This kernel must conditionally input per-

triangle coefficients while inputting next-fragment data. Then it calculates the

barycentric coefficients for each fragment and outputs the fragment. The com-

putation is relatively sequential so the critical path is lengthy. Combining this

kernel with irast would put more strain on the conditional stream bandwidth

(and much more strain on the kernel scheduler) but would probably be the best

direction for future stream architectures.

• xyrast has been the most difficult kernel to optimize. It has three separate

threads of execution and a long critical path. Its functional units have a much

smaller occupancy than other rasterization kernels. It is the only kernel in the

pipeline that would substantially benefit from MIMD clusters as opposed to our

SIMD organization. A better triangle-to-fragment generation algorithm would

dramatically help this kernel’s performance; increasing cluster bandwidth or

operations would not. As other cluster bottlenecks are removed with an increase

in bandwidth or operations, this kernel will consume an ever greater amount of

runtime. Special purpose rasterization hardware would seem to be particularly

useful in replacing this kernel.

5.4 Theoretical Bandwidth Requirements

On commercial graphics architectures, applications are becoming increasingly bandwidth-

bound [Igehy et al., 1998b]. If our system was constrained only by memory bandwidth,

and not by any computation, how fast could it run?
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Figure 5.17: Test Scenes: Memory Bandwidth Sources. For each scene, the memory de-
mand is divided into input bandwidth requirements (vertex data), output bandwidth require-
ments (color and depth buffer accesses), and texture accesses.

5.4.1 Theoretical Analysis

In this analysis we assume that the color buffer and depth buffer as well as textures are lo-

cated in external (off-chip) memory. Here we are concerned with external memory system

bandwidth, not local bandwidth on chip. Local bandwidth has historically scaled faster than

off-chip bandwidth (ignoring clock rate and concentrating on data channel count only, the

number of tracks on a chip [on-chip bandwidth] increases at 22% per year and the number

of pins on a chip [off-chip bandwidth] only increases at 11% per year [Dally and Poulton,

1998]); furthermore, local bandwidth use is highly implementation dependent.

Let us call the memory system bandwidth in bytes per second M , the number of byte

traffic required per pixel b, the depth complexity d, and the number of pixels per frame S.

Then the maximum frame rate of the system in frames per second is M/(bdS).

In the calculations in this section, we consider a simplified bandwidth model. We will
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fps @ 500k fps @ 1M
Work per pixel bytes/pixel pixels pixels
Color write 4 500 250
Color write, z compare 12 167 83
Color write, z compare,
single-sampled texture

16 125 62

Color write, z compare, mipmapped
texture

44 11 22

Table 5.5: Theoretical Performance Limits for Imagine. The task in the first column corre-
sponds to the amount of memory traffic required in bytes per pixel in the second column,
which in turn leads to the frames-per-second maxima in the third and fourth columns for
500,000 and 1,000,000 pixel windows. These figures assume a memory system that can
deliver 1 GB/s; they scale linearly with memory bandwidth.

assume 1 GB/s of achievable memory bandwidth and a depth complexity of 1. Also, we

will neglect the bandwidth required to input the vertex data.

Each pixel in our pipeline is depth buffered, requiring at a minimum 4 bytes of depth

read, 4 bytes of depth write, and 4 bytes of color write—a total of 12 bytes per pixel.

Thus, we could fill 83 million pixels per second. Using our 720 × 720 screen size of about

500,000 pixels, we could achieve a frame rate of 167 frames per second. A million-pixel

display would run at half that speed, 83 frames per second.

Adding a single 32-bit texture lookup per pixel adds another 4 bytes per pixel, cutting

frame rates for the half-million and million pixel displays to 125 and 62 frames per sec-

ond, respectively. And doing 8 4-byte texture lookups per pixel instead, as in mipmapped

textures, yields frame rates of 45 and 22.5 frames per second13. Table 5.5 summarizes the

theoretical performance limits for several per-pixel workloads.

5.4.2 Achieved Results

The theoretical peak memory bandwidth of any modern memory system is rarely achieved

in practice on any real dataset because all accesses cannot be pipelined as the access pattern

13All of these calculations neglect the cost of clearing the color and depth buffer for each frame, which
adds another 8 bytes per pixel. Special-purpose fast-clear hardware, as is common in commercial graphics
systems, could mitigate the clear’s bandwidth requirements.
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RATE ADVS-1 PIN-8
Vertices/second 630k 9.41M 1.87M

Bytes/vertex 32 28 44
Achieved input bandwidth 20.2 MB/s 263 MB/s 82.3 MB/s

Fragments/second 20.16M 10.58M 2.14M
Bytes/fragment 12 16 172

Achieved output bandwidth 242 MB/s 160 MB/s 368 MB/s
Total bandwidth 262 MB/s 424 MB/s 451 MB/s

Measured trace bandwidth 1.48 GB/s 1.26 GB/s 1.80 GB/s
Percent of trace bandwidth achieved 17.7% 33.6% 25.0%

Table 5.6: Achieved vs. Trace Bandwidth. RATE reads in position and color information
for each vertex and does a color write and depth read and write per fragment. ADVS-1
has position and texture information for each vertex and performs a single texture lookup,
color write, and depth read and write for each fragment. PIN-8 has position, normal, and
texture coordinates per vertex and combines 5 mipmapped texture lookups with specular
and diffuse light components per fragment.

switches between banks and rows within a bank. On a simulated Imagine 2 GB/s memory

system, Rixner et al. studied memory traces of a variety of media applications [Rixner et

al., 2000a]. They found sustained memory bandwidths on these traces between 1.4 and 1.8

GB/s. The access patterns of graphics applications are less predictable than most of these

applications and so their percentage of sustainable bandwidth would tend to be lower.

Running a memory trace of ADVS-1, in which each pixel is depth-buffered and tex-

tured with a single texel, results in a maximum achievable bandwidth of 1.26 GB/s. A

RATE trace14, in which each pixel is only depth-buffered, has a slightly more regular ac-

cess pattern and hence a higher achievable bandwidth of 1.48 GB/s. The texture locality of

PIN-8 allows it to achieve 1.80 GB/s on its trace.

Our implementation achieves considerably less than these peak bandwidth totals. Ta-

ble 5.6 compares three scenes’ achieved bandwidth against the maximum achievable band-

width of the memory access pattern when run as a memory trace. ADVS-1 only reaches

33.6% of the achievable bandwidth, RATE does not even attain 18%, and PIN-8 manages

to achieve 25%.

This behavior is characteristic of all the scenes we have studied: none of them are
14This particular RATE trace has 32 pixels/triangle, so input vertex bandwidth is relatively modest.
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bandwidth-limited on our rendering pipeline. Short-stream effects are not responsible

(RATE at 32 pixels/triangle loses less than 2% of its cycles to short-stream effects, ADVS-1

just above 7%; PIN-8, with 32-vertex batches, loses about 25% of its cycles). The answer

is simply that Imagine does not do enough computation per cycle. We must consider ex-

tensions to Imagine that increase the computation throughput. This goal is the topic of the

next section.



Chapter 6

Extending Imagine

In the previous chapter, we showed that our implementation was not limited by memory

bandwidth but instead by computation. Future generations of stream hardware will have

more computational capabilities than Imagine: more clusters, more capabilities in each

cluster, larger amounts of storage, and perhaps special-purpose hardware dedicated to per-

forming certain tasks. In this chapter we investigate the performance impact of extending

Imagine: how can additional hardware aid the performance of the rendering pipeline?

6.1 Adding Instruction-Level Parallelism

The analysis in Chapter 5.3 revealed that many kernels are limited in performance by the

limited amount of hardware in each arithmetic cluster and the lack of communication re-

sources between clusters. Those kernels can be grouped into the following categories:

1. Insufficient functional units;

2. Conditional stream bandwidth;

3. Divide/square root performance;

4. Intercluster communication bandwidth.

93
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In this section we explore expanding the clusters along two axes. The first axis is more

functional unit performance within a cluster, addressing points (1) and (3) above. The

second axis is communication resources between clusters, addressing (2) and (4).

To increase the functional unit performance within a cluster, we make three major

changes. First, we double the number of adders (which execute integer and floating point

adds and subtracts and also perform all logical operations) from 3 to 6. Second, we double

the number of multipliers from 2 to 4. Third, we fully pipeline the divide/square root unit.

The outputs of all units remain connected to all register files with a full crossbar switch.

All register file sizes remain the same except the condition code register file, which must

be doubled in size to cope with the near-doubling in functional unit count. We designate

these changes with “+F” (for additional functional units).

To increase the communication resources between clusters, each cluster is equipped

with three communication units and three scratchpad memory files. (The number three is

chosen because increases in conditional stream bandwidth benefit those kernels that deal

with triangles most of all. The three vertices of each triangle in our kernels are specified

as three separate streams.) These changes triple the intercluster communication bandwidth

and the conditional stream bandwidth. The hash kernel would likely also benefit from

additional scratchpad bandwidth if rewritten, but this was not done for these experiments.

Like the +F configuration, all functional units in this configuration remain fully switched.

We designate these changes with “+C” (for additional communication resources).

Several costs are associated with increasing cluster size. First, the switch that connects

functional units and register files must increase in size; the switch size increases with the

number of functional units n as O(n2). It would be possible to use a sparsely connected

switch to connect functional units, but the determination of proper connections would re-

quire significant investigation, and the kernel scheduler does not handle sparse switches as

well as dense ones.

Also, the size of the microcode store increases linearly with the number of units. Larger

clusters may require longer delays in sending signals across the clusters. Finally, adding in-

tercluster communication requires additional (or wider) intercluster switches. These hard-

ware costs, which potentially impact cycle time, are not modeled. In our experiments we
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Figure 6.1: Performance for Scenes and Cluster Occupancy on Different Cluster Configu-
rations. Each single line indicates the relative performance for a single scene on each of 4
different machine descriptions. The left graph indicates the overall performance speedup,
normalized to gold8 = 1. The right graph indicates the percentage of time the clusters are
busy for each scene and cluster configuration.

assume that larger clusters can be run at the same clock rates as the baseline Imagine clus-

ters.

6.1.1 Results

To test the effects of different cluster configurations, we ran each of our scenes with four

different machine descriptions. The base description, mirroring the Imagine hardware, is

termed “gold8”. We alter gold8 in three ways, gold8+F, gold8+C, and gold8+F+C,

and run our scenes on each of them.

Performance and Cluster Occupancy First, does adding hardware to the clusters pro-

duce gains in performance? Figure 6.1 shows that the new cluster configurations produce

performance gains on all scenes. Some scenes benefit more from additional functional

units, some from more communication resources. We examine this further below.

We also examine the effects of more complex clusters on cluster occupancy. We see

that more complex clusters slightly decreases the achieved cluster occupancy compared to

the base case of Imagine’s cluster configuration.
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As overall runtime decreases because kernels run faster, memory demand remains con-

stant for the whole scene, so the memory system must deliver higher bandwidth. This, in

turn, increases memory system occupancy. Software pipelining at the stream level with

the goal of achieving high cluster occupancy becomes more difficult with higher memory

system occupancy.

Fortunately, the gains associated with more cluster resources are considerably more

significant than the losses from reduced cluster occupancy.

Stage Breakdown Figure 6.2 shows the stage breakdown of the kernel runtime for each

scene for each cluster configuration. This figure shows kernel runtime only and does not

consider the cluster occupancy differences between the different machine descriptions.

We can draw two major conclusions from the stage breakdown. First, adding more

functional units (+F) and adding more communication resources (+C) are orthogonal, so

their effects are additive. In other words, the benefits from adding one are different than

the benefits from adding the other, and adding both combines the benefits of both.

Second, different scenes benefit in different ways from the cluster configuration changes.

For some scenes, adding more functional units produces a larger performance gain; for

some scenes, adding more communication resources is a bigger win.

Broadly speaking, scenes that spend a large proportion of their time in the vertex or

fragment programs (SPHERE and MARBLE in particular) benefit more from additional

functional units. Their complex vertex/fragment programs exhibit ample instruction-level

parallelism and can use the additional functional units efficiently.

Scenes with simpler vertex and fragment programs benefit more from additional com-

munication resources, which speed up geometry work (assembly and culling) and the latter

half of the core rasterization work (barycentric weight calculation and interpolant rasteri-

zation).

As shaders continue to increase in complexity, particularly in computation (as opposed

to texture lookups), adding more functional units will continue to increase performance.

Even with the +F configurations, the vertex program on SPHERE and the noise kernel on

MARBLE have even more instruction-level parallelism than can be exploited by the number

of functional units and would benefit from even more.
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Figure 6.2: Stage Breakdown for Scenes on Different Cluster Configurations. Total cycles
are normalized to gold8 = 100%. Cluster idle time is not considered in these graphs. The
vertex program is treated separately from the rest of the geometry stages, and the fragment
program is treated separately from the rest of the rasterization stages.
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Scene Batch Size, 32K SRF Batch Size, 128K SRF
SPHERE 480 1920

ADVS-1 288 2048
ADVS-8 48 800

PIN 120 840
PIN-8 32 400

MARBLE 112 720
VERONA 40 432

Table 6.1: Batch Sizes in Vertices for Larger SRF. Imagine has a 32K SRF; we show batch
sizes for both Imagine’s SRF and a SRF four times the size of Imagine’s.

On the other hand, simple fragment and vertex programs, even with software pipelined

loops, are already limited by their critical paths and do not benefit from additional hard-

ware. Other kernels exhibit the same behavior. To speed up these kernels requires rethink-

ing the algorithm, either rewriting it to have a shorter critical path or by running multiple

data elements on the same cluster at the same time.

6.2 Increasing Stream Lengths with a Larger Stream Reg-

ister File

Section 5.2.3 discussed the performance impact of short streams. By making the stream

register file larger, intermediate streams can be longer. And with longer streams, we

can mitigate the short stream effects, spending more time in main-loop code and less in

prologue-epilogue and setup-teardown.

The pipelines run in this section are identical to the ones presented in Section 5.1 except

for their batch sizes. All batches are sized so their intermediate results fit in the SRF.

We begin by analyzing the effects of a larger stream register file on batch sizes. Not

surprisingly, a larger SRF results in larger batches. Surprisingly, for several scenes, mul-

tiplying the SRF size by 4 produces a batch size multiplier considerably larger than 4, as

shown in Table 6.1. (For example, ADVS-8 goes from 48 vertices per batch with a 32K

SRF to 800 with a 128K SRF.)

This effect is due to the variance in the datasets. Some portions of the datasets produce
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Figure 6.3: Performance for Scenes and Cluster Occupancy with Different SRF Sizes. Each
single line indicates the relative performance for a single scene on each of 3 different cluster
counts. The left graph indicates the overall performance speedup, normalized to gold8 =
1. The right graph indicates the percentage of time the clusters are busy for each scene and
cluster configuration.

many more fragments than other parts. As the batches become larger, more primitives are

sampled and the variance decreases. In other words, the portions of the dataset that produce

many fragments are averaged in with portions that produce few and the result produces a

fragment count closer to the overall average.

How do the larger batch sizes translate into performance? Figure 6.3 shows a varying

range of improvements in all of the scenes. In general, scenes that suffered heavily from

short-stream effects (such as ADVS-8 and PIN-8) have substantial speedups—ADVS-8

runs twice as fast with the larger stream register file. On the other hand, scenes that were

affected only slightly by short stream effects show only modest performance improvements.

One source of performance improvements is the reduction of short stream effects;

closely related is the improvement in cluster occupancy. Figure 6.3 demonstrates that in-

creasing stream size by growing the SRF produces gains in cluster occupancy. Longer

streams avoid kernel dispatch penalties due to the minimum kernel duration as well as

mitigate the difficulties of pipelining short streams at the stream level.

Overall performance, then, is improved by enlarging the SRF. We now take a closer

look at the kernel speedups resulting from this change. Figure 6.4 shows the effects on

kernel runtime of increasing SRF size.
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Figure 6.4: Stage Breakdown for Scenes with Different SRF Sizes. Total cycles are nor-
malized to gold8 = 100%. Cluster idle time is not considered in these graphs. As in the
other comparisons, the vertex program is treated separately from the rest of the geometry
stages, and the fragment program is treated separately from the rest of the rasterization
stages. To emphasize the increasing cost of the support, in this comparison, the sort and
merge kernels are separated from the rest of the composite stage.
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The relative kernel runtimes demonstrate the short stream effects of prologue-epilogue

and setup-teardown time. Scenes that suffered heavily from short stream effects (such as

Advs-8 and Pin-8) show a large speedup in all their kernels. Scenes that did not (such

as Sphere) show virtually no improvement.

However, we also see a second effect, that of the cost of the sort. Recall from Sec-

tion 5.3 that though the cost of the sort when running on unmodified Imagine hardware

was quite small, unlike the other stages, the sort does not scale linearly with the input size

n but instead as n log n. With three of the datasets—ADVS-8, SPHERE, and especially

ADVS-1—we see that the cost of the sort is significantly larger with the larger SRF. For

ADVS-1 and SPHERE, the total kernel time is actually larger with the larger SRF (though

performance is better because of the increase in cluster occupancy). Certainly for at least

ADVS-1, the optimal batch size for performance is not the largest batch size for which the

intermediate results fit in the larger SRF, but instead the (smaller) batch size for which the

sum of the costs of short stream effects and the cost of the sort are minimized.

6.3 Adding Data-Level Parallelism

Chapter 5.2.4 explored the speedup of Imagine on rendering scenes from one to eight clus-

ters. We found that the speedup was quite respectable, and so in this section we explore

larger cluster sizes: 16 and 32. If the implementation is truly data-parallel, the resulting

performance will approach the ideal speedup as cluster sizes increase.

6.3.1 Algorithm Scalability

To continue to achieve speedups with more clusters, our algorithms must scale with the

number of clusters. Most of our kernels (given long streams as inputs) scale trivially with

the number of clusters.

The two exceptions are the hash and sort/merge kernels.

• Hash checks each of its hash values against its distributed hash table with a broadcast

across the clusters for each value. Thus, as the number of clusters grows, the number

of broadcasts does not change, and the kernel does not improve in performance.
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At 8 clusters, the cost of the broadcast is similar to the cost of the arithmetic, so the

broadcasts do not incur a performance penalty. However, at 16 and higher clusters,

the broadcasts dominate the kernel cost.

To remedy this non-scalability, hash was rewritten for 16 or more clusters. In this

implementation, the hash table is not fully distributed across the clusters but instead

replicated across neighborhoods of 8 clusters. Hash values are then broadcast only

across the local neighborhoods, with all neighborhoods processed in parallel.

Between the two hash stages, the neighborhoods must combine their hash tables.

This cost is proportional to the size of the hash table (O(h)), and to the logarithm of

the number of clusters (O(log c)) but is constant time with respect to the size of the

input stream. In practice, it accounts for only a small portion of hash’s runtime for

any input stream of reasonable size.

• The sort and merge kernels grow in complexity with the logarithm of the number

of clusters.

Longer input streams mean more conflicts between fragment addresses, so the sort

stage consumes proportionally more time as the number of clusters grows. However,

the total amount of time spent on sorting for any of our tests is modest.

Short-stream effects become a greater factor if the number of clusters increases while

the stream lengths do not, because the number of iterations required to process a stream

of a fixed length is inversely proportional to the number of clusters. Thus, the size of the

stream register file must scale with the number of clusters to keep the short stream effects

at the same cost. In our experiments, we scale the size of the SRF proportionally to the

number of clusters.

6.3.2 Hardware Scalability

Because Imagine’s clusters are controlled by a single instruction stream, adding additional

clusters is conceptually straightforward. However, several hardware effects must be con-

sidered.
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Perhaps the most important is the size of the intercluster switch, which grows as O(n2)

with the number of clusters n. With a very large number of clusters, fully interconnected

clusters would be impractical, but for smaller numbers (at least up to 128), the switch would

be of significant size but still feasible1.

Another important effect results from the microcontroller driving signals to more clus-

ters and presumably also driving signals longer distances. Finally, 8 clusters are simply

laid out in a straight line, but additional clusters may not lend themselves well to such a

straightforward layout.

One Imagine-specific effect is the representation of intercluster communication pat-

terns. On an 8-cluster Imagine, each cluster’s destination can be encoded in 4 bits (3 bits

for which cluster, 1 bit for the microcontroller), so the entire communication pattern can

be encoded into a single 32-bit word. As the number of clusters increases, these patterns

no longer fit into a single word. In our tests below, on 16 or 32 cluster machines, we avoid

the difficulties of representing an entire communication pattern by not using the instruction

that uses them (the commucperm instruction). Instead we compute each cluster’s pattern

locally in each cluster (with the commclperm instruction). In practice this only requires

changes in the sort32frag and mergefrag kernels, which must be rewritten for each

different cluster count anyway.

6.3.3 Experiments

In our experiments to test the effect of greater data-level parallelism, we compared the

results with 8 clusters against simulations against 16- and 32-cluster Imagine machines,

termed gold16 and gold32. The machine descriptions for these wider machines are

identical to the base configuration, gold8, with the following changes.

• The SRF size scales with the number of clusters. gold16 uses a 64k SRF and

gold32 has a 128k SRF.

1For Imagine, Khailany et al. show that with C clusters, the intercluster switch grows as O(C2) with a
linear layout and O(C2 + C3/2) with a grid layout. For reasonable numbers of clusters (at least up to 128),
the O(C3/2) term is dominant and constructing the switch is feasible [Khailany et al., 2003].
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Batch Size, Batch Size, Batch Size,
Scene 8 Clusters 16 Clusters 32 Clusters

SPHERE 480 960 1920
ADVS-1 288 768 2048
ADVS-8 48 96 296

PIN 120 288 832
PIN-8 32 64 384

MARBLE 112 368 736
VERONA 40 96 416

Table 6.2: Batch Sizes in Vertices for More Clusters. To maintain a comparable number of
iterations across cluster count tests, the SRF must grow proportionately to the number of
clusters. Consequently, the batch sizes also grow with the number of clusters.

• Due to difficulties with the kernel scheduler register allocator, for the sort kernel

only, the size of the cluster register files are increased in gold32.

First, we must adjust batch sizes to match the new, larger SRF sizes. These new batch

sizes, shown in Table 6.2, are similar to those in Section 6.2, and an analysis of them would

follow the discussion there2.

Ideally, increasing the number of clusters would lead to a proportional increase in per-

formance. Most of the scenes approach this speedup; MARBLE and PIN-1 are very close

to the ideal.

We look closer at the reasons behind the performance increase by looking at kernel

runtimes in Figure 6.6. Again ideally, each kernel should decrease in runtime in inverse

proportion to the number of clusters. The geometry and rasterization kernels in each scene

mirror this decrease; while the composition stage does decrease in runtime with more clus-

ters, it does not decrease at the same rate because of the O(n log n) cost of the sort with the

increasing number of clusters. Still, the overall kernel runtimes match the expected ideal

speedup well.

In these experiments with increased cluster count, batch sizes are increased proportion-

ally to the number of clusters, so the number of iterations should remain constant across

2The batch sizes found when increasing cluster count and SRF size are slightly smaller than those found
when only increasing SRF size because of quantization effects relating to the requirement that all streams be
multiples of the number of clusters.
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Figure 6.5: Performance for Scenes with Different Cluster Counts. Each single line indi-
cates the overall performance speedup, normalized to gold8 = 1.

the different cluster counts. Thus the effects of short streams should be constant across

the different cluster counts as well, and short stream effects are not responsible for the

non-ideality of the performance curves in Figure 6.5.

Instead, the reason the overall performance curves do not track this ideal kernel speedup

is shown in Figure 6.7. The cluster occupancy decreases with an increased number of clus-

ters. Again, this is not a result of short stream effects. The culprit is increased memory

demand. Because the memory system does not change across the different cluster counts,

it is more heavily loaded by more clusters than fewer clusters. And when memory system

occupancy increases, cluster occupancy decreases; pipelining at the stream level is a more

difficult problem with a more heavily utilized memory system. The increase in memory

system demand leads to lower cluster occupancy, which directly leads to losses in perfor-

mance.

The non-ideality in the performance speedups of Figure 6.5 is largely attributable to the

decrease in cluster occupancy. Scenes which are farthest from the ideal (such as ADVS-1

and PIN-8) have the largest decreases in occupancy, while MARBLE has the largest speedup

and the smallest occupancy decrease.
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Figure 6.6: Stage Breakdown for Scenes with Different Cluster Counts. Total cycles are
normalized to gold8 = 100%. Cluster idle time is not considered in these graphs. The
vertex program is treated separately from the rest of the geometry stages, and the fragment
program is treated separately from the rest of the rasterization stages.
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Figure 6.7: Cluster Occupancy and Delivered Memory Bandwidth for Scenes with Differ-
ent Cluster Counts. Each single line indicates the relative performance for a single scene
on each of 3 different cluster counts. The left graph indicates the percentage of time the
clusters are busy for each scene and cluster configuration, and the right graph indicates the
delivered memory system bandwidth for that scene and cluster configuration.

Still, each scene does realize a significant performance gain from adding clusters, with

some scenes approaching the ideal speedup.

6.4 Combinations

Finally, we would like to test the orthogonality of the changes in the previous sections—

more functional units per cluster, more clusters, and a larger SRF—by testing them to-

gether in a single configuration. The tests in this section use 32 gold8+F+C clusters with

a SRF 4 times larger than the 32-cluster test in Section 6.3. We call this configuration

gold32combo; it is equivalent to gold32+F+C+srf4x.

The combination of more functional units, more clusters, and a larger SRF produces

substantially larger gains than any of those additions alone. Figure 6.8 shows the gains

when gold32combo is compared to the base gold8 configuration, to gold8+F+C, and

to gold32. The largest gain overall was for MARBLE, which was 5.8 times faster than

gold8. MARBLE benefitted from a near-ideal speedup due to more clusters as well as

more functional units and the decrease in short stream effects. ADVS-1 had the smallest

increase (2.2 times); it had few short stream effects and benefitted little from additional
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Figure 6.8: Performance for Scenes with Larger SRF and Different Cluster Counts and
Configurations. Each single line indicates the overall performance speedup, normalized to
gold8 = 1.

functional units.

Figure 6.9 shows the kernel runtime for each of the 4 cluster configurations (gold8,

gold8+F+C, gold32, and gold32combo). This comparison ignores occupancy ef-

fects and only considers the time spent running kernels. The best speedup was for PIN-8,

whose kernels ran over 9 times faster with gold32combo than with gold8. The worst

speedup was ADVS-1, whose kernels ran slightly more than 4 times faster. The speedups

are roughly the sums of the speedups from the individual configurations (gold8+F+C,

gold8+srf4x, and gold32), modulo occupancy effects, so we can conclude that the

effects of adding ILP, DLP, and a larger SRF are orthogonal.

Like the results from additional clusters presented in Section 6.3, the additional hard-

ware and greater demand on the memory system cause the memory demand to rise and

the cluster occupancy to fall. The memory demand now approaches its theoretical limit

in many of these scenes, causing them to become memory bound rather than computation

bound. PIN-8, for instance, sustains 2.03 GB/s of memory bandwidth, whereas a memory
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Figure 6.9: Stage Breakdown for Scenes with Larger SRF and Different Cluster Counts
and Configurations. Total cycles are normalized to gold8 = 100%. Cluster idle time is
not considered in these graphs. The vertex program is treated separately from the rest of
the geometry stages, and the fragment program is treated separately from the rest of the
rasterization stages.
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Figure 6.10: Cluster Occupancy and Delivered Memory Bandwidth for Scenes with Larger
SRF and Different Cluster Counts and Configurations. Each single line indicates the rel-
ative performance for a single scene on each of 3 different cluster counts. The left graph
indicates the percentage of time the clusters are busy for each scene and cluster configura-
tion, and the right graph indicates the delivered memory system bandwidth for that scene
and cluster configuration.

trace of the same address stream with no computation3 sustains 2.49 GB/s.

6.5 Texture Cache

In the previous section we see that by adding additional computation hardware, we can

convert our scenes from being limited by computation to being limited by memory. Mem-

ory traffic in graphics systems consists of three components: input traffic (vertex and mesh

information), output traffic (fragment color and depth information), and texture. The av-

erage values across our scenes are 52% input, 20% output, and 27% texture. However,

this texture statistic is slightly misleading as several of the scenes do not use any textures.

Those that do have a higher proportion of texture traffic: 76% of PIN-8’s traffic is texture,

and 47% of ADVS-8’s.

To reduce memory demand, we can make use of the locality of the memory traffic.

3PIN-8’s memory trace for gold32combo differs from the gold8 trace presented in Section 5.4; the
streams are considerably longer in the 32-cluster version and result in a higher bandwidth. The gap be-
tween trace and achievable bandwidth for this scene is primarily attributable to a poor software pipeline that
unnecessarily serializes computation and memory accesses.
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It is possible (though not done in current graphics hardware) to cache input geometry in-

formation. And the depth buffer also can benefit from some caching, especially when a

hierarchical depth buffer is used, as in some recent hardware systems. However, neither of

these components have nearly as much locality as texture data, which caches well [Hakura

and Gupta, 1997]. Most modern graphics hardware supports texture caches.

We add a cache to Imagine by intercepting memory requests for streams marked “cache-

able” and looking them up in the cache. Our cache contains 16K words and is direct

mapped with a cache line size of 2 words4.

The hardware costs of such an addition are mostly the additional memory requirements.

Imagine already has two 1 Mb data structures in the SRF and the microcode instruction

store; a 16 KW cache would add another half million bits. Conceptually, the cache fits well

between the memory system and the SRF, intercepting memory address requests provided

by the address generators and satisfying them through the cache instead of through an ex-

ternal memory reference. Texture accesses are read-only, which greatly simplifies a cache

design.

In the tests below, we use gold32combo as our base hardware configuration and PIN-

8 as our comparison scene; this configuration and scene have the highest memory demand

of all of our scenes and configurations. The bandwidth between the memory system and

the SRF is multiplied by n (compared to Imagine’s memory-to-SRF bandwidth). We run

simulations with n = 1, 4, and 32. Small values of n mostly affect the latency of cacheable

memory requests; larger values begin to increase the delivered bandwidth as well.

Figure 6.11 shows the result of these two cache configurations. The hit rate in the cache

for PIN-8 is 94.1%. The n = 1, 4, and 32 caches produce performance gains of 6%, 28%,

and 38% respectively; these gains are a direct result of an increase in cluster occupancy,

from 40.7% in the base case to 43.5% for the n = 1 cache, 52.4% for the n = 4 cache, and

56.2% in the n = 32 cache.

The stream-level software pipelining for this scene could be significantly improved,

4Modern texture caches have larger line sizes—16 words is typical—and block their textures. Adding a
cache with a line size greater than Imagine’s 2 words, however, would require a major redesign of the memory
system, both in hardware and in simulation. Given the architecture of our simulator, the word size has an
insignificant impact on performance anyway.



CHAPTER 6. EXTENDING IMAGINE 112

gold32
combo

gold32
combo
cache1

gold32
combo
cache4

gold32
combo

cache32

Machine Description

1.0

1.1

1.2

1.3
S

p
ee

d
u

p

gold32
combo

gold32
combo
cache1

gold32
combo
cache4

gold32
combo

cache32

Machine Description

0.0

0.2

0.4

0.6

0.8

C
lu

st
er

 O
cc

u
p

an
cy

 (
%

)

Figure 6.11: Texture Cache Performance and Occupancy.

which would increase cluster occupancy and hence performance for all cache configura-

tions.

6.5.1 Hardware Interpolation

A second possibility for increasing texture performance, one that saves data movement and

specializes computation, is a hardware texture interpolation unit located between the mem-

ory system and the SRF. Such a unit would intercept 8 mipmapped texture color samples

returning from the memory system and, using weights calculated in the fragment program,

blend them into a single color.

This unit would not affect memory bandwidth, but it would affect SRF bandwidth.

Below is a table that describes the bandwidths necessary per (mipmapped) texture access

in both configurations.

Task gold8 gold8+interp

texture address, SRF → memory 8 words/access 13 words/access

texture data, memory → SRF 8 words/access 1 word/access

filtering, SRF → clusters 13 words/access —

filtering, clusters → SRF 1 word/access —
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Thus, for each texture access, 16 words of SRF bandwidth are saved. SRF space require-

ments do not change5.

Now, of all graphics applications, only some use mipmapped textures. Of our seven

scenes, two use mipmapping (ADVS-8 and PIN-8). ADVS-8 spends 4.8% of its time

filtering and PIN-8 spends 8.8% of its time filtering, time that would be eliminated with a

hardware interpolation unit.

Overall, then, this unit would save 16 words per access in SRF bandwidth and a few

percent in runtime for those applications that use mipmapped textures. Also, we would not

have the capability of doing other filtering algorithms (such as anisotropic filtering) with

this special-purpose hardware. This unit would likely not provide the performance gains

necessary to justify its expense.

6.6 Hardware Rasterizer

The rasterization stage of the polygon rendering pipeline consumes the largest proportion

of runtime in our implementation. Special-purpose rasterization hardware is at the core of

today’s commercial graphics processors, with the most recent chips advertising fill rates of

over a billion pixels per second. So it is natural to consider merging the power of special-

purpose rasterization hardware with our rendering pipeline in an effort to achieve higher

performance.

Such a rasterization unit is easily integrated into a stream architecture such as Imagine.

Imagine’s SRF already has a large number of clients, including the clusters, network in-

terface, and memory system. A special-purpose rasterizer could be added as another SRF

client.

To evaluate this configuration, we simulate a modest hardware rasterizer as an addition

to Imagine. The rasterizer is attached to the SRF through five streams: four input streams

(triangle data on one stream, interpolant data for each vertex on the other three) and one

output stream (which is used as an input to the fragment program). The rasterizer generates

one output word every cycle, so the output fragment rate is dependent on the complexity of

5In our implementation, we write texels on top of their addresses, so no additional space is needed to store
them.
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Figure 6.12: Stage Breakdown for ADVS-1 with Hardware Rasterization. Total cycles are
normalized to gold8 = 100%. Cluster idle time is not considered in these graphs. The
vertex program is treated separately from the rest of the geometry stages, and the fragment
program is treated separately from the rest of the rasterization stages.

the fragments. ADVS-1, for instance, has 6 words per fragment program input (framebuffer

address, triangle ID, depth, and texture u/v/q). On this scene, then, this rasterizer could

generate 83 million fragments per cycle (a small fraction of the rasterizer performance of

modern special-purpose hardware). Our rasterizer also has a fixed latency of 100 cycles

from receiving a triangle to outputting fragment data.

In software, the rasterization task is treated as a hardware kernel. The API treats a

hardware kernel exactly like a programmable kernel in the clusters. When the rasterizer is

invoked as a hardware kernel, the input streams are simply routed from the SRF into the

hardware rasterizer, and the stream controller in Imagine properly manages the dependen-

cies between streams.

In this chapter we have separated kernel runtime for each hardware configuration into

several components: vertex program, fragment program, geometry, rasterization, and com-

position. One might imagine that adding a special-purpose rasterizer would simply remove

the rasterization component from kernel runtime. And in fact, that is exactly what hap-

pens: Figure 6.12 shows the result for ADVS-1 with the standard gold8 configuration and

gold8+hwrast. The new configuration has a 89% kernel speedup over the base case.



CHAPTER 6. EXTENDING IMAGINE 115

Unfortunately, the overall performance increase is not as encouraging: the 32% applica-

tion speedup is significantly less than the kernel speedup. The discrepancy is a consequence

of poor software pipelining: the cluster occupancy drops from just over 80% to just over

50%. Normally Imagine must pipeline two units, the clusters and the memory system.

This pipeline is done automatically by the stream scheduler and results in pipelines that are

two stages deep. However, when hardware kernels are pipelined, they are grouped with

the cluster kernels. As a result, in the generated schedule, while the hardware rasterizer is

active, the clusters are often idle. The gains in overall performance are a consequence of

the hardware rasterizer running faster than its cluster equivalent. However, a better profile

would result in gains from allowing the clusters to concurrently work on another task as

well.

Adding special-purpose hardware such as this rasterizer runs counter to the Imagine

philosophy of programmability. Our hardware rasterizer would be of little use in running

other media tasks or even other graphics pipelines such as Reyes or a raytracer. Specializa-

tion comes with a cost that is examined more closely in Section 7.1.



Chapter 7

Discussion

7.1 Time-Multiplexed vs. Task-Parallel Architectures

The machine organization of Imagine differs markedly from the organizations of today’s

commercial graphics processors. Imagine features a time-multiplexed organization, while

contemporary graphics processors use a task-parallel organization. In this section we com-

pare the two organizations.

7.1.1 Task-Parallel Architectures

As we have seen in Chapter 4, the graphics pipeline can be divided into many stages.

Examples include the vertex program, primitive assembly, triangle setup, and triangle ras-

terization.

A task-parallel machine implements each of these stages with separate hardware. In a

single-chip implementation, then, the processor die area is divided into several modules,

each of which implements a separate stage in the pipeline. We can consider the overall task

of rendering on a task-parallel machine as divided in space: the separate stages are run on

different hardware modules.

116
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Advantages and Disadvantages

In a deep, complex pipeline such as the graphics pipeline, this machine organization leads

to high-performance implementations for several reasons.

First, each separate stage of hardware can run concurrently. This concurrency exploits

the native data parallelism in the graphics pipeline, and with a pipeline many stages deep, a

task-parallel architecture can be working on many primitives at the same time. (This advan-

tage relies on the feed-forward structure of the graphics pipeline—if the pipeline allowed

results in the latter half of the pipeline to influence those earlier in the pipeline, concur-

rent execution of multiple primitives might lead to difficulties in satisfying the ordering

constraint.)

Second, each module can be specialized to its specific task. Because each module

implements a single stage of the graphics pipeline, and because that stage often has fixed or

limited functionality, the hardware implementing that stage can be optimized with special-

purpose, custom hardware to perform that task both quickly and efficiently.

However, task-parallel organizations suffer from a significant disadvantage in load-

balancing work between stages. Because the amount of work in each stage is not fixed,

different scenes can cause different loads on the modules. One example is due to triangle

size effects: scenes with large triangles will have a much different ratio between geometry

work and rasterization work than a scene with small triangles.

In a task-parallel implementation, the balances between the modules must be fixed at

the time the machine is designed. When a scene has properties that do not match these

design decisions, hardware modules are idle. In our example, if our scene has triangles

that are generally larger than the design point, the geometry hardware will be idle while the

rasterization hardware is saturated doing rasterization work. In effect, on a given scene, a

task-parallel architecture can only run as fast as the slowest module for the scene.

Another danger is overspecialization: not all features of the pipeline are used in any

particular scene. Accelerating those features with special purpose hardware means hard-

ware that sits idle for any scenes that do not use that feature. (For instance, hardware to

perform fog calculations will not be used in any scenes that do not use fog.)
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7.1.2 Time-Multiplexed Architectures

We have seen that in a task-parallel organization, the separate stages of the graphics pipeline

are divided in space. A time-multiplexed architecture divides the pipeline not in space but

in time.

Instead of dividing the stages onto different modules in hardware, a time-multiplexed

architecture first evaluates the first stage using the resources of the entire machine, then the

next stage, and so on. Thus, different stages are separated by time, not space.

The time-multiplexed organization relies on hardware that can execute any stage of the

pipeline. To do so, this hardware must be quite flexible; it is difficult to imagine building a

time-multiplexed machine without significant programmability.

This flexibility does not come without cost. Time-multiplexed implementations lose

the advantages of hardware specialization featured in task-parallel implementations. While

it would be possible to add specialized hardware to a time-multiplexed implementation for

certain tasks in the pipeline, that hardware would be idle while the other tasks were running.

Algorithms which could be accelerated using special purpose hardware in a task-parallel

implementation must instead run on the less efficient, more general computation units of a

time-multiplexed machine.

However, the time-multiplexed organization enjoys significant advantages. The first is

load balancing. Time-multiplexed machines do not suffer from load imbalances between

stages as task-parallel machines do because time-multiplexed machines can dynamically

expand or contract the timeslice in which they run each module as needed. Stages that are

particularly complex for a given scene simply take longer to run; stages that are simple

complete more quickly. No matter what the balance is between stages, the computation

hardware remains busy at all times.

The second advantage is centralization of resources. Consider a modern graphics pro-

cessor that has programmable vertex and fragment processing units. Constructing a pro-

grammable module has fixed costs, such as a microcontroller or an instruction store, for

example. A task-parallel implementation must pay this cost for each separate module,

whereas a time-multiplexed implementation can amortize the fixed costs over all the hard-

ware.
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Sharing resources also can lead to better aggregate resource utilization. In our example,

consider a task-parallel architecture that allocates space for 1000 instructions each for the

vertex and fragment processing units. A centralized unit would have 2000 instructions,

allowing scenes that require 1500 fragment instructions and 500 vertex instructions, for

instance.

7.1.3 Continuum

The task-parallel and time-multiplexed organizations are not rigid; they may be bridged

by hybrid architectures that use elements of each of them. Imagine, for instance, is not a

strict time-multiplexed architecture because it separates the functions of computation and

memory access with separate hardware. As a result, Imagine suffers from load imbalance

between the two (expressed in our results as cluster and memory system occupancy).

An architecture such as Imagine could become more task-parallel by adding units that

are specialized to specific functions in the graphics pipeline. Sections 6.5 and 6.6 describe

potential Imagine extensions that would move Imagine away from a time-multiplexed or-

ganization.

Today’s task-parallel graphics processors could become more time-multiplexed by shar-

ing programmable units such as their fragment and vertex processing units. Potentially,

different specialized hardware units could be generalized and combined, though this may

not produce gains in efficiency.

7.1.4 Toward Time-Multiplexed Architectures

Today, the advantages of task-parallel architectures, particularly those associated with hard-

ware specialization, lead to a performance advantage over time-multiplexed architectures.

Time-multiplexed architectures are intriguing candidates for future graphics processors,

however, and will become increasingly compelling with the following trends:

Increased load imbalanceIf the load imbalances between stages continue to increase as

pipeline complexity increases, time-multiplexed architectures are at an advantage.
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Increased programmability The costs of adding separate programmable hardware to each

stage in an implementation with many modules is significant. As the programma-

bility of the pipeline increases, and in particular the number of stages that feature

programmable elements, time-multiplexed architectures become more attractive.

More complex pipelines The concurrency of task-parallel implementations relies on the

feed-forward nature of the pipeline. Feeding data back from a later stage of the

pipeline to an earlier one in an arbitrary fashion will be a difficult task for two reasons.

First, the connections between stages in a task-parallel machine are currently fixed

and not fully connected. A much more flexible interconnection structure would be

necessary to support arbitrary feedback paths. Second, because different batches of

the input data are processed at the same time in different units, feeding back data

from a later stage to a previous stage may violate ordering constraints. A time-

multiplexed organization, which works on a single batch at a time and uses the SRF

as a centralized communication mechanism between stages, suffers from neither of

these difficulties.

Finally, in the most complex scenes rendered today (such as those in motion picture

production), the large majority of work in the pipeline is programmable shading computa-

tion. In pipelines such as Reyes this programmability is implemented in a single stage. If

a single stage (such as shading) were to become the dominant component in the rendering

pipeline, the distinction between task-parallel and time-multiplexed organizations becomes

less important. Implementers of a task-parallel organization would devote most of the chip

area toward programmable shading because most of the work would be in programmable

shading. At that point, most of the work is concentrated in one stage, so the implementa-

tions of the two approaches would be substantially similar in character.

Another trend that may eventually make the distinction meaningless is that off-chip

bandwidth scales slower than on-chip capability. If graphics becomes completely bound

by off-chip communication, the organization of the computation on the chip is unimpor-

tant; with either a time-multiplexed or a task-parallel organization, the performance is still

limited by pin bandwidth instead of computation.

Today, however, the advantages of a time-multiplexed organization are augmented when
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the individual stages are programmable, as described in the next section.

7.2 Why Programmability?

Time-multiplexed implementations must by nature be flexible, as the same computation

units are used for all stages in the pipeline. Imagine implements this flexibility with mi-

crocoded kernels that implement arbitrary user programs. What are the advantages of pro-

grammability, both on Imagine and in other programmable graphics processors?

7.2.1 Shading and Lighting

The first advantage to programmability is the ability to support flexible shading and light-

ing. With the RTSL, shaders and lights can be expressed in a high-level language and

support complex effects that cannot be produced through the normal OpenGL pipeline.

RTSL supports a somewhat limited class of shading and lighting algorithms, however.

In it, a single function is applied to every primitive with no large-scale data dependence

and no control flow, and each input always produces one output. Such shaders map well to

SIMD hardware.

A more complex shading languages such as RenderMan supports considerably more

flexibility, and Imagine could easily implement more complex features than those sup-

ported by the RTSL.

For example, a natural extension to the current shader functionality would be the ad-

dition of data-dependent loops. One example of a shader for which this would be useful

is noise/turbulence generation where the complexity was dependent on the rendered sur-

face. Surfaces that required a lot of detail (such as those close to the camera) would use

several octaves of noise, whereas surfaces that required less detail might only use a single

octave. Imagine could process each element with a data-dependent number of noise loops

to implement this effect.

Imagine does not easily permit arbitrary control flow, however. For example, subrou-

tines would not easily map onto kernels because the Imagine implementation does not sup-

port them. Fortunately, the combination of inlined function calls, kernel composition, and
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conditional streams is flexible enough to allow the implementation of shaders with fairly

complex control demands.

7.2.2 Alternate Algorithms

Programmability permits the use of multiple algorithms to implement stages in the ren-

dering pipeline. For instance, Section 4.4 describes the implementation of two different

rasterization algorithms. The important result from this implementation is not necessarily

the superiority of one algorithm to the other but instead the realization that either or both

could be used. Not only could the pipeline designer choose one or the other for any given

application, but he could also use both in the same application and allow the renderer to

dynamically and optimally determine which primitives should be associated with which

rasterizers. Other potential algorithmic changes could be dicing in triangle setup to limit

triangle size, more sophisticated culling algorithms, or the support of more varied input

data formats such as higher-order surfaces.

Knowledge about the compile-time characteristics of the pipeline could allow pipeline

optimization. For example, pipelines with disabled blending would benefit from texturing

after depth comparison, which would save texture bandwidth. Pipelines with high depth

complexity and sophisticated shading might benefit from an early depth kill, which could

potentially save shading work.

7.2.3 Hybrid Rendering

A programmable pipeline can feature elements from entirely different pipelines or combine

with them to produce hybrid renderers. Besides the Reyes pipeline described in Chapter 8,

obvious candidates include a raytracing pipeline and an image-based rendering pipeline.

Such pipelines could even include non-graphics elements such as signal processing kernels.
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7.3 Lessons for Hardware Designers

7.3.1 Imagine Architecture

Cluster Architecture

The mix of functional units chosen for the clusters has been a good match for a wide variety

of media applications, including graphics.

Most rendering tasks are either floating-point or integer with little overlap (the only

exceptions would be some of the rasterization code, and perhaps the mipmap calculations);

this result suggests that having functional units which can evaluate both floating-point and

integer computation is a good idea.

The distributed register files have been successful for a wide variety of media appli-

cations and continue to scale with more complex clusters (Section 6.1). Such a cluster

architecture should be well-suited for programmable shading modules in current commer-

cial graphics hardware as well.

Cluster register file allocation is a significant problem, and in retrospect, the register

files are not large enough for some of our more complex kernels. Informally, cluster com-

plexity is measured by the number of operations in the main loop, and kernels usually will

register allocate with main loops of under 600 operations, will rarely register allocate if the

main loop has more than 1000 operations, and may or may not register allocate in between

that range. These figures could probably improve with better kernel scheduling algorithms,

as the current ones do not take into account register pressure. Scheduling kernels on clusters

with shared interconnect and distributed register files while considering register pressure is

still an open problem.

SRF Architecture

Kernels in our rendering pipeline have a significant amount of computation for each ele-

ment, so the bandwidth from SRF to clusters was not a limiting factor for performance.

Conditional stream bandwidth, however, did limit performance in many of the kernels (as

described in Section 5.3). Future SRF designs may consider embedding some conditional

stream functionality in the SRF to improve its bandwidth.
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One mistake in our design was in not making the SRF’s block size (32 words) the same

as the cluster count (8 words). As a result, we could only address on block boundaries and

could not specify streams at arbitrary starting locations in the SRF. This caused difficulties

in implementing the sort kernel in particular.

Another design decision was to make all streams multiples of the number of clusters.

Thus all streams had to be “flushed” with bogus data to fill out the streams to the correct

lengths. This did not cause a significant degradation in performance, but it was tedious

to program. Ideally, supporting arbitrary stream lengths would be much easier for the

programmer.

More flexible streams in the SRF would probably aid the stream scheduler’s allocation

of the working set of streams within the SRF. For example, not requiring that the entirety

of a stream be allocated in a contiguous portion of the SRF memory (instead allowing

multiple blocks to be chained together) might make better use of the space in the SRF.

Another interesting feature of a future SRF would be the ability to address both backwards

and forwards. This functionality would be useful when a single stream is divided into two

streams (for example, the hash kernel divides a single fragment stream into conflicting and

unique streams). Then the output streams could be allocated in a block the same size as the

index stream, with one output stream starting from the beginning and the other from the

end, filling toward each other.

Further SRF functionality is also necessary to support more flexible overflow modes,

such as partial double buffering (described in Section 4.6).

Another interesting direction would be the support of “virtual streams” in the stream

register file, addressable by kernels. Imagine kernels can address a combination of 8 input

or output streams, but some potential kernel algorithms could address many more. Two

algorithms that were discussed were implementing Warnock’s Algorithm [Warnock, 1969]

and implementing a radix sort.
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7.3.2 Software Issues

Language Decisions

The decision to use a higher-level language (KernelC) to specify kernels was an excellent

one. Of course specifying programs in a higher-level language is more convenient than

writing assembly.

But more importantly, the kernel scheduler performs a vital function. Our clusters

contain several functional units connected through a switch. We have demonstrated that

our media applications in general have made use of this large number of functional units.

Scheduling the functional units with their variable latencies, the register files that feed them,

and the switch that connects them is quite a difficult task, perhaps one that is impossible

to do efficiently by hand. However, the kernel scheduler efficiently handles this complex

hardware and produces schedules that are typically close to the theoretical (critical-path-

bound) limit.

Thus, scheduling to complex hardware with a high-level language and automated tools

is not only possible but also desirable. In addition, writing in the higher-level language

allows both portable code and code that migrates easily to new cluster configurations (such

as those in Section 6.1).

One promising direction of research is the unification of the kernel and stream levels

of code. StreaMIT [Gordon et al., 2002] is one effort toward this goal, and the results of

Stanford’s Brook programming language for streams are also encouraging.

Software Pipelining

Software pipelining (SWP) is used at both the kernel and stream levels of programming. It

has proven to be a valuable technique at both levels.

SWP at the kernel level is supported by hardware to squash inappropriate writes in

inactive pipeline stages. For most kernels, particularly those with larger critical-path-to-

computation ratios, SWP delivers significant performance gains, often from 50 to 100 per-

cent. On the minus side, it contributes to the prime/drain cost of short streams, and it

increases register pressure, but overall, it is well worth the additional hardware cost. As a

bonus, SWP for kernels is provided transparently to the user. Future hardware may be able
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to eliminate the cost of priming software-pipelined conditional streams in the prologue as

well, which will reduce their associated short-stream effects.

At the stream level, SWP helps to keep the critical units busy. For Imagine, on the

scenes we studied, the critical unit is the clusters, and SWP keeps their occupancy high by

overlapping two batches and ensuring memory accesses in one batch are covered by cluster

computation in the other.

Producing SWP at the stream level has no hardware support and the software support

takes considerable effort from the user; the software pipeliner could be improved as well.



Chapter 8

Reyes on a Stream Architecture

As graphics hardware continues to make remarkable gains in performance, it will render

increasingly complex scenes. The efficiency and flexibility of pipelines such as OpenGL

are taxed under the current trends of decreasing triangle size and the demand for complex,

programmable shaders. This naturally leads to the question of how alternative pipelines

lend themselves to high-performance implementations. At one extreme of the performance-

realism spectrum is the Reyes rendering pipeline [Cook et al., 1987]. Reyes was designed

at Lucasfilm to render extremely complex scenes with total emphasis on the photorealistic,

high-fidelity imagery targeted by today’s real-time graphics hardware.

In this chapter, we examine the issues associated in implementing the Reyes rendering

pipeline with the goal of real-time frame rates. We also identify several key characteris-

tics of a pipeline that contribute to an efficient implementation: arithmetic intensity, data

reference locality, predictable memory access patterns, and instruction- and data-level par-

allelism.

The Reyes pipeline, as well as other graphics pipelines, already contains abundant par-

allelism as well as high arithmetic intensity (the number of operations per fragment). In

addition, the uniform size of the rasterization primitives, called micropolygons, produces a

predictable number of fragments, which simplifies memory allocation and streamlines the

rasterization and fragment-processing steps. We detail our rasterization algorithm, which

takes advantage of these uniform primitives.

Another key aspect of the Reyes pipeline is support of high-level primitives, such as

127
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subdivision surfaces. While subdivision surfaces significantly reduce the amount of mem-

ory bandwidth consumed by loading models, they also introduce additional control com-

plexity. This is especially true for adaptive subdivision schemes because crack prevention

traditionally requires elaborate stitching schemes and non-local knowledge of the surface.

We address these problems by introducing a novel crack prevention algorithm that stores

edge equations of the micropolygons instead of their vertices.

Finally, we compare our implementation of the Reyes pipeline to an OpenGL pipeline

on Imagine. Using Imagine as a common substrate for comparison on several scenes, we

identify the relative strengths and weakness of both approaches. We show that on several

scenes with complex shading, OpenGL delivers superior performance to Reyes. Specifi-

cally, the high computational cost of the subdivision and the large number of micropolygons

produced that did not contribute to the final image are the primary impediments to making

a Reyes implementation competitive with OpenGL.

8.1 Comparing the OpenGL and Reyes Rendering Pipelines

8.1.1 OpenGL

OpenGL is the basis of the pipeline described in Chapter 4. It consists of the following

stages:

Transformations and vertex operations Objects are specified in object space and are

transformed to eye space, where per-vertex operations, such as lighting and other

shading operations, are performed. Recent hardware has added user programmabil-

ity to this stage [Lindholm et al., 2001].

Assemble/Clip/Project Triangles are assembled from vertices, transformed to clip space,

clipped against the view frustum, and projected to the screen.

Rasterize Screen-space triangles are rasterized to fragments, all in screen space. Per-

vertex parameters are interpolated across the triangle.
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Fragment operations Per-fragment operations, such as texturing and blending, are ap-

plied to each fragment. Like the vertex operations stage, this stage supports increas-

ing user programmability.

Visibility/Filter Visibility is resolved in this stage, usually through a depth buffer, and

fragments are filtered and composited into a final image.

8.1.2 Reyes

The Reyes image rendering system [Cook et al., 1987] was developed at Lucasfilm and

Pixar for high-quality rendering of complex scenes. The system, developed in the mid-

1980’s, was not designed at the time for real-time rendering but instead for rendering more

complex scenes with higher image quality and rendering times from minutes to hours.

Reyes is the basis for Pixar’s implementation of the RenderMan rendering interface [Up-

still, 1990].

The Reyes pipeline has four main stages, described below. The primary rendering

primitive used by Reyes is the micropolygon or quad, a flat-shaded quadrilateral. In the

original Reyes implementation, quads were no larger than 1/2 pixel on a side1, but typical

quads in modern Reyes-like implementations are on the order of 1 pixel in area because

modern shaders are self-antialiasing.

Dice/Split Inputs to the Reyes pipeline are typically higher-order surfaces such as bicubic

patches, but Reyes supports a large number of input primitives. Primitives can split

themselves into other primitives, but each primitive must ultimately dice itself into

micropolygons. Dicing is performed in eye space1.

Shade Shading is also done in eye space by procedurally specified shaders. Because mi-

cropolygons are small, each micropolygon is flat-shaded.

Sample Micropolygons are projected to screen space, sampled, and clipped to the visi-

ble view area. Reyes uses a stochastic sampling method with a variable number of

1Our implementation differs from the traditional Reyes approach in quad size, subsampling, and dice
space, as described in Section 8.2.
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Figure 8.1: Reyes vs. OpenGL. The left column shows stages in a generic pipeline; the
middle and right columns show the specific stages in Reyes and OpenGL. Shaded stages
are programmable.

subpixels per pixel (16 in the original Reyes description2).

Visibility/Filter Visibility is resolved using a depth buffer with one sample per subpixel,

then the visible surface subpixel values are filtered to form the final image.

8.1.3 Differences between OpenGL and Reyes

Both pipelines are similar in function, as shown in Figure 8.1. In both, the application pro-

duces geometry in object coordinates, which are then shaded, projected into screen space,

rasterized into fragments, and composited using a depth buffer. However, the pipelines dif-

fer in three important ways: shading space, texture access characteristics, and the method

2Our implementation differs from the traditional Reyes approach in quad size, subsampling, and dice
space, as described in Section 8.2.
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of rasterization.

• The OpenGL pipeline shades at two stages: on vertices in eye coordinates (typically

lighting calculations, and more recently programmable vertex shaders), and on frag-

ments in screen coordinates (typically textures and blends, and more recently pro-

grammable fragment shaders). The Reyes pipeline supports a single shading stage

on micropolygon vertices in eye coordinates.

• In OpenGL, texturing is a per-fragment screen-space operation; to avoid visual arti-

facts, textures are filtered using mipmapping [Williams, 1983]. Texture accesses are

incoherent from texel to texel. In Reyes, texturing is a per-vertex eye-space opera-

tion. Reyes supports “coherent access textures” (CATs) for many classes of textures

including standard projective textures. CATs require surface dicing at power-of-two

resolutions but cause texels in the texture pyramid to align exactly with the vertices of

the quads. Therefore, when accessing CATs, texture filtering is unnecessary, and tex-

els in adjacent micropolygons can be accessed sequentially with significant savings in

computation and memory bandwidth. Not all textures can be accessed coherently—

non-CATs include environment maps, bump maps, and decals.

• OpenGL’s primitive is a triangle. Objects are specified in triangles, and the ras-

terization stage of OpenGL must be able to rasterize triangles of arbitrary size. The

primitive for the Reyes pipeline is the micropolygon, whose size is bounded in screen

space to a half-pixel on a side. Micropolygons are created in eye space during the

dice stage of the pipeline, so the dicer must make estimates of the screen coverage of

the generated micropolygons.

The fundamental differences in Reyes—single shader, coherent texture accesses, and

bounded primitives—are all desirable properties for hardware implementation. Supporting

only one programmable unit rather than two is a simpler task for hardware designers. Co-

herent accessed textures both reduce texture demand from the memory system and increase

achievable memory bandwidth.

Bounded-size primitives (particularly small ones such as those in Reyes) have several

advantages. The rasterizer does not have to handle the complexity of arbitrary sized primi-

tives, so bounded-sized primitives can be rasterized with simpler algorithms and hardware
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than unbounded ones. Moreover, every sample within a bounded primitive can be computed

in parallel because the total number of possible samples is small and bounded. Evaluating

several bounded-size primitives in parallel load-balances better than unbounded primitives.

And storage requirements for generated samples are much more easily determined with

bounded primitives than with unbounded ones.

8.1.4 Graphics Trends and Issues

How do these pipelines cope with the issues facing graphics hardware designers of today?

Decreasing Triangle Size

As graphics hardware has increased in capability, models have become more detailed, and

triangle size has decreased. The efficiency of factoring work between the vertex and frag-

ment levels in OpenGL is one of the primary reasons that it is the dominant hardware

organization today.

The shading work in OpenGL pipelines is divided between vertices and fragments.

Vertex-level shading calculations are performed on each vertex. These results are interpo-

lated during rasterization and then used as inputs to the fragment shader, which evaluates a

shading function on each fragment.

Because interpolation is cheaper than evaluating the entire shading function at each

fragment, and because the number of fragments in a scene is typically many times the

number of triangles, this factorization of shading work into the vertex and fragment levels

reduces the overall amount of work for the scene.

However, as triangle size continues to decrease, the benefits of this factorization become

less significant. For scenes in which the average triangle size is 1 (the numbers of triangles

and fragments are equal), there is no benefit.

Host and Memory Bandwidth

Host and memory bandwidth are both precious in modern graphics processors. Reduc-

ing the necessary memory bandwidth is achieved by a variety of techniques as texture

caches [Hakura and Gupta, 1997], prefetching [Igehy et al., 1998a], and memory reference
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reordering [Rixner et al., 2000a]. Parallel interfaces are among the methods used to reduce

host bandwidth [Igehy et al., 1998b].

The Reyes pipeline, by supporting higher-order datatypes, can reduce host bandwidth

over sending a stream of triangles. And Reyes’ coherent access textures can also help

reduce the necessary bandwidth to texture memory.

8.2 Imagine Reyes Implementation

Our Reyes implementation follows the description in Section 8.1.2. We begin by projecting

the control points of the input B-spline to screen space. We then subdivide in screen space,

ensuring that no quad is larger than a fixed size. Because in this implementation we do not

support supersampling, we do not subdivide all the way to Reyes’ traditional 0.5 pixel area

limit. The effects of different subdivision limits are discussed in Section 8.4.2.

After subdivision, we transform the resulting quad positions and normals back into eye

space for shading. This differs from the traditional Reyes implementation, which subdi-

vides in eye space with knowledge of screen space. Quads are then shaded in eye space

using the RTSL-generated shader. Next, the sampling kernel inputs quads and outputs

fragments, which are composited to make the final image.

8.2.1 Subdivision

The subdivision step of the Reyes pipeline is responsible for dividing the high-level prim-

itives into micropolygons. We chose to implement the Catmull-Clark [Catmull and Clark,

1978] subdivision rules to refine these high-level surfaces3, allowing native support of sub-

division, B-Spline, and Bezier surfaces. The subdivision boundary rules are also included,

so effects such as sharp creases in the subdivision surfaces are possible.

Subdivision begins with a collection of control points for the surface. In general, these

points can be arranged in an arbitrary topology, but for our implementation we assume a

quadrilateral mesh. The subdivision kernel begins by selecting an initial quad from the

3Other subdivision schemes present similar design issues.
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control mesh and computing the side lengths of that quad. If all the side lengths fall be-

low the stopping threshold4, the quad is considered complete and is output by the kernel.

Otherwise, the quad must be subdivided further, producing four, smaller quads. Now, one

of these quads is selected and tested for completion. This process continues as a depth-

first traversal of the quad-tree associated with the original control mesh with the leaf depth

determined by the screen size of the associated quad. Since each stage of the subdivision

requires testing the side lengths in pixels of the quads, this step is naturally performed in

screen space.

The depth-first traversal has a key storage advantage—the number of live data values

needed at any one time to produce a final set of N fragments is O(log N). This is in

contrast to a triangle-based approach, where each rasterization primitive is part of the input

set and therefore O(N) live values are needed to produce the N fragments of a complex

surface. While the storage efficiency is useful in any Reyes implementation, it is especially

important in an efficient hardware implementation: the ability to produce a large number of

fragments from a small amount of control information saves critical memory bandwidth.

However, realizing this savings in memory bandwidth presents several implementation

challenges. A naive adaptive subdivision algorithm could use a completely local stopping

criterion. However, if neighboring quads are subdivided at different levels, cracks in the

final surface can appear. Typical algorithms for eliminating cracks involve a stitching pat-

tern to reconnect the surface [Müller and Havemann, 2000], which can be used in concert

with a global rule such as limiting the difference in subdivision levels for neighboring

quads [Zorin and Schröder, 2000]. However, these approaches are not attractive in stream

processors for several reasons. First, the control decisions and number of possible stitching

patterns make an efficient data-parallel implementation difficult. Secondly, using global

information to determine the stitching pattern can defeat the O(log N) storage requirement

and also increase the complexity of memory access patterns, while also decreasing the

efficiency of the stream implementation.

We tackle the problem of surface cracks by implementing a novel and completely lo-

calized solution: instead of describing the final micropolygons using their corner vertices,

4The stopping threshold in our implementation is 1.5 pixels; the effects of different thresholds are dis-
cussed in Section 8.4.2.
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Figure 8.2: An Example of Crack Prevention Using Edge Equations. The dark gray quad is
completed at the ith subdivision level, while the light gray quad is completed at the i + 1th

level. By storing the shared edge as soon as it meets the subdivision criterion, no cracks
are created.

they are represented using four edge equations. During subdivision, edge lengths are con-

tinually tested to determine if a quadrilateral requires further refinement. Instead of waiting

until all four edges meet the length threshold, our approach freezes the final edge equations

of a quad immediately after they fall below the threshold. Once all four edges have been

stored, the final quad is output. This implies that the four edge equations may come from

different levels of refinement. However, the edges of a quad are always consistent with its

neighbors because the length criterion used on an edge shared between two quads is con-

sistent. This consistency between shared edges is sufficient to prevent cracks in the final

surface.

An example of this algorithm in shown in Figure 8.2. First, the control points of the

mesh at level i are shown as unfilled circles. At level i of the refinement, all the edges of

the right quad have fallen below the stopping threshold. The right quad, whose interior is

shown in dark gray, is then complete and output at the ith level of refinement. The right

edge of the left quad has fallen below the threshold, so it is stored. However, the other edges

of the left quad require further subdivision, so refinement continues. The vertices produced

at the i + 1th level of refinement are shown as filled circles. The subdivision algorithm

perturbs the four vertices of the previous quad and also introduces five new vertices. At

this point, the edge lengths of the upper-right sub-quad are tested and found to be below

the threshold. This quad, whose interior is shown in light gray, is then output, using three
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edge equations from the i + 1th subdivision level and one from the ith. Now the importance

of storing edge equations becomes clear. The four vertices of the second quad do not

necessarily abut the first quad because the refinement can perturb them. However, by using

the edge equation from the previous subdivision level to define the right side of the second

quad, a crack between the two quads is avoided.

8.2.2 Shading

Shaders are generated from the same RTSL description as in the OpenGL implementation.

However, because Reyes has only one stage in the pipeline for shading, RTSL’s vertex and

fragment frequencies are collapsed into a single frequency. The generated shader kernel

projects the screen-space vertices and normals back into eye space, computes the shading

function (using coherent access textures if necessary), and outputs a single color per vertex.

8.2.3 Sampling

The sampling stage was implemented as a simple bounding-box rasterizer. Since the sub-

divider described above guarantees that the micropolygon to be drawn is under a certain

size, only a small number of pixel locations need to be tested against the four line equations

for the micropolygon. The bounded size of the micropolygons leads to two performance

improvements over a rasterizer found in the OpenGL pipeline: good load balancing when

run under SIMD control and flat shading within the micropolygon with no necessary in-

terpolation. The original Reyes pipeline used stochastic sampling [Cook, 1986], providing

many subsamples per pixel with slightly non-regular sample locations. This scheme was

not used for our implementation in order to provide a fair comparison with the OpenGL

pipeline. However, it would be straightforward to extend the current sampler to support

stochastic sampling.

Reyes is particularly well suited to more complex sampling effects such as depth of

field and motion blur. The cost of implementing these effects is merely reprojecting and

resampling with no reshading, a much smaller cost than accomplishing the same effects in

OpenGL using the accumulation buffer. Our implementation could easily be extended to

support these effects.
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8.2.4 Composite and Filter

This stage is identical to our OpenGL implementation. Filtering is not currently imple-

mented but could be added in one of two ways. First, subpixels could be composited

separately (effectively, a framebuffer with higher resolution) without maintaining a con-

current image at final resolution, and at the end of a frame, subpixels would be filtered

as a postpass to create the final image. Second, subpixels are still composited separately

but a image at final resolution is concurrently maintained. The second method requires an

extra color read and write (for maintaining the image at final resolution) for each sample so

potentially uses more memory bandwidth for high-depth complexity scenes. However, it

alleviates the massive burst of memory bandwidth necessary if the final image is generated

at the end of the scene.

8.3 Experimental Setup

For the results in this paper we use the Imagine cycle-accurate simulator isim and func-

tional simulator idebug, described in Section 5.1. The OpenGL scenes are measured

with isim, the Reyes (because of tool issues) with idebug. Because of the differences

between the two (idebug does not model kernel stalls or cluster occupancy effects), isim

results are on average 20% slower than idebug, so all idebug results are scaled by 20%

to match the more accurate simulator.

Our Reyes implementation also made slight changes to the simulated Imagine hard-

ware. The most significant was increasing the size of the dynamically addressable scratch-

pad memories in each cluster from 256 to 512 words. These scratchpads are used to imple-

ment the working set of quads in the depth-first traversal during adaptive subdivision, and

having a larger scratchpad was vital for kernel efficiency. Second, the size of the microcode

store and the local cluster register files were increased. We expect future improvements to

the Reyes implementation and the software tools will allow us to return the microcode store

and cluster register file sizes to the same size as the Imagine hardware.
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Scene Visible Frags Tris Avg. Tri Size Patches Quads
TEAPOT-20 137k 23.5k 11.6 28 574k
TEAPOT-30 137k 52.1k 5.26
TEAPOT-40 137k 91.8k 2.99
TEAPOT-64 137k 233k 1.18

PIN 80.0k 91.6k 2.29 12 486k
ARMADILLO 48.9k 93.7k 3.83 1632 328k

Table 8.1: Statistics for OpenGL and Reyes Scenes.

8.3.1 Scenes

All scenes are rendered into a 720×720 window. Datasets, textures, cleared depth and

color buffers, and kernels are located in Imagine memory at the beginning of the scene. For

OpenGL scenes, the input dataset is expressed as subdivided triangle meshes; for Reyes

scenes, the input dataset consists of B-spline control points.

We compare three scenes:

• TEAPOT renders the Utah teapot lit by three positional lights with diffuse and spec-

ular lighting components. The OpenGL version of the teapot is drawn at several

subdivision levels (indicated as TEAPOT-N, where each patch is diced into 2N2 tri-

angles) to show performance as a function of triangle size. References to TEAPOT in

the context of OpenGL are to TEAPOT-20.

• PIN draws the bowling pin from the UNC Textbook Strike dataset (described in Sec-

tion 5.1).In OpenGL, we render this scene as PIN-1 and PIN-8, which use point sam-

pled and mipmapped textures, respectively. The Reyes version uses a single coherent

and properly filtered access per texture per fragment.

• ARMADILLO renders the Stanford armadillo with a single light and a complex mar-

ble procedural shader. The shader calculates a turbulence function identical to the

MARBLE scene described in Section 5.1.

Details for the scenes are summarized in Table 8.1.
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Figure 8.3: Simulated runtime for our scenes. OpenGL scenes run an order of magnitude
faster than Reyes scenes.

8.4 Results and Discussion

Figure 8.3 shows our simulated performance for OpenGL and Reyes scenes. We see that

OpenGL scenes enjoy a significant performance advantage over their Reyes counterparts.

There are two reasons for this. First, in Reyes, scenes spend the majority of their time in

subdivision, a stage not present in the OpenGL pipeline. Second, our Reyes implementation

produces many quads that cover no pixels and do not contribute to the final image. We

discuss these points in more detail below in Sections 8.4.1 and 8.4.2.

8.4.1 Kernel Breakdown

Figure 8.4 classifies the time spent computing each scene into five categories: geometry,

rasterization, composition, and the programmable vertex and fragment programs. Subdivi-

sion is considered part of the geometry stage, and the vertex program in Reyes encompasses
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Figure 8.4: Stage breakdown of work in each scene. All scene runtimes are normalized to
100%. The first 4 scenes are OpenGL scenes; the next 3 are Reyes scenes; and the final
3 are Reyes scenes with the subdivision runtime (normally part of the Geometry stage)
removed.

all the shading work for the scene because Reyes does not have a fragment program.

We see that Reyes runtime is dominated by geometry processing, in particular the sub-

division kernel. On average, this kernel takes 82% of the runtime.

OpenGL does not have a subdivision stage because its primitives are subdivided either

at compile time or by the host. When subdivision is removed from the Reyes accounting,

the two pipelines have more similar stage breakdowns. The Reyes pipelines spend compar-

atively more time in the shading stages than do the OpenGL pipelines, with the exception

of the OpenGL PIN-8 scene. Mipmapping is an expensive operation computationally (sim-

ply adding mipmapping to PIN-1 cut the resulting OpenGL performance in half), so the

amount of time spent in shading in this scene was greater than its Reyes counterpart, which

did not require texture filtering.

Rasterization is considerably simpler in the Reyes scenes for two reasons. First, de-

termining pixel coverage of bounded primitives is computationally easier and more paral-

lelizable than unbounded primitives. Second, the primitives in Reyes are smaller and have

less computation. OpenGL implementations must carry all their interpolants through their

rasterizers, while a Reyes sampler must only carry a single color.
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Figure 8.5: Quad Size for PIN. Other scenes have similar characteristics. Each data point
represents the percentage of quads in PIN that cover a certain number of pixels given a
certain stop length. Lines indicate points associated with the same subdivision stop length.
Our implementation has a stop length of 1.5 pixels.

8.4.2 Reyes: Subdivision Effects

Even with a zero-cost subdivision, the Reyes scenes are still about half the performance

of their OpenGL equivalents. This cost is largely due to shading and rasterization work

performed on quads that cover no pixels. Ideally, each quad would cover a single pixel.

Quads that cover more than one pixel introduce artifacts, while quads that cover zero pixels

do not contribute to the final image.

Figure 8.5 shows the distribution of pixels covered by quads for PIN for several different

subdivision stopping criteria (no quad side greater than a certain length). Our implementa-

tion stops subdividing when all quad sides are less than 1.5 pixels in length.

In practice, the majority of quads cover no pixels at all, even for larger stop lengths. On

our three scenes, with a stop length of 1.5 pixels, zero-pixel quads comprise 73–83% of all

generated quads. Even when we double the stop length to 3.0 pixels, we still find that over

half of all quads generated do not cover any pixels. As a result, our implementation spends
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Figure 8.6: TEAPOT performance at several stop lengths, normalized to a stop length of 1.0
pixels. Our implementation has a stop length of 1.5 pixels.

a significant amount of time shading and sampling quads that produce no fragments.

To improve performance, we could consider reducing the number of zero-pixel quads

that are passed through the latter half of the pipeline. At the cost of additional computation,

a test could be performed before shading and sampling that tested whether the quad covered

any fragments. Alternatively, at the cost of slightly more artifacts due to multiple fragments

covered by the same quad, the stop length could be increased, resulting in a significant

decrease in the number of quads and hence a decrease in runtime. Increasing the stop

length from 1 to 1.5 for PIN, for instance, cuts the number of quads produced by more than

a factor of 2 (1,121k to 486k). Doubling the stop length to 3 further decreases the number

of quads (to 121k).

Figure 8.6 shows the performance impact of varying the stop length. Subdivision and

geometry/vertex operations decrease with an increased stop length. Because the number

of quads decreases (though the total number of fragments covered does not), rasterization

work also declines, although not at the same rate. Composition is unaffected.

Also important are datasets that are well-behaved under subdivision. Many of our
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Figure 8.7: TEAPOT performance at several subdivision levels, normalized to TEAPOT-64
= 100%. The benchmark described in Section 5.1 is TEAPOT-20.

patches, when subdivided, generated quads with irregular aspect ratios that covered no

pixels. Partially this is because when we subdivide a quad, we always generate 4 quads; at

the cost of additional computation, subdividing in only one direction instead of both would

significantly aid the quality of the generated quads. Choosing both a subdivision scheme

that produces well-behaved data and a dataset that conforms well to the subdivision scheme

is vital for achieving high efficiency.

8.4.3 OpenGL: Triangle Size Effects

Similarly, OpenGL performance degrades as triangles become smaller. Figure 8.7 shows

TEAPOT’s performance at different subdivision levels. As triangles shrink, the vertex pro-

gram, geometry, and rasterization cost grows rapidly. TEAPOT-64, with Reyes-sized prim-

itives (an average triangle size of 1.18 pixels), has more than twice the runtime of TEAPOT-

20, our benchmark scene.

Small triangles make OpenGL’s performance suffer for the same reasons that Reyes’

performance is poor. The shading work increases with the number of triangles, and much
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of the rasterization work is also per-triangle.

8.4.4 Toward Reyes in Hardware

Many parts of our pipeline are well-suited for programmable stream hardware such as

Imagine. The vertex programs for our three Reyes scenes, for instance, sustain an average

of 24.5 operations per cycle in their main loops. The sampling algorithm is also efficient,

and both would benefit in future stream hardware from more functional units to exploit

further levels of instruction-level parallelism.

But subdivision cost dominates the runtime of our Reyes scenes, so continued inves-

tigation of subdivision algorithms and hardware is vital. The ideal subdivider has several

properties:

Adaptive Uniform subdivision, while simple to implement, is inappropriate for a general

subdivider. Uniformly subdividing a patch with part of that patch requiring a fine

subdivision means that the entire patch will also be divided finely. This could lead to

a huge number of produced quads, most of which would not contribute to the final

image.

High performance Ideally, the subdivider would not dominate the runtime of the entire

scene.

Artifact free Subdividers must take care that neighboring quads at different subdivision

levels do not allow cracks to form as a result of the different levels. Our algorithm,

with its use of line equations to represent quad boundaries, guarantees cracks will

not occur.

Efficient The ideal subdivider would not output any quads that did not contribute to the

final image. Our subdivider does poorly on this point, but could potentially improve

at the cost of more computation by testing for pixel coverage before outputting quads

or by improving quad quality by allowing subdivision in only one direction.

In the future, we hope to explore other subdivision algorithms that might better address

some of the above points. As well, other subdivision schemes and algorithms may be
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better candidates for our hardware and programming system. For example, Pulli and Segal

explore a Loop subdivision scheme that is amenable to hardware acceleration [Pulli and

Segal, 1996]; Bischoff et al. exploit the polynomial characteristics of the Loop scheme

with another algorithm for efficient subdivision [Bischoff et al., 2000].

Investigating what functional units and operations would allow stream hardware to bet-

ter perform subdivision would be an interesting topic for future research. Alternatively, our

pipelines are implemented in programmable hardware, but due to its large computational

costs and regular computation, subdivision may be better suited for special purpose hard-

ware. Hybrid stream-graphics architectures, with high-performance programmable stream

hardware evaluating programmable elements such as shading and special-purpose hard-

ware performing fixed tasks such as subdivision, may be attractive organizations for future

graphics hardware.

8.5 Conclusion

We have shown that although Reyes has several desirable characteristics—bounded-size

primitives, a single shader stage, and coherent access textures—the cost of subdivision

in the Reyes pipeline allows the OpenGL pipelines to demonstrate superior performance.

Continued work in the area of efficient and powerful subdivision algorithms is necessary to

allow a Reyes pipeline to demonstrate comparable performance to its OpenGL counterpart.

As triangle size continues to decrease, Reyes pipelines will look more attractive. And

though the shaders we have implemented are relatively sophisticated for today’s real-time

hardware, they are much less complex than the shaders of many thousands of lines of code

used in movie production. When graphics hardware is able to run such complex shaders

in real time, and the cost of rendering is largely determined by the time spent shading, we

must consider pipelines such as Reyes that are designed for efficient shading.

Furthermore, as graphics hardware becomes more flexible, multiple pipelines could be

supported on the same hardware, as we have done with our implementation on Imagine.

Both the OpenGL and Reyes pipelines in our implementation use the same API, the Stan-

ford Real-Time Shading Language, for their programmable elements. Such flexibility will

allow graphics hardware of the future to support multiple pipelines with the same interface
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or multiple pipelines with multiple interfaces, giving graphics programmers and users a

wide range of options in both performance and visual fidelity.



Chapter 9

Conclusions

Computer graphics, a complex task with high computational demand, is an increasingly

important component in modern workloads. Current systems for high-performance ren-

dering typically use special purpose hardware. This hardware began as a fixed rendering

pipeline and, over time, has added programmable elements to the pipeline.

In this dissertation, we take a different direction in the design and implementation of

a rendering system. We begin with a programming abstraction, the stream programming

model, and a programmable processor, the Imagine stream processor, and investigate their

performance and suitability for the rapidly evolving field of computer graphics.

We find that the stream programming model is well suited to implement the rendering

pipeline, that it both efficiently and effectively utilizes the stream hardware and is flexible

enough to implement the variety of algorithms used in constructing the pipeline. Because

of its programmability, such an architecture and programming system is also well posi-

tioned to handle future rendering tasks as we move toward graphics solutions that have

the real-time performance of today’s special-purpose hardware and the photorealism and

complexity of the best of today’s computer-generated motion pictures.

9.1 Contributions

The contributions of this dissertation are in several areas.

147
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The Rendering Pipeline First, the development of the stream framework for the ren-

dering pipeline and the algorithms used in the kernels that comprised it are significant

advances in the field of stream processing. In particular, the rasterization pipeline and the

mechanism for preserving ordering were difficult problems that are solved with efficient

and novel algorithms. The framework is suited for not only a single pipeline but also alter-

nate pipelines as well as hybrid pipelines; in this work we describe two complete pipelines,

an OpenGL-like pipeline and a Reyes-like pipeline.

The algorithms employed also exploit the native concurrency of the rendering tasks, ef-

fectively utilizing both the instruction-level and data-level parallelism inherent in the tasks.

Finally, the shading language backend that generates the vertex and fragment programs

produces efficient Imagine kernel and stream code while still allowing shader descriptions

in a high-level language.

Performance Analysis As a result of this dissertation work, we identify several impor-

tant factors in achieving high performance on a stream implementation. One of the pri-

mary goals of any stream implementation must be to make the internal streams as long

as possible while not spilling to memory. We see that, absent special purpose hardware,

stream implementations on stream hardware are likely to remain fill-limited for OpenGL-

like pipelines. We compare the barycentric and scanline rasterizers and conclude that while

scanline rasterizers have superior performance today, the trends of more interpolants and

smaller triangles lead to barycentric implementations becoming more attractive as those

trends progress. And we observe that, with computation-to-bandwidth ratios like Imag-

ine’s, computation, rather than memory bandwidth, is the limit to achieving higher per-

formance. Finally, the task of adaptive subdivision is a significant challenge to efficient

implementations of pipelines such as Reyes that must perform tessellation as part of their

pipelines.

Scalability The implementation is well-suited to future generations of stream hardware

that feature more capable hardware: more functional units per cluster, more communication

between clusters, more clusters, and larger stream register files. We see that increasing

any of these metrics increases the performance of our pipeline, and moreover, that these
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increases are orthogonal. In particular, the addition of more clusters and with them, data-

level parallelism, offers near-linear speedups, limited only by the increasing demand on

memory bandwidth.

9.2 Imagine Status

The work described in this dissertation has been validated using cycle-accurate simulations

of the Imagine Stream Processor. However, a prototype of Imagine has been developed

concurrently with Imagine’s tool and applications and with this dissertation. A silicon

implementation of Imagine was delivered on 1 April 2002. At the time of submission of this

dissertation (October 2002), the Imagine prototype was running several complete stream

applications with a clock speed of 288 MHz. Continued board and application development

and debugging, in addition to efforts to increase Imagine’s clock speed and host bandwidth,

are actively under way. The rendering pipelines described in this dissertation have not yet

been tested on the Imagine prototype.

9.3 Future Research

This work naturally leads to a number of future directions that may lead to further advances

in stream algorithms and implementations and lead to graphics systems that deliver even

higher performance with even more flexibility.

Higher order surfaces OpenGL systems today typically use triangle meshes or vertex ar-

rays as their primary input primitive. However, we have demonstrated that vertices

account for the major portion of bandwidth in our scenes.

Reducing bandwidth is an important goal. Reyes uses higher-order surfaces to achieve

a bandwidth reduction in input primitives, but an efficient implementation on stream

hardware has been elusive. Future work could identify particular surface represen-

tations and algorithms that are best suited for stream hardware and the stream pro-

gramming model.
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More complex shadersOur shaders have simple control flow and are perfectly parallel.

Future shaders will surely have more complex control flow, and rethinking and de-

signing the necessary control constructs to support them is a vital direction for future

hardware. Should the ideal shader architecture support arbitrary programmability,

with pointers, procedure calls, and a high-level abstraction? The rapid improvement

in shader programmability will bring these issues to the forefront in the near future.

Imagine tools and hardware support In the course of this work, Imagine’s tools were

constantly improved to support more complicated tasks, but both the software and

the hardware to support it could continue to improve in several ways. Better regis-

ter allocation algorithms would greatly aid kernel development; automatic software

pipelining and the compile-time allocation decisions would help at the stream level.

Dynamic allocation of stream resources (such as partial double buffering or efficient

spilling) requires significant change in both the tools and the hardware that supports

them. Finally, integration of more host capabilities onto the stream processor die will

remove many of the host effects we see in our results.

Cluster architecture Imagine’s clusters were optimized for very different tasks than graph-

ics. Though the instruction set and functional unit mix have both proven to be ap-

plicable to rendering tasks, designing a stream machine optimized for graphics may

well have a very different functional unit and instruction mix. What primitives could

improve the efficiency of rendering tasks and still be applicable across the entire

pipeline? Would increasing the cluster word width to 128 bits (as in NVIDIA vertex

hardware) cause a corresponding increase in performance?

System organization We discussed the relevant differences between the task-parallel and

time-multiplexed organizations. Further analysis of these differences, and the rami-

fications of combining the two organizations, may well lead to superior architectures

in the next generation of graphics hardware. As well, investigation of the best way

to apply special-purpose components to future graphics hardware, particularly in the

context of these two organizations, will be a fruitful research direction.

Multi-node stream systemsFinally, we have not explored the next axis of parallelism: the
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task level. The stream programming model is well-suited to identifying the necessary

communication paths in a multi-node implementation; adapting this work to such an

implementation will allow ever higher levels of performance and spur the continued

development of suitable algorithms and tools for stream architectures.
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