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Abstract

Current alignment algorithms for registering range data
captured from a 3D scanner assume that the range data
depicts identical geometry taken from different views.
However, in the presence of scanner calibration errors,
the data will be slightly warped.  These warps often cause
current alignment algorithms to converge slowly, find the
wrong alignment, or even diverge.  In this paper, we
present a method for aligning warped range data
represented by polygon meshes.  Our strategy can be
characterized as a coarse-to-fine hierarchical approach,
where we assume that since the warp is global, we can
compensate for it by treating each mesh as a collection of
smaller piecewise rigid sections, which can translate and
rotate with respect to each other.  We split the meshes
subject to several constraints, in order to ensure that the
resulting sections converge reliably.

1. Introduction

Optical 3D scanners typically scan an object from only
one direction at a time, so multiple scans are acquired in
order to capture an object in its entirety.  Assuming that
the relative pose of these scans are not known with
precision (which is typically the case), the scans must be
aligned before they can be merged into a single mesh.

A general alignment pipeline consists of two steps.
First, pairwise matching is performed, i.e. for every pair of
scans that overlap some fraction of their surface, we
compute a pairwise registration.  Refer to [3] and [4] for
two widely used techniques.  Global registration is then
performed, i.e. we align the set of scans from the pairwise
registration results.  A number of global registration
techniques have been proposed, such as those discussed in
[2], [5], [9], and [12].

The ideal registration pipeline would be robust to the
errors introduced by 3D scanning devices.  One such
source of error is noise, and indeed, many previous
techniques are robust to moderate amounts of noise.
However, another possible source of error is warp.  If the
geometry of the scanner used to acquire the range scans is
even slightly miscalibrated, or becomes miscalibrated as a
result of prolonged use in the field, then significant

systematic geometric displacement may be present in the
range data.  Moreover, it can be very difficult to design a
3D scanner that can accurately capture high detail (the
Digital Michelangelo project required a resolution of 0.25
mm) on a large object (such as the David at 5 m tall) [8].
Unlike noise, warpage is typically smooth, as well as
monotonic (as opposed to oscillatory).  We assume in this
paper that the form of this warp is not known.

Unfortunately, existing registration techniques fail to
align scans in the presence of even slight warping, since
they compute only rigid transformations.  In particular,
pairwise ICP may converge to a local minimum or
oscillate between incorrect alignment results.  Figure 1
demonstrates the failure of ICP to align two scans
captured under poor calibration.

Figure 1.  An example of two meshes that exhibit warp.
Top left: Two scans acquired under correct calibration;
average point-to-plane error over 200 corresponding point-
pairs is 0.13 mm.  Bottom left: a depth disparity map of the
face of the angel (black indicates 0 mm depth disparity
between the meshes and white 1.0 mm disparity).  Top
right: the same 2 scans aligned under simulated incorrect
calibration; the average error is 1.81 mm.  Bottom right: a
depth disparity map of the face.  The predominance of
white areas shows misalignment on the order of 1.0 mm in
many areas.  In the Digital Michelangelo Project [8], we
often saw this much misalignment due to miscalibration of
our scanner.
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Similarly, in global registration, the scans may converge
to a local minimum, oscillate, or even in some cases
diverge in shape. Figure 2 illustrates the failure of global
registration under incorrect calibration.

Figure 2.  A multi-mesh set exhibiting warp.  Top: the
scans were acquired under correct calibration, and
properly form a closed loop.  Bottom: the scans are
misaligned due to warp from scanner miscalibration.  Inset:
4 mm misalignment between 2 scans (colored different
shades of gray).  Misalignments during global registration
are typically larger than those seen during pairwise
alignment because poor pose from even only a single
mesh can be propagated to all of its pairwise partners.

One of the motivating goals behind this work is to
automatically align the scans in the Forma Urbis Romae
dataset  (refer to the project website at
http://graphics.stanford.edu/projects/forma-urbis) to a high
degree of precision.  The Forma Urbis was a marble map
carved during ancient times of the city of Rome,
measuring 60 feet wide and 45 feet high.  During the fall
of the empire, the map broke into fragments, some of
which still exists today.  The problem of piecing these
fragments together is still unsolved, and made difficult by
the large number and heavy size of the fragments.
Archaeologists could instead use 3D models of the
fragments to help put the map back together, but in order
to be of use these models must have a high level of
accuracy at a high resolution, especially on the top
surfaces where the map data is incised.

Of the 1,186 fragments we scanned, 481 were acquired
using the custom-built laser triangulation scanner used on
the Digital Michelangelo project and modified for the
Forma Urbis Romae project.  Unfortunately, due to
miscalibration of this scanner during the acquisition
process, most of these fragments remain poorly aligned,
with errors typically on the order of a few of millimeters.
Misalignments usually manifest themselves as false
geometry (e.g. double incisions) in the final merged mesh.
Unfortunately, false geometry can be difficult to
distinguish from the true geometry representing the actual

shape of the object, and thus may be confusing or
misleading to scholars using the 3D models to study the
fragments.  Thus, it is clear that the alignment of the scans
must be improved before they can be merged into final
models.  However, 477 fragments have not yet been
successfully aligned, making it prohibitively time-
consuming to improve the alignment of all the fragments
manually.  Thus, it was hoped that an automatic procedure
to align the scans could be formulated.

There are several ways one might attempt to solve the
warp problem.  One technique that can be used prior to
acquiring the range scans is to directly calibrate the
scanner accurately.  However, this is difficult with a large,
reconfigurable scanner, especially if it is deployed in the
field like the one used in the Digital Michelangelo project.
One can alternatively endeavor to learn the warp by self-
calibration of the range scans.  We attempted this
approach, by locating corresponding point-pairs on
overlapping pairs of scans, then expressing each of these
points in terms of our particular 21-dimensional scanner
space.  Using a non-linear optimization system, we then
attempted to solve for the scanner parameters.  However,
the degrees of freedom we considered are not fully
independent; thus the system is ill-conditioned.

Another class of solutions to the warp problem
involves introducing a compensating warp into the meshes
themselves.  There are several options.  First, one could fit
a low-order polynomial function to the warp.  This
approach has been proposed for 2D image data in order to
produce image mosaics [11].  As a 3D analogue, one can
conceive of locally warping overlapping regions of
meshes to improve their fit.  We are aware of two
techniques for fitting a warping function in 3D.  Szeliski
and Lavallee proposed using an octree-spline to warp a
mesh to fit to another [13].  We discuss using this
technique as an extension to our method in Section 5.  We
are also aware of work by Bernardini on conformance
smoothing [personal communication].

There are two drawbacks to fitting a warping function.
First, it introduces many degrees of freedom, and thus
may be difficult to control.  Second, fitting is likely to be
slow, mainly because ICP is an optimized technique for
the special case of rigid alignment.

Our solution therefore is to use a piecewise rigid
compensating warp, in which each mesh is cut into a set
of overlapping regions, which are allowed to translate and
rotate relative to each other.  The resulting set of regions,
each with their own translation and rotation, constitute a
piecewise rigid approximation of the (unknown) curved
warp.  Since this involves solving an ill-conditioned non-
linear optimization for which there is no known direct
solution, we instead use an iterative solution.  An iterative
solution adds many degrees-of-freedom, so to improve the
robustness and convergence speed of our algorithm, we
perform this cutting in a coarse-to-fine manner.  While we
have used this method only on polygon meshes from
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range data, it is generally applicable to meshes with
arbitrary topology, and to sets of points without
connectivity (i.e. point-clouds) as long as normals are
defined.  Section 2 discusses our algorithm in further
detail.  There are several smaller algorithmic design
decisions (e.g., how to subdivide meshes and how to size
the overlaps) that we will address further on in Section 3.

2. Overview of Registration Pipeline

Our strategy for aligning warped meshes is to iterate
over aligning the set of meshes using our previous
alignment techniques, followed by splitting those meshes
that exhibit the worst alignment error into overlapping
sub-meshes, thereby allowing them to act independently
in the subsequent alignment/dicing iteration.  Figure 3
contains the pseudocode for this algorithm.

// Given: set of meshes S
// Let I equal set of corresponding points
a. loop until alignment error < errordesired
b.  for every overlapping P, Q in S,
c.   pairwise_align(P, Q)
d.   I.add(sample(P, Q correspondences))
e.  end for loop
f.  global_registration(S, I)
g.  for (i=0:num_pairs_to_dice)
h.   [Pworst, Qworst] = worst_aligned_pair(S)
i.   [P1, P2] = dice(Pworst)
j.   if (!diced_Pworst_successfully) break
k.   [Q1, Q2] = dice(Qworst)
l.   if (!diced_Qworst_successfully) break
m.   S.add(P1, P2, Q1, Q2)
n.   S.remove(P), S.remove(Q)
o.  end for loop
p.  if no new meshes added to S, break
q. end loop

Figure 3.  Pseudocode for aligning warped meshes

Alignment (steps (a)-(f)):
We begin each iteration of the loop in (a)-(p) with

pairwise aligning every overlapping pair of meshes P and
Q in the set of meshes S in steps (b) and (c).  The
prevailing method used to rigidly align two meshes based
on their geometry is the Iterative Closest Point (ICP)
algorithm, originally proposed by Besl & McKay [3].
There are several variants of the ICP algorithm (refer to
Rusinkiewicz’s study of these variants [10]).  In the
Digital Michelangelo project (described in Levoy, et al.
[8]), we used a variant of ICP devised by Chen & Medioni
[4], enhanced by an improved sampling strategy.  Instead
of uniformly sampling points on P and Q, we use a non-
uniform sampling strategy that samples at a higher rate in
areas that exhibit more features, and less in areas that
appear planar.  We choose points based on the covariance
matrix between P and Q.  This algorithm is described in
our companion paper [6].

In step (d), all corresponding point-pairs found in (c)
are added to a set of corresponding point-pairs I.  Then in

(f), we compute a global registration over S, based on this
set of point-pairs.  Many global registration techniques
have been proposed [2, 5, 9, 12].  In the Digital
Michelangelo project, we used Pulli’s algorithm [9].  The
algorithm attempts to diffuse alignment error evenly over
the set of meshes by repeatedly applying Horn’s method
without recomputing corresponding point-pairs, because
doing so is computationally expensive, as Pulli argues.  In
this paper, we use a small variant on his algorithm.
Specifically, we employ Chen-Medioni’s point-to-plane
alignment error metric, instead of the point-to-point metric
used by Pulli.

Dicing (steps (g)-(o)):
Finally in (g)-(o), we attempt to dice some of the

meshes in S into halves.  We must first decide how many
meshes to dice (i.e. how to set num_pairs_to_dice in (g)).
Dicing a mesh introduces additional degrees of freedom
into the system, so the control we have over the
compensating warp we are introducing is inversely
proportional to the number of meshes we dice.  Since we
would like as much control as possible, this argues for
dicing fewer meshes.  However, dicing fewer meshes
means we may have to run more iterations of our
algorithm, which means repeating the (expensive) rigid
alignment steps.  Through experimentation, we have
found that setting num_pairs_to_dice to a value less than
or equal to one-quarter the number of original meshes
keeps the compensating warp sufficiently controlled.

In (i) and (k), we dice the meshes we selected.  Section
3 discusses our mesh subdivision algorithm.  We add the
new meshes to S in (m) and remove the old meshes from
S in (n).  Then if the alignment error of the system is
lower than the alignment error desired, we halt the
algorithm.  If not, we iterate again.

One caveat to note is that we designed constraints on
the geometry and size of the diced sections we create (also
discussed in the next section) in order to ensure that the
compensating warp introduced in the system is
controllable.  Thus it may not always be possible to
subdivide the particular meshes we chose in step (h)
because the mesh is too small or the overlap is unstable.
Both are explained in Section 3.  Steps (j) and (l) check
whether the meshes were subdivided successfully.  We
then break out of the dicing loop, and check if we added
new meshes to S (i.e. if we were able to dice any meshes).
If we did, we check the alignment error, and if it is still
greater than our desired threshold, we loop back into the
rigid-alignment process in (b).  If S does not contain any
new meshes, we halt the algorithm.

Figure 4 demonstrates the amount of compensating
warp introduced by our technique on a sample data set
from the Forma Urbis Romae project.
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Figure 4.  Visualization of the amount of warp introduced
in a sample data set (i.e. the top surface of Forma Urbis
Romae fragment #025a).  In order to produce the mesh on
the left, the 13 scans capturing the top surface of the
fragment were diced into 84 sub-meshes and hierarchically
aligned.  The visualization on the right-hand side shows a
depth disparity map between a representative scan and
the 7 sub-meshes this scan was diced into after
hierarchical alignment. (Black indicates 0 mm depth
disparity between meshes and white 1.0 mm disparity.)
The scan has been warped more toward the edges than
the middle.

3. Hierarchical Splitting of Meshes

In this section, we describe our mesh subdivision
algorithm and the constraints we designed to ensure that
we can control the compensating warp we introduce.

3.1 Subdividing a mesh

Figure 5.  Our subdivision strategy illustrated on a sample
mesh M.  M is first subdivided along the horizontal
direction into M1 and M2.  Submesh M1 is then later split
horizontally again.  The right child is determined to be
unstable, so splitting stops.  The left child is later split
vertically.

To subdivide a mesh M into two regions M1 and M2 (as
in steps (i) and (k) of the pseudocode in Figure 3), we
divide its oriented bounding-box B into two overlapping
boxes B1, B2 along the longest dimension of B, as shown
in Figure 5.   B1 and B2 will become the oriented
bounding-boxes for M1 and M2 respectively.  The vertices
and triangles that B1 encompasses become M1, and the
vertices and triangles that B2 encompasses become M2.  In
any single iteration of our alignment pipeline, we dice
both meshes in a preselected number (num_pairs_to_dice
in step (g)) of mesh pairs.

Note that Figure 5 is a binary tree, and that the manner
in which the tree is traversed determines how each mesh is
diced during the course of our algorithm.  We use a
greedy algorithm with respect to depth in which meshes
are considered equal candidates for dicing regardless of
their level on the tree, since we conjecture it will out-
perform both breadth- and depth-first traversals.  In the
pseudocode, no special action is needed for this particular
coarse-to-fine strategy.

In order to ensure convergence, we introduce some
constraints when subdividing the mesh.

Shape of regions:  Scanner warp is difficult to
measure, especially in the field, so we make two
simplifying assumptions about the nature of these warps.
First, we assume that it is isotropic in all directions.
Hence, we dice meshes along their longest oriented
bounding-box direction so that in the limit the regions will
have an even aspect ratio.  Second, we assume that the
warp is spatially uniform across the original mesh.
Therefore, we are equally willing to subdivide anywhere
on the mesh.

Minimum size of regions: The original meshes will
(most likely) differ in size.  Hence, we control the
compensating warp we introduce by the size of each
region, not by the number of regions into which we dice
each mesh.  Every time we dice a mesh, we would like to
minimize the number of degrees of freedom introduced, as
well as minimize the residual error.  Unfortunately, these
two goals argue for opposing constraints on the size of the
regions.  In order to minimize the degrees of freedom, we
should create large regions.  However, to minimize the
residual error, we should create small regions.
Fortunately, we already minimize the rate at which we
introduce degrees of freedom into the system by taking a
hierarchical approach.  Thus, we are free to create small
regions.  But since residual error is proportional to scanner
noise, which is proportional to mesh resolution, we need
to impose a minimum region size that is proportional to
mesh resolution.  We currently set the minimum size
equal to mesh resolution.  In practice, the meshes are
usually not (in our experiments) diced that finely because
they are not geometrically stable, as explained in [6].
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3.2 Sizing the overlap

In addition to constraining the minimum region size,
we also need to design constraints for creating the
overlapping regions within a warped mesh such that their
movement in relation to each other during alignment will
be well controlled.  From a mechanical standpoint, we can
view the overlap between two meshes as a hinge, where
the stiffness is proportional to two quantities:
1.  Relative size of overlap region:  In order to ensure the
compensating warp is controlled, we should avoid
excessive motion of the regions relative to each other.  As
Figure 6 illustrates, corresponding point-pairs between
two regions with the same relative rotation will have
longer distances and hence a higher squared error if the
overlap region is larger.  Hence, to prevent excessive
relative motion, we should create large overlaps.
However, we would like to introduce some warp, which
means we need to allow a certain amount of relative
motion.  This argues for a smaller overlap region.  We use
an overlap size that is 30% the size of the original meshes
(i.e., we set the volume of the overlapping region’s
oriented bounding box to 30% the volume of B).

Figure 6.  Example showing that overlap size determines
the “stiffness” of the hinge between 2 overlapping meshes
during global registration.  The meshes in (a) and (b) have
the same relative rotation, but since the overlap in (b) is
larger than in (a), the point-to-plane error in (b) is higher.
Thus, the hinge in (b) is stiffer than in (a).

2.  Presence of features in the overlap region:  Another
factor that affects the strength of the hinge between two
meshes is the presence and type of features present in the
overlap area.  There are 3 common types of features we
may see in any given area of a mesh.  First, the area may
be planar, which means our alignment error metric will
detect translation errors in z (perpendicular to the plane),
but not x- or y-translations, or spin about the z-axis.
Second, the area may be planar and noisy.  This case is
even worse than the first, because in the presence of noise
the normals may point in slightly incorrect directions,
causing the error landscape to have local minima.  Third,
the area may have stable “lock-and-key” features.  With
such features, the error landscape for that area will have a
deep, well-defined global minimum.  Hence, ideally we

would like to create overlap regions in areas that have
such lock-and-key features.  To achieve this, we use a
stability analysis, analyzing the eigenvalues of the
covariance matrix between two meshes [6]; an overlap
region is only created in areas with a minimum eigenvalue
above a predetermined threshold, in the hope that such an
area will have at least one lock-and-key feature.

3.3 Deciding distribution and number of point-
pairs

After subdividing the mesh, we must determine how to
sample the corresponding point-pairs in the overlap region
for use in global registration, to ensure that the
compensating warp we introduce is correct.

Two important considerations are the spatial
distribution of point-pairs, and the total number of pairs.
There are several options for choosing a distribution of
sample point-pairs.  We minimize uncertainty in
translation and rotation during registration by using
covariance-based sampling [6].

Regarding the number of point-pairs, we would like to
keep the compensating warp controlled.  The global
registration method we use is a least-squares method, so a
higher sampling of the overlapping region between two
meshes will constrain their motion to a higher degree. The
proper value for the number of corresponding point-pairs
chosen for sub-meshes diced from a single mesh should be
higher than the number used between sub-meshes
originating from different meshes, in order to create a
stiffer hinge.  In practice, we typically double this number.

3.4 Eliminating biases due to overscanning

In areas of the object that were scanned more
extensively than other areas, many meshes will overlap
that area, and hence more point-pairs from that area will
be considered during global registration.  We believe this
bias is an underappreciated source of error in global
registration algorithms.  This problem is compounded by
our technique, because we effectively create additional
meshes, which will increase the number of point-pairs
considered during global registration.  The distribution of
these new meshes over the area of the object may be
uneven, and thus the distribution of point-pairs over the
object may also change unevenly.

To avoid this bias, our variant of global registration
normalizes the number of point-pairs based on the object.
Ideally, we would like to normalize by surface area, but
this is difficult to implement since the meshes have not yet
been integrated to form a surface.  Hence, our
approximation normalizes by volume.  This is a good
approximation if the surfaces do not fold too quickly,
which is true for scanned surfaces.  Our strategy is to
break the axis-aligned bounding box containing the set of
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rigid meshes into voxels.  Each voxel will only accept a
set maximum number of point pairs (we typically use
1000 points per voxel).  Global registration is then run on
this subset of the original corresponding point-pairs.
Figure 8 displays results showing the need for this variant
of global registration.

Figure 8.  Global registration example showing the need
for area-normalization.  In the top image, the point-pairs
were not normalized.  The object has 3-4 meshes
overlapping in all but one area (denoted with a square).
This area contains only 2 overlapping meshes, and as
illustrated in the zoomed image, the meshes have
separated.  The bottom image illustrates our result with
area-normalization.

4. Results

Here we will demonstrate our algorithm running on
real data.  In each case, we will display the mesh resulting
from aligning and merging the original (warped) meshes,
and the mesh resulting from applying a compensating
warp.  We evaluate the quality of our alignment by
computing the average of the 10% of point-pairs over the
object that exhibit the greatest point-plane distance.

Figure 10 shows a set of 4 meshes from the Forma
Urbis Romae Project capturing the top of fragment
033abc.  Figure 10(a) shows the mesh resulting from
aligning and merging the 4 scans under slightly incorrect
calibration; our error metric evaluates to 0.787 mm.
Figure 10(b) contains the mesh resulting from adding
compensating warp by dicing these meshes into 197 sub-
meshes.  Our error metric now evaluates to 0.395 mm, a
2x reduction in misalignment.  The spacing between range
samples is 0.5 mm.

The inset in Figure 10(a) exhibits an artifact arising
from misalignment error during global registration.  The
lines are warped and blurred.  Our algorithm reduced this
artifact; the result is shown in the inset of Figure 10(b).
The table in Figure 9 displays the running times for each
step of the algorithm executed on an Intel Pentium 4 2.80
GHz processor.  The running times show that the time to
dice each mesh at every iteration is small compared to the
expensive pairwise matching step.

Meshes Polygons
(million)

Pair
Match.

Global
Reg.

# points
selected

Dicing

4 meshes 31 3:09 0:02 1200 0:22
37 scanner

sweeps
31 10:33 0:02 25,800 2:15

75 sub-
meshes

35.8 34:00 0:04 26,200 2:30

117 sub-
meshes

40.2 21:00 0:05 63,510 3:30

160 sub-
meshes

46.1 20:00 0:06 123,110 3:00

197 sub-
meshes

52.2 17:00 0:13 204,268

Figure 9.  Breakdown of running times by step for Forma
Urbis fragment #033abc.  We begin with 4 meshes, which
we break into 37 scanner sweeps.  Times are given in
minutes:seconds.  The minimum size of the resulting
meshes was 15 cm along the longest dimension.  The
original fragment is approximately 85 cm by 120 cm.

Figure 11 shows a set of meshes from the Digital
Michelangelo project capturing the face of the David.  The
top half shows a mesh resulting from aligning and
merging the face under incorrect calibration.  The inset
exhibits a particularly noticeable artifact about the lips.
Our error metric computed over the original set of meshes
that created this mesh was 1.15 mm.  The bottom displays
the mesh resulting from adding compensating warp.  The
inset shows that the objectionable artifacts present in the
original mesh have now largely disappeared.  Our error
metric computed over the diced set of meshes is roughly
0.8 mm.  The spacing between range samples is 0.5 mm.

4. Conclusions

We presented a method for making mesh alignment
techniques more robust to scanner miscalibration.
Previous methods that computed rigid transformations
only are robust to noise, but may fail or produce incorrect
alignments in the face of warp.  We presented a method
for introducing a minimal compensating warp in the mesh
data to allow convergence.  This method does not require
a specific characterization of scanner warp, and is
relatively simple to implement.

One limitation of our proposed method pertains to our
choice of compensating warp.  We choose a piecewise
rigid model that in the limit converges to a curved warp,
but if scanner miscalibration introduced a warp that is not
curved, this method will not converge.

A second limitation of our method is that we do not
guarantee that the shape of the object converges to the
correct answer.  We introduce a controlled, minimal
amount of warp and ensure geometric constraints are met
so that the resulting shape will not diverge.  However,
without independent observations to constrain the shape of
the object, it is difficult to compare the shape resulting
from our method with the actual shape of the original
object (e.g. In the Digital Michelangelo project, we



7

Figure 10.  Results on a marble fragment of the Forma Urbis Romae.  Left: computer rendering of mesh from alignment and
merging under incorrect calibration.  Left inset: blurring of the map due to incorrect alignment.  Plot shows that a sample
incision is shallow (at a depth of 0.25 mm) and incorrectly shows two minima.  Right: results of our technique on same input
scans.  One of the sub-meshes is overlaid in a darker gray.  Right inset: the blurring is greatly reduced, and the depth of the
incision measures 0.5 mm, which is more consistent with the approximate depth of the Forma Urbis incisions.

Figure 11.  Results on the face of Michelangelo’s David.  Top: alignment and merging under incorrect calibration.  The lips
exhibit gross misalignments on the order of 1.9 mm.  Bottom: our results.  The artifacts in the lips have been greatly
reduced.
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obtained independent measurements of several points on
some of the statues using a theodolite; this data could be
incorporated as additional shape constraints [1]).

A third set of limitations pertains to the design of the
algorithm.  Currently when creating sub-meshes, we set
the overlap to be a fixed percentage of the overlapping
bounding-box.  However, this overlap may be of an
incorrect size (i.e. it may be too large and thus
overconstrain the motion of its constituent meshes during
global registration, or it may be too small and may not
constrain the motion of its constituent meshes enough).
Hence, it seems as though we should grow the overlap
region until it contains enough features to render the
matching stable, e.g. using the machinery to analyze
stability that appears in our accompanying paper [6].

5. Future Work

One intriguing area of future work lies in global
registration itself.  It seems advantageous to redistribute
the sampling of corresponding point-pairs in this step
based on a one mesh to many meshes stability analysis.
Currently the point-pair distribution is decided in ICP
considering only a one-mesh to one-mesh stability
relationship.  However, during global registration we
could consider the stability of a mesh in relation to all of
its overlapping partners, as shown in Figure 12.

Also, as mentioned in the introduction, our method
implicitly converges to a curved warp in the limit as sub-
mesh size goes to zero.  We could instead explicitly fit a
warp function to our data, but as mentioned earlier, we
fear that this would run slowly and be unstable.  A third
alternative, which combines the elegance of a continuous
warp function with the speed and stability of our
piecewise rigid solution, would be to implement an
extension to our technique in which a spline is first fit to
each of our meshes. The spline data would show us the
directions in which the meshes are being warped.  Then if
we subsequently ran the technique discussed in this paper,
we could modify the distribution of points to allow
movement to compensate for these known warps.

Finally, an improved measurement strategy can reduce
the effect of warp and generally increase the accuracy of
alignment.  As noted in Section 3.2, a set of meshes can be
viewed as a mechanical system.  By analyzing this system,
we conjecture that a scheme for view-planning can be
devised.  For example, if an object is scanned in vertical
strips, such an analysis would probably indicate that
another scan should be taken horizontally.
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Figure 12.  A diagrammatic example demonstrating the need for
re-distributing the point-pairs in global registration based on a one-
to-many stability analysis.  The parallel lines indicate features.
The features in any one of the B’s are insufficient to constrain A’s
motion, but any two are sufficient.  For example, in B1 the incisions
are parallel to the x-axis, so the two meshes are constrained in the
y-direction, but are free to slide in x.  Similarly for B2 the meshes
are constrained in a single direction, but since this direction is
different from B1, the two will form a 2D basis, constraining sliding
in the plane.
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