A SIGNAL-PROCESSING FRAMEWORK FOR FORWARD AND INVERSE RENDERING

A DISSERTATION SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

> Ravi Ramamoorthi August 2002

© Copyright by Ravi Ramamoorthi 2002 All Rights Reserved I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

> Pat Hanrahan (Principal Adviser)

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Marc Levoy

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

> Jitendra Malik (UC Berkeley)

Approved for the University Committee on Graduate Studies:

Abstract

The study of the computational aspects of reflection, and especially the interaction between reflection and illumination, is of fundamental importance in both computer graphics and vision. In computer graphics, the interaction between the incident illumination and the reflective properties of a surface is a basic building block in most *rendering* algorithms, i.e. methods that create synthetic computer-generated images. In computer vision, we often want to undo the effects of the reflection operator, i.e. to invert the interaction between the surface reflective properties and lighting. In other words, we often want to perform *inverse rendering*—the estimation of material and lighting properties from real photographs. Inverse rendering is also of increasing importance in graphics, where we wish to obtain accurate input illumination and reflectance models for (forward) rendering.

This dissertation describes a new way of looking at reflection on a curved surface, as a special type of convolution of the incident illumination and the reflective properties of the surface (technically, the bi-directional reflectance distribution function or BRDF). The first part of the dissertation is devoted to a theoretical analysis of the reflection operator, leading for the first time to a formalization of these ideas, with the derivation of a convolution theorem in terms of the spherical harmonic coefficients of the lighting and BRDF. This allows us to introduce a signal-processing framework for reflection, wherein the incident lighting is the signal, the BRDF is the filter, and the reflected light is obtained by filtering the input illumination (signal) using the frequency response of the BRDF filter.

The remainder of the dissertation describes applications of the signal-processing framework to forward and inverse rendering problems in computer graphics. First, we address the forward rendering problem, showing how our framework can be used for computing and displaying synthetic images in real-time with natural illumination and physically-based BRDFs. Next, we extend and apply our framework to inverse rendering. We demonstrate estimation of realistic lighting and reflective properties from photographs, and show how this approach can be used to synthesize very realistic images under novel lighting and viewing conditions.

Acknowledgements

Firstly, I would like to thank my advisor, Pat Hanrahan, for convincing me to come to Stanford, for insightful discussions and technical advice during all these years on the whole spectrum of graphics topics, and for the perhaps more important discussions and advice on following appropriate scientific methodology, and development as a scientist and researcher. It has indeed been an honor and a privilege to work with him through these four years.

I would also like to thank my other committee members, Marc Levoy, Jitendra Malik, Ron Fedkiw, and Bernd Girod, for the advice, support, encouragement and inspiration they have provided over the years. I especially want to thank Marc for the many discussions we had in the early stages of this project.

Over the course of my time here, it has been exciting and energizing to work with and be around such an amazing group of people in the Stanford graphics lab. I want to thank Maneesh Agrawala, Sean Anderson, James Davis, Ziyad Hakura, Olaf Hall-Holt, Greg Humphreys, David Koller, Bill Mark, Steve Marschner, Matt Pharr, Kekoa Proudfoot, Szymon Rusinkiewicz, Li-Yi Wei and many others for being such wonderful friends, colleagues and co-workers. In particular, I want to thank Steve and Szymon for the many hours spent discussing ideas, their patience in reviewing drafts of my papers, and their help with data acquisition for the inverse rendering part of this dissertation.

Over the last four years, the Stanford graphics lab has really been the epicenter for graphics research. I can only consider it my privilege and luck to have been a part of this golden age.

Contents

Ał	bstract		iv
Ac	cknov	vledgements	vi
1	Intr	oduction	1
	1.1	Theoretical analysis of Reflection: Signal Processing	3
	1.2	Forward Rendering	5
	1.3	Inverse Rendering	7
2	Refl	ection as Convolution	10
	2.1	Previous Work	12
	2.2	Reflection Equation	15
		2.2.1 Assumptions	16
		2.2.2 Flatland 2D case	18
		2.2.3 Generalization to 3D	21
	2.3	Frequency-Space Analysis	25
		2.3.1 Fourier Analysis in 2D	25
		2.3.2 Spherical Harmonic Analysis in 3D	28
		2.3.3 Group-theoretic Unified Analysis	35
		2.3.4 Alternative Forms	36
	2.4	Implications	43
		2.4.1 Forward Rendering with Environment Maps	43
		2.4.2 Well-posedness and conditioning of Inverse Lighting and BRDF	44
		2.4.3 Light Field Factorization	47

	2.5	Conclusions and Future Work	50
3	Form	mulae for Common Lighting and BRDF Models	52
	3.1	Background	53
		3.1.1 Reflection Equation and Convolution Formula	53
		3.1.2 Analysis of Inverse Problems	55
	3.2	Derivation of Analytic Formulae	56
		3.2.1 Directional Source	57
		3.2.2 Axially Symmetric Distribution	59
		3.2.3 Uniform Lighting	60
		3.2.4 Mirror BRDF	62
		3.2.5 Lambertian BRDF	65
		3.2.6 Phong BRDF	70
		3.2.7 Microfacet BRDF	73
	3.3	Conclusions and Future Work	78
4	Irra	diance Environment Maps	80
-	4.1	Introduction and Previous Work	81
	4.2	Background	83
	4.3	Algorithms and Results	87
		4.3.1 Prefiltering	87
		4.3.2 Rendering	89
		4.3.3 Representation	91
	4.4	Conclusions and Future Work	93
_	_		
5	Freq	quency Space Environment Map Rendering	94
	5.1	Introduction	95
	5.2	Related Work	97
	5.3	Preliminaries	97
		5.3.1 Reparameterization by central BRDF direction	99
		5.3.2 4D function representations	101
	5.4	Spherical Harmonic Reflection Maps	103

	5.5	Analys	sis of sampling rates/resolutions	7
		5.5.1	Order of spherical harmonic expansions	8
		5.5.2	Justification for SHRM representation	1
	5.6	Prefilte	ering	2
		5.6.1	Main steps and insights	3
		5.6.2	Prefiltering Algorithm	4
		5.6.3	Computational complexity	6
		5.6.4	Validation with Phong BRDF	8
	5.7	Result	s	0
		5.7.1	Number of coefficients for analytic BRDFs	0
		5.7.2	Number of coefficients for measured BRDFs	2
		5.7.3	SHRM accuracy	3
		5.7.4	Speed of prefiltering	3
		5.7.5	Real-time rendering	5
	5.8	Conclu	sions and Future Work	6
6	Inve	erse Rer	dering Under Complex Illumination 13	3
6	Inve 6.1	e rse Rer Taxon	Idering Under Complex Illumination13Domy of Inverse problems and Previous Work13	3 5
6	Inve 6.1	e rse Rer Taxon 6.1.1	Indexing Under Complex Illumination13Domy of Inverse problems and Previous Work13Previous Work on Inverse Rendering13	3 5 7
6	Inve 6.1	rse Rer Taxon 6.1.1 6.1.2	adering Under Complex Illumination 13 omy of Inverse problems and Previous Work 13 Previous Work on Inverse Rendering 13 Open Problems 14	3 5 7 1
6	Inve 6.1	Taxono 6.1.1 6.1.2 Prelim	adering Under Complex Illumination 13 omy of Inverse problems and Previous Work 13 Previous Work on Inverse Rendering 13 Open Problems 14 inaries 14	3 5 7 1 3
6	Inve 6.1	Taxon 6.1.1 6.1.2 Prelim 6.2.1	adering Under Complex Illumination 13 omy of Inverse problems and Previous Work 13 Previous Work on Inverse Rendering 13 Open Problems 14 inaries 14 Practical implications of theory 14	3 5 7 1 3 4
6	Inve 6.1 6.2 6.3	Taxon 6.1.1 6.1.2 Prelim 6.2.1 Dual a	adering Under Complex Illumination 13 omy of Inverse problems and Previous Work 13 Previous Work on Inverse Rendering 13 Open Problems 14 inaries 14 Practical implications of theory 14 ngular and frequency-space representation 14	3 5 7 1 3 4 6
6	Inve 6.1 6.2 6.3	Taxono 6.1.1 6.1.2 Prelim 6.2.1 Dual a 6.3.1	adering Under Complex Illumination 13 omy of Inverse problems and Previous Work 13 Previous Work on Inverse Rendering 13 Open Problems 14 inaries 14 Practical implications of theory 14 ngular and frequency-space representation 14 Model for reflected light field 14	3 5 7 1 3 4 6 7
6	Inve 6.1 6.2 6.3	Taxono 6.1.1 6.1.2 Prelim 6.2.1 Dual a 6.3.1 6.3.2	adering Under Complex Illumination 13 omy of Inverse problems and Previous Work 13 Previous Work on Inverse Rendering 13 Open Problems 14 inaries 14 Practical implications of theory 14 ngular and frequency-space representation 14 Model for reflected light field 14 Textures and shadowing 14	3 5 7 1 3 4 6 7 8
6	Inve 6.1 6.2 6.3	rse Rer Taxon 6.1.1 6.1.2 Prelim 6.2.1 Dual a 6.3.1 6.3.2 Algori	adering Under Complex Illumination13omy of Inverse problems and Previous Work13Previous Work on Inverse Rendering13Open Problems14inaries14Practical implications of theory14ngular and frequency-space representation14Model for reflected light field14Textures and shadowing14thms14	3 5 7 1 3 4 6 7 8 0
6	 Inve 6.1 6.2 6.3 6.4 	Frse Rer Taxon 6.1.1 6.1.2 Prelim 6.2.1 Dual a 6.3.1 6.3.2 Algori 6.4.1	Indexing Under Complex Illumination13Domy of Inverse problems and Previous Work13Previous Work on Inverse Rendering13Open Problems14inaries14Practical implications of theory14ngular and frequency-space representation14Model for reflected light field14Textures and shadowing14thms15Data Acquisition15	3 5 7 1 3 4 6 7 8 0 1
6	Inve6.16.26.36.4	Frse Rer Taxon 6.1.1 6.1.2 Prelim 6.2.1 Dual a 6.3.1 6.3.2 Algori 6.4.1 6.4.2	adering Under Complex Illumination 13 omy of Inverse problems and Previous Work 13 Previous Work on Inverse Rendering 13 Open Problems 14 inaries 14 Practical implications of theory 14 ngular and frequency-space representation 14 Textures and shadowing 14 thms 15 Data Acquisition 15 Inverse BRDF with known lighting 15	3 5 7 1 3 4 6 7 8 0 1 2
6	 Inve 6.1 6.2 6.3 6.4 	Prese Rer Taxono 6.1.1 6.1.2 Prelim 6.2.1 Dual a 6.3.1 6.3.2 Algori 6.4.1 6.4.2 6.4.3	Indexing Under Complex Illumination13Demy of Inverse problems and Previous Work13Previous Work on Inverse Rendering13Open Problems14inaries14Practical implications of theory14Model for reflected light field14Textures and shadowing14thms15Data Acquisition15Inverse BRDF with known lighting15Inverse Lighting with Known BRDF15	3 5 7 1 3 4 6 7 8 0 1 2 7
6	Inve6.16.26.36.4	Taxono 6.1.1 6.1.2 Prelim 6.2.1 Dual a 6.3.1 6.3.2 Algori 6.4.1 6.4.2 6.4.3 6.4.4	Indering Under Complex Illumination13Domy of Inverse problems and Previous Work13Previous Work on Inverse Rendering13Open Problems14inaries14Practical implications of theory14ngular and frequency-space representation14Model for reflected light field14Textures and shadowing15Data Acquisition15Inverse BRDF with known lighting15Inverse Lighting with Known BRDF16	3 5713467801273

	6.6	Conclusions and Future Work	169
7	Con	clusions and Future Work	174
	7.1	Computational Fundamentals of Reflection	175
	7.2	High Quality Interactive Rendering	178
	7.3	Inverse Rendering	180
	7.4	Summary	182
A	Prop	perties of the Representation Matrices	183
Bil	Bibliography 185		185

List of Tables

1.1	Common notation used throughout the dissertation
4.1	Scaled RGB values of lighting coefficients for a few environments 89
5.1	Notation used in chapter 5
5.2	Comparison of different 4D representations
5.3	Computational complexity of prefiltering
5.4	Comparison of timings of angular and frequency-space prefiltering for dif-
	ferent values of the Phong exponent s
5.5	Times for angular-space and our frequency-space prefiltering

List of Figures

1.1	A scene rendered in real time using our approach, described in chapter 5	5
1.2	Inverse Rendering.	7
2.1	Schematic of reflection in 2D.	18
2.2	Diagram showing how the rotation corresponding to (α, β, γ) transforms	
	between local (primed) and global (unprimed) coordinates	22
2.3	The first 3 orders of real spherical harmonics ($l = 0, 1, 2$) corresponding to	
	a total of 9 basis functions.	30
2.4	Reparameterization involves recentering about the reflection vector	41
3.1	The clamped cosine filter corresponding to the Lambertian BRDF and suc-	
	cessive approximations obtained by adding more spherical harmonic terms.	65
3.2	The solid line is a plot of $\hat{\rho}_l$ versus l , as per equation 3.32	67
3.3	Numerical plots of the Phong coefficients $\Lambda_l \hat{\rho}_l$, as defined by equation 3.37.	72
4.1	The diffuse shading on all the objects is computed procedurally in real-time	
	using our method.	82
4.2	A comparison of irradiance maps from our method to standard prefiltering.	90
4.3	Illustration of our representation, and applications to control appearance.	92
5.1	These images, showing many different lighting conditions and BRDFs,	
	were each rendered at approximately 30 frames per second using our Spher-	
	ical Harmonic Reflection Map (SHRM) representation.	95
5.2	An overview of our entire pipeline.	103
5.3	The idea behind SHRMs.	105

5.4	Renderings with different lighting and BRDF conditions
5.5	Accuracy $(1 - \epsilon)$ versus frequency F for an order F approximation of the
	reflected light field B
5.6	Comparing images obtained with different values for P for a simplified
	microfacet BRDF model with surface roughness $\sigma=0.2.$
5.7	Accuracy of a spherical harmonic BRDF approximation for all 61 BRDFs
	in the CURET database
5.8	Comparing the correct image on the left to those created using SHRMs
	(middle) and the 2D BRDF approximation of Kautz and McCool (right) 131
5.9	Comparing the correct image to those created using SHRMs and icosahe-
	dral interpolation (Cabral's method)
6.1	Left: Schematic of experimental setup Right: Photograph
6.2	Direct recovery of BRDF coefficients
6.3	Comparison of BRDF parameters recovered by our algorithm under com-
	plex lighting to those fit to measurements made by the method of Marschner
	et al. [55]
6.4	Estimation of dual lighting representation.
6.5	Comparison of inverse lighting methods
6.6	Determining surface roughness parameter σ
6.7	BRDFs of various spheres, recovered under known (section 6.4.2) and un-
	known (section 6.4.4) lighting
6.8	Spheres rendered using BRDFs estimated under known (section 6.4.2) and
	unknown (section 6.4.4) lighting
6.9	Comparison of photograph and rendered image for cat sculpture
6.10	Comparison of photographs (middle column) to images rendered using
	BRDFs recovered under known lighting (left column), and using BRDFs
	(and lighting) estimated under unknown lighting (right column)
6.11	BRDF and lighting parameters for the cat sculpture
6.12	Recovering textured BRDFs under complex lighting