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Abstract

Most algorithms for 3D reconstruction from images use
cost functions based on SSD, which assume that the sur-
faces being reconstructed are visible to all cameras. This
makes it difficult to reconstruct objects that are partially
occluded. Recently, researchers working with large cam-
era arrays have shown it is possible to “see through” oc-
clusions using a technique called synthetic aperture focus-
ing. This suggests that we can design alternative cost func-
tions that are robust to occlusions using synthetic apertures.
Our paper explores this design space. We compare classical
shape from stereo with shape from synthetic aperture focus.
We also describe two variants of multi-view stereo based on
color medians and entropy that increase robustness to oc-
clusions. We present an experimental comparison of these
cost functions on complex light fields, measuring their ac-
curacy against the amount of occlusion.

1. Introduction
Reconstructing the shape and appearance of objects

behind partial occlusions is a challenge for current 3D
reconstruction algorithms, even for Lambertian scenes.
One problem is the limited number of views; as a result, we
may not be able to reliably match partially occluded objects
across the views. Another problem is the cost functions
used by most algorithms (based on SSD, SAD, normalized
cross-correlation, etc.) implicitly assume that the surfaces
being reconstructed are visible in all views. Occlusions
may be compensated for later in the pipeline [9] or ignored
completely [10].

The first problem can be addressed by simply imaging
the scene with sufficiently many cameras (e.g., a 100-
camera array [19]). When we have enough cameras which
span a baseline (or synthetic aperture) wider than the oc-
cluders in scene, we can capture enough rays that go around
the foreground occluders and are incident on the partially

occluded background objects. Using a technique called
synthetic aperture focusing, researchers have used large
camera arrays to image objects behind dense occlusions
like foliage [7, 15] or people in crowds [16].

To address the second problem, we need to design
alternative cost functions which are robust to occlusion.
One approach is to project all camera images onto a virtual
focal plane and compute their mean. In the resulting image,
objects at the depth of the focal plane will be aligned and
sharp while occluders in front will be blurred. By using
a sharpness measure, we could identify the objects at the
current depth. This is a synthetic aperture analogue of
shape from focus. A second approach is to enforce color
constancy as in standard multi-baseline stereo, while being
robust to outliers resulting from occlusions. This raises the
question: which of the two (stereo or focus) is better ?

In this paper, we explore cost functions for reconstruct-
ing occluded surfaces from synthetic apertures. Our first
contribution is a comparison of shape from stereo with
shape from synthetic aperture focus. Experiments indicate
that focus performs better for sufficiently textured surfaces
as occlusion increases. Our second contribution is the
development of two variants of stereo, which are more
robust to occlusions than standard multi-view stereo. These
are based on color medians and entropy.

There are two major differences between our work and
previous reconstruction algorithms. First, we use many
more cameras spanning a wider synthetic aperture than pre-
vious methods. Second, we seek to reconstruct objects oc-
cluded in a significant portion of the input images, i.e. we
expect several outliers amongst pixels to be matched across
views. This is a more general and harder problem than stan-
dard multi-view stereo [10], which assumes no outliers. The
occluders themselves are not reconstructed explicitly; we
rely on the increased number of views with a large aperture
and robust cost functions to achieve good reconstruction.
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Figure 1. Stereo vs. focus for a surface at depth d0 with a constant intensity gradient. (a) Camera layout, and rays considered for depth
hypotheses d = d0 and d = d1. (b) The intensity profiles of the mean of camera images, projected on to depth planes d = d0 (top) and
d = d1 (bottom). (c) Comparing the response of stereo (variance) and focus. The variance has a parabolic profile, with the minimum at
the correct depth d0. The mean image does not vary with depth, so shape from focus is not able to reconstruct depth accurately.

1.1. Related Work

In their comparison of shape from stereo versus focus
[12], Schechner et al observed that focus ought to be
more robust than stereo in presence of occlusions while
stereo ought to be more accurate due to larger baselines.
This suggests that a synthetic aperture baseline may let
us achieve both accuracy and robustness, and has partly
inspired this research. The use of a finite aperture of a
single lens to see beyond occluders was studied by Favaro
[5]. The limited aperture size (and hence limited depth of
field) of a single lens limits the depth resolution and the
size of occluders that can be seen around. Moreover, a
single lens captures a (3D) stack of 2D images focused at
depths fixed during acquisition, as opposed to a 4D light
field captured by a synthetic aperture. This prevents us
from using robust cost functions based on medians and
entropy.

In [8], Kang et al introduced a cost function based on
view selection to increase robustness to occlusions. Their
method reconstructs the depths of only those points visible
in a reference view. Our cost function based on color
medians generalizes this, so that visiblity in a reference
view is not required.

Several algorithms for 3D reconstruction work by
partitioning the scene into layers at different depths
[17, 2, 20]. Translucent layers were considered in [14].
These approaches usually begin by first estimating the
foreground layer and using residuals to estimate the rest.
For complex foreground occluders whose reconstruction
may be error-prone, errors in foreground estimation can
severely degrade the reconstruction of the background.

Since we seek to develop cost functions robust to occluders,
we do not require an initial reconstruction of the foreground
layer. In our experiments, we restrict the search for the
occluded objects to depths behind the foreground.

Algorithms based on voxel coloring [13] attempt a com-
plete scene reconstruction using a front-to-back sweep.
Since a threshold is typically used to commit to foreground
occluders, erroneous assignments result in background pix-
els marked as foreground or foreground pixels not deleted
in background reconstruction. Both cases degrade the re-
construction of the background. Thresholding effects can
be ameliorated to an extent using iterative probabilistic vari-
ants [4], but these are not guaranteed to converge. In section
4, we compare our approach with voxel coloring.

2. Stereo vs. Focus
We begin by analytically comparing shape from (syn-

thetic) focus and shape from stereo. A common framework
to describe the two is the space-sweep approach of Collins
[3]. This involves sweeping a plane over a range of depths
in the scene. At each depth (more precisely, disparity) d we
compute a cost value for every pixel (x, y) on the plane,
creating a disparity space image (DSI) D(x, y, d) [14]. The
main difference between stereo and focus methods is that
they use different cost functions in constructing the DSI.
A depth map d(x, y) is computed by finding the minimum
cost surface from the DSI: d(x, y) = arg mind D(x, y, d).

We now define the cost functions used by stereo and fo-
cus. For simplicity, we work in flatland: the cameras are
rectified line cameras and the depth of a pixel determines
its horizontal disparity with respect to a reference view [10].



Let Ii,d(x) denote the image from camera i projected on the
plane corresponding to disparity d. The mean and variance
of the warped images from the N cameras are given by

Id(x) =
1

N

∑

i

Ii,d(x), (1)

vd(x) =
1

N

∑

i

(Ii,d(x) − Id(x))2 (2)

Shape from stereo uses the variance of rays vd(x, y) through
the 3D point (x, y, d) as the cost function. Shape from focus
uses the sharpness of the synthetically focused image Id(x)
as the cost function:

fd(x) = −

[

∂Id(x)

∂x

]2

(3)

Which method is better? One straightforward observa-
tion we can make is that focus is less sensitive to sensor
noise (due to averaging) and varying bias across cameras
(since it computes a spatial derivative) than stereo. While
both would fail for textureless surfaces, we can show that
there exist textured surfaces that can be reconstructed
accurately by stereo but not by focus (see Fig 1.)

Theorem 1. Shape from stereo can reconstruct the depth
of diffuse surfaces whose 2nd and higher order spatial
derivatives of radiance vanish, whereas shape from focus
requires the radiance to have non-zero 3rd-order spatial
derivatives.

Proof. Consider a frontoparallel surface at disparity d0

with intensity given by I(x). We compute the response
of stereo and focus at a point x0 for disparity d1. Let
δ = d1 − d0 and xi the displacement of camera i from
the central view. Given rectified images, we can compute
Ii,d1

(x) using a Taylor series expansion:

Ii,d1
(x0) = I(x0 + xiδ)

= I(x0) + (xiδ)Ix(x0) +
(xiδ)

2

2
Ixx(x0) + . . .

Using eqs. (1-3) and
∑

i xi = 0, we can compute the
mean image, variance and focus to be

Id1
(x0) = I(x0) + Ixx(x0)δ

2
∑

i

x2

i /N + O(δ3),

vd(x0) = δ2I2

x(x0)
∑

i

x2

i /N + O(δ4), and

fd(x0) = −[Ix(x0) + δ2Ixxx(x0)
∑

i

x2

i /N + O(δ4)]2

We see that for a non-zero gradient Ix(x0), stereo has
a minimum at δ = 0, enabling accurate reconstruction.

However, if the 3rd order gradient Ixxx(x0) is zero, the
focus response will be approximately constant as δ varies.
This completes the proof. The behavior of stereo and focus
for a the special case of a constant gradient texture I(x) is
shown in Fig. 1. A weaker result for single lens apertures
was proved in [6], where they showed that shape from
focus requires textures with nonzero 2nd-order gradients.

In the analysis above, we have ignored occlusions. How
would the response of stereo and focus change if the surface
we are trying to reconstruct is occluded in some views? In
general, the response would depend on the nature of the oc-
cluder. For shape from focus, the mean image will have a
blurred image of the occluder superimposed on it at the cor-
rect depth hypothesis. If the aperture is wide, the blurred
image should not contribute to the spatial derivatives. How-
ever, the focus response will be attenuated by the cameras
that do not observe the surface being reconstructed. For
shape from stereo, the variance will not approach zero at
the correct depth and may not attain a minimum there un-
less the occluder is of a fairly uniform color. In Section 4,
we show experimental comparisons of stereo and focus for
reconstructing occluded surfaces.

3. Median and Entropy
One problem with stereo and focus is that they assign

equal importance to all rays through the 3D point (x, y, d)
in constructing the DSI. When reconstructing occluded sur-
faces, many of these rays will actually hit occluders and
should therefore be considered as outliers. In this section,
we introduce two variants of stereo that try to mitigate the
effects of outliers due to occlusions on depth and color re-
construction.

3.1. Shape from median
This approach is inspired by the observation that

amongst measures of central tendency, the median is more
robust to outliers than the mean. Consider the case of
grayscale images. Suppose that a surface point (x, y, d)
corresponds to pixels S = {Ii,d(x, y) : 1 ≤ i ≤ N}
in the N input images. If the point is occluded in some im-
ages, the median IM = median S will be a better estimator
for the surface intensity than the mean. This is precisely
why median colors have been used in matte extraction [18].
However, in addition to estimating the surface intensity we
need a cost function to quantify the accuracy of the depth
estimate. The cost function we use for constructing the DSI
is the median distance of all the rays from IM , i.e.,

D(x, y, d) = median{|Ii,d(x, y) − IM | : 1 ≤ i ≤ N}

When a surface point is visible in more than half the
cameras, the median color at the correct depth should cor-



respond to the color of the occluded surface. As the num-
ber of occluded cameras increases over 50%, the estimate
of the median begins to break down. An interesting ques-
tion is how to extend shape from median to color images.
There are many ways to generalize the notion of median
to higher dimensions [1]. We have experimented with the
component-wise median and the L1 median, and observed
they yield similar results. We prefer to use the component-
wise median, since it can be computed in O(N) time.

3.2. Shape from entropy
Let us consider the distribution of intensities of the rays

through the point (x, y, d), which may be visualized by
plotting a histogram. If the depth hypothesis d is incorrect,
these rays will hit different points on the foreground
occluders and background surface. Given textured surfaces,
we would expect the histogram to be spread over a wide
range of intensities. If the depth hypothesis d is correct,
rays hitting the background surface will be clustered
over a small range of intensities, while those hitting the
occluder will still be spread out resulting in a more peaked
histogram. This suggests that we can use the Shannon
entropy of the intensity histogram as a cost function for
constructing the DSI. The entropy is maximized for a
uniform distribution and decreases as the intensities are
clustered together.

For 8-bit grayscale images, we divide the intensity range
into K = 16 bins. If the number of rays in bin i is bi, the
entropy is given by

H = −
K

∑

i=1

bi

N
log

bi

N
.

(For color images, we use entropy of a color histogram
where bins correspond to cubes in RGB space). The
entropy cost function penalizes rays that fall into different
bins. Unlike stereo, the penalty does not increase with the
distance between different ray colors. This helps mitigate
the influence of outliers on depth reconstruction.

There are two interesting properties of shape from
entropy we would like to mention. First, given N rays,
the entropy can vary in increments of 1

N
from 0 to log N .

Thus, the precision of entropy is O( 1

N
), making it more

precise as the number of views increases. Secondly, since
we are binning the rays, entropy does not use the lower bits
of the intensity values (for K = 16 bins, we use only 4
bits per channel to compute the bin index for a pixel). This
could be exploited for saving storage or bandwidth, and
also makes entropy less sensitive to color miscalibration.

Both entropy and shape from median retain the desir-
able property of shape from stereo of being sensitive to first-
order texture gradients. Both of these start to fail when the
occluder is of a fairly uniform color and the amount of oc-
clusion exceeds 50% - in this case, the reconstructed color
is the color of the occluder rather than the background sur-
face.

4. Experiments and Results
We have compared the performance of the four cost

functions—stereo (variance), focus, median, and entropy
on reconstructing occluded objects in two acquired light
fields of complicated scenes and one synthetic scene. As
we are avoiding explicit reconstruction of the occluders, we
limit our search to a range of depths behind the occlud-
ers. The accuracy of the depth maps computed by each
method is compared with ground truth. To visualize the
reconstructed appearance of the occluded surfaces, we con-
struct winner color images obtained by computing the color
for each point on the reconstructed surface, and projecting
the surface (with color) into the central camera. In shape
from focus and stereo, the mean color of rays through a sur-
face point is used as a color estimate. The winner color im-
age is just a synthetically focused image on a focal surface
corresponding to the computed depth map. In shape from
median, we use the median color rather than the mean. For
entropy, we use the modal color from the color histogram.

4.1. Experiment 1: Synthetic scene
To measure the performance of our cost functions

(stereo, focus, median, entropy) under varying amounts of
occlusion, we experimented with a synthetic scene with
precisely controlled amounts of occlusion. The scene
consists of two planes. The background plane (Fig. 2a) has
the CVPR logo composited with white noise to ensure there
is sufficient texture at each point. The foreground occluder
is composed of horizontal and vertical bars. We control the
amount of occlusion (between 19% and 75%) by varying
the spacing between the bars. We have experimented
with three different textures on the foreground bars: white
noise (strong texture), pink noise (weak texture, obtained
by convolving white noise with a 5 × 5 box filter) and
uniformly colored bars (Fig. 2 b-d).

For reconstruction, we used 81 views of this scene. The
camera positions were on a 9 × 9 planar grid perturbed
by random offsets. (This is to avoid producing a strong
correlation between visibility and camera positions, which
rarely arises in practise and would introduce addition errors
in reconstruction, contaminating our simulation). The two
planes were separated by a disparity of 40 pixels across the
synthetic aperture. We measured how well each of the four



(a) Background layer

(h) Focus(g) Entropy(f) Median

(c) 49% occlusion(b) 31% occlusion (d) 64% occlusion

(e) Stereo
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Figure 2. A synthetic two-plane scene used for performance evaluation of our four cost functions for reconstructing occluded surfaces.
(a) Unoccluded view of background plane. (b-d) The background plane behind occluding bars. We experimented with the three different
textures on the bars as shown. By varying the spacing between the bars, we can vary the amount of occlusion. (e)-(h) Reconstruction of the
background plane (winner color images) using stereo, median, entropy and focus respectively for the setup in (c). 81 views of the scene
were used. (i-k) Plot of reconstruction accuracy (percentage of pixels reconstructed correctly) vs. the amount of occlusion for the four cost
functions for the three different occluder textures.

cost functions reconstructed the background plane.

Over the range of occlusion densities and foreground
textures in our experiments, entropy does best, with near-
perfect reconstructions up to 65% occlusion. Shape from
median starts to fail as the occlusion density crosses 50%.
For all three foreground textures, the fraction of background
points correctly reconstructed by focus is about 15% higher
than that for regular stereo. This suggests that given an ad-
equately textured surface, focus does better than SSD in the
presence of occlusions. Note that real scenes could have
surface textures that stereo can reconstruct but not focus
(Theorem 1); in which case stereo would obviously do bet-
ter. Plots of reconstruction accuracy versus amount of oc-
clusion for the three occluder textures are shown in Fig. 2
(i-k). The entire set of scenes and the reconstructions ob-
tained are available on our website [11].

4.2. Experiment 2: CD case behind plants

This light field was acquired using a single camera on
a computer controlled gantry. The camera positions span
a 21 × 5 grid (synthetic aperture size 60cm by 10cm).
Our goal was to reconstruct a picture of the Strauss CD
case behind the plants (Fig. 3 a). For ground truth, the
depth of the CD case was estimated manually. To estimate
the amount of occlusion for the CD case, we captured an
identical light field of the same scene without the occluding
plants and used image differencing to determine which
pixels were occluded. We can thus compute an occlusion
map image, where each pixel in the occlusion map stores
the number of views in which the corresponding pixel
on the CD is occluded (Fig. 3 b). Given ground truth
and an occlusion value, we determine for each of the
four cost functions the percentage of pixels reconstructed
correctly (within one disparity level) for different amounts
of occlusion (Fig. 3 c). The histogram indicates that stereo,



median, and entropy start to perform poorly as the amount
of occlusion increases, with entropy performing best. The
median-based cost function starts to fail once the amount of
occlusion exceeds 50%. Depth from focus does not do well
on the whole, but it overtakes the stereo-based approaches
as occlusion increases beyond 60%.

The winner color images from each cost function are
shown in Fig. 4 (top row). The text on the CD case is most
legible for entropy and median. The bottom row shows the
reconstruction of the CD obtained by voxel coloring after
reconstructing and deleting the occluding plants. Voxel col-
oring uses a threshold to commit to foreground occluders so
that pixels corresponding to the occluder are deleted prior
to reconstructing the background. Note that there is no sin-
gle threshold for which the CD is reconstructed properly.
At low thresholds, all foreground pixels are not deleted;
at higher thresholds, many background pixels are recon-
structed as foreground and deleted. The reconstructed depth
maps for the complete scene are available at [11].

4.3. Experiment 3: Dense Foliage
This light field (Fig. 5 a) was captured using an array of

88 cameras. The scene consists of a person and a statue be-
hind a dense ivy wall. We computed a per-camera matte for
the occluder using standard blue screen techniques. While
we do not have ground truth for this scene, we can esti-
mate visibility near the true depths using the occluder mat-
tes. The objects behind the ivy are occluded in about 70% of
the cameras. Entropy, median and voxel coloring all failed
to reconstruct any part of the occluded objects accurately.
This is due to the high degree of occlusion, and the rela-
tively uniform color of the occluder. Focus does somewhat
better than stereo — it is able to reconstruct the statue’s
torch and the person’s face where stereo failed (Fig. 5 b,c).

5. Conclusions and Future Work
In this paper, we have studied cost functions for re-

constructing occluded surfaces using synthetic apertures.
Most existing algorithms use cost functions developed
for reconstructing the (unoccluded) foreground. We have
studied an alternative approach: designing cost functions
that leverage a large synthetic aperture and large number
of views to be robust to occlusions. This is useful when
the foreground is difficult to reconstruct accurately (see,
for example, Fig. 5) and in applications like surveillance
of crowded areas where reconstructing the appearance of
occluded objects may be of primary interest.

While the cost functions we have developed show
encouraging results, we believe we have merely scratched
the surface of this design space. We would like to explore

ways to combine information from different cost func-
tions to gain better results. Our approach could also be
combined with existing multi-layer estimation algorithms
to improve reconstruction of all layers. One limitation
of our work is that we have not enforced any spatial
regularization. We would like to find ways of extending
algorithms based on graph cuts or belief propagation to
handle outliers due to dense occlusion. While our focus
in this work has been on diffuse surfaces, we believe
robust cost functions like median and entropy may also
be useful for the reconstruction of non-Lambertian surfaces.

Finally, we would like to develop a theoretical model
that explains the performance limits of synthetic aperture
reconstruction algorithms. Such a model should incorpo-
rate the size, fill factor, and texture of the occluders, the
texture on the occluded surfaces to be reconstructed, and
the size and number of views of the synthetic aperture.
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Figure 4. Experiment 2: Winner color images for reconstructing the Strauss CD case behind plants (see Fig. 3). The top row shows the
reconstructed surface and color using entropy, median, focus and stereo. The bottom row shows the reconstruction using voxel coloring,
these images are obtained by deleting all voxels up to the depth of the foreground occluders, and projecting the rest into the reference
camera. For low thresholds, some points on the CD surface are not reconstructed at all. At high thresholds, the computed depth for points
on the CD case can be much closer to the cameras than the true depth, causing them to be deleted with the occluders. These two effects
cause the holes visible in the reconstruction.

(d) Unoccluded objects(c) Focus reconstruction(b) Stereo reconstruction(a) Image from one camera

Figure 5. Experiment 3: Reconstruction of a person and statue behind a dense wall of artificial ivy. The high occlusion (about 70%) and
uniform color of the occluder makes this a failure case for median and entropy. Focus does somewhat better than stereo on the right part of
the statue and the person’s face (shown in blue circles). Image (d) was created by manually compositing layers after deleting the occluded
pixels using blue screening.


