Appendix A

Properties of the Representation Matrices

In this appendix, we derive the two properties of representation matrices listed in equation 2.35 . The first property follows from the addition theorem for spherical harmonics (see for instance, Jackson [34] equation 3.62),

$$
\begin{equation*}
Y_{l 0}(u, v)=\Lambda_{l} \sum_{m=-l}^{l} Y_{l m}^{*}(\theta, \phi) Y_{l m}\left(\theta^{\prime}, \phi^{\prime}\right) \tag{A.1}
\end{equation*}
$$

Here, v is a dummy-variable since $Y_{l 0}$ has no azimuthal dependence, and u is the angle between (θ, ϕ) and $\left(\theta^{\prime}, \phi^{\prime}\right)$, i.e.

$$
\begin{equation*}
\cos u=\cos \theta \cos \theta^{\prime}+\sin \theta \sin \theta^{\prime} \cos \left(\phi-\phi^{\prime}\right) \tag{A.2}
\end{equation*}
$$

Now, let $(u, v)=R_{\alpha}\left(\theta^{\prime}, \phi^{\prime}\right)$. Here, $R_{\alpha}=R_{y}(\alpha)$. We omit the z rotation since that does not affect $Y_{l 0}$ which has no azimuthal dependence. The vector corresponding to coordinates (u, v) is then given by

$$
\left(\begin{array}{c}
\sin u \cos v \tag{A.3}\\
\sin u \sin v \\
\cos u
\end{array}\right)=\left(\begin{array}{ccc}
\cos \alpha & 0 & \sin \alpha \\
0 & 1 & 0 \\
-\sin \alpha & 0 & \cos \alpha
\end{array}\right)\left(\begin{array}{c}
\sin \theta^{\prime} \cos \phi^{\prime} \\
\sin \theta^{\prime} \sin \phi^{\prime} \\
\cos \theta^{\prime}
\end{array}\right)=\left(\begin{array}{c}
\cos \alpha \sin \theta^{\prime} \cos \phi^{\prime}+\sin \alpha \cos \theta^{\prime} \\
\sin \theta^{\prime} \sin \phi^{\prime} \\
\cos \alpha \cos \theta^{\prime}+\sin \alpha \sin \theta^{\prime}\left(-\cos \phi^{\prime}\right)
\end{array}\right)
$$

Since $\left(-\cos \phi^{\prime}\right)=\cos \left(\pi-\phi^{\prime}\right)$, we know from equation A. 2 that u corresponds to the angle between (α, π) and $\left(\theta^{\prime}, \phi^{\prime}\right)$. In other words, we may set $\left.\theta, \phi\right)=(\alpha, \pi)$. To summarize,

$$
\begin{equation*}
Y_{l 0}\left(R_{\alpha}\left(\theta^{\prime}, \phi^{\prime}\right)\right)=\Lambda_{l} \sum_{m=-l}^{l} Y_{l m}^{*}(\alpha, \pi) Y_{l m}\left(\theta^{\prime}, \phi^{\prime}\right) . \tag{A.4}
\end{equation*}
$$

To proceed further, we write the rotation formula for spherical harmonics, omitting the z rotation by β, since that has no significance for azimuthally symmetric harmonics.

$$
\begin{equation*}
Y_{l 0}\left(R_{\alpha}\left(\theta^{\prime}, \phi^{\prime}\right)\right)=\sum_{m=-l}^{l} d_{0 m}^{l}(\alpha) Y_{l m}\left(\theta^{\prime}, \phi^{\prime}\right) \tag{A.5}
\end{equation*}
$$

A comparision of equations A. 4 and A. 5 yields the first property of representation matrices in equation 2.35 , i.e.

$$
\begin{equation*}
d_{0 m}^{l}(\alpha)=\Lambda_{l} Y_{l m}^{*}(\alpha, \pi) \tag{A.6}
\end{equation*}
$$

To obtain the second property in equation 2.35 , we use the form of the spherical harmonic expansion when the elevation angle is 0 , i.e. we are at the north pole. Specifically, we note that $Y_{l m^{\prime}}\left(0^{\prime}, \phi^{\prime}\right)=\Lambda_{l}^{-1} \delta_{m^{\prime} 0}$. With this in mind, the derivation is as follows,

$$
\begin{align*}
Y_{l m}(\alpha, \beta) & =Y_{l m}\left(R_{\alpha, \beta, \gamma}\left(0^{\prime}, \phi^{\prime}\right)\right) \\
& =\sum_{m^{\prime}=-l}^{l} D_{m m^{\prime}}^{l}(\alpha, \beta, \gamma) Y_{l m^{\prime}}\left(0^{\prime}, \phi^{\prime}\right) \\
& =\Lambda_{l}^{-1} D_{m 0}^{l}(\alpha, \beta, \gamma) \tag{A.7}
\end{align*}
$$

This brings us to the second property stated in equation 2.35 ,

$$
\begin{equation*}
D_{m 0}^{l}(\alpha, \beta, \gamma)=\Lambda_{l} Y_{l m}(\alpha, \beta) \tag{A.8}
\end{equation*}
$$

Bibliography

[1] J. Arvo. Applications of irradiance tensors to the simulation of non-lambertian phenomena. In SIGGRAPH 95, pages 335-342, 1995.
[2] R. Basri and D. Jacobs. Lambertian reflectance and linear subspaces. In International Conference on Computer Vision, pages 383-390, 2001.
[3] R. Basri and D. Jacobs. Photometric stereo with general, unknown lighting. In CVPR 01, pages II-374-II-381, 2001.
[4] P. Belhumeur and D. Kriegman. What is the set of images of an object under all possible illumination conditions? IJCV, 28(3):245-260, 1998.
[5] J. Blinn and M. Newell. Texture and reflection in computer generated images. Communications of the ACM, 19:542-546, 1976.
[6] S. Boivin and A. Gagalowicz. Image-based rendering of diffuse, specular and glossy surfaces from a single image. In SIGGRAPH 01, pages 107-116, 2001.
[7] B. Cabral, N. Max, and R. Springmeyer. Bidirectional reflection functions from surface bump maps. In SIGGRAPH 87, pages 273-281, 1987.
[8] B. Cabral, M. Olano, and P. Nemec. Reflection space image based rendering. In SIGGRAPH 99, pages 165-170, 1999.
[9] M. Chen and J. Arvo. Simulating non-lambertian phenomena involving linearlyvarying luminaires. In Eurographics Workshop on Rendering, pages 25-38, 2001.
[10] G. Chirikjian and A. Kyatkin. Engineering applications of noncommutative harmonic analysis: with emphasis on rotation and motion groups. CRC press, 2000.
[11] J. Cochran. The analysis of linear integral equations. McGraw-Hill, 1972.
[12] M. F. Cohen and J. R. Wallace. Radiosity and Realistic Image Synthesis. Academic Press, 1993.
[13] B. Curless and M. Levoy. A volumetric method for building complex models from range images. In SIGGRAPH 96, pages 303-312, 1996.
[14] K. Dana, B. Ginneken, S. Nayar, and J. Koenderink. Reflectance and texture of realworld surfaces. ACM Transactions on Graphics, 18(1):1-34, January 1999.
[15] P. Debevec, T. Hawkins, C. Tchou, H.P. Duiker, W. Sarokin, and M. Sagar. Acquiring the reflectance field of a human face. In SIGGRAPH 00, pages 145-156, 2000.
[16] R. Dror, E. Adelson, and A. Willsky. Estimating surface reflectance properties from images under unknown illumination. In SPIE Photonics West: Human Vision and Electronic Imaging VI, pages 231-242, 2001.
[17] M. D'Zmura. Computational Models of Visual Processing, chapter Shading Ambiguity: Reflectance and Illumination, pages 187-207. MIT Press, 1991.
[18] R. Epstein, P.W. Hallinan, and A. Yuille. 5 plus or minus 2 eigenimages suffice: An empirical investigation of low-dimensional lighting models. In IEEE Workshop on Physics-Based Modeling in Computer Vision, pages 108-116, 1995.
[19] W. Fulton and J. Harris. Representation Theory: A first course. Springer-Verlag, 1991.
[20] A. Gershun. The light field. Journal of Mathematics and Physics, XVIII:51-151, 1939. Translated by P. Moon and G. Timoshenko.
[21] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The lumigraph. In SIGGRAPH 96, pages 43-54, 1996.
[22] N. Greene. Environment mapping and other applications of world projections. IEEE Computer Graphics \& Applications, 6(11):21-29, 1986.
[23] G. Greger, P. Shirley, P. Hubbard, and D. Greenberg. The irradiance volume. IEEE Computer Graphics \& Applications, 18(2):32-43, 1998.
[24] H. Groemer. Geometric applications of Fourier series and spherical harmonics. Cambridge University Press, 1996.
[25] Numerical Algorithms Group. NAG C Library Manual, Mark 5. 1999.
[26] Z. Hakura. Inverse Rendering Methods for Hardware-Accelerated Display of Parameterized Image Spaces. PhD thesis, Stanford University, Oct 2001.
[27] Z. Hakura, J. Snyder, and J. Lengyel. Parameterized animation compression. In EuroGraphics Rendering Workshop 00, pages 101-112, 2000.
[28] Z. Hakura, J. Snyder, and J. Lengyel. Parameterized environment maps. In ACM symposium on interactive 3D graphics, pages 203-208, 2001.
[29] M. Halle. Multiple viewpoint rendering. In SIGGRAPH 98, pages 243-254, 1998.
[30] P.W. Hallinan. A low-dimensional representation of human faces for arbitrary lighting conditions. In CVPR 94, pages 995-999, 1994.
[31] K. Ikeuchi and K. Sato. Determining reflectance properties of an object using range and brightness images. PAMI, 13(11):1139-1153, 1991.
[32] T. Inui, Y. Tanabe, and Y. Onodera. Group theory and its applications in physics. Springer Verlag, 1990.
[33] X. Tong J. Chai and H. Shum. Plenoptic sampling. In SIGGRAPH 00, pages 307-318, 2000.
[34] J.D. Jackson. Classical Electrodynamics. John Wiley, 1975.
[35] J. Kajiya and T. Kay. Rendering fur with three dimensional textures. In SIGGRAPH 89, pages 271-280, 1989.
[36] K. F. Karner, H. Mayer, and M. Gervautz. An image based measurement system for anisotropic reflection. Computer Graphics Forum, 15(3):119-128, 1996.
[37] J. Kautz and M. McCool. Interactive rendering with arbitrary BRDFs using separable approximations. In EGRW 99, pages 247-260, 1999.
[38] J. Kautz and M. McCool. Approximation of glossy reflection with prefiltered environment maps. In Graphics Interface, pages 119-126, 2000.
[39] J. Kautz, P. Vázquez, W. Heidrich, and H.P. Seidel. A unified approach to prefiltered environment maps. In EuroGraphics Rendering Workshop 00, pages 185-196, 2000.
[40] J. Kautz, P. Vázquez, W. Heidrich, and H.P. Seidel. A unified approach to prefiltered environment maps. In EGRW 00, pages 185-196, 2000.
[41] G. Kay and T. Caelli. Inverting an illumination model from range and intensity maps. CVGIP-Image Understanding, 59(2):183-201, 1994.
[42] G.J. Klinker, S.A. Shafer, and T. Kanade. The measurement of highlights in color images. IJCV, 2(1):7-32, 1988.
[43] J. Koenderink and A. van Doorn. Phenomenological description of bidirectional surface reflection. JOSA A, 15(11):2903-2912, 1998.
[44] E. Lafortune, S. Foo, K. Torrance, and D. Greenberg. Non-linear approximation of reflectance functions. In SIGGRAPH 97, pages 117-126, 1997.
[45] P. Lalonde and A. Fournier. Filtered local shading in the wavelet domain. In $E G R W$ 97, pages 163-174, 1997.
[46] E. Land and J. McCann. Lightness and retinex theory. Journal of the Optical Society of America, 61(1):1-11, 1971.
[47] L. Latta and A. Kolb. Homomorphic factorization of brdf-based lighting computation. In SIGGRAPH 02, pages 509-516, 2002.
[48] M. Levoy and P. Hanrahan. Light field rendering. In SIGGRAPH 96, pages 31-42, 1996.
[49] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk. The digital michelangelo project: 3D scanning of large statues. In SIGGRAPH 00, pages 131-144, 2000.
[50] R. Love. Surface Reflection Model Estimation from Naturally Illuminated Image Sequences. PhD thesis, Leeds, 1997.
[51] R. Lu, J.J. Koenderink, and A.M.L. Kappers. Optical properties (bidirectional reflection distribution functions) of velvet. Applied Optics, 37(25):5974-5984, 1998.
[52] T. MacRobert. Spherical harmonics; an elementary treatise on harmonic functions, with applications. Dover Publications, 1948.
[53] T. Malzbender, D. Gelb, and H. Wolters. Polynomial texture maps. In SIGGRAPH 01, pages 519-528, 2001.
[54] S.R. Marschner and D.P. Greenberg. Inverse lighting for photography. In Fifth Color Imaging Conference, pages 262-265, 1997.
[55] S.R. Marschner, S.H. Westin, E.P.F. Lafortune, and K.E. Torrance. Image-Based BRDF measurement. Applied Optics, 39(16):2592-2600, 2000.
[56] R. McCluney. Introduction to Radiometry and Photometry. Artech House, 1994.
[57] M. McCool, J. Ang, and A. Ahmad. Homomorphic factorization of BRDFs for highperformance rendering. In SIGGRAPH 01, pages 171-178, 2001.
[58] N. McCormick. Inverse radiative transfer problems: a review. Nuclear Science and Engineering, 112:185-198, 1992.
[59] G. Miller and C. Hoffman. Illumination and reflection maps: Simulated objects in simulated and real environments. SIGGRAPH 84 Advanced Computer Graphics Animation seminar notes, 1984.
[60] G. Miller, S. Rubin, and D. Poncelon. Lazy decompression of surface light fields for precomputed global illumination. In EGRW 98, pages 281-292, 1998.
[61] M. Mohlenkamp. A fast transform for spherical harmonics. The Journal of Fourier Analysis and Applications, 5(2/3):159-184, 1999.
[62] F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis. Geometric Considerations and Nomenclature for Reflectance. National Bureau of Standards (US), 1977.
[63] J. Nimeroff, E. Simoncelli, and J. Dorsey. Efficient re-rendering of naturally illuminated environments. In Fifth Eurographics Workshop on Rendering, pages 359-373, June 1994.
[64] K. Nishino, Y. Sato, and K. Ikeuchi. Eigen-texture method: Appearance compression based on 3D model. In CVPR 99, pages 618-624, 1999.
[65] B. Oh, M. Chen, J. Dorsey, and F. Durand. Image-based modeling and photo editing. In SIGGRAPH 01, pages 433-442, 2001.
[66] J. Kautz P. Sloan and J. Snyder. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In SIGGRAPH 02, pages 527-536, 2002.
[67] R.W. Preisendorfer. Hydrologic Optics. US Dept Commerce, 1976.
[68] K. Proudfoot, W. Mark, S. Tzvetkov, and P. Hanrahan. A real-time procedural shading system for programmable graphics hardware. In SIGGRAPH 01, pages 159-170, 2001.
[69] R. Ramamoorthi. Analytic PCA construction for theoretical analysis of lighting variability, including attached shadows, in a single image of a convex lambertian object. In CVPR workshop on identifying objects across variations in lighting: psychophysics and computation, pages 48-55, 2001.
[70] R. Ramamoorthi and P. Hanrahan. Analysis of planar light fields from homogeneous convex curved surfaces under distant illumination. In SPIE Photonics West: Human Vision and Electronic Imaging VI, pages 185-198, 2001.
[71] R. Ramamoorthi and P. Hanrahan. An efficient representation for irradiance environment maps. In SIGGRAPH 01, pages 497-500, 2001.
[72] R. Ramamoorthi and P. Hanrahan. On the relationship between radiance and irradiance: Determining the illumination from images of a convex lambertian object. JOSA A, 18(10):2448-2459, 2001.
[73] R. Ramamoorthi and P. Hanrahan. A signal-processing framework for inverse rendering. In SIGGRAPH 01, pages 117-128, 2001.
[74] S. Rusinkiewicz. A new change of variables for efficient BRDF representation. In EGRW 98, pages 11-22, 1998.
[75] I. Sato, Y. Sato, and K. Ikeuchi. Illumination distribution from brightness in shadows: adaptive estimation of illumination distribution with unknown reflectance properties in shadow regions. In ICCV 99, pages $875-882,1999$.
[76] Y. Sato and K. Ikeuchi. Reflectance analysis under solar illumination. Technical Report CMU-CS-94-221, CMU, 1994.
[77] Y. Sato, M. D. Wheeler, and K. Ikeuchi. Object shape and reflectance modeling from observation. In SIGGRAPH 97, pages 379-388, 1997.
[78] P. Schröder and W. Sweldens. Spherical wavelets: Texture processing. In EGRW 95, pages 252-263, 1995.
[79] F. Sillion, J. Arvo, S. Westin, and D. Greenberg. A global illumination solution for general reflectance distributions. In SIGGRAPH 91, pages 187-196, 1991.
[80] C. Soler and F. Sillion. Fast calculation of soft shadow textures using convolution. In SIGGRAPH 98, pages 321-332, 1998.
[81] S.R.Marschner. Inverse Rendering for Computer Graphics. PhD thesis, Cornell, 1998.
[82] P. Teo, E. Simoncelli, and D. Heeger. Efficient linear rerendering for interactive lighting design. Technical Report STAN-CS-TN-97-60, Stanford, 1997.
[83] S. Tominaga and N. Tanaka. Estimating reflection parameters from a single color image. IEEE Computer Graphics \& Applications, 20(5):58-66, 2000.
[84] K. Torrance and E. Sparrow. Theory for off-specular reflection from roughened surfaces. JOSA, 57(9):1105-1114, 1967.
[85] G. Ward and P. Heckbert. Irradiance gradients. In EGRW 92, pages 85-98, 1992.
[86] S. Westin, J. Arvo, and K. Torrance. Predicting reflectance functions from complex surfaces. In SIGGRAPH 92, pages 255-264, 1992.
[87] A. Wilkie, R. Tobler, and W. Purgathofer. Orientation lightmaps for photon radiosity in complex environments. In CGI 00, pages 279-286, 2000.
[88] D. Wood, D. Azuma, K. Aldinger, B. Curless, T. Duchamp, D. Salesin, and W. Stuetzle. Surface light fields for 3D photography. In SIGGRAPH 00, pages 287-296, 2000.
[89] Y. Yu, P. Debevec, J. Malik, and T. Hawkins. Inverse global illumination: Recovering reflectance models of real scenes from photographs. In SIGGRAPH 99, pages 215224, 1999.
[90] Y. Yu and J. Malik. Recovering photometric properties of architectural scenes from photographs. In SIGGRAPH 98, pages 207-218, 1998.
[91] A. Yuille, D. Snow, R. Epstein, and P. Belhumeur. Determining generative models of objects under varying illumination: Shape and albedo from multiple images using SVD and integrability. IJCV, 35(3):203-222, 1999.
[92] L. Zhang, G. Dugas-Phocion, J. Samson, and S. Seitz. Single view modeling of freeform scenes. In CVPR 01, pages I-990-I-997, 2001.
[93] Z. Zhang. A flexible new technique for camera calibration. Technical Report MSR-TR-98-71, Microsoft Research, 1998.

