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Abstract

Textures can describe a wide variety of natural phenomena with random variations over

repeating patterns. Examples of textures include images, motions, and surface geometry.

Since reproducing the realism of the physical world is a major goal for computer graphics,

textures are important for rendering synthetic images and animations. However, because

textures are so diverse it is difficult to describe and reproduce them under a common frame-

work.

In this thesis, we present new methods for synthesizing textures. The first part of the

thesis is concerned with a basic algorithm for reproducing image textures. The algorithm

is easy to use and requires only a sample texture as input. It generates textures with per-

ceived quality equal to or better than those produced by previous techniques, but runs two

orders of magnitude faster. The algorithm is derived from Markov Random Field texture

models and generates textures through a deterministic searching process. Because of the

use of this deterministic searching, our algorithm can avoid the computational demand of

probability sampling and can be directly accelerated by a point searching algorithm such

as tree-structured vector quantization.

The second part of the thesis concerns various extensions and applications of our tex-

ture synthesis algorithm. Texture synthesis can be used to remove undesirable artifacts in

photographs and films such as scratches, wires, pops, or scrambled regions. We extend our

algorithm for this purpose by replacing artifacts with textured backgrounds via constrained

synthesis. In addition to 2D images, textures can also be used to model other physical phe-

nomena such as 3D temporal textures such as fire, smoke, and ocean waves, as well as 1D

articulated motion signals such as walking and running. Despite the diversity of the dimen-

sionality and generation process of these textures, out algorithm is capable of modeling and
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generating them under a common framework.

Texture mapping has become a ubiquitous tool for realistic image synthesis. However,

it remains difficult to map image textures onto general manifold surfaces. Although algo-

rithms exist for synthesizing a wide variety of textures over rectangular domains, it remains

difficult to synthesize general textures over arbitrary manifold surfaces. In the third part of

this thesis, we present a solution to this problem for surfaces defined by dense polygon

meshes. Our solution extends our basic algorithm by generalizing the definition of search

neighborhoods. For each mesh vertex, we establish a local parameterization surrounding

the vertex, use this parameterization to create a small rectangular neighborhood with the

vertex at its center, and search a sample texture for similar neighborhoods. Our algorith-

m requires as input only a sample texture and a target model. Notably, it does not require

specification of a global tangent vector field; it computes one as it goes - either randomly or

via a relaxation process. Despite this, the synthesized texture contains no discontinuities,

exhibits low distortion, and is perceived to be similar to the sample texture. We demonstrate

that our solution is robust and is applicable to a wide range of textures.

Most existing texture synthesis algorithms take a single texture as input and generate

an output texture with similar visual appearance. Although the output texture can be made

of arbitrary size and duration, those techniques can at best replicate the characteristics

of the input texture. In the fourth part of this thesis, we present a new method that can

create textures in interesting ways in addition to mimic existing ones. The algorithm takes

multiple textures with probably different characteristics, and synthesizes new textures with

combined visual appearance of all the inputs. We present two important applications of

multiple-source synthesis: generating texture mixtures and solid textures from multiple 2D

views.

In the fifth part of the thesis, we provide designs and extensions to target our algo-

rithm for real-time graphics hardwares and applications. Unlike certain procedural texture

synthesis algorithms which can evaluate each texel independently on the fly, our algorith-

m requires texels to be computed sequentially in order to maintain the consistency of the

synthesis results. This limits the feasibility for applying our algorithm for real-time appli-

cations. We address this issue by presenting a new method that allows texels to be com-

puted in any order while guarantees the invariance of the results, thus making it useful for
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real-time applications. We also present possible hardware designs for a real-time texture

generator so that it can replace the traditional texture mapping hardwares.

In the last part of the thesis, we analyze our algorithm behavior and discuss potential

future work.
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Chapter 1

Introduction

Texture is a ubiquitous experience. It can describe a variety of natural phenomena with

repetition, such as sound (background noise in a machine room), motion (animal running),

visual appearance (surface color and geometry), and human activities (our daily lives). S-

ince reproducing the realism of the physical world is a major goal for computer graphics,

textures are important for rendering synthetic images and animations. However, because

textures are so diverse it is difficult to describe and reproduce them under a common frame-

work.

In this thesis, we present new methods for synthesizing textures. The first part of the

thesis is concerned with a basic algorithm for reproducing image textures. We show that

limitations of traditional methods can be overcome by our approach based on search neigh-

borhoods and tree-structured vector quantization. The rest of this thesis concerns with

various extensions of the basic algorithm; the extensions concentrate on either reproduc-

ing textures of different physical phenomena such as motions, or creating textures in novel

ways in addition to mimic existing ones.

This chapter is organized as follows. In Section 1.1, we pose the problem of texture

synthesis. In Section 1.2, we describe some of the applications of texture synthesis. In

Section 1.3, we describe the contributions of this thesis, and in Section 1.4 we outline the

remainder of this thesis.
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2 CHAPTER 1. INTRODUCTION

1.1 Problem Formulation

In this section, we describe the goal of texture synthesis. We begin with a brief discussion

of the definition of textures.

1.1.1 What is a Texture?

Reproducing detailed surface appearance is important to achieve visual realism in computer

rendered images. One way to model surface details is to use polygons or other geometric

primitives. However, as details becomes finer and more complicated, explicit modeling

with geometric primitives becomes less practical. An alternative is to map an image, either

synthetic or digitized, onto the object surface, a technique called texture mapping [11, 6].

The mapped image, usually rectangular, is called a texture map or texture. A texture can

be used to modulate various surface properties, including color, reflection, transparency,

or displacements. In computer graphics the content of a texture can be very general; in

mapping a color texture, for example, the texture can be an image containing arbitrary

drawings or patterns.

Unfortunately, the meaning of texture in graphics is somehow abused from its usual

meaning. The Webster’s dictionary defines texture as follows:

Texture, noun [1578]

(a) something composed of closely interwoven elements; specifically a woven cloth

(b) the structure formed by the threads of a fabric ...

In other words, textures are usually refered to as visual or tactile surfaces composed

of repeating patterns, such as a fabric. This definition of texture is more restricted than

the notion of texture in graphics. However, since a majority of natural surfaces consist of

repeating elements, this narrower definition of texture is still powerful enough to describe

many surface properties. This definition of texture is also widely adopted in computer

vision and image processing communities.

In this thesis, we concentrate on the narrower definition of textures, i.e. images con-

taining repeating patterns. Since natural textures may contain interesting variations or im-

perfections, we also allow a certain amount of randomness over the repeating patterns. For
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(a) Texture

Texture Synthesis

(b) Synthesis result

Figure 1.1: Problem Formulation. Given a sample texture (a), our goal is to synthesize a new
texture that looks like the input (b). The synthesized texture is tileable can be of arbitrary size
specified by the user.

example, a honeycomb texture is composed of hexagonal cells with slight variations of size

and shape of each cell. The amount of randomness can vary for different textures, from s-

tochastic (a sandbeach) to purely deterministic (a tiled floor). This definition of textures

allows us to model textures under a unified framework. We also attempt to generalize the

notion of textures beyond images to incorporate other physical phenomena such as anima-

tions and articulated motions.

1.1.2 What is Texture Synthesis?

Computer graphics applications often use textures to render synthetic images. These tex-

tures can be obtained from a variety of sources such as hand-drawn pictures or scanned

photographs. Hand-drawn pictures can be aesthetically pleasing, but it is hard to make

them photo-realistic. Most scanned images, however, are of inadequate size and can lead

to visible seams or repetition if they are directly used for texture mapping.

Texture synthesis is an alternative way to create textures. Because synthetic textures can

be made any size, visual repetition is avoided. Texture synthesis can also produce tileable

images by properly handling the boundary conditions.
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The goal of texture synthesis can be stated as follows: Given a texture sample, synthe-

size a new texture that, when perceived by a human observer, appears to be generated by

the same underlying process (Figure 1.1). The major challenges are:

Modeling How to estimate the texture generation process from a given finite texture sam-

ple. The estimated process should be able to model both the structural and stochastic

parts of the input texture. The success of modeling is determined by the visual fidelity

of the synthesized textures with respect to the given samples.

Sampling How to develop an efficient sampling procedure to produce new textures from

a given model. The efficiency of the sampling procedure will directly determine the

computational cost of texture generation.

In this thesis, we present a very simple algorithm that can efficiently synthesize a wide

variety of textures. We model textures by a set of spatial neighborhoods, and synthesize

textures using a search procedure based on neighborhoods. We show that by proper acceler-

ation, this search procedure can be executed in near real time. We also show the versatility

of this approach through a series of generalizations and extensions.

1.2 Applications

Texture synthesis can be useful in a lot of applications in computer graphics, image pro-

cessing, and computer vision.

1.2.1 Rendering

In rendering, textures can mimic the surface details of real objects, ranging from varying

the surface’s color, perturbing the surface normals (bump mapping), to actually deforming

the surface geometry (displacement mapping). In pen and ink style illustrations, textures

(hatches) can delineate the tone, shade, and pattern of objects [76, 77].
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1.2.2 Animation

Computer generated animations often contain scripted events and random motions. Script-

ed events are non-repetitive actions such as opening a door or picking up an object, and

are usually rendered under direct control. On the contrary, random motions are repetitive

background movements such as ocean waves, rising smoke, or a burning fire. These kind

of motions have indeterminate extent both in space and time, and are often refered as tem-

poral textures [66]. These temporal textures are often difficult to render using traditional

techniques based on physical modeling, since different textures are often generated by very

different underlying physical processes. By treating them as textures, we can model and

synthesize them using a single texture synthesis algorithm.

In addition to temporal textures, certain motions such as joint angles of articulated mo-

tions, could also be modeled as one dimensional textures. These textures can be synthesized

on the fly to simulate delicate motions such as eye blinking or human walking.

1.2.3 Compression

Images depicting natural scenes often contain large textures regions, such as a grass land,

a forest, or a sand beach. Because textures often contain significant high frequency in-

formation, they are not well compressed by transform-based techniques such as JPEG. By

segmenting out these textured regions in a preprocessing step, they might be compressible

by a texture synthesis technique. In addition to image compression, texture synthesis can

also be employed for synthetic scenes containing large amounts of textures [4].

1.2.4 Restoration and Editing

Photographs, films and images often contain regions that are in some sense flawed. A flaw

can be a scrambled region on a scanned photograph, scratches on an old film, wires or props

in a movie film frame, or simply an undesirable object in an image. Since the processes

causing these flaws are often irreversible, an algorithm that can fix these flaws is desirable.

Often, the flawed portion is contained within a region of texture, and can be replaced by

texture synthesis [19, 38].
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1.2.5 Computer Vision

Several computer vision tasks use textures, such as segmentation, recognition, and clas-

sification. These tasks can benefit from a texture model, which could be derived from a

successful texture synthesis algorithm.

1.3 Contributions

This thesis has two contributions. First, we present a new algorithm for synthesizing image

textures. We show that this new method has several advantages over previous techniques:

Quality Textures generated by our approach has high visual quality; they are perceived

to be very similar to the input sample textures. They are also tileable and can be of

arbitrary size.

Generality Our algorithm can model a wide variety of textures, despite the versatility of

their underlying physical generation process.

Simplicity Our approach is very simple and can be implemented using standard image

processing operations.

Efficiency Unlike previous approaches, our algorithm is efficient. Typical textures take

only seconds to minutes to generate.

Second, we present extensions and generalizations of the basic synthesis algorithm, as

follows:

Constrained Texture Synthesis We modify our basic synthesis algorithm for image edit-

ing and restoration. The modified algorithm can remove flaws in a textured region

by replacing them with a synthesized texture. The synthesized texture looks like the

surrounding texture, and the boundaries between the new and old regions are invisi-

ble.

Temporal Texture Synthesis We generalize the notion of textures to 3D spatial-temporal

volumes, refered to as temporal textures. We show that our technique can model

different temporal textures such as fire, smoke, and ocean waves.
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Surface Texture Synthesis Texture mapping often cause distortion and discontinuity over

mapped surfaces. We address this problem by synthesizing textures directly over

object surfaces. Our algorithm can grow a wide variety of textures over arbitrary

manifold surfaces with minimum distortion and no discontinuity.

Multiple Source Texture Synthesis Most existing texture synthesis algorithms produce

each new texture from a single source. Although useful in many applications, such

techniques can at best mimic the characteristics of existing textures. A more interest-

ing approach is to create new textures that do not previously exist. We achieve this by

modifying our algorithm so that it can generate a new texture from multiple sources.

We demonstrate two important applications of this new algorithm: generating solid

textures from multiple 2D views (usually orthogonal) and producing texture mixtures

that possess characteristics of several textures.

Real-time Texture Synthesis Unlike certain procedural texture synthesis algorithms which

can evaluate each texel independently on the fly, our algorithm requires texels to be

computed sequentially in order to maintain the consistency of the synthesis results.

This limits the feasibility for applying our algorithm for real-time applications. We

address this issue by presenting a new method that allows texels to be computed in

any order while guarantees the invariance of the results, thus making it useful for

real-time applications.

1.4 Organization

The rest of the thesis is organized as follows. In Chapter 2, we present our algorithm

for synthesizing image textures. In Chapter 3, we accelerate our algorithm using tree-

structured vector quantization. In the rest of the thesis we describe our extensions and

generalizations. In Chapter 4, we develop our constrained synthesis technique for image

editing. In Chapter 5, we generalize our algorithm for synthesizing temporal textures and

articulated motion signals. In Chapter 6, we describe a technique for developing textures

directly over manifold surfaces. In Chapter 7 we demonstrate how textures can be generated

from multiple sources, and discuss two variations of the algorithm for generating texture
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mixtures and solid textures from multiple planar views. In Chapter 8 we present new

methods that allow textures to be generated in any order while guarantee the invariance of

the results, and we propose possible hardware designs for a texture generator. In Chapter 9

we analyze the algorithm behavior, and in Chapter 10 we conclude this thesis and describe

future work.



Chapter 2

Image Texture Synthesis

Image texture synthesis has been an active area of research for many years. In comput-

er vision, texture synthesis has been used to verity texture models for various tasks such

as texture segmentation and classification. In computer graphics and image processing,

texture synthesis has applications for rendering, compression, and image editing.

In this chapter, we present a very simple algorithm that can efficiently synthesize a wide

variety of textures. The inputs consist of an example texture patch and a random noise

image with size specified by the user (Figure 2.1). The algorithm modifies this random

noise to make it look like the given example. This technique is flexible and easy to use,

since only an example texture patch (usually a photograph) is required. New textures can

be generated with little computation time, and their tileability is guaranteed. The algorithm

is also easy to implement; the two major components are a multiresolution pyramid and a

simple searching algorithm.

The rest of this chapter is organized as follows. In Section 2.1, we review previous

work on image texture synthesis. In Section 2.2, we describe our algorithm. In Section 2.3,

we demonstrate synthesis results and compare them with those generated by previous ap-

proaches.

9
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2.1 Previous Work

Numerous approaches have been proposed for texture analysis and synthesis. In this sec-

tion, we briefly review some recent and representative works. We refer the reader to

[32, 71, 57, 62, 39] for more complete surveys.

2.1.1 Physical Simulation

One way to synthesize image textures is to directly simulate their physical generation pro-

cesses. Biological patterns such as fur, scales, and skin can be modeled using reaction

diffusion [78] and cellular texturing [81]. Some weathering and mineral phenomena can be

faithfully reproduced by detailed simulations [16]. These techniques can produce textures

directly on 3D meshes so the texture mapping distortion problem is avoided. However,

different textures are usually generated by very different physical processes so these ap-

proaches are applicable to only limited classes of textures.

2.1.2 Markov Random Field and Gibbs Sampling

Many algorithms model textures by Markov Random Fields (or in a different mathemati-

cal form, Gibbs Sampling), and generate textures by probability sampling [19, 83, 53, 48].

Since Markov Random Fields have been proven to be a good approximation for a broad

range of textures, these algorithms are general and some of them produce good results. A

drawback of Markov Random Field sampling, though, is that it is computationally expen-

sive: even small texture patches can take hours or days to generate.

2.1.3 Feature Matching

Some algorithms model textures as a set of features, and generate new images by matching

the features in an example texture [33, 13, 59]. These algorithms are usually more effi-

cient than Markov Random Field algorithms. Heeger and Bergen [33] model textures by

matching marginal histograms of image pyramids. Their technique succeeds on highly s-

tochastic textures but fails on more structured ones. De Bonet [13] synthesizes new images

by randomizing an input texture sample while preserving the cross-scale dependencies.
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Figure 2.1: Image Texture Synthesis. Our texture generation process takes an example texture patch
(left) and a random noise (middle) as input, and modifies this random noise to make it look like the
given example texture. The synthesized texture (right) can be of arbitrary size, and is perceived as
very similar to the given example. Using our algorithm, textures can be generated within seconds,
and the synthesized results are always tileable.

This method works better than [33] on structured textures, but it can produce boundary

artifacts if the input texture is not tileable. Simoncelli and Portilla [59] generate textures by

matching the joint statistics of the image pyramids. Their method can successfully capture

global textural structures but fails to preserve local patterns.

2.2 Algorithm

Our goal was to develop an algorithm that combines the advantages of previous approach-

es. We want it to be efficient, general, and able to produce high quality, tileable textures.

It should also be user friendly; i.e., the number of tunable input parameters should be min-

imal. This can be achieved by a careful selection of the texture modeling and synthesis

procedure. For the texture model, we use Markov Random Fields (MRF) since they have

been proven to cover the widest variety of useful texture types. To avoid the usual compu-

tational expense of MRFs, we have developed a synthesis procedure which avoids explicit

probability construction and sampling.

Markov Random Field methods model a texture as a realization of a local and stationary

random process. That is, each pixel of a texture image is characterized by a small set
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(a)

(a1) (a2)

(b)

(b1) (b2)

Figure 2.2: How textures differ from images. (a) is a general image while (b) is a texture. A
movable window with two different positions are drawn as black squares in (a) and (b), with the
corresponding contents shown below. Different regions of a texture are always perceived to be
similar (b1,b2), which is not the case for a general image (a1,a2). In addition, each pixel in (b) is
only related to a small set of neighboring pixels. These two characteristics are called stationarity
and locality, respectively.

of spatially neighboring pixels, and this characterization is the same for all pixels. The

intuition behind this model can be demonstrated by the following experiment (Figure 2.2).

Imagine that a viewer is given an image, but only allowed to observe it through a small

movable window. As the window is moved the viewer can observe different parts of the

image. The image is stationary if, under a proper window size, the observable portion

always appears similar. The image is local if each pixel is predictable from a small set of

neighboring pixels and is independent of the rest of the image.

Based on these locality and stationarity assumptions, our algorithm synthesizes a new

texture so that it is locally similar to an example texture patch. The new texture is generated

pixel by pixel, and each pixel is determined so that local similarity is preserved between

the example texture and the result image. This synthesis procedure, unlike most MRF

based algorithms, is completely deterministic and no explicit probability distribution is

constructed. As a result, it is efficient and amenable to further acceleration.

In the rest of this section, we first describe how the algorithm works in a single res-

olution. We then extend it using a multiresolution pyramid to obtain improvements in
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Symbol Meaning
Ia Input texture sample
Is Output texture image
Ga Gaussian pyramid built from Ia
Gs Gaussian pyramid built from Is
pi An input pixel in Ia or Ga

p An output pixel in Is or Gs

N(p) Neighborhood around the pixel p
G(L) Lth level of pyramid G

G(L; x; y) Pixel at level L and position (x; y) of G
fRxC,kg (2D) neighborhood containing k levels,

with size RxC at the top level

Table 2.1: Table of symbols.

efficiency. For easy reference, we list the symbols used in Table 2.1 and summarize the

algorithm in Table 2.2.

2.2.1 Single-resolution Algorithm

The algorithm starts with an input texture sample Ia and a white random noise Is. We

force the random noise Is to look like Ia by transforming Is pixel by pixel in a raster scan

ordering, i.e. from top to bottom and left to right. Figure 2.3 shows a graphical illustration

of the synthesis process.

To determine the pixel value p at Is, its spatial neighborhood N(p) (the L-shaped re-

gions in Figure 2.3) is compared against all possible neighborhoods N(pi) from Ia. The

input pixel pi with the most similar N(pi) is assigned to p. We use a simple L2 norm (sum

of squared difference) to measure the similarity between the neighborhoods. The goal of

this synthesis process is to ensure that the newly assigned pixel p will maintain as much

local similarity between Ia and Is as possible. The same process is repeated for each output

pixel until all the pixels are determined. This is akin to putting together a jigsaw puzzle:

the pieces are the individual pixels and the fitness between these pieces is determined by

the colors of the surrounding neighborhood pixels.
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p

(a) (b) (c) (d) (e)Neighborhood N

Figure 2.3: Single resolution texture synthesis. (a) is the input texture and (b)-(e) show different
synthesis stages of the output image. Pixels in the output image are assigned in a raster scan order-
ing. The value of each output pixel p is determined by comparing its spatial neighborhood N(p)

with all neighborhoods in the input texture. The input pixel with the most similar neighborhood will
be assigned to the corresponding output pixel. Neighborhoods crossing the output image bound-
aries (shown in (b) and (e)) are handled toroidally, as discussed in Section 2.2.4. Although the
output image starts as a random noise, only the last few rows and columns of the noise are actually
used. For clarity, we present the unused noise pixels as black. (b) synthesizing the first pixel, (c)
synthesizing the first pixel of the second row, (d) synthesizing the middle pixel, (e) synthesizing the
last pixel.

(a) (b) (c) (d) (e)

Figure 2.4: Synthesis results with different neighborhood sizes. The neighborhood sizes are (a) 1x1,
(b) 5x5, (c) 7x7, (d) 9x9, (e) 30x30, respectively. All images shown are of size 192x192. Note that as
the neighborhood size increases the resulting texture quality gets better. However, the computation
cost also increases.

2.2.2 Neighborhood

Because the set of local neighborhoods N(pi) is used as the primary model for textures,

the quality of the synthesized results will depend on its size and shape. Intuitively, the

size of the neighborhoods should be on the scale of the largest regular texture structure;

otherwise this structure may be lost and the result image will look too random. Figure 2.4

demonstrates the effect of the neighborhood size on the synthesis results.

The shape of the neighborhood will directly determine the quality of Is. It must be

causal, i.e. the neighborhood can only contain those pixels preceding the current output

pixel in the raster scan ordering. The reason is to ensure that each output neighborhood
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(a)
(b) (c) (d)

Figure 2.5: Causality of the neighborhood. (a) A causal neighborhood (b) A noncausal neighbor-
hood (c) synthesis result using the neighborhood in (a) (d) synthesis result using the neighborhood
in (b). Both (c) and (d) are generated from the same random noise. As shown, a noncausal neigh-
borhood is unable to generate valid results.

N(p) will include only already assigned pixels. For the first few rows and columns of Is,

N(p) may contain unassigned (noise) pixels but as the algorithm progresses all the other

N(p) will be completely “valid” (containing only already assigned pixels). A noncausal

N(p), which always includes unassigned pixels, is unable to transform Is to look like Ia

(Figure 2.5). Thus, the noise image is only used when generating the first few rows and

columns of the output image. After this, it is ignored.

2.2.3 Multi-resolution Algorithm

The single resolution algorithm captures the texture structures by using adequately sized

neighborhoods. However, for textures containing large scale structures we have to use

large neighborhoods, and large neighborhoods demand more computation. This problem

can be solved by using a multiresolution image pyramid [10]; computation is saved because

we can represent large scale structures more compactly by a few pixels in a certain lower

resolution pyramid level.

The multiresolution synthesis algorithm proceeds as follows. Two Gaussian pyramids,

Ga and Gs, are first built from Ia and Is, respectively. The algorithm then transforms Gs

from lower to higher resolutions, such that each higher resolution level is constructed from

the already synthesized lower resolution levels. This is similar to the sequence in which

a picture is painted: long and thick strokes are placed first, and details are then added.

Within each output pyramid level Gs(L), the pixels are synthesized in a way similar to the

single resolution case where the pixels are assigned in a raster scan ordering. The only
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modification is that for the multiresoltion case, each neighborhood N(p) contains pixels in

the current resolution as well as those in the lower resolutions. The similarity between two

multiresolution neighborhoods is measured by computing the sum of the squared distance

of all pixels within them. These lower resolution pixels constrain the synthesis process so

that the added high frequency details will be consistent with the already synthesized low

frequency structures.

An example of a multiresolution neighborhood is shown in Figure 2.6. It consists of two

levels, with sizes 5x5 and 3x3, respectively. Within a neighborhood, we choose the sizes of

the lower levels so that they are about half the sizes of the previous higher resolution levels.

For clarity, we use the symbol fRxC,kg to indicate multiresolution neighborhoods which

contain k levels with size RxC at the top level.

Figure 2.7 shows results of multiresolution synthesis with different numbers of pyramid

levels. Note that Figure 2.7 (c), although synthesized with a small f5x5,2gmultiresolution

neighborhood, looks comparable with Figure 2.4 (c), which was generated with a larger

9x9 single resolution neighborhood. This demonstrates a major advantage of multiresolu-

tion synthesis: moderately small neighborhoods can be used without sacrificing synthesis

qualities.

2.2.4 Edge Handling

Proper edge handling forN(p) near the image boundaries is very important. For the synthe-

sis pyramid the edge is treated toroidally. In other words, if Gs(L; x; y) denotes the pixel at

levelL and position (x; y) of pyramidGs, thenGs(L; x; y) � Gs(L; x mod M; y mod N),

where M and N are the number of rows and columns, respectively, of Gs(L). Handling

edges toroidally is essential to guarantee that the resulting synthetic texture will tile seam-

lessly. 1

For the input pyramid Ga, toroidal neighborhoods typically contain discontinuities un-

less Ia is tileable. A reasonable edge handler for Ga is to pad it with a reflected copy of

1The multiresolution algorithm is also essential for tileability if a causal neighborhood is used. Since
a single resolution causal neighborhood N(p) contains only pixels above p in scanline order, the vertical
tileability may not be enforced. A multiresolution neighborhood, which contains symmetric regions at lower
resolution levels, avoids this problem.
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Figure 2.6: A causal multiresolution neighborhood with size f5x5,2g. The current level of the
pyramid is shown at left and the next lower resolution level is shown at right. The current output
pixel p, marked as X, is located at (L; x; y), where L is the current level number and (x; y) is its
coordinate. At this level L of the pyramid the image is only partially complete. Thus, we must
use the preceding pixels in the raster scan ordering (marked as O). The position of the parent of
the current pixel, located at (L + 1; x

2
; y
2
), is marked as Y. Since the parent’s level is complete, the

neighborhood can contain pixels around Y, marked by Q. When searching for a match for pixel X,
the neighborhood vector is constructed that includes the O’s, Q’s, and Y, in scanline order.

itself. Another solution is to use only those N(pi) completely inside Ga, and discard those

crossing the boundaries. Because a reflective edge handler may introduce discontinuities

in the derivative, we adopt the second solution which uses only interior blocks.

2.2.5 Initialization

Natural textures often contain recognizable structures as well as a certain amount of ran-

domness. Since our goal is to reproduce realistic textures, it is essential that the algorithm

capture the random aspect of the textures. This notion of randomness can sometimes be

achieved by entropy maximization [83], but the computational cost is prohibitive. Instead,

we initialize the output image Is as a white random noise, and gradually modify this noise

to look like the input texture Ia. This initialization step seeds the algorithm with suffi-

cient entropy, and lets the rest of the synthesis process focus on the transformation of Is

towards Ia. To make this random noise a better initial guess, we also equalize the pyramid

histogram of Gs with respect to Ga [33].

The initial noise affects the synthesis process in the following way. For the single
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(a) (b) (c) (d) (e)

Figure 2.7: Multiresolution synthesis with different number of pyramid levels. (a) 1 level, (b) 2 lev-
els, (c) 3 levels, (d) 4 levels, (e) 5 levels. Except for the lowest resolution, which is synthesized with
a 5x5 single resolution neighborhood, each pyramid level is synthesized using the multiresolution
neighborhood shown in Figure 2.6. Note that as the number of pyramid levels increases, the image
quality improves.

resolution case, neighborhoods in the first few rows and columns of Is contain noise pixels.

These noise pixels introduce uncertainty in the neighborhood matching process, causing the

boundary pixels to be assigned semi-stochastically (However, the searching process is still

deterministic. The randomness is caused by the initial noise). The rest of the noise pixels

are overwritten directly during synthesis. For the multiresolution case, however, more of

the noise pixels contribute to the synthesis process, at least indirectly, since they determine

the initial value of the lowest resolution level of Gs.

2.2.6 Summary

We summarize the algorithm as pseudocode in Table 2.2.

The architecture of this algorithm is flexible; it is composed from several orthogonal

components. We list these components as follows and discuss the corresponding design

choices.

Pyramid: The pyramids are built from and reconstructed to images using the standard

routines BuildImagePyramid and ReconImagePyramid. Various pyramids can be used

for texture synthesis; examples are Gaussian pyramids [53], Laplacian pyramids [33], s-

teerable pyramids [33, 59], and feature-based pyramids [13]. A Gaussian pyramid, for

example, is built by successive filtering and downsampling operations, and each pyramid
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function Is ImageTextureSynthesis(Ia, Is)
1 InitializeColors(Is);
2 Ga BuildImagePyramid(Ia);
3 Gs BuildImagePyramid(Is);
4 foreach level L from lower to higher resolutions of Gs

5 loop through all pixels p of Gs(L)
6 C  FindBestMatch(Ga, Gs, L; p);
7 Gs(L; p) C;
8 Is ReconImagePyramid(Gs);
9 return Is;

function C  FindBestMatch(Ga, Gs, L; p)
10 Ns BuildImageNeighborhood(Gs; L; p);
11 N best

a
 null; C  null;

12 loop through all pixels pi of Ga(L)
13 Na BuildImageNeighborhood(Ga, L; pi);
14 if Match(Na, Ns) > Match(N best

a
, Ns)

15 N best

a
 Na; C  Ga(L; pi);

16 return C;

Table 2.2: Pseudocode of the algorithm.

level, except for the highest resolution, is a blurred and decimated version of the origi-

nal image. Reconstruction of Gaussian pyramids is trivial, since the image is available

at the highest resolution pyramid level. These different pyramids give different trade-offs

between spatial and frequency resolutions. In this chapter, we choose to use the Gaussian

pyramid for its simplicity and greater spatial localization (a detailed discussion of this issue

can be found in [52]). However, other kinds of pyramids can be used instead.

Neighborhood: The neighborhood can have arbitrary size and shape; the only require-

ment is that it contains only valid pixels. A noncausal/symmetric neighborhood, for exam-

ple, can be used by extending the original algorithm with two passes (Chapter 4).

Synthesis Ordering: A raster scan ordering is used in line 5 of the function TextureSyn-

thesis. This, however, can also be extended. For example, a spiral ordering can be used for
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constrained texture synthesis (Chapter 4), and a random order can be used for synthesizing

textures over irregular meshes (Chapter 6). The synthesis ordering should cooperate with

the BuildImageNeighborhood so that the output neighborhoods contain only valid pixels.

Searching: An exhaustive searching procedure FindBestMatch is employed to deter-

mine the output pixel values. Because this is a standard process, various point searching

algorithms can be used for acceleration. This will be discussed in detail in Chapter 3.

2.3 Synthesis Results

To test the effectiveness of our approach, we have run the algorithm on many different

images from standard texture sets. Figure 2.10 and Figure 2.11 show examples using the

Brodatz texture album [8] and the MIT VisTex set [45], respectively. The Brodatz album

is the most commonly used texture testing set and contains a broad range of grayscale im-

ages. Since most graphics applications require color textures, we also use the MIT VisTex

set, which contains real world textures photographed under natural lighting conditions. All

result textures are generated using a 4-level Gaussian pyramid, with neighborhood sizes

f3x3,1g, f5x5,2g, f7x7,2g, f9x9,2g, respectively, from lower to higher resolutions. Addi-

tional texture synthesis results are available on our project website2.

A visual comparison of our approach with several other algorithms is shown in Fig-

ure 2.8. Result (a) is generated by Heeger and Bergen’s algorithm [33] using a steerable

pyramid with 6 orientations. The algorithm captures certain random aspects of the tex-

ture but fails on the dominating grid-like structures. Result (b) is generated by De Bonet’s

approach [13] where we choose his randomness parameter to make the result look best.

Though capable of capturing more structural patterns than (a), certain boundary artifacts

are visible. This is because his approach characterizes textures by lower frequency pyra-

mid levels only; therefore the lateral relationship between pixels at the same level is lost.

Result (c) is generated by Efros and Leung’s algorithm [19]. This technique is based on the

Markov Random Field model and is capable of generating high quality textures. However,

2http://graphics.stanford.edu/projects/texture/
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(a) (b) (c) (d)

Figure 2.8: A comparison of texture synthesis results using different algorithms. (a) Heeger and
Bergen’s method [33] (b) De Bonet’s method [13] (c) Efros and Leung’s method [19] (d) Our
method. Only Efros and Leung’s algorithm produces results comparable with ours. However, our
algorithm is two orders of magnitude faster than theirs after acceleration (Chapter 3). The sample
texture patch has size 64x64, and all the result images are of size 192x192. A 9x9 neighborhood is
used for (c), and (d) is synthesized using the same parameters as in Figure 2.11.

a direct application of their approach can produce non-tileable results.3

Result (d) is synthesized using our approach. It is tileable and the image quality is

comparable with those synthesized directly from MRFs. It took about 8 minutes to gen-

erate using a 195 MHz R10000 processor. However, this is not the maximum possible

speed achievable with this algorithm. In the next chapter, we describe modifications that

accelerate the algorithm greatly.

2.4 Discussion

Our algorithm presented in this chapter relates to an earlier work by Popat and Picard [53]

in that a causal neighborhood and raster scan ordering are used for texture synthesis. How-

ever, instead of constructing explicit probability models, our algorithm uses deterministic

searching. This approach shares the simplicity of Efros and Leung [19], but uses fix-sized

neighborhoods which allow TSVQ acceleration. The fact that such a simple approach

works well on many different textures implies that there may be computational redundan-

cies in other texture synthesis techniques.

Although our algorithm is able to model a wide variety of textures, it still has several

3Though not stated in the original paper [19], we have found that it is possible to extend their approach
using multiresolution pyramids and a toroidal neighborhood to make tileable textures.
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Figure 2.9: Limitations of our texture synthesis technique. The smaller patches (size 192x192)
are the input textures, and to their right are synthesized results (size 200x200). Limitations of our
approach include global features (grass in close up view), perspectivity (building exterior), 3D
shape (pumping and beans), lighting and shadow (pumpkin), or textures composed of meaningful
elements (beans).

limitations as shown in Figure 2.9. Because we model textures as local and stationary

phenomena, our algorithm cannot reproduce global features such as perspectivity, lighting

and shadow. This is a fundamental limitation of most texture synthesis algorithms since

textures are usually to be assumed to be characterized by local properties.

Because our algorithm models textures by spatial neighborhoods and measures the

neighborhood similarities in L2 norm, it cannot distinguish between important and less

important image information. In other words our algorithm cannot model high-level visual

cues such as object silhouettes, boundaries, or semantic information that are easily picked

up by the human visual system. One solution is to replace the Gaussian pyramid with

a feature pyramid, containing semantic information such as filtered edges or importance

maps about various regions of the input textures. However, this might require either human

assistance or some computer vision algorithms to acquire these features.

For textures containing complicated textons, our algorithm may have difficulty finding

good matches during the neighborhood search process. This, together with the use of Gaus-

sian pyramids, might have caused the problem for synthesizing the beans texture in Fig-

ure 2.9 where the individual beans seem to be merged together. One quick fix is to generate
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textures in patches rather than individual pixels. As long as the patches are big enough to

cover several textons, the output should look feasible since these textons are copied directly

and kept intact. However since there is no guarantee that these patches will tile seamlessly,

they might cause visual discontinuities in the output texture. For high-frequency textures

the effect of visual masking may kick in and hide most of the discontinuities. For other

textures we might have to do some registration, blending, or constrained synthesis at the

patch boundaries. However, currently there seems to be no perfect solution that can solve

this problem in general.
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D52 D22

D103 D20

D84 D87

D11 D85

D37 D80

Figure 2.10: Brodatz texture synthesis results. The smaller patches (size 128x128) are the input
textures, and to their right are synthesized results (size 200x200).
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Water 0000 Misc 0000

Metal 0004 Fabric 0015

Terrain
0000

Clouds
0000

Tile 0007 Stone 0002

Flower 0000 Leaves 0009

Figure 2.11: VisTex texture synthesis results. The smaller patches (size 128x128) are the input
textures, and to their right are synthesized results (size 200x200).



Chapter 3

Acceleration

Our deterministic synthesis procedure introduced in the previous chapter avoids the usual

computational requirement for sampling from a MRF. However, the algorithm as described

employs exhaustive searching, which makes it slow. Fortunately, acceleration is possible.

This is achieved by considering neighborhoods N(p) as points in a multiple dimensional

space, and casting the neighborhood matching process as a nearest-point searching problem

[46]. We have found that one of the nearest-point searching techniques, known as tree-

structured vector quantization (TSVQ, [23]), works particularly well for accelerating our

texture synthesis algorithm.

In this chapter, we first introduce the nearest-point searching problem, and review previ-

ous works (Section 3.1). We then describe tree-structured vector quantization (Section 3.2).

We show how tree-structured VQ can be applied to accelerate our synthesis process (Sec-

tion 3.3), and compare synthesis results with and without acceleration (Section 3.4).

3.1 Nearest-Point Searching

Searching for nearest neighbors is an important problem in many fields of science and engi-

neering, with applications ranging from pattern matching, object recognition, and database

retrieval. We can formulate the nearest-point searching problem in multiple dimensions as

follows: given a set S of n points and a novel query point Q in a d-dimensional space, find

a point in the set such that its distance from Q is lesser than, or equal to, the distance of

26



3.2. TREE-STRUCTURED VECTOR QUANTIZATION 27

C1,1

C1 C2

C*

Cm

C1,m Cm,1 ............ C2,1 C1,m Cm,m

..........

Figure 3.1: Data structure of Tree-structured VQ.

Q from any other point in the set. Because a large number of such queries may need to be

conducted over the same data set S, the computational cost can be reduced if we preprocess

S to create a data structure that allows fast nearest-point queries. Many such data structures

have been proposed, and we refer the reader to [46] for a more complete reference.

Nearest-point searching in high dimensions is a hard problem. A lot of existing tech-

niques have time complexity growing exponentially with the dimensionality d. However,

most of these algorithms assume generic inputs and do not attempt to take advantage of

any special structures they may have. Popat [53] observed that the set S of spatial neigh-

borhoods from a texture can often be characterized well by a clustering probability model.

Taking advantage of this clustering property, we propose to use tree-structured vector quan-

tization [23] as the searching algorithm.

3.2 Tree-structured Vector Quantization

Tree-structured vector quantization (TSVQ) is a common technique for data compression.

It takes a set of training vectors as input, and generates a binary-tree-structured codebook.

The first step is to compute the centroid of the set of training vectors and use it as the root

level codeword. To find the children of this root, the centroid and a perturbed centroid are

chosen as initial child codewords. A generalized Lloyd algorithm [23], consisting of alter-

nations between centroid computation and nearest centroid partition, is then used to find
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Figure 3.2: Treat neighborhoods as high-dimensional points. (a) A causal neighborhood contain-
ing 12 pixels (b) The same neighborhood treated as a 12 dimensional point. The pixels are assumed
to be monochromatic in this case. For RGB color textures the result will be a 36 dimensional point.

the locally optimal codewords for the two children. The training vectors are divided into

two groups based on these codewords and the algorithm recurses on each of the subtrees.

This process terminates when the number of codewords exceeds a pre-selected size or the

average coding error is below a certain threshold. The final codebook is the collection of

the leaf level codewords.

The tree generated by TSVQ can be used as a data structure for efficient nearest-point

queries. To find the nearest point of a given query vector, the tree is traversed from the root

in a best-first ordering by comparing the query vector with the two children codewords, and

then follows the one that has a closer codeword. This process is repeated for each visited

node until a leaf node is reached. The best codeword is then returned as the codeword

of that leaf node. Unlike full searching, the result codeword may not be the optimal one

since only part of the tree is traversed. However, the result codeword is usually close to the

optimal solution, and the computation is more efficient than full searching. If the tree is

reasonably balanced (this can be enforced in the algorithm), a single search with codebook

size jSj can be achieved in time O(logjSj), which is much faster than exhaustive searching

with linear time complexity O(jSj).

3.3 Tree-structured Vector Quantization for

Texture Synthesis

To use TSVQ in our synthesis algorithm, we simply collect the set of neighborhood pixels

N(pi) for each input pixel and treat them as a vector of size equal to the number of pixels
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(a) 2 (b) 4 (c) 8 (d) 16

(e) 32 (f) 64 (g) 128 (h) 256

(i) 512 (j) 1024 (k) 2048 (l) 4096 (all)

Figure 3.3: TSVQ acceleration with different codebook sizes. The original image size is 64x64 and
all these synthesized results are of size 128x128. The number of codewords used are labeled below
each image.

in N(pi) (Figure 3.2). We use these vectors fN(pi)g from each Ga(L) as the training data,

and generate the corresponding tree structure codebooks T (L). During the synthesis pro-

cess, the (approximate) closest point for each N(p) at Gs(L) is found by doing a best-first

traversal of T (L). Because this tree traversal has time complexity O(logNL) (where NL is

the number of pixels of Ga(L)), the synthesis procedure can be executed very efficiently.

Typical textures take seconds to generate; the exact timing depends on the input and output

image sizes.



30 CHAPTER 3. ACCELERATION

(a) 1 (b) 2 (c) 4 (d) 8

(e) 16 (f) 32 (g) 64 (h) 4096 (all)

Figure 3.4: TSVQ acceleration with different number of visited leaf nodes. The original image size
is 64x64 and all these synthesized results are of size 128x128. The number of visited leaf nodes are
labeled below each image.

3.4 Results

An example comparing the results of exhaustive searching and TSVQ is shown in Fig-

ure 3.6. The original image sizes are 128x128 and the resulting image sizes are 200x200.

The average running time for exhaustive searching is 360 seconds. The average training

time for TSVQ is 22 seconds and the average synthesis time is 7.5 seconds. The code is

implemented in C++ and the timings are measured on a 195MHz R10000 processor. As

shown in Figure 3.6, results generated with TSVQ acceleration are roughly comparable in

quality to those generated from the unaccelerated approach. In some cases, TSVQ will gen-

erate more blurry images. We fix this by allowing limited backtracking in the tree traversal

so that more than one leaf node can be visited. The amount of backtracking can be used

as a parameter which trades off between image quality and computation time. When the

number of visited leaf nodes is equal to the codebook size, the result will be the same as

the exhaustive searching case. The effect of backtracking on synthesis quality is shown in

Figure 3.4.

One disadvantage of TSVQ acceleration is the memory requirement. Because an input

pixel can appear in multiple neighborhoods, a full-sized TSVQ tree can consume O(d�N)
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(a) 1941 seconds (b) 503 seconds (c) 24 seconds

Figure 3.5: A breakdown of running time for the textures shown in Figure 2.8. (a) timing of Efros
and Leung’s algorithm (b) timing of our algorithm using full search (c) timing of our algorithm
using tree-structured VQ (12 seconds for training and 12 seconds for synthesis). All the timings
were measured using a 195 MHz R10000 processor.

memory where d is the neighborhood size and N is the number of input image pixels.

Fortunately, textures usually contain repeating structures; therefore we can use codebooks

with fewer codewords than the input training set. Figure 3.3 shows textures generated by

TSVQ with different codebook sizes. As expected the image quality improves when the

codebook size increases. However, results generated with fewer codewords (such as 512

codewords) look plausible compared with the full codebook result (4096 codewords). In

our experience we can use codebooks less than 10 percent the size of the original training

data without noticeable degradation of quality of the synthesis results. To further reduce

the expense of training, we can also train on a subset rather than the entire collection of

input neighborhood vectors.

Figure 3.5 shows a timing breakdown for generating the textures shown in Figure 2.8.

Our unaccelerated algorithm took 503 seconds. The TSVQ accelerated algorithm took

12 seconds for training, and another 12 seconds for synthesis. In comparison, Efros and

Leung’s algorithm [19] took half an hour to generate the same texture (the time complexity

of our approach over Efros and Leung’s is O(logN)=O(N) where N is the number of input

image pixels). Because their algorithm uses a variable sized neighborhood it is difficult to

accelerate. Our algorithm, on the other hand, uses a fixed neighborhood and can be directly

accelerated by any point searching algorithm.
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Figure 3.6: Brodatz texture synthesis results with tree-structured VQ acceleration. For each pair of
images, the result generated by exhaustive search is shown on the left (same as those in Figure 2.10),
and the TSVQ acceleration result is shown on the right.



Chapter 4

Constrained Texture Synthesis

Photographs, films and images often contain regions that are in some sense flawed. A flaw

can be a scrambled region on a scanned photograph, scratches on an old film, wires or props

in a movie film frame, or simply an undesirable object in an image. Since the processes

causing these flaws are often irreversible, an algorithm that can fix these flaws is desirable.

Often, the flawed portion is contained within a region of texture, and can be replaced by

texture synthesis.

In this chapter, we extend the basic algorithm (Chapter 2 and Chapter 3) for replacing

textured regions. We refer to this extended approach “constrained texture synthesis”, since

the synthesized texture region must blend seamlessly with the existing textures. In the rest

of this chapter, we first give an overview of previous methods for image denoising and

restoration (Section 4.1). We then describe our algorithm (Section 4.2), and demonstrate

potential applications of this approach (Section 4.3).

4.1 Image Restoration

Image restoration/denoising techniques can be classified by what kind of “noise” they aim

to remove, and what kind of information are available for removing noise:

33
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4.1.1 Frequency Domain Techniques

Image noise is commonly assumed to occupy higher frequency bands. By low-pass filter-

ing the images we can remove those high frequency noises. However, frequency domain

techniques are not well suited to remove artifacts that are spatially localized.

4.1.2 Inter-Frames Techniques

For image sequences we can use motion estimation to interpolate losses in a single frame

from adjacent frames. The basic idea is to find the right pixels from neighboring frames.

However, this technique cannot be applied to still images or to films where the defects span

many frames.

4.1.3 Block-based Techniques

A simple way to replace objects in images is to copy and paste blocks of image pixels.

The new block can be blended smoothly with existing image regions using multiresolution

spline [10]. However, this does not work for regions containing dominant structures such

as textures (Figure 4.1 (b)).

4.1.4 Diffusion

Defects that are skinny can be removed by diffusion [5]. The basic idea is to gradually

replacing these defects by colors diffused from surrounding regions. The advantage of this

approach is that it is very easy to use; the user only needs to mark where the defects are.

However this approach is cannot replace large textured regions.

4.1.5 Combining Frequency and Spatial Domain Information

Hirani and Totsuka [36] combine frequency and spatial domain information to fill a given

region with artifacts. This technique requires the existence of a translationally similar

region to the defected image area. Besides this restriction it works pretty well across a

wide variety of situations.
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4.1.6 Texture Replacement

If the flawed region contains textures, it can be replaced by texture synthesis [19, 38, 44].

The challenge is to ensure that the synthesized new texture fits seamlessly with the existing

region. Efros and Leung [19] achieve this by growing the textures from the hole boundaries.

Because the boundary can have arbitrary shapes this technique cannot be accelerated by

tree-structured VQ (Chapter 3).

4.1.7 Super-resolution Techniques

In addition to noise removal, there are several techniques that can fabricate new infor-

mation, such as generating high frequency bands for super-resolution [21, 54]. Super-

resolution is related to our constrained synthesis algorithm, as we shall see later.

4.2 Our Algorithm

Texture replacement by constrained synthesis must satisfy two requirements: the synthe-

sized region must look like the surrounding texture, and the boundary between the new and

old regions must be invisible. Multiresolution blending [10] with another similar texture,

shown in Figure 4.1 (b), will produce visible boundaries for structured textures. Better re-

sults can be obtained by applying our algorithm in Chapter 2 over the flawed regions, but

discontinuities still appear at the right and bottom boundaries as shown in Figure 4.1 (c).

These artifacts are caused by the causal neighborhood as well as the raster scan synthesis

ordering. Figure 4.3 explains how the discontinuities are caused. When synthesizing the

first row and column (Figure 4.3 (a) (b)) of the hole, the causal neighborhood contains

all the adjacent pixels (of the target pixel) at the boundary between the hole and the sur-

rounding. Because these boundary pixels are part of the neighborhood, they enforce the

search process to find candidates that fit smoothly with them. However, when synthesiz-

ing the bottom row and right column, some pixels adjacent to the target are not included

in the neighborhood, such as those marked with “X” and “Y”. Because they are not part

of the neighborhood, we can arbitrarily set the values without changing the result of the

neighborhood search process. And this causes discontinuities.
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(a) (b) (c) (d)

Figure 4.1: Constrained texture synthesis. (a) a texture containing a black region that needs to
be filled in. (b) multiresolution blending [10] with another texture region will produce boundary
artifacts. (c) A direct application of the algorithm in Chapter 2 will produce visible discontinuities at
the right and bottom boundaries. (d) A much better result can be generated by using a modification
of the algorithm with 2 passes.

To remove these boundary artifacts a noncausal (symmetric) neighborhood must be

used. However, we have to modify the original algorithm so that only valid (already syn-

thesized) pixels are contained within the symmetric neighborhoods; otherwise the algorith-

m will not generate valid results (Figure 2.5). This can be done with a two-pass extension

of the original algorithm. Each pass is the same as the original multiresolution process, ex-

cept that a different neighborhood is used. During the first pass, the neighborhood contains

only pixels from the lower resolution pyramid levels. Because the synthesis progresses in

a lower to higher resolution fashion, a symmetric neighborhood can be used without intro-

ducing invalid pixels. This pass uses the lower resolution information to “extrapolate” the

higher resolution regions that need to be replaced. In the second pass, a symmetric neigh-

borhood that contains pixels from both the current and lower resolutions is used. These

two passes alternate for each level of the output pyramid. In the accelerated algorithm, the

analysis phase is also modified so that two TSVQ trees corresponding to these two kinds

of neighborhoods are built for each level of the input pyramid. Finally, we also modify the

synthesis ordering in the following way: instead of the usual raster-scan ordering, pixels in

the filled regions are assigned in a spiral fashion. For example, the hole in Figure 4.1 (a)

is replaced from outside to inside from the surrounding region until every pixel is assigned

(Figure 4.1 (d)). This spiral synthesis ordering removes the directional bias which causes

the boundary discontinuities (as in Figure 4.1 (c)).
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Figure 4.2: Texture extrapolation. For each pair of images, we spatially extrapolate the texture on
the left to the one on the right.

4.3 Results and Applications

Figure 4.4 shows several examples of hole replacement. The algorithm is able to fill in the

holes for a wide variety of textures. The newly synthesized textures look like the surround-

ing, and their structures connect smoothly with the surrounding textures. With a slight

change of the synthesis ordering, the algorithm can be applied to other applications, such

as the image extrapolation shown in Figure 4.2. The algorithm could also be used as a tool

to remove undesirable objects in a photograph (Figure 4.5 (a), (b), and (c)), or to fabricate

textures over dull regions in scanned images (Figure 4.5 (d)).
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Target Pixel

X

Y

(a) (b)

(c) (d)

Causal Neighborhood

Not yet assigned

Synthesized Texture

Original Texture

Figure 4.3: Discontinuities caused by using a causal neighborhood in constrained synthesis. (a)
synthesizing the top row (b) synthesizing the left column (c) synthesizing the right column (d) syn-
thesizing the bottom row. In cases (c) and (d), there are pixels adjacent to the target pixel that are
not included in its neighborhood (marked as X and Y). Because these pixels cannot effect the search
process they will cause discontinuities.
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Figure 4.4: Texture replacement. For each row of images, we show: (a) the sample image, (b)
image with hole, (c) image with hole filled by our algorithm using the image in (a) as sample, and
(d) the original image before the hole is introduced.
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Figure 4.5: Texture replacement for real scenes. For image pairs (a), (b), and (c), an object on
the left image is replaced by the texture background, as shown on the right. Image pairs (d) show
interesting applications of texture synthesis to fabricate scene details.



Chapter 5

Motion Texture Synthesis

Rendering life-like animations is a major goal for computer graphics. However, compared

to the maturity of photorealistic image rendering, computer generated motions are still at

the stage of infancy. The difficulty to generate motions can be attributed to several reasons.

Real motions usually involve complex physics, such as fluid flow, smoke rising or animal

jumping, making them difficult to model. Real motions are diverse, therefore it is difficult

to incorporate them under a single framework. In addition a lot of motions involve high-

level human perception such as gestures or facial expressions, and this further aggregates

the difficulty for realistic motion synthesis.

Real-life motions often contain repetitions. Examples are running, walking, fire burn-

ing, and ocean waves. These motions containing semi-regular repetitions are usually ref-

ered to as motion textures. Motion textures are important for realistic animations; without

them motions will look stiff and robot like. Unfortunately, generating motion textures by

hand can be very tedious; often animators only want explicit controls over high-level mo-

tion features such as opening a door or jumping over an obstacle without worrying about

fine details such as tiny differences between each walking step. Fortunately, these kind of

motion textures are very suitable for automatic generation; since motion textures contain

semi-regular repetitions, they can be modeled as variations of image textures and synthe-

sized by our algorithm.

In this chapter, we present modifications of our image texture synthesis algorithm

41
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(Chapter 2 and Chapter 3) for synthesizing motions textures. In particular, we concen-

trate on two kinds of motions: 3D spatial-temporal volumes such as fire and smoke, and

1D articulated motion signals such as the joint angles of a human walking. The application

of our algorithm to motion textures has two implications:

1. It provides a useful tool to synthesize motion textures and lets animators render real-

istic animations without worrying about tedious details.

2. It demonstrates the generality of our texture algorithm in the sense that a wide variety

of different physical phenomena such as visual images, spatial-temporal volumes,

and motion signals can all be modeled under a single framework.

5.1 Temporal Texture Synthesis

Temporal textures are motions with indeterminate extent both in space and time. They

can describe a wide variety of natural phenomena such as fire, smoke, and fluid motions.

Since realistic motion synthesis is one of the major goals of computer graphics, a technique

that can synthesize temporal textures would be useful. Most existing algorithms model

temporal textures by direct simulation; examples include fluid, gas, and fire [65, 63, 64,

75, 80]. Direct simulations, however, are often expensive and only suitable for specific

kinds of textures; therefore an algorithm that can model general motion textures would be

advantageous [66].

Temporal textures consist of 3D spatial-temporal volume of motion data. If the motion

data is local and stationary both in space and time, the texture can be synthesized by a

3D extension of our algorithm. This extension can be simply done by replacing various

2D entities in the original algorithm, such as images, pyramids, and neighborhoods, with

their 3D counterparts. For example, the two Gaussian pyramids are constructed by filtering

and downsampling from 3D volumetric data; the neighborhoods contain local pixels in

both the spatial and temporal dimension. The synthesis progresses from lower to higher

resolutions, and within each resolution the output is synthesized slice by slice along the

time domain. However, synthesizing 3D spatial-temporal volumes can be computationally
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expensive. Fortunately, the low cost of our accelerated algorithm enables us to consider

synthesizing textures of dimension greater than two.

Figure 5.1 shows synthesis results of several typical temporal textures: fire, smoke, and

ocean waves (animations available on our webpage). The resulting sequences capture the

flavor of the original motions, and tile both spatially and temporally. This technique is also

efficient. Accelerated by TSVQ, each result frame took about 20 seconds to synthesize.

Currently all the textures are generated automatically; it is possible extend the algorithm

to allow more explicit user controls (such as the distribution and intensity of the fire and

smoke).

5.2 Synthesizing Articulated Motions

There are four main methods to create motions with articulated figures. Key-frame interpo-

lation defines still poses at specific time instances, and generates the rest of the motion by

interpolation. Although animators could have complete control over the style of motion-

s, specifying poses for many time instances can be tedious. Physical simulation address

this problem by emulating the dynamics of motions such as animal walking or running. By

generating the motion automatically the animators are freed from explicitly specifying each

keyframes. However, simulating articulated motions of complex creates (such as human)

requires fancy physical models. As a result existing techniques for physically simulated

animations are more successful in modeling simple motions such as cloth [3] and fluid [75]

than in simulating articulated motions. In addition, physical simulations are often computa-

tionally expensive. Machine learning avoids some of the computation burdens of physical

simulations by learning the salient features of motions [28]. However, because machine

learning generates motions automatically, animators lose the ability to directly control the

motions.

Motion capture addresses the limitations of other methods by capturing motions direct-

ly from life characters. With the recent advances of sensor technologies, motion capture

is able to provide a wide variety of real motions in details. However, those motions are

“canned” and usually require modifications before they can be reused for rendering anima-

tions.
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5.2.1 Motion Signal Processing

Motion-captured signals can be modified for new purposes by signal processing operations.

For example, traditional signal processing operations such as band-pass decomposition can

be used for warping motion signals [79], depicting emotions [70], or adapting motions in

general [9]. Existing motions can also be retargeted to new characters [26], or blended

together to form motion mixtures [7]. The success of those techniques demonstrates the

flexibility of applying signal processing operations to motion-captured data. However, none

of these techniques directly target motion signals that exhibit texture-like behaviors.

We are interested in modeling a specific class of motion signals containing semi-regular

repetitions such as walking, running, or eye blinking. We want to preserve not only the

structures but also the random variations of the motions. For example, although a walking

contains deterministic cycles, each walking step usually differs slightly from each other.

These random variations are important for rendering realistic motions; without them ani-

mations may look predictable and machine like [51, 56].

5.2.2 Generating Motion Signals by Texture Synthesis

We generate semi-regular repetitive motions using our texture synthesis algorithm. Specif-

ically, we synthesize a new motion one frame at the time, and the values of the motion

signals in each frame are determined as follows. We construct a temporal neighborhood

that covers several previous frames, and compare this neighborhood with similar ones in

the input motion. The value of the best match is then returned as the new frame. This pro-

cess is very similar to our image texture synthesis algorithm, except that we use temporal

neighborhoods and motion signal values instead of spatial neighborhoods and RGB color

channels.

Motion signals are often represented as raw marker positions (x, y, z, and sometimes

orientations) or joint angles (degrees). In both cases we need to preprocess them before

running our texture synthesis algorithm, since directly comparing motion signals may not

make sense. In the next section we discuss details for preprocessing captured motion sig-

nals.
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5.2.3 Data Preprocessing

5.2.3.1 Raw Marker Data

Raw marker data consists of marker positions (x, y, z) and optionally orientations (if motion

capture is done in a magnetic field). In our application we only care about 3D marker

positions x, y, z. Because marker positions of each skeleton pose can be shifted by global

translations (such as a walking cycle), directly comparing marker positions during texture

synthesis does not make sense. We address this issue by either subtracting marker positions

of each frame with respect to the “pivot position” (usually the hip of a human skeleton), or

using the differences of marker positions between adjacent frames. In the former case we

synthesize global translations and intra-frame marker movements separately, and combine

them to generate the final motion as a post-processing step after texture synthesis.

However, raw marker positions are not a good parameterization for generating motions,

and we usually convert them into joint angle data before applying texture synthesis.

5.2.3.2 Joint Angle Data

With a rough knowledge of the skeleton geometry, raw marker data can be converted to

joint angles via inverse kinematics. However, joint angles are still not suitable for texture

synthesis [7]. We apply a sequence of transformation as follows:

Scaling Each joint angle causes different amount of pose changes. For example, with the

same angular change, the shoulder joint angles will cause more pose changes than the

finger joint angles. We can scale the joint angles according to their relative impacts

on body movements using the technique in [25].

Trigonometry Because joint angles are by natural cyclic (ranging from 0 to 360 degrees),

we cannot compare them by simply taking the sum of squared difference. One solu-

tion is to round all signals into the domain [0; 360) degrees, and use cyclic arithmetic

to correctly compute the difference. (For example, the difference between 1Æ and

359Æ is 2Æ, not 358Æ.) However, this approach requires changing our implementa-

tion since we need additional arithmetic and conditional instructions for each angle
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comparison. An easier approach that doesn’t require changing our fundamental cod-

ing is to map the angles into an acyclic range and compare them directly like RGB

colors. There are several possible mappings to achieve this [7]. In our current imple-

mentation we convert each angle � into a [sin(�); cos(�)] pair. This representation

transforms cyclic angles into acyclic range [0; 1], and the phase shifting between sin

and cos provides good resolution for different angles.

Principle Component Analysis (PCA) We can optionally run PCA to the motion signals

before applying texture synthesis. The advantage of PCA is that it could potentially

reduce noise and unnecessary details. However, it may also remove intricate motion

details. We usually skip PCA in our experiments.

Because the global body translation/rotation is lost after converting marker positions

to joint angles, we synthesize the global motion separately and combine it with the joint

angles as a post-processing step after texture synthesis.

5.2.4 Results

Figure 5.2 shows selected frames of synthesis results for a variety of walking and running

styles. In each case, the synthesized motion signal is twice as long as the original mo-

tion signal. All motions are encoded as joint angles, and we preprocess them with only

the trigonometric parameterization (without scaling and PCA). We have also tested our ap-

proach with over a hundred different articulated motions and results are available at our

project webpage. In our experience texture synthesis is most suitable for cyclic motion

such as walking or running, not acyclic motions such as falling down.

5.3 Discussion

Because image textures, temporal textures, and periodic motion signals are governed by

different perceptual mechanism, our synthesis results can be improved by considering their

special properties. For example, since the spatial and temporal dimensions of temporal

textures are perceived differently, better results could be obtained by using different de-

composition methods when building multi-resolution pyramids [2]. Different joint angles
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of a articulated motion can have also different perceptual importance. For example, al-

though the finger joints usually incur smaller body movements than arm joints, they can be

more important in contexts such as gesturing. Those high-level context-dependent knowl-

edge can be incorporated into our synthesis pipeline by proper weighting/filtering the input

data as a preprocessing step. For example, since finger motions are more important we can

assign them heavier weights than leg motions.
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Figure 5.1: Temporal texture synthesis results. (a) fire (b) smoke (c) ocean waves. In each pair of
images, the spatial-temporal volume of the original motion sequence is shown on the left, and the
corresponding synthesis result is shown on the right. A 3-level Gaussian pyramid, with neighbor-
hood sizes f5x5x5,2g, f3x3x3,2g, f1x1x1,1g, are used for synthesis. The original motion sequences
contain 32 frames, and the synthesis results contain 64 frames. The individual frame sizes are (a)
128x128 (b) 150x112 (c) 150x112. Accelerated by TSVQ, the training times are (a) 1875 (b) 2155
(c) 2131 seconds and the synthesis times per frame are (a) 19.78 (b) 18.78 (c) 20.08 seconds. To
save memory, we use only a random 10 percent of the input neighborhood vectors to build the (full)
codebooks.
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Figure 5.2: Synthesis results of articulated motions. From top to bottom: walk, dainty walk,
crippled walk, gallop walk, cowboy walk, march, goose march and run (available at our project
webpage).



Chapter 6

Surface Texture Synthesis

Computer graphics applications often use textures to decorate virtual objects without mod-

eling geometric details. These textures can be generated from sample images using texture

synthesis algorithms. However, most existing texture synthesis algorithms are designed

for rectangular domains and can not be easily extended to general surfaces. One solution

is to paste textures onto such surfaces using texture mapping. However, because general

surfaces lack a continuous parameterization, this type of texture mapping usually causes

distortions or discontinuities. An alternative approach that minimizes distortion is to gen-

erate textures directly over the surface. However, since we can not apply traditional image

processing operations to surfaces, most existing methods for surface texture synthesis work

only for limited classes of textures.

In this chapter, we present a method for synthesizing textures directly over 3D meshes.1

Given a texture sample and a mesh model, our algorithm first uniformly distributes the mesh

vertices using Turk’s method [68]. It then assigns texture colors to individual mesh vertices

so that the appearance of the surface appears to be the same as the input texture (Figure 6.1).

It does this using a non-trivial extension of our algorithm for synthesizing planar textures

as presented in previous chapters. Specifically, given a sample texture image, the planar

algorithm synthesizes a new texture pixel by pixel in a scanline order. To determine the

value of a particular output pixel, its spatial neighborhood is compared against all possible

neighborhoods from the input image. The input pixel with the most similar neighborhood

1The majority of this chapter has been published in [74].
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(a) Texture (b) Model (c) Synthesis result

Figure 6.1: Surface texture synthesis. Given a texture sample (a) and a model (b), we synthesize a
similar texture directly over the model surface (c).

is then assigned to the output pixel. This neighborhood search process constitutes the

core of our planar algorithm and is inspired by the pioneering work of Efros and Leung

[19] and Popat and Picard [53]. The primary differences between our approach and [19,

53] are that our approach uses neighborhoods with fixed shapes and conducts the search

deterministically; therefore it can be accelerated by tree-structured vector quantization.

Although our planar algorithm can synthesize a wide variety of textures, there are sev-

eral difficulties in extending it to general meshes:

Connectivity Vertices on meshed surfaces are irregularly distributed, with varying inter-

vertex distances and angles. As a result, the scanline order used in our planar algo-

rithm cannot be applied.

Geometry Most surfaces are curved and cannot be flattened without cutting or distortion.

This presents difficulties for defining the spatial neighborhoods that characterize tex-

tures.

Topology Because the surface of a general object cannot be mapped to a rectangle, it

can not be parameterized using a rectangular grid. Most texture synthesis methods

require the specification of a local texture orientation.

In this chapter, we present two modifications of our planar algorithm to address those

challenges. First, we relax the scanline order, instead visiting vertices in random order, to
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allow texture synthesis over surfaces with arbitrary topology. Second, we replace the rect-

angular parameterization of the output domain that is implicit in our planar algorithm with

tangent directions at each mesh vertex, coupled with a scale factor derived from the mesh

vertex density. Based on this new parameterization we generalize the definition of search

neighborhoods in our planar algorithm to meshes, and we show that this generalization

works over a wide variety of textures. Specifically, for textures that are moderately isotrop-

ic, we use random tangent directions, and for anisotropic textures, we use tangent directions

that are either user-specified or automatically assigned by our relaxation procedure.

The rest of the chapter is organized as follows. In Section 6.1, we review previous

work. In Section 6.2, we present the algorithm. In Section 6.3, we demonstrate synthesis

results. In Section 6.4, we conclude the chapter and discuss future work.

6.1 Previous Work

Texture Synthesis: Recent statistical texture synthesis algorithms [33, 59, 14, 73, 19] have

achieved success in modeling image textures. Since these algorithms rely on planar grids,

it is not clear how they can be extended to arbitrary surfaces. A different class of methods

generate textures through specialized procedures [18]. These techniques produce textures

directly over 3D surfaces, so the texture distortion problem is largely eliminated. However,

procedural synthesis is capable of modeling only a limited class of textures.

There have been several attempts to extend statistical texture synthesis to surfaces [22]

or 3D volumes [24, 33]. Based on second-order statistics, [22] relates pairs of mesh vertices

via their geodesic curves. However, second-order statistics are unable to capture significant

structures that occur in may textures [59]. Volumetric synthesis [24, 33] avoids this texture

distortion. However, these algorithms begin from multiple 2D textures and require con-

sistent statistics over these multiple views; therefore they can model only textures without

large-scale structures.

Texture Mapping: Another body of related work is texture mapping algorithms. However,

globally consistent texture mapping [42] is difficult. Often, either distortions or discontinu-

ities, or both, will be introduced. [47] addressed this problem by patching the object with
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continuously textured triangles. However, this approach works only for isotropic textures,

and it requires careful preparation of input texture triangles obeying specific boundary con-

ditions. In addition, since it employs relatively large triangles, the approach is less effective

for texturing narrow features. Our algorithm performs moderately well on semi-anisotropic

textures, and it does not require extensive preparation. Another method that has been sug-

gested is to cover a model with irregular overlapping patches [55]. This approach works

well for some but not all kinds of textures. Also, the discontinuity between adjacent texture

instances are evident if the textured model is seen close up. The local parameterization

method used in [55] inspired the parameterization of the algorithm presented here.

Mesh Signal Processing: In principle, we could directly generalize our planar algorithm

for meshes if there existed a toolkit of general mesh signal processing operations. Un-

fortunately, despite promising recent efforts [30, 58], mesh signal processing still remains

largely an open problem; [58] works only for spheres and [30] is designed for filtering

geometries and functions over meshes, not for general mesh signal processing operations

such as convolution.

6.2 Algorithm

Our algorithm uses the same framework as our planar algorithm . To make the exposition

clear, we first summarize that algorithm in Table 6.2. We then describe our extension-

s. The core of our planar algorithm uses spatial neighborhoods defined on rectangular

grids to characterize image textures. In this chapter, we generalize the definition of s-

patial neighborhood so that it can be used for producing textures over general surfaces.

We parameterize mesh surfaces using local coordinate orientations defined for each mesh

vertex and a scale factor derived from vertex density. We also change the codes for build-

ing/reconstructing mesh pyramids, as well as the order for traversing output pixels. For

clarity, we mark a � at the beginning of each line in Table 6.2 that needs to be extended or

replaced.

In the rest of this section, we present our extensions following the order in the pseudo-

code in Table 6.2. For easy comparison we also summarize our new algorithm in Table 6.3.
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Symbol Meaning
Ia Input texture image
Is Output texture image
Ms Output textured mesh
Ga Gaussian pyramid built from Ia
Gs Gaussian pyramid built from Is or Ms

pi An input pixel in Ia or Ga

p An output pixel/vertex in Is/Gs

Ps(p) Flattened patches around p
N(p) Neighborhood around the pixel p
G(L) Lth level of pyramid G
G(L; p) Pixel p at level G(L)
~s, ~t, ~n Local texture coordinate system:

texture right, texture up, and surface normal
fRxC,kg neighborhood containing k levels,

with sample density RxC pixels at the top level

Table 6.1: Table of symbols

6.2.1 Preprocessing

The preprocessing stage consists of building multiresolution pyramids and initializing out-

put texture colors (Table 6.2, line 1 to 3, and Table 6.3, line 1 to 5). For texturing a surface

we add two more steps to this stage: retiling meshes and assigning a local texture orienta-

tion. Let us consider each step in this stage.

In Table 6.2, an image pyramid is built for both the input and output texture image.

In the present algorithm, we build the image pyramid Ga via standard image processing

routines, as in our planar algorithm . However, for output mesh Ms, we construct the

corresponding pyramid Gs using mesh simplification algorithms [68]. Note that at this

stage Gs only contains a sequence of simplifications of the geometry of Ms; the vertex

colors are not yet assigned.

After building the mesh pyramid Gs, we retile the surfaces on each level using Turk’s

algorithm [68]. This retiling serves two purposes: 1) it uniformly distributes the mesh

vertices, and 2) the retiling vertex density, a user-selectable parameter, determines the scale

of the synthesized texture relative to the mesh geometry (Figure 6.2, see Section 6.2.3

for details). The retiling progresses from higher to lower resolutions, and we retile each
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function Is ImageTextureSynthesis(Ia, Is)
1� InitializeColors(Is);
2 Ga BuildImagePyramid(Ia);
3� Gs BuildImagePyramid(Is);
4 foreach level L from lower to higher resolutions of Gs

5� loop through all pixels p of Gs(L) in scanline order
6 C  FindBestMatch(Ga, Gs, L; p);
7 Gs(L; p) C;
8� Is ReconPyramid(Gs);
9 return Is;

function C  FindBestMatch(Ga, Gs, L; p)
10� Ns BuildImageNeighborhood(Gs; L; p);
11 N best

a
 null; C  null;

12 loop through all pixels pi of Ga(L)
13 Na BuildImageNeighborhood(Ga, L; pi);
14 if Match(Na, Ns) > Match(N best

a
, Ns)

15 N best

a
 Na; C  Ga(L; pi);

16 return C;
Table 6.2: Pseudocode of our planar algorithm (Chapter 2). Lines marked with a � need to be
replaced or extended for synthesizing surface textures.

lower resolution mesh with one quarter of the number of vertices of the immediate higher

resolution so that the relative sample densities of adjacent pyramid levels relative to one

another are compatible between image pyramid Ga and mesh pyramid Gs.

After retiling, we initialize colors of each level of Gs by assigning random colors from

the corresponding level in Ga. This initialization method naturally equalizes the color

histograms between Ga and Gs, thereby improving the resulting texture.

The next step is to assign a local coordinate frame for each vertex in the mesh pyramid.

This coordinate frame, which determines the texture orientation, consists of three orthogo-

nal axes ~s (texture right), ~t (texture up), and ~n (surface normal). These three axes are tacitly

assumed to be ~x, ~y, ~z for planar image grids. For general surfaces it is usually impossible

to assign a globally consistent local orientation (e.g. a sphere). In other words, singularities

are unavoidable.

Our solution to this problem is to assign the ~s vectors randomly, at least for isotropic
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function Ms SurfaceTextureSynthesis(Ia, Ms)
1 Ga BuildImagePyramid(Ia);
2� Gs BuildMeshPyramid(Ms);
3� RetileMeshes(Gs);
4� AssignTextureOrientation(Gs);
5� InitializeColor(Gs);
6 foreach level L from lower to higher resolutions of Gs

7� loop through all pixels p of Gs(L) in random order
8 C  FindBestMatch(Ga, Gs, L; p);
9 Gs(L; p) C;
10� Ms ReconMeshPyramid(Gs);
11 return Ms;

function C  FindBestMatch(Ga, Gs, L; p)
12� Ns BuildMeshNeighborhood(Gs; L; p);
13 N best

a
 null; C  null;

14 loop through all pixels pi of Ga(L)
15 Na BuildImageNeighborhood(Ga, L; pi);
16 if Match(Na, Ns) > Match(N best

a
, Ns)

17 N best

a
 Na; C  Ga(L; pi);

18 return C;

function Ns BuildMeshNeighborhood(Gs, L; p)
19� Ps(p) FlattenLocalPatch(Gs, L, p, ~s, ~t, ~n);
20� Ns ResampleNeighborhood(Ps(p));
21 return Ns;

Table 6.3: Pseudocode of our algorithm. Lines marked with a � indicate our extensions from the
algorithm in Table 6.2. Note that in our current implementation we only use Gaussian pyramids for
meshes; therefore line 10 simply extracts the highest resolution from Gs.

textures. One of the contributions of this chapter is the recognition that, in the context of

a texture synthesis algorithm that searches a texture sample for matching neighborhoods,

rotating the ~s and ~t between the searches conducted at adjacent mesh vertices does not sig-

nificantly degrade the quality of the match found as long as the input texture is reasonably

isotropic. (Although isotropic textures are by definition rotationally invariant, this does not

immediately imply that we can generate isotropic textures by matching neighborhoods in a
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(a) 24576 vertices (b) 73728 vertices

Figure 6.2: The retiling vertex density determines the scale for texture synthesis. Textured torus
with (a) 24576 vertices and (b) 73728 vertices.

(a) (b) (c)

Figure 6.3: Orienting textures via relaxation. The red arrows illustrate the ~s directions over the
mesh vertices: (a) random (b) 2-way symmetry (c) 4-way symmetry.

rotationally invariant way.)

For anisotropic textures this solution does not work. Therefore, we either let the user

specify the texture direction as in [55], or we automatically assign ~s and ~t using a relaxation

procedure. The goal of this relaxation procedure is to determine the local texture orienta-

tion from the directionality of the input texture. That is, given an n-way symmetric texture,

we orient ~s vectors so that to the extent possible, adjacent ~s vectors form angles of integer

multiples of 360

n
degrees. The relaxation algorithm begins by assigning random orientations

for the lowest resolution level of Gs. It then proceeds from lower to higher resolutions of

Gs, and at each resolution it first initializes ~s vectors by interpolating from the immediate

lower resolution. Each ~s is then aligned, iteratively, with respect to its spatial neighbors

(at the current and lower resolutions) so that the sum of individual mis-registration is mini-

mized. The amount of mis-registration for each ~s at vertex p is calculated by the following
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error function:

E =
X

q near p

������sqp � round(
�sqp
360

n

)� 360

n

�����

2

;

where n is the degree of symmetry of the input texture, and �sqp is the angle between ~sp (~s

of vertex p) and the projection of ~sq on the local coordinate system of vertex p. The idea

of using energy minimization for assigning local directions is not new. A similar function

is used in [49], with the following differences to our approach: (1) we set ~s and ~t to be

always orthogonal to each other, and (2) we use modular arithmetic in the function so that

it favors adjacent ~s vectors forming angles that are multiples of 360

n
degrees. Our approach

is also similar to [35], but we use a slightly different functional, and we do not require the

direction fields to align with the principle surface curvatures. Examples of orienting 2-way

and 4-way symmetric textures (e.g. stripes and grid) are shown in Figure 6.3 (b) and (c).

6.2.2 Synthesis Order

The scanline synthesis order in Table 6.2 (line 5) cannot be directly applied to mesh pyra-

mid Gs since its vertices do not have rectangular connectivity. One solution might be to

use the two-pass algorithm for constrained synthesis (Chapter 3), growing textures spirally

outward from a seed point. However, there is no natural seed point for meshes of arbitrary

topology. Surprisingly, we have found that our algorithm works even if we visit pixels of

Gs(L) in random order. Thus, we use a modified two-pass algorithm, as follows. During

the first pass, we search the input texture using a neighborhood that contains only pixels

from the lower resolution pyramid levels (except the lowest resolution where we random-

ly copy pixels from the input image). This pass uses the lower resolution information to

“extrapolate” the higher resolution levels. In the second pass, we use a neighborhood con-

taining pixels from both the current and lower resolution. In both passes, on each level,

the neighborhoods used are symmetric (noncausal). We alternate these two passes for each

level of the output pyramid, and within each pass we simply visit the vertices in a random

order. In our experience this random order works as well as the spiral order used for con-

strained synthesis (Chapter 4), and it produces slightly worse textures than scanline order
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(a) Input

(b) Scanline order (c) Random order

Figure 6.4: Texture synthesis order. (a) Input textures (b) Results with scanline-order synthesis (c)
Results with random-order synthesis. For textures without scanline dependencies, we have found
that random-order works well.

only for patterns with scanline dependencies. An example comparing different synthesis

orders is shown in Figure 6.4.

6.2.3 Neighborhood Construction

Table 6.2 characterizes textures using spatial neighborhoods (line 10 and 13). These neigh-

borhoods are planar and coincident with the pyramid grids. For meshes, however, we have

to generalize neighborhoods so that they are defined over general surfaces having irregular

vertex positions.

We build mesh neighborhoods by flattening and resampling the mesh locally (Fig-

ure 6.5). To build the neighborhood around an output vertex p, we first select and flatten a
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(b) (c)

d

p

(a)

Figure 6.5: Mesh neighborhood construction. (a) neighborhood template (b) flattened patch of the
mesh (c) neighborhood template embedded in the flattened patch.

set of nearby vertices, henceforth called a patch, so that they fully cover the given neighbor-

hood template (Figure 6.5 (a,b)). We then resample the flattened patch (Figure 6.5 (c)) by

interpolating the color of each neighborhood pixel (red circles) from the vertex colors of the

patch triangle (blue squares) that contains that pixel. Before flattening, the neighborhood

template is scaled with a constant d =
p
2� A, where A = average triangle area of Gs(L),

so that the sampling density of the neighborhood and mesh vertices are roughly the same2.

Leaving d much larger than
p
2� A would either introduce aliasing during resampling or

would waste mesh vertices by necessary filtering; if d were too small, the neighborhood

would be poorly represented since most of its samples would come from the same triangle.

The method we use for flattening patches is taken from [55]. First, we orthographically

project the triangles adjacent to p onto p’s local texture coordinate system. Starting from

these seed triangles, we grow the flattened patch by adding triangles one at a time until the

neighborhood template is fully covered. Triangles are added in order of increasing distance

from the seed triangles, and we determine the position of each newly added vertex using

the heuristic in [43, Section 3.1.4]. Note that the flattening process can introduce flipped

triangles. If this happens, we stop growing patches along the direction of flipping. This

might in turn produce patches that only partially cover the neighborhood template. In this

case, we assign a default color (the average of Ia) to the uncovered neighborhood pixels.

Another solution might be to use smaller neighborhoods for highly curved areas. However,

2We choose this formula so that if the mesh is a regular planar grid, the neighborhood will be scaled to
align exactly with the grid vertices.
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(a) 2186 vertices,
4368 faces

)

(b) 8715 vertices,
17426 faces

)

(c) 34938 vertices,
69868 faces

Figure 6.6: Multi-resolution surface texture synthesis. The synthesis progresses from lower to
higher resolutions, and information at lower resolution meshes is used to constrain the growth of
textures at higher resolutions.

since a new neighborhood size would require a new VQ codebook (Chapter 3), this implies

building multiple codebooks for tree-structured VQ acceleration. Fortunately, since we

only use small neighborhoods, flipping rarely happens.

We construct multiresolution neighborhoods in a similar fashion. For each vertex p

of pyramid Gs, we first find the corresponding parent faces at lower resolution pyramid

levels by intersecting the normal ~n of p with the coarse meshes. We project each parent

face orthographically with respect to p’s ~s, ~t, ~n, and we grow a flattened patch from the

parent face as in the single-resolution case. The collection of flattened patches Ps(p) is

then resampled to obtain the multiresolution neighborhood N(p)3.

6.3 Results

Our first example, illustrating the multiresolution synthesis pipeline, is shown in Figure 6.6.

The synthesis progresses from lower to higher resolutions, and information at lower res-

olution meshes is used to constrain the growth of texture patterns at higher resolutions.

All synthesis results shown in this chapter are generated with 4-level Gaussian pyramid-

s, with neighborhood sizes f1x1,1g, f3x3,2g, f5x5,2g, f7x7,2g (Table 6.1), respectively,

3If ~n of p does not intersect a particular coarse mesh (e.g. it lies on a crease), we simply skip flattening at
that level. Instead we assign a default color to the neighborhood pixels that are not covered, as in the flipping
case.



62 CHAPTER 6. SURFACE TEXTURE SYNTHESIS

from lower to higher resolutions.

Texture Orientation: Figure 6.7 demonstrates the performance of our algorithm on tex-

tures with varying amounts of anisotropy. The model we use, a sphere, is the simplest

non-developable object that has no consistent texture parameterization. Despite this, many

textures are sufficiently isotropic that they can be synthesized using random texture ori-

entations (columns (a) and (b)). For highly anisotropic textures (column (c)), a random

parameterization may fail, depending on the nature of the textures (column (d)). We can

retain the anisotropy by assigning consistent surface orientations either by hand (column

(e) and (f)) or using our iterative relaxation procedure (column (g)).

Model Geometry & Topology: Several textured meshes with different topologies and

geometries are shown in Figure 6.9. As shown, the algorithm generates textures without

discontinuity across a variety of surface geometries and topologies, even across fine fea-

tures such as the bunny ear (Figure 6.8). The algorithm can also be used to synthesize

surface attributes other than colors such as displacement maps (the mannequin model in

Figure 6.9).

Computation Time: By using an efficient data structure for meshes (we use the quad-

edge data structure [29], although other approaches are possible), we achieve linear time

complexity with respect to the neighborhood sizes for both the flattening and resampling

operations. In our C++ implementation running on a 450 MHz Pentium II machine, the

timing for texturing the sphere in Figure 6.7 is as follows: relaxation (30 iterations) - 85

seconds, synthesis with exhaustive search - 695 seconds, and synthesis with tree-structured

VQ acceleration - 82 seconds.

6.4 Conclusions and Future Work

We have presented extensions of our planar algorithm that permit us to synthesize tex-

tures over surfaces of arbitrary topology, beginning with a rectangular texture sample. The

most significant of these extensions are that we traverse output vertices in a random order,
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thus allowing texture synthesis for general meshes, and we parameterize meshes with a

user-selectable scale factor and local tangent directions at each mesh vertex. We define

mesh neighborhoods based on this parameterization, and we show that this approach works

over a variety of textures. Specifically, we synthesize isotropic textures with random lo-

cal orientations, while generating anisotropic textures with local directions that are either

hand-specified or automatically determined by our relaxation procedure.

Our approach has several limitations. Since it is an extension of our planar algorithm

it only works for texture images; therefore it is not as general as [55] which can paste

any image onto a mesh model. However for the class of textures that can be modeled

by our planar algorithm , our approach usually produces continuous surface textures with

less blocky repetitions. In addition, for textures that are not well modeled by our planar

algorithm , we could generate better results by combining our surface-synthesis framework

with other improved texture synthesis algorithms such as [1]. Finally, our representation

of the output as a retiled polygonal mesh with vertex colors may not be desirable in cases

where we would like to preserve the original mesh geometry. In such cases the output can

be mapped back onto the original model in a post-process by resampling, such as in [12].

In concurrent work, Turk has developed a similar approach for synthesizing textures

over surfaces [69]. The primary differences between [69] and our work are as follows:

(1) we have used random as well as symmetric vector fields for certain textures, whereas

[69] always creates a smooth vector field, (2) instead of a sweeping order, we visit mesh

vertices in random order, (3) the two approaches use different methods for constructing

mesh neighborhoods; [69] uses surface marching while we use flattening and resampling,

and (4) we do not enforce a explicit parent-child relationship between mesh vertices at

adjacent resolutions.

We envision several possible directions for future work. Although our relaxation proce-

dure can assign reasonable local orientations for many anisotropic but symmetric textures,

it remains an open problem for which symmetry classes local orientations can be assigned

in this way. Another future direction is to use a variant of our algorithm to transfer tex-

tures (either colors or displacements) from one scanned model [41] to another mesh model.

This could be done by replacing the input image Ia Table 6.3 with an input mesh model,
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and changing line 1 and 15 in Table 6.3 to BuildMeshPyramid and BuildMeshNeighbor-

hood, respectively. Finally, our definition of mesh neighborhoods might be applicable to

other signal processing operations over meshes such as convolution, filtering, and pattern

matching.
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(a) (b) (c) (d) (e) (f) (g)

Figure 6.7: Texture synthesis over a sphere uniformly tesselated with 24576 vertices and 49148
faces. (a) Isotropic textures of size 64x64. (b) Synthesis with random orientations. (c) Anisotropic
textures of size 64x64. (d) Synthesis with random orientations. (e) Synthesis with ~s and~t vectors at
each vertex parallel to longitude and altitude of the sphere. (f) The polar views of (e), showing the
singularity. (g) Synthesis with orientation computed by our relaxation procedure (Section 6.2.1).
The top two textures are generated using 2-way symmetry (Figure 6.3 (b)), while the bottom one is
generated using 4-way symmetry (Figure 6.3 (c)).

(a) (b) (c) (d)

Figure 6.8: Different views of textured fine model features. (a) Bunny ears, back view. (b) Bunny
ears, top view. (c) Horse legs. (d) Horse legs, close up view.
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Figure 6.9: Surface texture synthesis over different models. The small rectangular patches (size
64x64) are the input textures, and to their right are synthesis results. In all examples the textures
are used to modulate the colors, except the last one where the texture is used for displacement
mapping. Texture orientation and mesh sizes: teapot (no symmetry, 256155 vertices, 512279 faces),
mechanical part (2-way symmetry, 49180 vertices, 98368 faces), knot (random, 49154 vertices,
98308 faces), horse (4-way symmetry, 48917 vertices, 97827 faces), cat (2-way symmetry, 50015
vertices, 100026 faces), and mannequin (no symmetry, 256003 vertices, 512002 faces).



Chapter 7

Texture Synthesis from Multiple Sources

In previous chapters we have presented algorithms for synthesizing textures of different

physical forms, including images, spatial temporal volumes, and articulated motions. How-

ever, all these algorithms take a single texture as input and generate an output texture with

similar visual appearance. Although the output texture can be made of arbitrary size and

duration, those techniques can at best replicate the characteristics of the input texture.

In this chapter, we would like to do something more interesting. We would like to have

algorithms that can create new textures. We present approaches that take multiple textures

with probably different characteristics, and synthesize new textures with combined visual

appearance of all the inputs.

In the rest of this chapter, we first formulate the problem of synthesizing textures from

multiple sources in Section 7.1. We define the problem in a general setting, and show

that two specific variations of it are particularly useful: synthesizing solid textures from

multiple 2D views and texture mixtures. We review previous work in Section 7.2. We

present our algorithm in Section 7.3, and apply it to solid texture synthesis from 2D views

(Section 7.4) and texture mixtures (Section 7.5). Although seemingly unrelated, these ap-

plications are actually slight variations of the same basic algorithm and can even share the

same implementation.

67
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7.1 Multi-Source Texture Synthesis

The goal of multi-source texture synthesis can be stated as follows: Given several sample

textures, synthesize a new texture that has a combined appearance of the input samples.

The meaning of “combined appearance” will depend on the specific applications. We are

interested in two particular applications that are most useful for computer graphics:

7.1.1 Solid Texture Synthesis from Multiple 2D Views

Solid textures can be used to simulate the surface appearance of objects carved out of ma-

terials such as marble and wood. Since solid textures define colors for each 3D grid point,

they can bypass the texture mapping process and avoids mapping distortion/discontinuity

completely. However, solid textures are not easy to acquire. Unlike image textures, there

is no easy way to “scan” an solid texture from real world materials; therefore most existing

approaches use procedural synthesis for generating solid textures.

A more flexible approach is to generate a solid texture from 2D views (Figure 7.1).

By allowing these 2D views to come from different image sources such as scanned pho-

tographs, we can synthesize arbitrary solid textures in a more general setting. For example,

to produce a marble texture we can take three photographs of a marble surface, and then ask

the algorithm to synthesize a cube of marble texture for us. The challenge for this approach

is to design an algorithm that can generate a solid texture with matching visual appearance

with respect to all the 2D views.

We consider the problem of generating solid textures as a special case of multi-source

texture synthesis. In this specific application, the 2D views are the several image textures of

a specific material (such as marble), and the synthesized solid texture will have a “combined

appearance” of the inputs in the sense that the solid texture looks similar to each 2D view

from the corresponding viewing directions. In the most common case the views consist of

three images describing the solid texture from orthogonal directions.
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View 2Solid Texture

View 3

View 1

Figure 7.1: Generating a solid texture from multiple 2D views. Given multiple 2D images, the
goal is to generate a solid texture that has consistent characteristics with every image viewed at the
corresponding directions.

7.1.2 Texture Mixture

A texture mixture simultaneously captures the characteristics of several different input tex-

tures. This can be useful for creating textures that do not previously exist. For example,

given an image of animal fur and belly, can we generate a new texture that has a combined

appearance and looks like the transition region between animal back and belly?

Texture mixture can be considered as a special case of multi-source texture synthesis.

However, in this situation the notion of “combined appearance” is less well defined than the

solid texture synthesis application, since the definition of “combined appearance” is highly

case dependent. For example, one possible way to generate a texture mixture is to blend

smoothly from one texture to another such as the animal fur and belly example. However,
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one can also imagine other kinds of mixtures, such as patterns from one texture and colors

from another.

7.2 Previous Work

7.2.1 Solid Texture Synthesis

Most previous approaches for generating solid textures use specialized procedures [50, 81,

18]. These approaches work well for specific textures such as marble, cloud, and wood.

In addition they can be executed very efficiently by careful software coding or hardware

acceleration. However, procedural texture synthesis cannot model general textures and for

those textures it could model, it usually requires some effort to get the parameters right.

An alternative is to generate solid textures automatically from examples. Although

there are many 2D image texture synthesis algorithms that can do this, the analogy cannot

be easily carried over to 3D since it is usually impossible to “scan” a real solid texture (such

as a piece of marble or wood). A more feasible option is to provide multiple 2D views of the

texture, and require the algorithm to generate a new texture that has consistent statistics for

all those 2D views. [33] synthesizes solid textures by equalizing histograms between the

input 2D views and the output 3D volume. This approach can simulate only homogeneous

textures. [15] improves the algorithm in [33] by taking into account the Fourier transform

coefficients. Although it can reproduce some anisotropy of textures (such as wood grain),

it still cannot generate textures with dominating structures.

7.2.2 Texture Mixture

There has been only a few methods related to generating texture mixtures. They are pri-

marily distinguished by the parameter space where different textures are mixed together.

For example, [33, 54] synthesizes texture mixtures in the domain of steerable pyramids,

and [2] uses statistical learning tree to mix textures. However, none of those approaches

generate compelling texture mixtures that truly convey a sense of capturing multiple input

texture characteristics.
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7.3 Algorithm

Our algorithm for synthesizing textures from multiple sources is extended from the basic

algorithm presented in Chapter 2 and Chapter 3. To make the exposition clear, we summa-

rize the algorithm in Table 7.1 where we mark a � at the beginning of each line which is

our new contribution. In the rest of this section we present our new contributions following

the order of the pseudo-code in Table 7.1.

7.3.1 Input

The input of the algorithm consists of several texture sources fIag. Those sources can be

different views of a solid texture, or different textures for generating a texture mixture.

Each source Ia is associated with a weight Iw, which is of the same size as Is. Those

weights fIwg are user selected parameters specifying how the input sources should be

mixed together. For example, if the input consist of two sources and we would like our

mixture result to look more similar to the first one, we can assign heavier weight to the

first texture. We let each Iw to have the same size as Is so that they can indicate spatially

varying properties, such as a texture mixture that transforms gradually from one texture to

another horizontally.

In addition, each source Ia is also associates with a neighborhood parameter, specifying

the size and shape of the neighborhood used during the search process for this specific

source. This can be useful for situations such as different sources of a texture mixture have

different element sizes (so we would like to use larger neighborhoods for some textures),

or solid texture synthesis where each view has different neighborhoods oriented with the

corresponding viewing directions.

7.3.2 Initialization

The initialization phase consists of building pyramids and initializing colors (Table 7.1,

lines 1 to 4). Since we have a set of texture samples fGag, we build separate pyramids for

each sample texture (line 1). The output pyramid Gs is constructed as in Chapter 2. Note

that we build all the pyramids with the same number of levels so that they are compatible
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function Is MultiSourceTextureSynthesis(fIag, fIwg, Is)
1� fGag  BuildPyramid(fIag);
2� fGwg  BuildPyramid(fIwg);
3 Gs BuildPyramid(Is);
4� InitializeColors(fGag, fGwg, Gs);
5 foreach level L from lower to higher resolutions of Gs

6 loop through all pixels p of Gs(L)
7� iterate several times
8� C  FindBestMatch(fGag, fGwg, Gs, L; p);
9 Gs(L; p) C;
10 Is ReconPyramid(Gs);
11 return Is;

function InitializeColors(fGag, fGwg, Gs)
12� i 0;
13� foreach Ga in fGag
14� i i + 1;
15� Gsi

 Gs;
16� InitializeColors(Ga, Gsi

); % same as in Table 2.2

17� Gs 
NP
i=1

Gwi
�Gsi

; % N is the number of elements in fGag

function C  FindBestMatch(fGag, fGwg, Gs, L; p)
18� i 0;;
19� foreach Ga in fGag
20� i i + 1;
21� Ci FindBestMatch(Ga, Gs, L; p); % same as in Table 2.2
22� C  P

i

Gwi
(L; p)� Ci;

23 return C;

Table 7.1: Pseudocode of the multi-source texture synthesis algorithm. For clarity, we mark a �
at the beginning of each line that is different from the basic algorithm (Table 2.2). The symbol fg
indicates sets, such as fGag and fCig.

with each other.

Since we have multiple texture sources, the color initialization step also needs change

(line 4). In our current implementation, we simply equalize the histogram of Gs with the

weighted average of the histograms of fGag. That is, the histogram of Lth level of Gs
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is equalized with respect to the weighted average of the histograms at Lth levels of fGag
using the Lth levels of weights fGwg.

7.3.3 Synthesizing One Pixel

We now discuss how to determine each output pixel/voxel value (Table 7.1, line 7 to 9).

Recall that in our synthesis algorithm from a single source (Chapter 2), each output pixel

is determined so that the local similarity between the input and output textures is preserved

as much as possible. We would like to achieve the same goal for multi-source texture

synthesis. However, since we now have more than one input textures we have to pick the

output pixel value so that it preserves local similarity simultaneously with all the input

sources.

Mathematically, for each output sample p we would like to find a set of input pixels

fpig so that the following error function is minimized:

E(p; fpig) =
X

i

wi � (kp� pik2 + kN(p)�N(pi)k2) (7.1)

where i runs through all the input textures, p and each pi are the output and matching

input pixel colors, and N(p), N(pi) are their neighborhoods (defined as in Chapter 2).

The error function is computed as a weighted sum of the L2 norm between fp;N(p)g and

fpi; N(pi)g, and the weights fwig specify the relative importance of the input textures.

Specifically, each wi is equal to Gwi
(L; p) where Gwi

is the ith input weight pyramid and

L is the level at which p resides.

To minimize the error function E(p; fpig), we need to determine the values p and fpig
so that the sum on the right hand side of Equation 7.1 is minimized. We first present

a solution when there is only one source, and propose a general solution when multiple

sources are present.

7.3.3.1 One Source

When only one source is present, we can directly minimize Equation 7.1 as follows: simply

choose the pi such that kN(p)�N(pi)k2 is minimal, and set p to be equal to pi. This is
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exactly our algorithm presented in Chapter 2.

7.3.3.2 Multiple Sources

When multiple sources are present, we cannot solve Equation 7.1 directly. Instead we use

an iterative procedure, alternatively setting the values of fpig and p while gradually de-

creasing E(p; fpig) (Figure 7.2). At the beginning of each iteration, we fix the value p and

choose fpig so that each individual error term kp� pik2+kN(p)�N(pi)k2 is minimized1.

We then keep fpig fixed, and set p as the weighted mean of fpig (Table 7.1, line 22). It can

be easily proven that both of these steps either decrease E(p; fpig) or keep it the same. The

iteration can be stopped when E(p; fpig) remains the same after two consecutive iterations,

but experimentally we have found that 1 to 4 iterations are sufficient.

7.4 Solid Texture Synthesis

To synthesize solid textures from multiple views, simply specify several images consisting

of different views of a hypothesized solid texture. Each view is associated with a neighbor-

hood oriented with respect to the specific viewing direction. In the most common situation

where the views are orthogonal to each other, each view is associated with a neighborhood

perpendicular to one of the major axis.

To make the algorithm successful, it is important that the input views are consistent with

each other. Otherwise there might be no solid texture that can satisfy the requirements of all

the views. We illustrate the importance of specifying views in Figure 7.3. Given a sample

texture with stripes, there are several ways to specify the views. One way is to specify

the texture as 3 views with patterns oriented orthogonal to each other. Unfortunately, no

solid texture can satisfy those inconsistent requirements and the synthesized result contains

garbage (Figure 7.3(b)). If we specify only two views horizontally with patterns parallel to

each other, then we have a consistent specification and the result solid texture will contain

horizontal slices (Figure 7.3 (c)). Another way to specify views consistently is shown in

Figure 7.3 (d), where the result consists of vertical bars.
1For the first iteration where the value p is not yet determined, we only consider the term

kN(p)�N(pi)k
2 in choosing the values of fpig.
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Figure 7.4 shows more synthesis results. The algorithm performs reasonably well for a

wide variety of textures, including stochastic textures (Figure 7.4 (a) to (f)), textures with

dominating orientations (Figure 7.4 (h)), and textures with large scale structures (Figure 7.4

(i) to (l)). However, in general the synthesized texture qualities are not as good as those

generated by surface texture synthesis, such as Figure 7.4 (h), (k) and (l). This is because

solid texture synthesis is inherently a more difficult problem than surface synthesis, where

generated solid texture needs to be consistent with multiple views. Nevertheless, to our

knowledge, our approach is the first algorithm that can generate structured solid textures

from 2D views.

Compared to generating textures directly over object surfaces (Chapter 6), solid texture

synthesis has both advantages and disadvantages:

Surface Texture Synthesis:

- Textures generated for one surface cannot be reused for other surfaces.

- When surface curvature is large, the generated texture can suffer from distortion.

+ Because the texture only needs to look good at the surface, the synthesis problem is

easier since essentially we care about only one viewing direction per surface location.

+ The algorithm usually consumes less computation time since texture colors only need to

be determined at selected surface locations.

+ For textures with dominating orientation such as stripes, we can freely tune the direction

on the surface.

Solid Texture Synthesis from 2D Views:

+ Once a solid texture is synthesized, it can be reused repeatedly for different objects.

+ The synthesized solid texture contains no distortion.

- Because solid textures need to look consistently with all the views, it is a more difficult

problem than generating textures over a surface, especially when the number of views

is large (greater than or equal to three).
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- The algorithm is usually more computationally expensive since we need to generate a

whole solid texture in addition to those which actually touch the final object surfaces.

However, this can be overcome by generating solid textures at only those voxels close

to the final surface.

- For textures with dominating orientation such as stripes, the orientation is fixed for the

whole solid texture. Therefore we cannot locally tune it (for example the horse model

in Figure 7.5.)

7.5 Texture Mixture

We generate texture mixtures by supplying several input textures to the algorithm. Each

texture is associated with a weight image Iw, specifying how each source is going to effect

the mixture result. For example, by assigning equal weighting to all the inputs, the result

will be a uniform mixture of the input textures. However, by letting the weight images to be

spatially varying, we can achieve special effects such as one texture gradually transforming

to another (Figure 7.6).

To generate meaningful results, the input textures should have comparable colors and

patterns. Figure 7.7 shows the effect of input colors on the mixture results. In case (a)

we use two textures of the same kind of generate a “mixture” result. (Although this is

not a real mixture since the two sources are of the same kind, we can use this as a good

example to demonstrate the importance of colors.) In case (b), we invert the colors of one

of the input textures. Look how drastically the result in (b) looks different from the result in

(a). By inverting the color of the second input, we are essentially matching the foreground

patterns (white grid) on the first texture to the background patterns on the second texture.

The situation is even worse if the two inputs have disjoint color spaces, such as the red and

green textures shown in (c).

To avoid this problem, we should compare the textures in a common color space. We

achieve this by adding an extra color channel to the input RGB images, and use this channel

with the existing RGB channels in the neighborhood search process. This extra channel

servers as a common space for comparing different input textures, and it can be specified
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by the user as a way to control how the inputs should be compared. We usually scale this

extra channel so that it has more impact in the neighborhood search process. For example,

by using the intensity of the input textures as the extra channel, we could better match

patterns such as lines and grids since human visual systems are more sensitive to intensity

variations. The effect of this modified approach is shown in Figure 7.7 (d), where the result

is generated by searching neighborhoods in the intensity space (with scale factor 100). The

result shows the expected texture mixture, both in terms of color and pattern. The effect

of this approach is even more evident in the linear texture transformation result shown in

Figure 7.6.

Figure 7.8 and Figure 7.9 show mixture results with gray-scale textures. We use gray-

scale textures so that we can focus on the effect of mixing various patterns. When the

inputs contain similar patterns (Figure 7.8 (a) and (b)), the algorithm is able to generate

mixtures that resemble each input. In addition, the mixture is able to connect the patterns

from one texture to another, as shown on the right-most images of each row. Even for inputs

with dissimilar patterns (Figure 7.8 (c) to (f) and Figure 7.9 (a) to (b)), the algorithm still

performs reasonably well. Note that a slight change in one of the input pattern can have

dramatic effect on the output, such as rotating the textons of one of the input (Figure 7.8

(e) and (f)). In addition to structures, we can also mix other texture properties such as

randomness (Figure 7.9 (c)) or orientation (Figure 7.9 (f) and (g)). The algorithm performs

less effective only when the two inputs have very different patterns (Figure 7.9 (f)).

Figure 7.10 shows mixture results with natural color textures. For cases (b) to (f) we

use the intensity image as the extra color channel for neighborhood search, and for case

(a) we use the red channel as the extra channel. In all cases the extra channel is scaled

by a factor of 100. As shown, our algorithm is able generate interesting mixtures for a

variety of natural textures even with a simple method of using the intensity image as the

extra channel. Better results could be obtained by providing better information in the extra

channel, such as asking a human to specify which features on the input images should

be treated as similar and should be blended together. However, in general texture mixture

suffers the same fundamental restrictions of the basic algorithm and might require extensive

user-intervention or solving difficult computer vision problems for feature extraction.
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Figure 7.2: Iterative algorithm for multi-source synthesis. Figures (a) through (d) show the iter-
ative process for determining the value of a single output pixel p. In each figure the three input
textures are shown on top and left, and the output texture is shown on the lower-right corner. Shown
here are two iterations with the two phases for each iteration: iteration 1 (a,b) and iteration 2 (c, d).
At the beginning of each iteration, we fix the value of p and search for best neighborhood matches
from all the inputs (a). After finding the best matches, we re-compute the value of p by taking the
weighted averages from the centers of the best matches (b). This process is then repeated for (c,d).
Note that due to the change of value p, the locations of the best matches in (c) might be different
from (a,b).
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(a) Sample

(b)

(c) (d)

Figure 7.3: Specifying views for synthesizing a solid texture from multiple 2D views. (a) A single
texture sample used to specify the views. (b) Solid texture generated by specifying the views incon-
sistently. (c) Solid texture generated by specifying two views so that the result form horizontal slices.
(d) Solid texture generated by specifying two views so that the result form vertical bars.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7.4: Solid texture synthesis results. For each pair of images, the original texture is shown
on the left, and the corresponding synthesis result is shown on the right. Each result is generated by
carving a 3D model out of a cube of synthesized solid texture. The original images have size 64x64,
and the synthesized solid textures have size 64x64x64. Except (h), which is generated by two views
as in Figure 7.3 (d), all solid textures are generated from three views as in Figure 7.3 (b). There is a
slight scale change between original textures and synthesis results; this is caused by displaying the
results over the spheres.
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Figure 7.5: Solid texture synthesis results mapped to different models. Each model is carved out
from a synthesized solid texture, shown in Figure 7.3 and Figure 7.4.

(a) (b)

Figure 7.6: Generating texture mixture with weighted blending. Our algorithm is flexible with how
the input textures are mixed together. In this example, the two textures shown in Figure 7.7 are
weighted according to the ramp image shown in (a). The corresponding synthesis result is shown in
(b). Note the transition region in the mixture result.
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(a)

(b)

(c)

(d)

Figure 7.7: The effect of colors on the texture mixture results. For each row of images, the left two
are samples and the right image is a texture mixture generated with equal weighting from the two
sources. (a) two sources have the same color space. (b) two sources have the same color space,
but their patterns have opposite colors. (c) two sources have disjoint color spaces, and the result
is generated by direct color matching. (d) two sources have disjoint color spaces, but the result is
generated by matching the intensities rather than RGB colors of the sources.



7.5. TEXTURE MIXTURE 83

(a)

(b)

(c)

(d)

(e)

(f)

Figure 7.8: Texture mixture results. For each row of figures, the two input textures are shown on the
left, and the corresponding synthesis result, with equal weighting and ramp weighting, are shown
on the right. (a) Brodatz D36 and D22 (b) Brodatz D103 and D20 (c) Brodatz D36 and D103 (d)
Brodatz D103 and D49 (e) Brodatz D49 and a artificial texture with plus signs (f) Brodatz D49 and
a artificial texture with rotated plus signs.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 7.9: More texture mixture results. (a) Brodatz D67 and D57 (b) Brodatz D84 and D57 (c)
Square textures with regular and random placements (d) Artificial textures with up-right and rotated
plus signs (e) Brodatz D49 texture with different orientations (f) Brodatz D67 and D101.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 7.10: Color texture mixture results. (a) yellow and red peppers (b) radishes and tomatoes.
VisTex textures: (c) Misc.0000 and Food.0005 (d) Water.0007 and Clouds.0000 (e) Water.0004 and
Water.0000 (f) Metal.0004 and Leaves.0006.



Chapter 8

Real-time Texture Synthesis

Texture mapping has become ubiquitous for real time rendering. However, texture mapping

is expensive both in computation and memory access. Recent progresses in hardware de-

velopment have made the computation part relatively inexpensive; however, texture mem-

ory access remains a bottleneck. Methods to address the memory access problem (both

bandwidth and latency) include compression [4], texture patching [82, 55, 20], and texture

caching and prefetching [31, 37].

An alternative solution to reduce memory access bottleneck is to synthesize textures

on the fly rather than storing them in the memory hierarchy. To achieve the same ren-

dering speed as traditional texture mapping hardware, we need to be able to synthesize

textures fast enough. Unfortunately, most existing texture synthesis techniques (both pro-

cedural and statistical) are too slow for real time applications. With recent developments

in hardware, it has become feasible to start talking about real-time texture synthesis. As

an example, Ken Perlin has mapped his procedural noise technique into gate design (see

http://www.noisemachine.com/ for more details). We are interested in making statistical

texture synthesis real-time. Although our acceleration presented in Chapter 3 allows tex-

tures to be generated reasonably fast, it is still not fast enough for real time applications.

In this chapter, we present extensions of our algorithm for real time texture synthesis.

We first describe methods that allow output pixels to be generated in any sequence while

maintaining the same final result. This technique, henceforth called order-independent

texture synthesis, allows our algorithm to be evaluated in parallel and called much like a

86
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procedural texture synthesis routine. Based on this algorithm, we then project possible

software and hardware implementations.

8.1 Explicit v.s. Implicit Texture Synthesis

Texture synthesis techniques can be classified as either explicit or implicit [18, Chapter

2]; an explicit algorithms generates a whole texture directly while an implicit algorithm

answers a query about a particular point (much like scan-converting polygons versus ray-

tracing implicit surfaces). Most existing statistical texture synthesis algorithms are explicit;

because the value of each texture pixel is related to other pixels (such as spatial neighbor-

ing ones in Markov Random Field approaches) it is impossible to determine their values

separately. On the other hand, most procedural texture synthesis techniques are implicit

since they allow texels to be evaluated independently (such as Perlin noise).

Implicit texture synthesis offers several advantages over explicit texture synthesis. Be-

cause only those texels that are actually used need to be evaluated, implicit methods are

usually computationally cheaper than the explicit ones. Implicit methods often consume

less memory since they don’t need to store the whole texture (especially for high dimen-

sional textures). Implicit methods are also more flexible since they allow texture samples to

be evaluated independently and in any order. Unfortunately, implicit methods are usually

less general than explicit ones. Because of the requirement of independent texel evalua-

tion, implicit methods cannot use general statistical texture modeling based on inter-pixel

dependencies.

We would like to combine the advantages of both implicit and explicit texture synthesis.

The ideal algorithm should be at least as general as our approach while allows texture

samples to be evaluated independently. However, since inter-pixel dependencies have been

shown to be important to model textures, fully implicit methods are unlikely to achieve the

same generality as current statistical texture synthesis algorithms.

An alternative is to relax the independence requirement slightly by allowing textures

to be evaluated pseudo-implicitly. The idea is to design an synthesis traversal order which

lets each texel depend on only a constant number other texels. Though not as efficient as

fully-implicit techniques, a pseudo-implicit method is at least more flexible than traversing
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the whole output texture in scanline order.

A pseudo-implicit texture synthesis order must satisfy the following requirements:

Quality The synthesis order should preserve the synthesis quality as well as those pro-

duced by the scanline order. This is not difficult to meet; we have shown in Chap-

ter 6 that a random order with two passes works as well as scanline order for general

situations. Therefore any synthesis order that uses similar two passes should satisfy

this requirement.

Flexibility The synthesis order should allow textures to be evaluated non-sequentially.

More specifically, we should minimize the depth of the dependency-graph that de-

termines the traversal order for synthesizing output pixels. The scanline order is the

worst case since its dependency graph reduces to a chain.

Consistency Given the same initial condition, the synthesis order should always produce

the same result. Otherwise we can see popping artifacts if the result texture is used

in animations. This is usually termed the “internal consistency” requirement [82].

We now describe a new synthesis order that satisfies all the above requirements. This

traversal order, termed order-independent texture synthesis, has constant time complexity

for evaluating each output pixel where the constant depends only on the neighborhood

sizes. It can be considered as an extension of our two pass random traversal (Chapter 6)

with an additional pyramid buffer.

8.2 Order-Independent Texture Synthesis

To achieve constant time complexity, we need to design a traversal order that has no de-

pendency between pixels at the same pyramid level. This can be achieved by modifying

our random traversal order (Chapter 6) with a buffer pyramid, as shown in Figure 8.1. The

basic idea is to alternate the destination for storing output pixels between the buffer and the

output pyramid so that the neighborhood built for each output pixel contains only buffered

pixels. Figure 8.1 (a) shows a buffer and an output pyramid, with the lower resolution

already synthesized. To generate the next higher resolution, we use a two pass method
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similar to the random traversal order in Chapter 6. In the first pass (Figure 8.1 (b)), we use

the lower resolution level to extrapolate the higher resolution level by running the synthesis

algorithm with a neighborhood containing pixels only from the lower resolution. But in-

stead of writing new pixels directly to the output higher resolution, we write pixels into the

buffer. In the second pass (Figure 8.1 (c)), we use a symmetric neighborhood containing

both the lower resolution and the current resolution at the buffer to generate new pixels

into the output pyramid. Because the neighborhoods used in this pass only contain pixels

in the buffer or in the lower resolution, different traversal orders will yield the same result.

After this, we can re-iterate the algorithm several times by swapping the roles of the buffer

and output pyramids at each iteration, as shown in Figure 8.1 (d). In our experiments, this

traversal order works as well as the random order in Chapter 6 for most textures we have

tried.1 In addition, it can be easily shown that this traversal order allows each output pixel

to be evaluated depending on a set of spatially neighboring pixels, where the number of de-

pendent pixels is determined by both the neighborhood sizes (used for each pyramid level)

and the number of iterations. Specifically, this number is independent of the output image

size.

Because each output pixel only depends on a small set of neighboring pixels, we can

further refine the algorithm so that no explicit output pyramids and buffering are required.

This refined algorithm is shown in Table 8.1. Instead of pyramids, the algorithm stores

computed pixel values in a cache. The cache consists of entries (L; p;m;C), where L and

p are the pixel level and location, respectively, m is the iteration number, and C is the pixel

color. The portion (L; p;m) is the cache tag and C is the cache value. To synthesize a spe-

cific pixel (L; p;m) (function SynthesizePixel), it first checks if it is in the cache. If so, no

computation is required and the cache entry is returned. Otherwise, we build the neighbor-

hood around (L; p;m) and search for the best match from the input pyramid Ga. The code

for neighborhood searching (lines 4 through 9 in Table 8.1) is very similar to Table 2.2,

except that we use different ways to build input and output neighborhoods. The input

neighborhood is built as before (BuildInputNeighborhood), but the output neighborhood

is built from the cache rather than an output pyramid (BuildOutputNeighborhood).

1Note that this traversal order will reduce to the random order in Chapter 6 if we do not use the extra
buffer pyramid.
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function C  SynthesizePixel(Ga, L; p;m)
1 if CacheHit(L; p;m)
2 return CacheEntry(L; p;m);
3 else
4 Ns BuildOutputNeighborhood(L; p;m);
5 N best

a
 null; C  null;

6 loop through all pixels pi of Ga(L)
7 Na BuildInputNeighborhood(Ga, L; pi);
8 if Match(Na, Ns) > Match(N best

a
, Ns)

9 N best

a
 Na; C  Ga(L; pi);

10 AddCacheEntry(L; p;m;C);
11 return CacheEntry(L; p;m);

function Ns BuildOutputNeighborhood(L; p;m)
12 Ns null;
13 foreach (Ln; pn; mn) 2 Neighborhood(L; p;m)
14 % note: (Ln; mn) � (L;m)
15 if CacheHit(Ln; pn; mn)
16 Ns Ns � CacheEntry(Ln; pn; mn);
17 else
18 C  SynthesizePixel(Ga, Ln; pn; mn);
19 Ns Ns � C;
20 return Ns;

Table 8.1: Pseudocode of order-independent texture synthesis.

The function BuildOutputNeighborhood works as follows. For each pixel (Ln; pn; mn)

in the neighborhood of (L; p;m), we first check if it is in the cache. If so, we add it directly

to the output neighborhoodNs. Otherwise, we call SynthesizePixel recursively to compute

its value and add the computed value to Ns. Note that we require each (Ln; mn) to be lexi-

cally smaller than (L;m), meaning that the Neighborhood(L; p;m) can contain only pixels

from lower resolutions, as well as pixels from the same resolution which are generated in

earlier iterations. Because of this, the dependencies of the pixels form an acyclic graph and

the mutual recursive calls between SynthesizePixel and BuildOutputNeighborhood are

guaranteed to terminate, unless the cache is too small to simultaneously hold all pixels in

Neighborhood(L; p;m).
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Initialization: We initialize the lowest resolution of the cache by copying pixels ran-

domly from the lowest resolution of the input pyramid. In other words, each output pixel

at the lowest resolution/iteration (Lmin; mmin) is assigned a random value from the in-

put. This initialization completely determines the synthesis result since each output pixel

is determined only by these pixels at (Lmax; mmin). (This can be shown by recursively

expanding the dependency graph for each pixel, following the mutual calls between Syn-

thesizePixel and BuildOutputNeighborhood.) This initialization can be implemented by

either permanently storing pixels (Lmax; mmin) in the cache, or by using a pseudo-random

number table to choose the random values on the fly (as implemented in Perlin noise).

8.3 Results

In Figure 8.2, we compare the results generated by order-independent synthesis and our

earlier algorithm using random ordering (Chapter 6). We use the same parameters for both

versions of algorithms: Gaussian pyramid with 4 levels, a neighborhood of size f5,2g, and

three passes with the first pass using lower resolution information only and two subsequen-

t passes using both current and the lower resolution. As shown, our order-independent

algorithm generates results with comparable quality with our earlier methods.

Figure 8.3 through Figure 8.6 illustrate the cache access footprints with different re-

quest patterns. In each figure, we show the content of the cache for pixels at different levels

and iterations (black pixels indicate pixels not in cache). We use 4 pyramid levels and 3

iterations except the lowest resolution where only one iteration (the initial value) is used,

and a spherical neighborhood with size f5,2g. Figure 8.3 shows the cache footprint for

synthesizing one pixel. We can see that the footprint size increases as we move toward

lower levels and iterations. In fact, the footprint shapes can be estimated by computing the

convolution of the neighborhood shapes with respect to footprints at larger levels/iterations.

As an example, the footprint shape at (L3; m1) is the shape of the neighborhood at the cur-

rent level, and the footprint shape at (L3; m2) is the convolution of the neighborhood shape

with the footprint at (L3; m1). We can also see that many cache pixels may be touched

in order to synthesize one pixel. However, the cost of touching multiple cache pixels can
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be amortized for synthesizing multiple pixels, as shown in Figure 8.5, Figure 8.6 and Fig-

ure 8.4. Figure 8.4 has an S-shaped pattern. Both Figure 8.5 and Figure 8.6 synthesize the

same number of output pixels. However, since Figure 8.6 has a spherical request pattern, its

cache footprint is more coherent and much fewer pixels are touched in the cache compared

to Figure 8.5.

Since each output pixel may request evaluating multiple cache pixels, it will be in-

teresting to know what is the relationship between the number of touched cache pixels

and number of request pixels in different patterns. For a given number of request pixels,

we argue that the spherical pattern will involve minimum cache footprints since it has the

maximum coherence. On the contrary, random pattern will have the worst coherence and

will require touching more cache pixels. In Figure 8.7, we show the percentages of touched

cache pixels with respect to percentage of requested input pixels using spherical and ran-

dom patterns. We use a reasonably large texture of size 512x512 to minimize the effect of

neighborhood sizes. As shown, the spherical pattern offers near optimum behavior and is

almost linear, whereas the random pattern has worse performance and requests more cache

pixels. Renderings of real scenes should have caching behavior between these two curves

since their mipmap footprints should be bounded between random and spherical patterns.

In fact, we believe most real renderings will have curves close to linear since their mipmap

footprints are mainly coherent.

8.4 Architecture Design

A conceptual design of our order-independent texture synthesis architecture is shown in

Figure 8.8. The design consists of a set of read-only input neighborhoods, a read/write

output pixel cache, an array of pixel synthesis units (PSU), and a comparator network

that connects the outputs of the pixel synthesis units. To synthesize a new pixel, each PSU

collects the output neighborhood from the cache, searches for the best match from the set of

input neighborhoods, and outputs the best-matched pixel error and color. The search can be

conducted either sequentially or in small amount parallelism, depending on the particular

implementation. Further parallelism can be achieved by using multiple PSUs and let them

search for disjoint subsets of the input neighborhoods, and comparing these results in the
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comparator network.

The comparator network chooses the best match among the set of results generated by

PSUs through an inter-connection of two-way comparators. Each comparator compares

two sets of inputs of color and error, and outputs the set with smaller error. The comparator

network can be implemented in a variety of topologies. To achieve maximum flexibility, we

can implement it as a complete binary tree, shown in Figure 8.9. A complete-binary-tree

comparator with P input units can find the best match in log2P time steps.2

The bank of input neighborhoods must allow concurrent read from all the PSUs. How-

ever, since these PSUs read disjoint subsets of the input neighborhoods, we can conceptu-

ally store the set of input neighborhoods in a big shift register, as shown in Figure 8.10.

The set of PSUs are equally spaced in the address space of the shift register. At every time

step the content of the shift register is shifted one cell to the right, and concurrently each

PSU compares its output neighborhood with the corresponding input neighborhood. After

O(MN

P
) shifts where M is the number of training neighborhoods, N is the neighborhood

size, and P is the number of PSUs, the outputs from the PSUs will be ready to be forwarded

to the comparator network.

The cache holds synthesized pixel values. There are several parameters for the design

of the cache, such as number of cache entries, cache line size, associativity, replacement

policy, and if we should use different parameters for pixels at different pyramid levels. At

initialization, the cache needs to hold the values for the lowest resolution (permanently)

to guarantee the consistency of the subsequent synthesis results.3 Since pixels at lower

resolutions tend to be used for frequency, it might be useful to give them higher priorities for

being retained during cache replacement. These cache parameters need to be determined

via a set of benchmarks (such as in [31]).

2each time step is the amount of time required to advance the results from one layer of comparators to
another.

3Another option is to use a noise table like Perlin noise.
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8.5 Discussion and Future Work

We are currently in the conceptual stage in designing a hardware for real-time texture syn-

thesis. We have achieved the first step towards real time texture synthesis by reducing

the time complexity of our texture synthesis algorithm so that pixels can be evaluated in

constant time while maintaining the consistency of the synthesis results. There are several

advantages of our design:

Parallelism Our order-independent synthesis algorithm can be evaluated completely in

parallel. In fact, since the neighborhood search can also be conducted in parallel,

our algorithm is parallel for both the input space (where the neighborhood search is

conducted) and the output space (where the output texture is synthesized pixel-by-

pixel).

Reconfigurability Our hardware design is highly configurable. The hardware can consist

of any number of PSUs (input space units), and we can connect them to the com-

parator network (output space units) in any topology. Example topologies include

a fully-connected network, where each output unit can utilize any number of input

units, or a singularly-connected network where each output unit can utilize only a

single input unit. This network should be programmable for different applications

where the user might want to control the amount of parallelism for both the input and

output spaces. We can also configure the hardware with a variety amount and con-

figuration of cache/memories for both the input training set and output pixel caches.

Shading Language Since our algorithm can now be called much like a procedural textur-

ing routine, it could be easily integrated into an existing shading language such as

RenderMan. Combining with a texture synthesis hardware, it can also be integrated

into a real-time shading language. Since professional animators are more used to

procedural texturing/shading, this might provide an easy interface for them to utilize

our algorithm.

Here is a list of problems to be addressed:
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Writable Cache To evaluate each output pixel, our algorithm needs to store temporary

values for the necessary neighborhood pixels. This requires a fast writable cache or

memory and complicates the hardware design. In contrast, most commercial graphics

hardware chips do not require any writable cache.

Tree Search or Parallel Comparison The neighborhood search process in our algorithm

can be conducted by either tree-search (TSVQ) or parallel-search. Tree-search is

primarily a software acceleration and might have scattered memory access patterns;

therefore it is not a perfect candidate for hardware implementation. It is not clear if

there are alternative hardware search strategies other than parallel comparison as we

described before.

Combining with Patch-based Techniques Patch-based texture synthesis techniques [20,

82, 55] provide a fast way to generate textures by simply copying texture patches.

Although these techniques are more efficient, they can suffer from discontinuity ar-

tifacts at patch boundaries. We could combine patch-based sampling with our pixel-

synthesis technique to achieve real-time synthesis by simply using our algorithm to

fill in the gaps between patches. The width of the gap can be used as a parameter to

tune between image quality and computation speed.

For future work we plan to implement our design in a hardware simulator, run a set of

texture-mapping benchmarks, and study the performance over different design parameters,

especially for the output cache. In particular, we plan to repeat several of the experiments

in [31, 37]. We believe that many of the observations made in these papers are applicable

to our design, since it is very similar to traditional mipmapping except that during cache

misses we synthesize texels rather than fetching them from the memory hierarchy. This

difference causes our algorithm to have slightly larger cache footprints than mipmapping

and may require different cache parameters from [31, 37].
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Figure 8.1: Order-independent texture synthesis. (a) A buffer and an output pyramid with the
lower level already synthesized. (b) The lower level is extrapolated to the buffer, generating an
initial guess. This extrapolation is done by texture synthesis using a neighborhood containing lower
resolution pixels only. (c) The lower resolution, together with the extrapolated resolution (in the
buffer), are used to synthesize textures in the higher resolution at the output pyramid. This is done
by using a neighborhood containing pixels from the buffer and lower resolution. (d) We can iterate
this synthesis process by swapping the roles of buffer and output pyramid.
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Figure 8.2: Quality comparison between order-independent synthesis and our earlier methods.
The original textures are shown in the middle, and the synthesis results, with bigger sizes, are
shown on the sides. For each pair of synthesis results, the left one is generated by random ordering
(Chapter 6), and the right one is generated by order-independent synthesis.



98 CHAPTER 8. REAL-TIME TEXTURE SYNTHESIS

iteration 2

iteration 1

iteration 0

level 3 level 2 level 1 level 0

Figure 8.3: Cache access footprint for a single pixel. The images show the contents of the cache
at different iterations and different levels, with higher resolution on the left and later iteration on
the top. The neighborhood size is f5,2g. Image sizes are 128x128, 64x64, 32x32, and 16x16,
respectively, from left to right.
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Figure 8.4: Cache access footprint for an S-shaped request pattern.
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Figure 8.5: Cache access footprint for a set of uniform random pixels generated by a poisson disk
process.
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Figure 8.6: Cache access footprint for a spherical request pattern.
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Figure 8.7: Texture cache usage. This diagram illustrates how much texture cache will be touched
with respect to different amount of input requests. The horizontal axis indicates the percentage
of pixels requested for a 512x512 texture, and the vertical axis indicates the percentage of pixels
touched in the corresponding texture cache. Two different request patterns are shown. The blue
curve (with circles) indicates spherical access patterns (Figure 8.6) and the red curve (with crosses)
indicates random access patterns (Figure 8.5). The black line indicates the ideal linear behavior.
The vertical intercept of the red and blue curves at the left is about 0.0011 (1148 pixels), indicating
the large (although constant) footprint for synthesizing one pixel.
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Figure 8.9: A comparator network implemented in complete binary tree. The number of first level
units (leftmost level in this figure) is equal to the number of pixel synthesis units (PSU).
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Shift Register

Figure 8.10: A shift register holding the set of input neighborhoods. The PSUs are equally spaced
along the address space of the shift register.



Chapter 9

Algorithm Analysis

In this chapter, we analyze the algorithm behavior both analytically and experimentally.

We begin by discussing the neighborhood searching process, and argue that due to the

special properties of texture neighborhoods, nearest neighbor searching is a good approx-

imation to more expensive approaches such as Markov Random Fields. We then discuss

the convergence of our algorithm, and demonstrate that convergence is not related to image

quality. In fact, achieving convergence by adding excessive iterations can only degrade

synthesis quality and demand unnecessary computation. We end this chapter by discussing

the relationship between different versions of our algorithm.

9.1 Neighborhood Searching

The core of our algorithm consists of searching neighborhoods. Because we keep the shape

of the neighborhoods fixed, we can transform the problem of searching neighborhoods as

nearest neighbor searching in a high dimensional space, and lead to our acceleration based

on tree-structured VQ. However, these neighborhood vectors are not merely samples in a

high dimensional space; they possess some special coherence since they are sampled from

the same input texture.

Based on this observation, we argue that our algorithm is an efficient implementation

of MRF texture synthesis algorithms. In particular, given limited samples (neighborhoods

from input texture) in a high-dimensional space (the dimensionality of the neighborhoods),

103
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Figure 9.1: Neighborhood Coherence. The left figure shows a neighborhood (in red), and the right
figure shows the neighborhood shifted one pixel right (in blue). Note that they overlap significantly
as shown in the shaded portion.

nearest neighbor search is a reasonable approximation to maximum likelihood sampling.

We also show that this correlation leads to the patching behavior, and this offers chances

for further acceleration.

9.1.1 Texture Neighborhoods

Neighborhoods collected from a texture image are not merely samples of a high dimension-

al space; they are correlated with each other due to their spatial arrangement. For example,

a neighborhood at pixel location (xi; yi) has significant overlap with the adjacent neighbor-

hood at location (xi+1; yi) (Figure 9.1). This implies that the coherence of input locations

can be carried over to the output locations. Specifically, if the best match for output loca-

tion (xo; yo) is N(xi; yi), then it is very likely that the best match for location (xo + 1; yo)

is N(xi + 1; yi). This fact has been noted by Michael Ashikhmin and he showed that, for

some textures, taking this coherence into account can improve the texture synthesis quality

[1]. The coherence also exists for any offset (xs; ys) smaller than the neighborhood size.

That is, if the best match for output location (xo; yo) is N(xi; yi), then it is also likely that
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the best match for location (xo+xs; yo+ys) isN(xi+xs; yi+ys). In general this likelihood

decreases with the increase of (xs; ys) due to the decreasing of overlapped portions.

In addition to be coherent, texture neighborhoods usually have high dimensionality.

For example, a 2-level symmetric neighborhood with sizes 9x9 and 5x5 at each resolution

will have 106 samples.1 This high dimensionality along with the fact that we don’t have

much samples imply that the probability space is only very sparsely sampled. In fact,

due to the curse of dimensionality, the neighborhood vectors tend to be equally far away

from each other. Here is a little math to convince this. Consider a sphere with radius r

centered at any given texture neighborhood vector, and a thin layer of thickness � of this

sphere. The relative volume of this slice with respect to the whole sphere is 1 � ( r��
r
)N ,

where N is the dimensionality. Given a fixed �, no matter how small, it is easily seen that

limN!1 1� ( r��
r
)N = 1. In other words, most of the volumes of an N -dimensional sphere

will be near the surface of it, and for a given texture neighborhood vector, most of the other

neighborhood vectors will lie within this thin layer and therefore are almost equally far

away.

We can argue that these two properties of texture neighborhoods, coherence and high

dimensionality, make nearest-neighbor search a good approximation for more general sam-

pling strategies such as maximum-likelihood. Given a query neighborhood from the output

at location (xo; yo), its distance to incompatible input neighborhoods will be almost equal-

ly far away. However, the distance from N(xo; yo) will be closer to the set of overlapped

neighborhoods fN((xs; ys)+M(xo� xs; yo� ys))j(xs; ys)within the neighborhood sizeg,
where N(x; y) is the neighborhood at location (x; y) and M(xo; yo) is the input location

of the best match for output location (xo; yo). In particular, it will be very close to those

fN((xs; ys)+M(xo�xs; yo�ys))gwhere (xs; ys) are small. If we visualize this phenome-

na in the high dimensional space, we can see that the query will be at the vicinity of one (or

very few) input neighborhoods and at the same time far away from other irrelevant input

neighborhoods. Because the query is effected by primarily one input neighborhood, doing

a nearest-neighbor searching is not much different from a maximum likelihood sampling.

1Each sample can contain more than one real number. For example, if the texture is RGB and we use a
Gaussian pyramid, then each sample contains 3 real numbers. However if we use a steerable pyramid with 4
orientations, then each sample might contain up to 12 real values.
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For example, if we use Gaussian radial basis functions centered at those input neighbor-

hoods as the probability model, then only the nearest Gaussian has significant effect on the

output query.

9.1.2 Experiments

We have conducted a series of experiments to observe the neighborhood matching process.

In each experiment, we record the position of each input pixel when they are copied to the

output pyramid. By doing so we can know how the input pixels are re-arranged to form

the output texture. An example is shown in Figure 9.2. Figure 9.2 (a) shows the synthe-

sis result, and (b) shows the input location. We use the image red and green channels to

encode the row and column positions, respectively. Notice that in this case the location

image consists of several patches. To make this more visible, Figure 9.2 (c) shows a high-

pass filtered image of (b). We can clearly see the patch boundaries as indicated by brighter

edges. We use a small 7x7 neighborhood for this experiment. We have conducted a similar

experiment with much larger neighborhood size 41x41 as shown in Figure 9.3. The results

show that the patching behavior is much stronger, and there are discontinuities at the color

result between adjacent patch boundaries. This patching behavior fits well with our previ-

ous discussions about the coherence property of the texture neighborhoods. And due to the

curse of dimensionality, the patching behavior becomes more obvious as we increase the

neighborhood sizes.

We also measured the neighborhood matching error (the L2 distance between the query

neighborhood and the best matching neighborhood) for the synthesis process, and show

the results in Figure 9.2 and Figure 9.3. As expected, we can observe that the matching

error correlates to the patch boundaries well. In particular, the matching error images look

like a low-pass filtered version of the patch boundaries with filter extent determined by the

neighborhood sizes. We also record the matching error prior to, during, and after the syn-

thesis process, and for each case we record the errors for the best and second best matches.

In both Figure 9.2 and Figure 9.3, the error prior to synthesis is large and homogeneous,

confirming our previous observation that due to the curse of dimensionality, the irrelevant

neighborhood vectors tend to be equally far away from each other. The errors during and
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after synthesis are much smaller due to the neighborhood coherence. Even though, we can

still see that the second best matches have larger and more homogeneous errors than the

best match.

We have also run the synthesis algorithm over a white random noise as shown in Fig-

ure 9.4. According to our previous discussions, white noise is the best candidate for testing

our patching theory; neighborhood vectors located far away are unlikely to correlate to each

other, and overlapping neighborhood vectors possess strong coherence. The results shown

in Figure 9.4 confirm our estimation: there are obvious patching behavior; the nearest er-

rors roughly match the patch boundaries; and the second-best errors are homogeneous and

have roughly the same magnitude as those errors measured before synthesis.

This patching behavior can happen more or less depending on the input texture type, as

shown in Figure 9.5. Here are a few observations:

� The patching is less obvious for stochastic textures or textures containing small pat-

terns, such as (b).

� For structured textures such as (c), patterns are better preserved within patches. In

places where no obvious patch is formed, the large scale structures can be lost. How-

ever, in general the matching error only weakly correlates to the perceived image

quality, indicating that a simple L2 norm is not a perfect perceptual metric (at least

in this neighborhood size).

� For some textures the patch boundaries will be effected by the dominant texture struc-

ture, such as the diagonal patterns in (d).

9.2 Relationship to Previous Work

As discussed earlier, our algorithm can be treated as an efficient approximation to MRF

texture synthesis algorithms. It is interesting to see that most of the previous MRF ap-

proaches do not take into account the coherence of the texture neighborhoods, therefore

a lot of their computations are wasted (since for each pixel, they start a new probability

sampling from scratch). Our approach is particularly relevant to Kris Popat’s algorithm
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[53, 52]. [53, 52] used a collection of Gaussian blobs to model textures (similar to radial

basis functions), and the parameters of those Gaussian blobs are derived by clustering tex-

ture neighborhoods. The tree-structured VQ training of our algorithm is very similar to his

clustering phase, and our nearest neighbor approximation can be thought as replacing his

Gaussian blobs with piecewise constant Voronoi regions.

The patching behavior of our algorithm shows that there is some redundancy in the

computation. Ashikhmin noted this and extended our algorithm so that it can better handle

some textures (but performs worse for others) [1]. Efros and others extended this idea fur-

ther by using patches instead of pixels as the basic building blocks for textures [20, 82, 55].

Those patch-based texture synthesis algorithm can be treated as further accelerations of our

approach; since our algorithm forms patches often, it saves computation by copying them

directly. Nevertheless, these algorithms are also less flexible than pixel-based approaches

since they use only large patches, and this can sometimes introduce discontinuities into

adjacent patches. These artifacts can be observed in [20, 82, 55] even after patch regis-

tration and blending. This problem with large patches can also be observed by comparing

Figure 9.2 and Figure 9.3. Figure 9.3 contains only large patches and cannot avoid patch

discontinuities. Figure 9.2, on the other hand, has patches with varying sizes and allows

the use of small patches to maintain continuity between larger ones.

9.3 Convergence

In our experiments, we have found that our algorithm doesn’t require a lot of iterations

to generate good results. However, it is unclear how the algorithm will behave if we add

more iterations. For example, if we iterate the algorithm many times, will it eventually con-

verge, or will it oscillate between multiple states? Since we use nearest neighbor instead

of probability sampling, the oscillation can happen. It’s not difficult to construct patholog-

ical combinations of a input texture, an initial output value, and a synthesis order that will

make the synthesis oscillating forever. The simplest case will be a periodic input texture

(say horizontal stripes), and an output texture with size which is not an integer multiple of

the periodicity. If we use a scanline order, it can be seen easily that the result will have the

periodic patterns shift forever.



9.3. CONVERGENCE 109

Despite those pathological cases, we are interested in the more general behaviors of

the algorithm. We would like to explore the convergence of the algorithm under different

inputs, synthesis order, and neighborhood shapes/sizes. A series of such experiments are

shown in Figure 9.6 and Figure 9.7. In Figure 9.6, we generate textures via a scanline

order, but iterate it 100 times for each resolution. We record the synthesis result as well as

time sequence plots for both the matching error and percentage of pixels changed. We can

observe several interesting things. First, the scanline order cannot converge all textures (at

all resolutions). For the 161 texture, it converges quickly at the highest two resolutions but

not the two lower ones; for the 726 texture it doesn’t converge for all levels; for the 654

texture it shows some definite oscillations at the 3rd level. Furthermore, the convergence

is not well correlated with the decreasing of synthesis errors. For textures 161, 726 and

654 the matching errors remains roughly the same throughout the whole simulation. Even

when the algorithm converges as in texture 759, it may not be a good thing. In this case, the

many iterations converge the output texture to a dull repetition. This degrading of image

quality can also be observed in 726 and 654.

In Figure 9.7, we run a similar set of experiments using a random instead of scanline

order. We can notice that in most cases the random order converges the result better than

the scanline order. The error seems to be more stably decreasing with less fluctuation.

However, random order can still generate bad results such as 654 and 759. It can even

increase the matching error as shown in the highest resolution of texture 654. Note that

for higher resolutions the percentage of pixels changed at the first iteration is lower than

100 percent; this shows that the extrapolation pass (using lower-level information only) can

generate a good initial value and therefore only partial modifications are required.

We have conducted several experiments to investigate the reasons for the slower con-

vergence of Figure 9.6 than Figure 9.7 by isolating the effects of the three fundamental

differences between the two experiments: scanline v.s. random order, causal v.s. noncausal

neighborhood, and the extra lower-level-extrapolation pass. From these experiments we

can conclude that the causal neighborhood is the major reason for the slower convergence,

caused by the asymmetry of causal neighborhoods. Consider a newly generated output

pixel (xo; yo). If we use a symmetric neighborhood, we are sure that all the local neighbors
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of (xo; yo) are happy with it since they are contained in N(xo; yo) during the search pro-

cess. However, a causal neighborhood will omit the half of the local neighbors at the same

resolution; therefore it introduces unstability into the synthesis process since newly added

pixels can deteriorate the balances established earlier.

We have experimented with many other textures. In general, adding more iterations

does not help the synthesis result; in most cases it may even hurt. We attribute this to the

deterministic natural of our pixel synthesis process; excessive iterations will make the result

more repetitive and losing the natural randomness of input textures. In these experiments,

we can see that the highest resolution of most textures take less than 10 iterations to settle

down. In addition, the neighborhood matching error doesn’t seem to decrease much with

adding iterations. These facts demonstrate that it is sufficient to run the algorithm with a

few iterations; in our experience running two iterations works reasonably well.

We might be able to achieve complete convergence by using a weighted version of our

algorithm. Instead of copying pixels directly from input to output, we copy by weighted

blending. In Figure 9.8, we have shown results of such an experiment. The blending weight

is chosen so that after 100 iterations the “validity” of each pixel is at least 0.999. Since we

have noted before that the oscillations only happen for a small fraction of the pixels (using

a random order) and complete convergence does not imply good image quality (such as

texture 759 in Figure 9.7), this weighted blending does not seem to pay off. A possible

future research direction is to figure out how to choose the blending weight properly; how-

ever, since we believe that adding more iterations will not help the image quality it doesn’t

seem to be a very useful research direction.

9.4 Algorithm Evolution

Throughout this thesis we have shown several generations of the algorithm, involving dif-

ferent synthesis orders and neighborhood shapes. The first generation of the algorithm, us-

ing causal neighborhoods and scanline ordering, is inspired by traditional MRF approaches.

One crucial observation we made is that it is important to restrain the containment of noise

pixels in the output neighborhoods; if you use a scanline order and a noncausal neighbor-

hood the synthesis result will not be good, since a symmetric neighborhood will always
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contain noise pixels, at least during the first pass of the algorithm. (Adding more passes

doesn’t seem to help.) However, if we use a causal neighborhood with scanline order, then

the noise will only effect the first few rows and columns of the output. In addition, since

the amount of noise pixels decreases as we generate more and more valid output pixel-

s, their effect can be further constrained using the coherence of the neighborhood vectors

as argued in the previous sections. Specifically, assuming that we just finish synthesizing

pixel (xo; yo) located somewhere in the upper or left portion of the output texture (so that

its neighborhood contains noise). Now we move on to the next pixel (xo + 1; yo). Due

to the natural of scanline order, we know that N(xo + 1; yo) contains no more noise than

N(xo; yo), and they are coherent. In previous sections we argued that a random noise vec-

tor is likely to be equally far away from its neighbors in a high dimensional space. We can

argue similarly that the noise portions of N(xo + 1; yo) will equally favor the input neigh-

borhoods, and the valid portion of it will dominate the determination of the best match.

Due to the coherence of the valid portion of N(xo; yo) and N(xo + 1; yo), it is likely that

the match found for (xo + 1; yo), M(xo + 1; yo), will be M(xo; yo) + (1; 0). And since the

amount of noise diminishes as we continue the synthesis process, we will have more and

more coherence between adjacent output neighborhoods.

The scanline order, although adequate for synthesis, is too limited for other applications

such as hole-filling or implicit texture evaluation. We have relaxed this scanline order re-

quirement by carefully constructing the combination of synthesis order and neighborhood

shapes so that we don’t have the noise problem mentioned earlier. We use a general ap-

proach to take care of the noise in the multi-resolution framework. Before synthesizing

each resolution, we use the information from the (already synthesized) lower resolution

to generate an initial guess to the current resolution. This is done by running the texture

synthesis algorithm using neighborhoods containing lower resolution information only, as

described in Chapter 6. This process can be considered as doing image extrapolation (or

super-resolution) using our texture synthesis framework. The extrapolated information, al-

though not completely valid, usually preserves the rough feature of the texture pattern and

is at least much better than noise. After this, we are free to use symmetric neighborhood

with random synthesis order to produce valid output textures. In general, it suffices to use

a random order for this two pass algorithm, and we have found no major degradation to
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the image quality. However, we restrain the synthesis order to be a diffusion process when

dealing with constrained synthesis such as hole filling; it is always better to fill the holes

by growing from the boundary of the hole toward the middle.

These extensions, although flexible, still have one major drawback. Even given the

same initial noise, visiting output pixels in different orders will produce different results.

This prohibits us from evaluating texture implicitly while guarantee the consistency of

the result. We address this issue by further relaxing the algorithm, allowing pixels to be

visited in an arbitrary order while maintaining the same result. In other words, now we

can evaluate our texture algorithm much like an implicit procedural texture synthesis code.

Conceptually, the price we paid is an extra buffer; however, in actual implementation this

can done using clever caching as described in Chapter 8.

Figure 9.9 show the relationship between different versions of our algorithm. Basi-

cally, generations on the outside are more general than those inside. However, we have

to note that more restricted versions sometimes give better results, so there is a trade-off

between generality and quality. You should choose the generation depending on your ap-

plication: use scanline order for ordinary synthesis, use diffusion order for hole filling, and

use independent-order for implicit evaluation. The only common feature between those

generations are the neighborhood search framework, and the criteria of restraining noise in

the output neighborhoods during synthesis.

9.5 Conclusions

We have analyzed several aspects of our algorithm. We have shown that textures generat-

ed by our approach can form patches. This patching behavior provides insights into why

our algorithm works, connects our algorithm with several previous methods, and provides

insights on potential acceleration techniques. We have also explored the convergence prop-

erty of our algorithm. In general, convergence does not seem to relate to synthesis quality,

and adding excessive iterations to achieve convergence can only degrade image quality and

incur unnecessary computation.
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(a) Result (b) Input Location (c) Filtering of (b)

(d) avg error: 61.2162 (e) avg error: 12.5698 (f) avg error: 12.5877

(g) avg error: 62.1729 (h) avg error: 20.6567 (i) avg error: 20.6931

Figure 9.2: Patching behavior of texture synthesis. (a) Synthesis result. (b) Location image, with
row, column positions color-encoded by red and green, respectively. (c) High-pass filtered version of
(b). (d)-(i) neighborhood matching errors. The first column (d, g) shows the error before synthesis
(i.e. the noise), the second column (e, h) shows the error measured during synthesis, and the last
column (f, i) shows the error measured after synthesis. The first row (d, e, f) shows the error of the
best match, while the second row (g, h, i) shows the second best match. The average error, measured
per pixel per color channel, is indicated below each figure. The color images have pixel range in
[0, 255]. The synthesis parameters are as follows: 4-level Gaussian pyramids with neighborhood
sizes 9x9x2 at each resolution; random synthesis order with 2 passes.
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(a) Result (b) Input Location (c) Filtering of (b)

(d) avg error: 85.4831 (e) avg error: 48.7293 (f) avg error: 49.0843

(g) avg error: 85.6761 (h) avg error: 56.8515 (i) avg error: 57.0463

Figure 9.3: Patching behavior of texture synthesis. A similar experiment with Figure 9.2, but a
much larger neighborhood is used. The synthesis parameters are as follows: 2-level Gaussian
pyramids with neighborhood sizes 41x41x2 at each resolution; random synthesis order with 2 pass-
es.
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(a) Result (b) Input Location (c) Filtering of (b)

(d) avg error: 46.7431 (e) avg error: 15.4377 (f) avg error: 15.537

(g) avg error: 47.7521 (h) avg error: 41.5468 (i) avg error: 41.5126

Figure 9.4: Patching behavior of texture synthesis. We use a white random noise as input to test
the patching behavior. Synthesis parameters are the same as in Figure 9.2.
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(a)

(b)

(c)

(d)

Figure 9.5: Patching behavior for different artificial textures. 1st column: sample texture. 2nd

column: synthesis result. 3rd column: patch boundary for the result. 4th column: average synthesis
error. The average neighborhood matching errors for each case are: (a) 9.072 (b) 8.7323 (c)
11.1446 (d) 7.6536. Synthesis parameters are the same as Figure 9.2.
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Figure 9.6: The convergence of texture synthesis. First column: synthesis results. Second column:
percentage of pixels changed for each iteration. Each resolution is plotted with a separate curve,
and level 1 is the highest resolution. Third column: normalized neighborhood matching errors for
each iteration. A scanline order with 4-level Gaussian pyramids are used for all cases.



118 CHAPTER 9. ALGORITHM ANALYSIS

161

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
2
3
4

0 10 20 30 40 50 60 70 80 90 100
10

15

20

25

726

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100
6

6.5

7

7.5

8

8.5

654

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100
8

9

10

11

12

13

14

15

16

17

759

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100
4

6

8

10

12

14

16

18

20

22

Figure 9.7: The convergence of texture synthesis. Similar to Figure 9.6, but we use a random
synthesis order in this case.
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Figure 9.8: The convergence of texture synthesis. Similar to Figure 9.7, but we use a weighted
blending with weight 0.066746 in this case. In the middle column, we plot the mean pixel change
instead of percentage of pixels changed (since almost all pixels will be touched).
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Order-Independent

Scanline

Random

Diffusion

Figure 9.9: Relationship between different generations of our algorithm. From inside to outside
are different generations of our algorithm : scanline order + causal neighborhood, diffusion order
(for constrained synthesis) + non-causal neighborhood, random order + non-causal neighborhood,
and independent order + non-causal neighborhood. Both diffusion and random orders require a
two pass algorithm with the first pass as the extrapolation. Order-independent requires two passes
as well as an extra buffer.



Chapter 10

Conclusions and Future Work

Textures are important for a wide variety of applications in computer graphics and image

processing. On the other hand, they are hard to synthesize. The goal of this thesis is

to provide a practical tool for efficiently synthesizing a broad range of textures. Inspired

by Markov Random Field methods, our algorithm is general: a wide variety of textures

can be synthesized without any knowledge of their physical formation processes. The

algorithm is also efficient: by a proper acceleration using TSVQ, typical image textures

can be generated within seconds on current PCs and workstations. The algorithm is also

easy to use: only an example texture patch is required.

The simplicity of generality of our algorithm allow us to extend it in various ways. We

have modified our approach for constrained synthesis, or for synthesizing textures directly

over manifold meshes. We have extended the notion of textures over other physical phe-

nomena including temporal textures, articulated motion signals, and geometric details. We

have also presented new methods to create textures that previously do not exist, by pro-

ducing texture mixtures from multiple sources and generating solid textures from several

planar views.

We envision several possible directions for future work:

121
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10.1 Modeling Geometric Details by Displacement Maps

Models scanned from real world objects often contain texture-like geometric details, mak-

ing the models expensive to store, transmit or manipulate. These geometric details can

be represented as displacement maps over a smoother surface representation [40]. The

resulting displacement maps should be compressible/decomposable as 2D textures using

our technique. Taking this idea further, missing geometric details, a common problem in

many scanning situations [41], could be filled in using our constrained texture synthesis

technique.

We can generate displacement maps directly over manifold meshes using our surface

texture synthesis algorithm (Chapter 6). We can also combine our approach with volumetric

diffusion to fill large and complex holes in scanned models.

10.2 Multi-dimensional Texture

The notion of texture extends naturally to multi-dimensional data. Examples presented

in this thesis include temporal textures, articulated motion sequences, and solid textures

(Chapter 7). The same technique can also be directly applied to generate animated solid

textures or light fields textures.

10.3 Texture Compression/Decompression

Textures usually contain repeating patterns and high frequency information; therefore they

are not well compressed by transform-based techniques such as JPEG. However, codebook-

based compression techniques work well on textures [4]. This suggests that textures might

be compressible by our synthesis technique. Compression would consist of building a

codebook, but unlike [4], no code indices would be generated; only the codebook would

be transmitted and the compression ratio is controlled by the number of codewords. De-

compression would consist of texture synthesis. This decompression step, if accelerated

one more order of magnitude over our current software implementation, could be usable

for real time texture mapping. The advantage of this approach over [4] is much greater
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compression, since only the codebook is transmitted.

10.4 Super-resolution

Our constrained synthesis algorithm (Chapter 4) can also be applied to fabricate high de-

tailed images from low resolution ones [34, 21]. An example is shown in Figure 10.1.

Given a low resolution image (Figure 10.1 (a)), we would like to enlarge it while at the

same time adding high frequency details. One naive approach is to use extrapolation (Fig-

ure 10.1 (b)). Because no high-frequency information is added, extrapolation can only

generate blurry results. What will happen if we are given some training set from a higher

resolution image (red squares in Figure 10.1 (c))? Given such information, we can then run

our constrained synthesis algorithm to fabricate the high frequency information as follows.

We use the low-resolution image as “constraints”, and generate the extra high-frequency

levels using the given training set. We treat those training set as textures, and simply run

our constrained synthesis algorithm over those missing high-resolution levels. The synthe-

sis result is shown in Figure 10.1 (d). It has the high frequency structures better preserved

than simple extrapolation (Figure 10.1 (e) and (f)).

10.5 Texture-based Rendering

The basic principle of searching neighborhoods in our texture synthesis algorithm can be

applied to other domains such as rendering images, motions, and videos. For example,

Hertzmann et al [34] has extended texture synthesis algorithms to Image Analogies and ap-

plied it to a wide variety of applications such as artistic filters, texture-transfer, and texture-

by-numbers. Similar ideas for transferring textures from one object to another have also

been presented by Ashikhmin [1] and Efros [20]. The success of these approaches shows

the promise of using simple local statistics to model complicated natural phenomena. One

could imagine continuing this direction and apply texture synthesis to other rendering prob-

lems such as images, motions, or animations.
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(a) low-resolution

(b) extrapolated

(c) training set (d) synthesis result

(e) (f)

Figure 10.1: Super-resolution by constrained synthesis. (a) low-resolution image, (b) enlarged
image by simple extrapolation, (c) training image with high resolution, (d) super-resolution result
by constrained synthesis, (e) and (f) enlarged versions comparing (b) and (d). For each group of
images the one on the left is cropped from (b), the one on the middle is cropped at the same location
from (d), and the one on the right is the original high resolution image.
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[43] Jérôme Maillot, Hussein Yahia, and Anne Verroust. Interactive texture mapping.

In James T. Kajiya, editor, Computer Graphics (SIGGRAPH ’93 Proceedings), vol-

ume 27, pages 27–34, August 1993.

[44] T. Malzbender and S. Spach. A context sensitive texture nib. In Proceedings of

Computer Graphics International, pages 151–163, June 1993.

[45] MIT Media Lab. Vision texture. http://www-white.media.mit.edu/vismod/imagery/-

VisionTexture/vistex.html.

[46] S. Nene and S. Nayar. A simple algorithm for nearest neighbor search in high di-

mensions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19:989–

1003, 1997.

[47] Fabrice Neyret and Marie-Paule Cani. Pattern-based texturing revisited. Proceedings

of SIGGRAPH 99, pages 235–242, August 1999.

[48] R. Paget and I.D. Longstaff. Texture synthesis via a noncausal nonparametric multi-

scale Markov random field. IEEE Transactions on Image Processing, 7(6):925–931,

June 1998.

[49] Hans Køhling Pedersen. Decorating implicit surfaces. Proceedings of SIGGRAPH

95, pages 291–300, August 1995.

[50] Ken Perlin. An image synthesizer. Computer Graphics (Proceedings of SIGGRAPH

85), 19(3):287–296, July 1985. Held in San Francisco, California.

[51] Ken Perlin and Athomas Goldberg. Improv: A system for scripting interactive actors

in virtual worlds. Proceedings of SIGGRAPH 96, pages 205–216, August 1996. ISBN

0-201-94800-1. Held in New Orleans, Louisiana.



130 BIBLIOGRAPHY

[52] Ashok C. Popat. Conjoint Probabilistic Subband Modeling. PhD thesis, Mas-

sachusetts Institute of Technology, 1997.

[53] K. Popat and R.W. Picard. Novel cluster-based probability model for texture synthe-

sis, classification, and compression. In Visual Communications and Image Process-

ing, pages 756–68, 1993.

[54] Javier Portilla and Eero P Simoncelli. Texture modeling and synthesis using joint

statistics of complex wavelet coefficients. In IEEE Workshop on Statistical and Com-

putational Theories of Vision, June 1999.

[55] Emil Praun, Adam Finkelstein, and Hugues Hoppe. Lapped textures. Proceedings of

SIGGRAPH 2000, pages 465–470, July 2000.

[56] Katheline Pullen and Chris Bregler. Animating by multi-level sampling. IEEE Com-

puter Animation Conference 2000, May 2000.

[57] A.R. Rao. A Taxonomy for Texture Description and Identification. Springer-Verlag,

1990.

[58] Peter Schröder and Wim Sweldens. Spherical wavelets: Efficiently representing func-

tions on the sphere. Proceedings of SIGGRAPH 95, pages 161–172, August 1995.

[59] E. Simoncelli and J. Portilla. Texture characterization via joint statistics of wavelet

coefficient magnitudes. In Fifth International Conference on Image Processing, vol-

ume 1, pages 62–66, October 1998.

[60] Karl Sims. Artificial evolution for computer graphics. Computer Graphics (Proceed-

ings of SIGGRAPH 91), 25(4):319–328, July 1991. ISBN 0-201-56291-X. Held in

Las Vegas, Nevada.

[61] Karl Sims. Evolving virtual creatures. Proceedings of SIGGRAPH 94, pages 15–22,

July 1994. ISBN 0-89791-667-0. Held in Orlando, Florida.

[62] G. Smith. Image Texture Analysis using Zero Crossings Information. PhD thesis, De-

partment of Computer Science and Electrical Engineering, University of Queensland,

St Lucia 4072, Australia, 1998.



BIBLIOGRAPHY 131

[63] Jos Stam. Stochastic dynamics: Simulating the effects of turbulence on flexible struc-

tures. Computer Graphics Forum, 16(3):159–164, August 1997.

[64] Jos Stam. Stable fluids. Proceedings of SIGGRAPH 99, pages 121–128, August 1999.

[65] Jos Stam and Eugene Fiume. Depicting fire and other gaseous phenomena using

diffusion processes. Proceedings of SIGGRAPH 95, pages 129–136, August 1995.

[66] Martin Szummer and Rosalind W. Picard. Temporal texture modeling. In Interna-

tional Conference on Image Processing, volume 3, pages 823–6, Sep 1996.

[67] S. Todd and W. Latham. Evolutionary Art and Computers. Boston, MA: Acadamiec

Press, 1993.

[68] Greg Turk. Re-tiling polygonal surfaces. Computer Graphics (Proceedings of SIG-

GRAPH 92), 26(2):55–64, July 1992.

[69] Greg Turk. Texture synthesis on surfaces. Proceedings of SIGGRAPH 2001, pages

347–354, August 2001. ISBN 1-58113-292-1.

[70] Munetoshi Unuma, Ken Anjyo, and Ryozo Takeuchi. Fourier principles for emotion-

based human figure animation. Proceedings of SIGGRAPH 95, pages 91–96, August

1995. ISBN 0-201-84776-0. Held in Los Angeles, California.

[71] L. VanGool, P. Dewaele, and A. Oosterlinck. Texture analysis anno 1983. Computer

Vision, Graphics, and Image Processing, 29(3):336–357, March 1985.

[72] Li-Yi Wei. Deterministic texture analysis and synthesis using tree structure vector

quantization. In XII Brazilian Symposium on Computer Graphics and Image Pro-

cessing, pages 207–213, October 1999.

[73] Li-Yi Wei and Marc Levoy. Fast texture synthesis using tree-structured vector quan-

tization. Proceedings of SIGGRAPH 2000, pages 479–488, July 2000.

[74] Li-Yi Wei and Marc Levoy. Texture synthesis over arbitrary manifold surfaces. Pro-

ceedings of SIGGRAPH 2001, pages 355–360, August 2001. ISBN 1-58113-292-1.



132 BIBLIOGRAPHY

[75] Henrik Weimer and Joe Warren. Subdivision schemes for fluid flow. Proceedings of

SIGGRAPH 99, pages 111–120, August 1999.

[76] Georges Winkenbach and David H. Salesin. Computer-generated pen-and-ink illus-

tration. Proceedings of SIGGRAPH 94, pages 91–100, July 1994. ISBN 0-89791-

667-0. Held in Orlando, Florida.

[77] Georges Winkenbach and David H. Salesin. Rendering parametric surfaces in pen

and ink. Proceedings of SIGGRAPH 96, pages 469–476, August 1996. ISBN 0-201-

94800-1. Held in New Orleans, Louisiana.

[78] Andrew Witkin and Michael Kass. Reaction-diffusion textures. In Thomas W. Seder-

berg, editor, Computer Graphics (SIGGRAPH ’91 Proceedings), volume 25, pages

299–308, July 1991.

[79] Andrew Witkin and Zoran Popovic. Motion warping. Proceedings of SIGGRAPH 95,

pages 105–108, August 1995. ISBN 0-201-84776-0. Held in Los Angeles, California.

[80] Patrick Witting. Computational fluid dynamics in a traditional animation environ-

ment. Proceedings of SIGGRAPH 99, pages 129–136, August 1999.

[81] Steven P. Worley. A cellular texture basis function. In Holly Rushmeier, editor,

SIGGRAPH 96 Conference Proceedings, Annual Conference Series, pages 291–294.

ACM SIGGRAPH, Addison Wesley, August 1996.

[82] Ying-Qing Xu, Baining Guo, and Harry Shum. Chaos mosaic: Fast and memory

efficient texture synthesis. Technical Report MSR-TR-2000-32, Microsoft Research,

2000.

[83] S. Zhu, Y. Wu, and D. Mumford. Filters, random fields and maximun entropy

(FRAME) - towards a unified theory for texture modeling. International Journal

of Computer Vision, 27(2):107–126, 1998.


