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Abstract

Search-based texture synthesis algorithms are sensitive to the order
in which texture samples are generated; different synthesis orders
yield different textures. Unfortunately, most polygon rasterizers
and ray tracers do not guarantee the order with which surfaces are
sampled. To circumvent this problem, textures are synthesized be-
forehand at some maximum resolution and rendered using texture
mapping.

We describe a search-based texture synthesis algorithm in which
samples can be generated in arbitrary order, yet the resulting texture
remains identical. The key to our algorithm is a pyramidal represen-
tation in which each texture sample depends only on a fixed number
of neighboring samples at each level of the pyramid. The bottom
(coarsest) level of the pyramid consists of a noise image, which is
small and predetermined. When a sample is requested by the ren-
derer, all samples on which it depends are generated at once. Using
this approach, samples can be generated in any order. To make the
algorithm efficient, we propose storing texture samples and their
dependents in a pyramidal cache. Although the first few samples
are expensive to generate, there is substantial reuse, so subsequent
samples cost less. Fortunately, most rendering algorithms exhibit
good coherence, so cache reuse is high.

Keywords: Texture Synthesis, Texture Mapping, Graphics Hard-
ware

1 Introduction

Texture synthesis techniques can be classified as either explicit or
implicit [4, Chapter 2]; an explicit algorithm generates all the tex-
ture samples directly while an implicit algorithm answers a query
about a particular sample without computing the whole texture.
Most existing statistical texture synthesis algorithms [3, 5, 24, 14,
8, 16, 19, 9] are explicit. Since the value of each texture pixel is
related to other pixels (such as histograms in [8, 16] and spatial
neighborhoods in [5, 19, 9]), it is impossible to determine their val-
ues individually. On the other hand, most procedural texture syn-
thesis techniques [4, 12, 13] are implicit since they allow texels to
be evaluated independently.

Implicit texture synthesis offers several advantages over explicit
texture synthesis. First, since only those texels that are actually used
need to be evaluated, implicit methods are usually computationally
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Figure 1: Overview of our system. Given an input texture, our algorithm
synthesizes a new texture and stores the synthesized samples in a pyrami-
dal cache. Texture samples are computed on demand as requested by an
external rendering system, such as a rasterization or ray tracing pipeline.

cheaper than the explicit ones. There are several situations where
only a portion of the texels in a texture are used: the textured object
might be clipped by the viewing frustum, it might be partially oc-
cluded by other objects in the scene, or it might be faraway so that
in a mipmapped implementation, only the low-resolution levels of
the mipmap are required. Second, implicit methods consume less
memory since they don’t need to store the texture they are gener-
ating. Third, implicit methods are more flexible since they allow
texture samples to be evaluated on demand and in any order. Un-
fortunately, implicit methods are usually less general than explicit
ones. Due to the requirement of independent texel evaluation, im-
plicit methods cannot use general statistical texture modeling based
on inter-pixel dependencies.

The ideal texture synthesis algorithm would combine the advan-
tages of both implicit and explicit techniques. The algorithm should
be as general as statistical methods in that it can synthesize new
textures simply from given examples. It should be as flexible as
procedural methods in that it can allow textures to be evaluated on
demand in any traversal order. In addition, different traversal orders
should always yield identical results starting from the same initial
conditions.

We describe a new algorithm that satisfies all the above require-
ments. This algorithm, termed order-independent texture synthe-
sis, has constant time complexity for evaluating each output pixel
where the constant depends only on the neighborhood and input
image sizes. The algorithm allows texture samples to be generated
in arbitrary order and at arbitrary resolution, yet the resulting tex-
ture remains identical. The algorithm is extended from previous
multiresolution neighborhood-search texture synthesis algorithms
[14, 19, 9] and generates textures with image quality comparable to
those techniques.

An overview of our algorithm is shown in Figure 1. Given an
input texture, our algorithm synthesizes new texture samples on de-
mand as requested by an external rendering system, and stores the
computed samples in a pyramidal cache. The rendering system can
be a ray tracer, in which case our system functions as a texture
shader; a rasterization pipeline, in which case our system functions
as a mipmap texture cache; or a panorama viewer, in which case our
system functions as a texture decompresser. Since our algorithm
generates a texture on the fly rather than storing or transmitting the
whole texture, it may require less storage or network bandwidth for
managing large textures.

The rest of the paper is organized as follows. In Section 2, we
review previous work. In Section 3, we describe our algorithm. In
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Section 4, we examine the algorithm behavior and demonstrate syn-
thesis results. In Section 5, we simulate our algorithm with several
texture mapping benchmarks. In Section 6, we conclude the paper
and discuss limitations and future work.

2 Previous Work

Statistical Synthesis. Statistical synthesis algorithms model
textures as a set of statistical features, and generate new textures
by matching the statistics between the new texture and a given
input sample. Possible texture statistics include histograms [8, 16],
cross-scale pyramid dependencies [3], Markov Random Fields
[14, 24], and searching spatial neighborhoods [5, 19, 9]. These
algorithms are general and can generate many different textures
based on input samples. They have also been extended to a variety
of interesting applications such as texture transfer [1, 6], image
analogies [9], and synthesis over surfaces [18, 20]. However,
because these methods impose statistical dependencies between
texture samples, it is impossible to evaluate only a subset of the
samples while guaranteeing that these evaluated samples remain
identical with respect to different synthesis orders. For example,
histograms [8, 16] need to be computed from all texture samples,
and neighborhood-searching [5, 19, 9] will produce different
results if adjacent samples are synthesized in different orders.
Although this problem can be partially addressed by creating
textures in patches rather than individual pixels [23, 15, 6], for
certain textures these approaches can produce visible boundary
discontinuities at adjacent patches.

Procedural Synthesis. Procedural synthesis algorithms simulate
the texture formation process using specialized procedures. Exam-
ple procedures include noise [13], reaction-diffusion [17, 21], and
cellular texturing [22, 11]. By using specialized procedures these
techniques can be highly efficient and some of them allow texels to
be evaluated independently from each other. However, since differ-
ent textures may require different procedures, these algorithms are
less general than statistical methods. In addition it can be difficult
to tune the parameters for those procedures to achieve the desired
visual appearance of the result texture.

3 Algorithm

Our algorithm is inspired by previous multiresolution
neighborhood-search texture synthesis methods [19, 9, 18, 20].
Given a sample texture image, these algorithms synthesize a
new texture pixel by pixel from lower to higher resolutions in a
certain order, which can be scanline [19, 9], spiral [19, constrained
synthesis], random [20], or surface sweeping [18]. To determine
the value of a particular output pixel, its spatial neighborhood
is compared against all possible neighborhoods from the input
image. The input pixel with the most similar neighborhood is
then assigned to the output pixel. This process is repeated for
every output pixel at every pyramid level until the whole texture
is assigned. Despite the simplicity of neighborhood searching,
these algorithms have been demonstrated to work well over a wide
variety of textures.

Unfortunately, these methods are not order-independent; differ-
ent synthesis orders produce different synthesis results. This is
because their search neighborhoods always include the most re-
cently synthesized results, causing cyclic dependencies among tex-
ture pixels, as shown in Figure 2. To allow order-independent syn-
thesis, we need to remove these cyclic neighborhood dependencies.
We achieve this by a very simple idea: instead of overwriting the
old pixel values with new results, we keep the old and new values

763 4 152

9 0

8

0

8

9

(a) (b)

72 3 4 5 61

Figure 2: Cyclic neighborhood dependency. (a) An 8×8 texture with sev-
eral numbered pixels. Assume that pixels 1 to 8 are generated by the red
causal neighborhood, and pixels 0 and 9 are generated by the blue symmet-
ric neighborhood. (b) The neighborhood dependency among those pixels is
cyclic, preventing order-independent synthesis. Note that pixel 1 depends
on pixel 8 since the neighborhood is toroidal around the boundary [19].

in separate images and use only the old values in the search pro-
cess. This idea is inspired by image convolution. When convolving
image X by a filter kernel to produce image Y , each pixel in Y
is computed by convolving the kernel with the “old” pixels in X
rather than the new pixels in Y . As a result, there are no cyclic de-
pendencies among pixels in Y , and we can compute their values in
any order. However, unlike convolution where only one old value
is retained, texture synthesis may generate and retain several old
values for each pixel, by performing multiple synthesis passes. For
example, both constrained synthesis [19] and random order synthe-
sis [20] uses a first pass to generate an initial guess, and improves
the result in subsequent passes. In our algorithm, we keep multiple
generations for each pixel, where each generation corresponds to a
separate pass in [19, 20].

function C← SynthesizePixel(Ga, L, p,m)
1 if CacheHit(L, p,m)
2 return CacheValue(L, p,m);
3 else
4 Ns← BuildOutputNeighborhood(L, p, m);
5 Nbest

a ← null; C ← null;
6 loop through all pixels pi of Ga(L)
7 Na ← BuildInputNeighborhood(Ga , L, pi);
8 if Match(Na, Ns) > Match(Nbest

a , Ns)
9 Nbest

a ←Na; C ←Ga(L, pi);
10 AddCacheEntry(L, p, m, C);
11 return CacheValue(L, p, m);

function Ns ← BuildOutputNeighborhood(L, p,m)
12 Ns← null;
13 foreach (Ln, pn, mn) ∈ Neighborhood(L, p, m)
14 % note: (Ln, mn) ≺ (L, m)
15 if CacheHit(Ln, pn, mn)
16 Ns ←Ns ⊕ CacheValue(Ln, pn, mn);
17 else
18 C ← SynthesizePixel(Ga, Ln, pn, mn);
19 Ns ←Ns ⊕ C;
20 return Ns;

Table 1: Pseudocode of order-independent texture synthesis. See Table 2
for the meanings of the symbols.

Our algorithm contains three major extensions over [19, 9, 18,
20]. First, we retain several generations for each output pixel, as
we have shown earlier. Second, we restrict the output neighbor-
hood to contain only pixels from lower pyramid resolutions and
earlier generations. This removes the cyclic dependencies among
output pixels. Specifically, for pixel located at (level L1, genera-
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Figure 3: Synthesizing one pixel using our algorithm. The pyramid cache consists of two resolutions and three generations, as shown in (a). Assume a
pixel, marked 0, is requested, and we synthesize it using a small neighborhood, containing 4 adjacent pixels at the same resolution and 1 pixel from the lower
resolution. In this example, we use this small 5-pixel neighborhood for clarity; for real synthesis, we usually use much larger neighborhoods (usually 5×5). In
previous algorithms, the neighborhood of pixel 0 contained pixel A, B, C, D, and 16. This causes cyclic dependencies between 0 and A to D. In our algorithm,
the neighborhood contains pixels 1 to 4 instead of A to D, and therefore removes the cyclic dependencies. Similarly, pixels 1 to 4 depend on pixels 5 to 13
rather than pixels E to M. For neighborhood pixels at lower resolutions, we always use the latest generation; for example, pixel 1 depends on 16 rather than
22. For pixels 5 to 13, the neighborhood can contain pixels only from lower resolutions since there is no pixel at further lower generations. Similarly, for
pixels 14 to 19, the neighborhood can contain pixels only from lower generations since there is no pixel at further lower resolutions. Finally, pixels 26 to 31
cannot depend on any other pixels since they locate at the lowest resolution and generation. They are initialized at the beginning of the algorithm to a noise
image and do not require computation. The complete dependency graph among all pixels is shown in (b). The algorithm computes the pixels by traversing the
dependency graph in a depth first order.

Symbol Meaning
Ga Input texture pyramid
pi An input pixel
p An output pixel
L pixel level
m pixel generation/iteration
C pixel color

N(p) Neighborhood around the pixel p
G(L) Lth level of pyramid G

CacheV alue(L, p, m) cached color C for pixel (L, p,m)
≺ lexically smaller

Table 2: Table of symbols for the pseudo-code in Table 1. (L2, m2) ≺
(L1, m1) if [L2 < L1] or [L2 = L1 and m2 < m1].

tion m1), its neighborhood can contain pixels only from (L2, m2)
where [L2 < L1] or [L2 = L1 and m2 < m1]. The first condi-
tion [L2 < L1] implies pixels at lower resolutions and the second
condition [L2 = L1 and m2 < m1] implies pixels at the same
resolution but earlier generations. We use the lexically-smaller op-
erator≺ to represent such relationship, and allow (L2, m2) belongs
to the neighborhood of (L1, m1) only if (L2, m2) ≺ (L1, m1).

Third, instead of computing all pixels sequentially from lower to
higher resolutions and storing them in the output pyramid, we eval-
uate them on the fly and store the computed values in a pyramidal
cache. This allows individual texture samples to be evaluated on de-
mand without computing the whole texture. The cache also allows
previously computed pixels to be reused later. In the beginning of
the algorithm, the cache is empty and every requested pixel needs to
be computed. However, as the cache gradually fills up, previously
computed pixels may be requested again, and they can be found
in the cache without any computation. The actual extent of cache
reuse depends on the rendering algorithm that drives these requests.
Fortunately, since most practical rendering algorithms exhibit good
coherence, cache reuse is typically high.

Our complete algorithm combining these key ideas is shown in

Table 1. The cache consists of entries (L, p,m, C), where L is the
pixel level, p is the pixel location (x, y), m is the generation num-
ber, and C is the pixel color. The portion (L, p, m) is the cache tag
and C is the cache value. To synthesize a specific pixel (L, p,m)
(SynthesizePixel), we first check if the pixel is in the cache. If so,
no computation is required and the cache entry is returned. Other-
wise, we build the neighborhood around (L, p, m) and search for
the best match from the input pyramid Ga. The code for neigh-
borhood searching (lines 4 through 9 in Table 1) is very similar to
[19], except that we use different ways to build input and output
neighborhoods. The input neighborhood is built as in [19] (Build-
InputNeighborhood), but the output neighborhood is built from
the cache rather than an output pyramid (BuildOutputNeighbor-
hood).

The function BuildOutputNeighborhood works as follows.
For each pixel (Ln, pn, mn) in the neighborhood of the output
pixel (L, p,m), we first check if it is in the cache. If so, we add it
directly to the output neighborhood Ns. Otherwise, we call Syn-
thesizePixel recursively to compute its value and add the computed
value to Ns. Note that we require each (Ln, mn) to be lexically
smaller than (L, m), so that the Neighborhood(L, p, m) can contain
only pixels from lower resolutions, as well as pixels from the same
resolution which are generated in earlier iterations. Because of
this, the dependencies of the pixels form an acyclic graph and the
mutual recursive calls between SynthesizePixel and BuildOut-
putNeighborhood are guaranteed to terminate, unless the cache
is too small to simultaneously hold all pixels required to compute
(L, p, m). By analyzing the algorithm, it can be easily shown that
each output pixel depends on a fixed number of neighborhood
pixels at lower resolutions and earlier generations. An example
for synthesizing one pixel using this algorithm is shown in Figure 3.

Initialization. We initialize the lowest resolution/generation
(Lmin, mmin) of the cache by copying pixels randomly from the
lowest resolution of the input pyramid. In other words, each out-
put pixel at (Lmin, mmin) is assigned a random value from the
input. This initialization completely determines the synthesis re-
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sult since each output pixel is determined only by these pixels
at (Lmin, mmin). (This can be shown by recursively expanding
the dependency graph for each pixel, following the mutual calls
between SynthesizePixel and BuildOutputNeighborhood.) This
initialization can be implemented by either permanently storing
pixels (Lmin, mmin) in the cache, or by using a pseudo-random
number table to choose the random values on the fly as imple-
mented in Perlin noise [13]. In our experience there is no general re-
striction about this initialization process. The only requirement is to
avoid initializing the lowest resolution with a constant color, which
generates a constant colored texture due to the order-independency
of the algorithm.1

In addition to pixels at (Lmin, mmin), we can also optionally
add pixels at higher resolutions/generations during initialization.
This can be useful in situations where we want to “fix” the val-
ues of certain pixels. For example, in constrained synthesis [5, 19]
we may want to replace a foreground object from a texture back-
ground, while keeping the background unchanged. This can be
done by adding a small set of background pixels around the ob-
ject into the cache during initialization, as follows. We acquire the
boundary pixels located at several levels from the original pyramid,
and add them to the highest generation at the corresponding cache
pyramid levels.

4 Synthesis Results

In this section, we demonstrate several aspects of our algorithm’s
performance. We begin by comparing the quality of synthesized
textures with previous methods. We then characterize the cache
performance under access patterns with different amount of
coherence.

Synthesis Quality. In Figure 5, we compare the results generated
by our algorithm and earlier methods [19, 20]. We use similar
parameters for both versions of algorithms: Gaussian pyramid with
4 levels, a neighborhood of size 5×5 with 2 levels, three passes
for [19, 20] and three generations for our method. As shown,
the algorithm generates results with quality comparable to earlier
methods. We believe this is because our use of multiple generations
achieves similar functionality as the multiple passes in previous
methods.

Spatial Cache Coherence. If every request for a texture pixel re-
sulted in a complete evaluation of the dependency tree as depicted
in Figure 3, then our algorithm would be very slow. Decent per-
formance depends critically on these requests reusing intermediate
results that we store in the pyramidal cache. The amount of reuse
depends on the coherence of the request patterns. There are two
kinds of access coherence: spatial coherence and temporal coher-
ence. An access pattern has more spatial coherence if its requests
are of nearby texture locations. An access pattern has more tem-
poral coherence if recently requested pixels are likely to be reused
again in the near future.

To begin our analysis, let us consider several access patterns with
different amounts of spatial coherence as shown in Figure 7. For
each request pattern, we show the content of the cache for pixels
at different levels and generations. Figure 7 (a) shows the cache
footprint for synthesizing one pixel. We can see that many cache
pixels may be touched in order to synthesize one pixel. However,
the cost of generating multiple cache pixels can be amortized by
requesting multiple pixels, as shown in Figure 7 (b) and (c). The

1If the lowest resolution contains a single pixel, we conduct the random
initialization at a higher resolution (usually at size 4×4) and generate the
further lower resolutions by filtering/downsampling this randomized reso-
lution.
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Figure 4: Texture cache usage. This diagram illustrates what fraction of
the cache will be touched for different input requests. The horizontal axis
indicates the fraction of pixels requested for a 512×512 texture, and the
vertical axis indicates the fraction of pixels touched in the corresponding
texture cache, large enough to hold all output pixels. Two different request
patterns are shown. The blue curve indicates a circular access pattern and
the red curve indicates a random access pattern (Figure 7). The black line
indicates the ideal linear behavior. The vertical intercept of the red and blue
curves at the left is about 0.0011 (1148 pixels as in Figure 7), indicating the
large (although constant) footprint associated with synthesizing one pixel.

amount of amortization depends on the spatial coherence of specific
access patterns. For example, both (b) and (c) synthesize the same
number of output pixels. However, since (c) has a circular request
pattern, its cache footprint is more coherent and much fewer pixels
are touched in the cache compared to (b).

To quantitatively measure the effect of spatial coherence on
our algorithm’s performance, we vary the amount of requested
pixels for these two patterns, and plot the corresponding number
of synthesized cache pixels in Figure 4. The ideal case is a linear
relationship between the number of requested and touched pixels.
As shown, the circular pattern offers near optimum behavior and is
almost linear, whereas the random pattern has worse performance
and requests more cache pixels. These two patterns demonstrate
the best and worst case cache behavior for the particular search
neighborhood size and shape used in Figure 7. For these neigh-
borhoods, renderings of real scenes will have spatial coherence
bounded between the two extremes shown in Figure 4.

Temporal Cache Coherence. As in most cache-based algorithms,
the size of the cache plays a critical role in its performance. When
the cache in our algorithm is large, it can hold all the computed
pixels and its performance is determined by the spatial coherence
of the request patterns, as we have seen in Figure 4. However when
the cache is small, it cannot hold all pixels, and some pixels may
be computed multiple times. As a result, the performance of small
caches is affected by not only the spatial coherence but also the
temporal coherence of the request patterns.

To analyze the effect of temporal coherence on performance for
caches of different sizes, we generate artificial access patterns with
different amount of temporal locality, and feed them into our al-
gorithm with different cache sizes. We generate these access pat-
terns in tiled rasterization order [7], as follows. We partition a large
512×512 texture into tiles of different sizes, and synthesizes the
texture tiles one by one in a scanline order. Within each tile, we
traverse the tile pixels in a scanline order. The tile size controls the
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Figure 5: Quality comparison between order-independent synthesis and previous methods. For each group of images, the left is the original texture, the
middle is generated by [19], and the right is generated by order-independent synthesis.

temporal locality of the access pattern. When the tile size is too
large or too small, the temporal coherence is low since the raster-
ization order contains long scanlines. When the tile has medium
size, the temporal locality is high since pixels within the same tile
may have significant overlaps in their neighborhoods.

We measure the performance of our algorithm under different
combinations of cache and tile sizes, and the performance of our
algorithm is plotted in Figure 8. As shown, when the cache is big-
ger than 32K, the algorithm is insensitive to tile size since the ma-
jority of pixels can reside in the cache. However when the cache
is smaller, the algorithm performs better on medium tile sizes (be-
tween 8×8 and 128×128) rather than small and large tile sizes.
This indicates that at small cache sizes, the temporal coherence of
the requests can significantly determine the performance of our al-
gorithm.

5 Texture Mapping Performance

We now demonstrate how our algorithm works in practice. In par-
ticular, we have profiled our algorithm using several texture map-
ping benchmarks with different texture characteristics and triangle
sizes. We collect GL traces from these benchmarks, run the traces
through a hardware simulator, and from the simulated fragment
generator we intercept texture access calls. The recorded texture
accesses are then fed into our algorithm for simulation.

Our algorithm garners advantages over synthesizing the entire

(a) (b)

Figure 6: A textured polygon in perspective. (a) The perspective view of
a 512×512 square polygon tessellated into 64×64 tiles. (b) The requested
texels (shown in gray color) at 4 mipmap levels. The unexpected curves
in the mipmap levels in (b) arise from the approximate method used to de-
termine which mipmap level to request for each rendered pixel in (a). The
screen resolution is 512×512 and the mipmap filtering is trilinear interpo-
lation.

texture ahead of time in a variety situations which cause only part
of the texture to be accessed. For example, the textured object might
be clipped by the viewing frustum, it might be partially occluded by
other objects in the scene, or it might be faraway, so that only a low
resolution texture is required.

In the rest of this section, we first describe the characteristics of
each benchmark scene, and we summarize the simulation results
for all scenes in Figure 9.
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(a) (b) (c)

Figure 7: Cache access footprints for various request patterns: (a) a single pixel, (b) a set of uniform random pixels generated by a poisson disk process, and
(c) a circular request pattern. Within each group, the images show the contents of the cache at different generations and different pyramid levels, with higher
resolution on the top and later generation on the left. We use 4 pyramid levels and 3 generations except the lowest resolution where only one generation (the
initial value) is used, and a circular neighborhood of size 5×5 with 2 levels. Image sizes are 128x128, 64x64, 32x32, and 16x16, respectively, from top to
bottom. The total number of footprint pixels in (a) is 1148.
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Figure 8: Effect of cache size on our algorithm. We measure the cache performance by computation ratio, which we define to be the average number of
computed texels per requested texel. The performance is better when the computation ratio is lower since less computation is required. To exploit temporal
cache coherence, we generate requests in tiled rasterization order with different tile sizes. We feed these requests into our algorithm, and plot the resulting
computation ratio for different combinations of tile and cache sizes. (a) Small to medium tile sizes. (b) Medium to large tile sizes. Tile sizes are given in pixels.

• Single Polygon. Figure 6 shows a large textured polygon with
size 512×512, viewed in perspective. The polygon is tessel-
lated into 64×64 tiles and covered by a large 512×512 texture
pyramid with 4 levels. The viewpoint is chosen to be close
enough so that all 4 levels of the mipmap are accessed. As
shown in Figure 6 (b) the texture access pattern is coherent
across different mipmap levels. In this example, we explore
what happens when only a portion of the texture is visible.
Since the polygon is clipped by the viewing frustum, only 19
percent of the texels are requested by the rasterizer. Our al-
gorithm synthesizes 23 percent of all cache pixels. Although
this is slightly larger than 19 percent, it is still 4 times faster
than computing the whole texture.

• Quake. Figure 10 shows a frame from the OpenGL port of the
video game Quake. This application is essentially an architec-
tural walkthrough with software visibility culling. The scene
contains mainly large polygons with repeating textures. We
choose this benchmark to see how rasterizing large polygons
may degrade cache coherence, as shown earlier in Figure 8.
In the first part of this experiment (Figure 10 (a)), we synthe-
size the 64×64 lava texture on the floor from a small 48×48
crop (Figure 10 (c, e)). The 64×64 texture size is specified in

the original quake benchmark. Because the texture is repeated
and viewed in perspective under different distances, 6 levels
of the texture mipmap are accessed.

The Quake benchmark uses many small textures to reduce tex-
ture load; although this works well for regular patterns such
as brick walls, small textures may introduce unnatural visual
repetitions for stochastic textures such as the lava. Our algo-
rithm can address is problem by synthesizing large textures on
the fly from a small input. We demonstrate this in the second
part of this experiment (Figure 10 (b)). We synthesize the lava
texture with size 512×512 from the same 48×48 crop (Fig-
ure 10 (d)), and eliminate the majority of the unnatural rep-
etitions in the rendering. Although the texture is large, only
44 percent of texels are requested by the rasterizer and our al-
gorithm computes only 48 percent of all cache pixels. This
fraction will vary, of course, depending on the path the user
takes through the model.

• QuickTime VR. Figure 11 is a frame of an OpenGL-based
QuickTime VR viewer looking at a panorama of Mars. This
large panorama (8K×1K) is divided into 256×256 texture
tiles and is mapped onto a cylinder made of tall, skinny tri-
angles. Because the panorama is viewed in high screen reso-
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Figure 9: Texture synthesis statistics for several benchmark scenes: qtvr
(Figure 11), polygon (Figure 6), quake I with a 64×64 texture, and quake
II with a 512×512 texture (Figure 10). The horizontal axis indicates cache
sizes and the vertical axis indicates the computation ratio (average number
of computed pixels per requested pixel). Note that the vertical axis can go
as high as 1148 if only a single pixel is requested (Figure 7).

lution, only the highest resolution of the mipmap is accessed.
For the purpose of this experiment, we choose one 256×256
texture tile that contains repetitive patterns and replace the
central 224×224 region of it by synthesizing a new texture on
demand from a small 64×64 crop taken from the same region
(Figure 11 (c, d, e)). This essentially compresses the original
224×224 texture into a small 64×64 crop. In addition, since
the bottom of the panorama is partially outside the viewing
frustum, part of the texture is never referenced and therefore
not synthesized, as shown by the black region in Figure 11
(d).

Results. In Figure 9, we plot the computation ratio versus differ-
ent cache sizes for all three benchmarks. The algorithm performs
reasonably well at small cache sizes (between 2K to 8K), and the
computation ratio drops as the cache size increases. The perfor-
mance remains roughly constant after the cache size reaches 16K,
indicating that a smaller cache size is sufficient to hold the working
set for these scenes. Note that if only a single pixel is requested, the
computation ratio will be very high (around 1148 pixels). Fortu-
nately, since practical benchmarks usually contain sufficient access
coherence, our algorithm performs fairly well: the computation ra-
tio is usually below 1 and never exceeds 3.5 for these benchmarks.

We now describe detailed performance of different benchmarks.
The QuickTime VR and single polygon benchmarks have similar
performance since they both render large textures with medium-
sized triangles. On the other hand, the two Quake benchmarks
perform differently. At small cache sizes (2k and 4K), Quake II
has higher computation ratio than the other three benchmarks since
the scene contains a large texture over large triangles, causing the
texture to be traversed in long scanlines, reducing the temporal co-
herence (as demonstrated in Figure 8). However, large triangles
are not a problem for Quake I since it uses a small texture. As the
cache size increases the small texture of Quake I can fit entirely in
the cache. Because the texture is repeated over the floor, it is re-
quested multiple times and the computation ratios drop to almost
zero (but not zero since the texture needs to be computed at least
once). Of course, since the texture in Quake I is small, one can ar-
gue that it could as easily be stored as synthesized, so the advantage
of synthesizing it is modest. On the contrary, the other three bench-

marks have large textures which are accessed only once. Since new
pixels are always computed for each request, the computation ra-
tio remains constant around 0.25 even at large cache sizes. This
constant is determined by the neighborhood sizes and amount of
neighborhood overlapping between adjacent requests.

6 Conclusions and Future Work

In this paper, we have presented and analyzed a new algorithm for
order-independent texture synthesis. The algorithm allows texture
samples to be generated in arbitrary order on demand, yet the result-
ing texture always looks the same, and the algorithm has compara-
ble computational expense to previous neighborhood-based texture
synthesis algorithms. It is also storage efficient due to its use of a
pyramidal cache. We also demonstrate that small caches are suffi-
cient by analyzing our algorithm through different texture mapping
benchmarks.

There are several possible directions for future work. Since our
algorithm has the flexibility of a procedural texture shader, it can be
implemented in a shading language and integrated with a ray tracing
package. This could make statistical texture synthesis more useful
to animators, who are more accustomed to procedural shaders. Our
algorithm can also be used as a texture decompresser for a software
panorama viewer such as QuickTime VR. This would substantially
reduce the storage space and transmission time for viewing panora-
mas containing large textured regions. Finally, it can be combined
with a hardware rendering pipeline, functioning in that context like
a mipmap texture cache. We believe that many observations made
in previous texture caching papers [7, 2, 10] could be applied in
our algorithm, which has similar (but not identical) characteristics.
For example, both texture caching and our algorithm perform better
when the access pattern exhibits good coherence.

Another possible future direction would be to combine our al-
gorithm with patch-based texture synthesis algorithms [23, 15, 6].
It has been shown that both pixel-based synthesis [19, 9, 18, 20]
and patch-based synthesis have limitations and work well on dif-
ferent textures. For example, pixel-based approaches tend to fail
on textures with meaningful textons while patch-based approaches
tend to produce visible boundary discontinuities at adjacent tex-
ture patches. Our approach, being extended from pixel-based algo-
rithms, has limitations similar to [19, 20]. However, we can com-
bine the advantages from both synthesis methods by using patch-
based algorithm to pre-compute a texture partition, and during run
time using our algorithm to fill in the gaps/overlaps between ad-
jacent texture patches. Since both patch-based synthesis and our
algorithm allow independent texture query, such a hybrid would
support real time texture synthesis with image quality better than
both patch and pixel based methods. A potential future direction
would be to design a hardware or software system that efficiently
implements this combination.
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(a) (b)

(c)

(d)

(e)

Figure 10: Quake. (a) original frame with the floor textured by the
small lava texture in (c). (b) new frame with the floor textured by the
larger lava texture in (d); this larger texture reduces the unnatural
repetition in (a). (c) synthesized lava texture with size 64×64. (d)
synthesized lava texture with size 512×512. The gray region is not
requested, and is therefore not synthesized. We show only the high-
est resolution of the pyramid; therefore there are curved boundaries
where the requests fade away into lower resolutions. (e) the sample
lava texture with size 48×48 used for synthesis. The screen resolu-
tion in (a, b) is 1280×1024 and the mipmap filtering is trilinear.

(a) (b)

(c) (d)

(e)

Figure 11: QuickTime VR. (a) original frame. (b) new frame with
the bottom-middle texture tile replaced by texture synthesis. (c) orig-
inal texture at bottom-middle. (d) synthesized texture; the black re-
gion is never referenced due to frustum culling of the lower part of
the panorama, and is therefore not synthesized. (e) the sample tex-
ture used for synthesis. To preserve the continuity of the boundary
of the tile with respect to adjacent tiles, only the central 224×224
portion of the texture is synthesized. We achieve this by adding the
boundary pixels into the cache during initialization (Section 3). The
screen resolution in (a, b) is 1280×1024 and the mipmap filtering
is bilinear. Texture sizes are (c) 256×256, (d) 256×256, and (e)
64×64.
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