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Abstract

The viewfinder of a digital camera has traditionally been used for one purpose: to display to the user a preview of
what is seen through the camera’s lens. High quality cameras are now available on devices such as mobile phones
and PDAs, which provide a platform where the camera is a programmable device, enabling applications such as
online computational photography, computer vision-based interactive gaming, and augmented reality. For such
online applications, the camera viewfinder provides the user’s main interaction with the environment. In this paper,

we describe an algorithm for aligning successive viewfinder frames. First, an estimate of inter-frame translation
is computed by aligning integral projections of edges in two images. The estimate is then refined to compute a full
2D similarity transformation by aligning point features. Our algorithm is robust to noise, never requires storing
more than one viewfinder frame in memory, and runs at 30 frames per second on standard smartphone hardware.

We use viewfinder alignment for panorama capture, low-light photography, and a camera-based game controller.

Categories and Subject Descriptors (according to ACM CCS): 1.4.3 [Image Processing and Computer Vision]: En-
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hancement/Registration

1. Introduction
Motivation

Computational photography thus far has mostly been con-
cerned with offline techniques. Data is acquired with a (pos-
sibly modified) camera and then post processed to produce a
result. This in part is due to the computational requirements
of many algorithms, and in part due to the closed nature of
most camera platforms. High-end mobile phones, however,
contain increasingly high-quality cameras with faster CPUs.
They also have the benefit of being more open software de-
velopment systems, allowing photographers write programs
to directly control the behavior of the camera.

Mobile phones and similar programmable devices enable
online computational photography. One aspect unique to
online computational photography is the treatment of the
viewfinder. Offline computational photography ignores the
viewfinder, as it has no direct effect on the captured data,
while for online computational photography the viewfinder
is the photographer’s main interaction with the data, and the
photos themselves are secondary. We describe an algorithm
for aligning successive viewfinder frames, and present three
example applications of the technique. While we describe a
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specific algorithm and specific applications, our argument is
more general: Viewfinder alignment can be implemented in
real time on low-power devices, and it has high utility for a
wide variety of applications.

Contributions

In a handheld camera, subsequent viewfinder frames are typ-
ically related by a small translation and a very small rota-
tion. Our algorithm, described in Section 2, extracts edges
and corners from a viewfinder frame to form a low-memory
digest. It then aligns two digests by first estimating a transla-
tion from their edges, matching corners, and finally calculat-
ing rotation and translation that best aligns the corners. This
algorithm is robust to noise, never requires more than one
viewfinder frame in memory, and runs at 30 frames per sec-
ond at 320%x240 (QVGA) on a Nokia N95, which has a 330
MHz ARM11 CPU.

The first problem we apply this algorithm to is low-noise
low-light viewfinding (described in Section 3.1). The stan-
dard approach to low-light situations is to increase analog
gain a little, introducing noise, and to increase exposure
time, which lowers the viewfinder frame rate. We instead
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increase the gain to maximum, maintain a short exposure
time, and align and average subsequent frames to produce
a motion-compensated temporal filter. This dramatically re-
duces noise, at the price of motion trails on moving objects.

Our second application is panorama capture. Standard
panorama capture is much more time consuming than nec-
essary, mostly because the photographer is never sure which
areas of the desired view have been well covered. This re-
sults in either massively redundant sets of photos, or run-
ning the risk of an incomplete panorama. Panorama assis-
tance programs currently implemented on cameras typically
only help with simple 1D linear sets of photos, by present-
ing the right half of the previous image in the left half of the
viewfinder.

We instead use viewfinder alignment to both display a
map of captured areas, and to trigger the camera when the
view is of an area not already captured. This allows the pho-
tographer to simply sweep the camera back and forth over
the scene. The saved frames can then be used as input to a
conventional panorama stitcher. Our capture method is de-
scribed in detail in Section 3.2.

Finally, viewfinder alignment is also useful for non-
photographic applications. It provides an analog input on
devices that typically only have buttons. We describe using
viewfinder alignment to control a video game in Section 3.3.

Prior Work

There is a vast amount of work on image alignment; a com-
prehensive review can be found in [Sze06]. The methods that
have proven to be most successful are based on feature point
matching using gradient-based descriptors [Low04]. These
methods are accurate, able to deal with large inter-frame
transformations, and are relatively robust to noise. However,
they require expensive computations and therefore are too
complicated to run at viewfinder frame rates on a low-power
device.

An application closely related to our problem is software
video stabilization, which requires very fast performance,
but not pixel exact warps. For simply stabilizing a jerky
video, only rough translations are required [Ova, HLLOS].
More complicated alignment is usually done offline by post-
processing the video sequence [MOTS05] to compute ex-
act inter-frame alignment. Our algorithm exists somewhere
along the continuum between high-quality slow image align-
ment and low-quality fast video stabilization. We desire
pixel exact warps of whole images, albeit at a low resolu-
tion, and we need to compute them in real time on a memory
and compute limited device.

The real-time requirement of viewfinder alignment makes
it similar to the camera motion estimation problem in com-
puter vision. We can think, therefore, of applying one of the
well-known tracking methods [LF05] to the problem. How-
ever, the severe processing and memory constraints of our

target device (discussed in detail in Section 2) rule out many
of the existing tracking methods.

Much of the previous work on real-time tracking on
camera phones or PDAs involves using markers [MLBO04,
HPGOS]. Since the focus of our paper is on photographic ap-
plications, we do not wish to modify our scene, so we con-
sider only markerless techniques.

Optical flow [BB95] analyzes how each pixel moves
from one frame to the next. High-quality optical flow has
been demonstrated at interactive rates [BWO0S5] (6-7 fps on
160120 images with a 3GHz machine), but we don’t need
a motion vector per pixel, only one for the whole image,
and we target 30 fps on 320x240 images with a 0.3GHz
machine, so we need an algorithm that is at least 200 times
faster. Optical flow operates on entire images which need to
be stored in memory if one wants to align several viewfinder
frames; we would like to avoid storing those frames.

Multi-scale alignment algorithms (described in [Sze06])
use image pyramids to quickly compute global motion. Un-
fortunately, as was the case with optical flow, our target de-
vice is sufficiently limited that we cannot afford alignment
algorithms that consider the entirety of the two images to be
aligned.

Feature-based correspondence estimation methods oper-
ate only on small portion of each frame [TZ99], making it
possible to store and align multiple frames at once. However,
point features are often unstable in the presence of noise, re-
quiring over-sampling and robust matching methods such as
RANSAC [FB81], which, depending on the noise levels and
problem dimensionality, may be too expensive for us. On
the desktop impressive speed-ups have been obtained using
GPUs [SFPGO06]. However, current mobile graphics hard-
ware only supports fixed function pipelines, which rules out
most GPGPU techniques.

Area-matching methods operate by extracting a set
of point features from an image and performing local
motion estimation on patches centered on these feature
points [ST94]. A patch-based tracking method running on
a mobile phone has been implemented in [HSHO7]. The
disadvantage of patch-based methods is their requirement
to perform pixel-wise comparison operations. This limits
how many features can be tracked on a limited device.
In [HSHO7] only 16 patches were tracked to achieve the
tracking rate of 10fps.

A compromise between matching individual points,
which requires little memory, and tracking patches, which
is more robust, is to perform edge-based tracking [Har92].
Tracking edges in the viewfinder frames is the basis of our
method. We make edge-based tracking even more robust to
noise by integrating edges along several directions, and more
accurate by aligning a few well-chosen point features.

Our applications relate to recent work in computational
photography, and indeed our intended audience is photogra-
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phers who think they should be able to program their cam-
eras. We will discuss the prior work relevant to noise reduc-
tion, panorama capture, and tracking in their corresponding
sections.

Our argument is not for the specifics of our algorithm
or applications, but rather that viewfinder alignment can be
done with low computational cost, can run in real time on
hardware typical of mobile devices, and enables a wonder-
ful variety of novel ways to use your camera.

2. Alignment
Requirements

Previous markerless camera trackers [CHSWO06, WZCO06,
HSHO7] typically have managed to track roughly 160x 120
images at about 10-12 frames per second. However, we wish
to accurately align noisy viewfinder frames at 30 frames
per second, at 320240 resolution, on a Nokia N95 mobile
phone, which has a 330MHz ARM11 CPU, and typically
around 10 MB of free RAM. This introduces some very strict
performance requirements on the algorithm. The timing re-
quirement only affords us 150 cycles per pixel per frame, and
the space restriction allows us to store about 30 viewfinder
frames at once. We can’t even make full use of the avail-
able memory; with so few cycles to spare cache misses are
disastrous.

Many interesting applications require more than a sin-
gle alignment computation per frame. For example, we may
wish to align to many recent frames to increase confidence
or reduce error. We may also wish to attempt to align to older
frames to make any tracking robust to temporary occluders
or sudden lighting changes. With this in mind, we would like
to be able to compute alignments to about 10 other frames,
thirty times a second. This immediately rules out methods
that consider every pixel of the images to be aligned such
as optical flow [BB95], as we would only have time for 15
instructions per pixel per frame. The same holds for patch-
based methods such as [HSHO7], and hierarchical methods
described in [Sze06]. Instead we must extract some kind of
low-memory feature set, or digest, from each frame, and use
those to compute an interframe alignment. Given the mem-
ory limit, we would like to be able to forget frames and store
only their digests, so the alignment must work without ref-
erence to the original images. Finally, there are cases where
the tracker will fail, for example if the photographer moves
the camera very quickly, or covers the lens. Our algorithm
should provide a confidence value, in order to detect and
handle such failures.

Fortunately, the requirement to run in real time places
strong limits on the amount of motion expected between
two frames. Consider a photographer turning on the spot
through 90 degrees. If she takes at least one second to do
this, then there is a three degree translation between subse-
quent frames. This represents about a twentieth of the cam-
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era’s 50+ degree field of view. The photographer may also
rotate the camera about its optical axis. If she rotates cam-
era 90 degrees in three seconds, switching from landscape to
portrait mode, then the rotation is one degree per frame. Un-
intentional rotation from hand shake will typically be much
less, as hand shake produces primarily translation [FSH*06].

We assume that the scene is far enough away that paral-
lax is insignificant, and that the difference between frames
is small enough that we can model frame to frame warps as
a similarity transform (rotation, scale, and translation), ig-
noring any perspective effects. Rotating the camera around
its vertical or horizontal axis will cause a translation of the
viewfinder frame, while rotating the camera around its opti-
cal axis will cause a rotation.

The Algorithm

We now need two algorithms: a method for producing a di-
gest from an image, and a method for aligning two digests.
We expect primarily translation, so the digest need not be in-
variant to large rotations or more general perspective warps,
however the digest must be resistant to sensor noise. Our
digest has two parts, as illustrated in Figure 1: four arrays
recording edges and a set of point features.

To align two digests, we first align the image edges using
the edge arrays, which gives us a translation between the two
images. We then look for strong corners from one image that
the translation places very near to a strong corner from the
other. To reduce the likelihood of spurious matches we only
use the k strongest corners (currently we use k = 32). Each
of these point pairs forms a correspondence, which are used
to compute a least-squares rigid transform. If the original
translation was incorrect, we’re unlikely to find more than
one or two correspondences, so the number of correspon-
dences acts as a confidence value. The rest of this section
describes in more detail the extraction and alignment of our
edge and point features.

Edge Detection. To extract edges we take the squared
gradient of the image in four equally spaced directions: hor-
izontal, vertical, and the two diagonal directions. We then
perform an integral projection of each gradient image in the
direction perpendicular to the direction of the gradient. This
is a low angular resolution edge-detecting transform, which
integrates the energy of edges into a few entries in one of
the four output arrays. Edges that align with one of the four
projection directions produce a sharp spike (e.g., the edges
of the dog’s leftmost ear in Figure 1), while edges that lie in
between projection directions produce a broader hump (e.g.,
the edges of the dog’s rightmost ear). Four directions are
usually enough to record an edge in any direction as some
kind of hump in one of the arrays.

These projections are fairly invariant under noise be-
cause they average many gradient values, and they vary only
slowly under rotation. They transform in the desired fashion
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k strongest corners

Figure 1: A digest is produced from a viewfinder frame. Gradients are taken in four different directions, and then projected in
the respective perpendicular directions. The resulting arrays form a kind of Hough transform, which records image edges as
spikes. Secondly, a corner detection filter is used to extract the k strongest corners. The resulting digest takes very little memory,
and can be very quickly compared against another digest, without reference to the original images, to obtain a warp.

under translation. For example, under horizontal translation
the projection in the vertical direction translates, while the
projection in the horizontal direction changes slowly as gra-
dients enter and leave the frame. Under this translation, the
two other projections would exhibit a combination of the two
effects.

Edge Alignment. Alignment between two sets of projec-
tions is simple to compute. Independently for each direction,
we do a brute force search over the range of expected transla-
tions (£40 pixels) for the translation that maximizes the cor-
relation of the projections. £40 pixels on a 320x240 image
is sufficient to catch all motions slow enough that the whole
image is not motion blurred beyond recognition. Multigrid
methods [Ter86] could be applied here to accelerate the 1D
alignment, but as this stage takes only about 5% of the total
processing time, the potential for speed-up is small.

We choose the translation that minimizes a weighted sum
of absolute differences. This gives us a proposed shift in each
of the four directions, which we denote x, y, u, and v, where
u= HTy (the positive diagonal) and v = % (the negative
diagonal). The shift in x paired with the shift in y gives us a
2D translation. The shift in u paired with the shift in v gives
us another 2D translation. We use the average of these two
translations.

Alignment of the arrays in the diagonal directions is com-
plicated by the fact that a different number of pixels were
summed up at each array entry. We accommodate for this
by accumulating a homogeneous value at each array entry.

Formally, given an image I of size w X h, our projections are
given by:

pelilo | (I(x,i) — I(x,i— 1))
L plilh ] B ; L 1 }
[ pylido ] _ [ UGy —1(—1.y)
L I’i’[i]l | ; 1 }
pu[i]() ] _ [ (I(X,y)—l(x—l.y—l))z XY |
pu[i]l | = | 1 :| where | =¥ |=i
_ i _
]

- 2
o | (I(x,y)—l(xl—i-hy—l)) } where | SA=Y | =

r
=
<
~
=
i
r

To compute the translation, we need to line up the cor-
responding arrays from two frames, p and ¢, and calculate
the best shift for each projection direction: dy, 8y, 8, and
8,. One could naively compute the best shift in a particular
direction d by dividing by the homogeneous coordinate and
hence comparing the average square gradient values:

palilo qd[i+5}o}

N
d argrr%“;|pd[i}1 gali+ 9]

For the diagonal projections, this treats values at either
end of the arrays (resulting from the average of a few gra-
dient values) with equal importance to values in the middle
of the arrays (which are the averages of a large number of
gradient values). We would like to weight our distance by
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some function of the reliability of each value instead. We do
this using a function of the number of samples taken, i.e., a
function of p,[i]; and g4[i + 8];. We weight by their prod-
uct. This choice has the benefit of removing the need for a
division, which is typically slow on mobile phone hardware.
The new equation is as follows:

S = argmgHZ|Pd[i]0 “qali+ 8]y — qali+8]o - palil1]

We treat values beyond the edges of each array as the zero
vector. Unfortunately, this expression is then also minimized
by very large values of J, but this has little effect over our
140 pixel search range. The ARM11 instruction set has a
special instruction for calculations in the form of a 2 X2 ma-
trix determinant, so we are able to compute everything inside
the absolute value signs in a single operation. This is one of
the several design decisions directly influenced by the hard-
ware, and a different choice could be made when adapting
this algorithm to a different instruction set.

The shifts 3, and 8, combine to produce one estimated
translation (fy, fy):

([)/m t),) = (5u+5\/7 814*5\1)

The shifts 8y and Jy act as another. We average the two es-
timates to produce the output translation (#x, ) for this first
phase of the algorithm.

(i, ty) = (e +1)/2, (By+1)/2)

This translation is accurate to within one pixel and ex-
tremely robust to noise, but does not take into account any
rotation, and provides no measure of confidence. For these
tasks we use the point features.

Corner Detection. Point features are extracted by search-
ing for the k strongest local maxima of a corner detection fil-
ter applied over the image. Our corner detection filter is the
minimum magnitude of the second derivatives in the four di-
rections x, y, u, and v. An edge has a zero second derivative
in at least one direction, while a corner or isolated point has a
large second derivative filter response in any direction. Other
corner detection filters, such as the determinant of the Hes-
sian, or the minimum eigenvalue of the Hessian, are better
known and perform well in general. However, for our appli-
cation, this filter has the advantage that it can be calculated
with comparisons, additions, and subtractions only. On the
ARMI11 processor, this can be parallelized with SIMD in-
structions that operate on each byte of a 32-bit word in par-
allel. This is another example of a hardware-specific design
decision, and this corner detector could easily be swapped
out for another.

Corner Alignment. To align two frames, A and B, we
take the translation from A to B estimated from the pro-
jected gradients, and apply it to the corner features from
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frame A. For each corner from A, we find the nearest cor-
ner from B. If the two points are sufficiently close (within 3
pixels after translation), we count this as a correspondence.
The number of correspondences is our confidence value. We
found that in the case of an incorrect alignment of edges
(for example if the frames are entirely unrelated), we typ-
ically get a confidence value of 0-3, while a correct align-
ment of edges typically gives a confidence above % For the
final refinement, we compute the best similarity transform
(rotation, uniform scale, and translation) from A to B in the
least-squares sense. With only four parameters, least-squares
similarity transforms require O(1) memory to compute, and
have a simple closed form solution [ELF97]. Note that the
edge alignment stage only needs to provide accurate enough
estimates so that the detected corners can be paired correctly,
as aligning the corner features provides the final transforma-
tion sub-pixel accuracy.

This phase of our algorithm has two key parameters.
Firstly, we call two points a correspondence if they are
within 3 pixels. This choice is motivated by the amount of
rotation we expect between two frames. If we expect at most
one degree of rotation, and assume the translation was cor-
rectly estimated, then at 320240 matching corners should
land within [sin(1°)* 160] = 3 pixels of each other.

The other parameter of the algorithm is k, the number
of corner features. We use k = 32. A large k will include
increasingly poor corners and will increase the probability
of false correspondences, while a small k may not provide
enough correspondences to comfortably overconstrain the
least-squares solution, and will not provide a clear distinc-
tion in confidence between correct and incorrect alignments.

Performance

To run at 30 frames per second, we have a time budget of
about 33 ms per frame. On the N95 at 320240 the digest
construction (edge and corner extraction) takes about 20 ms.
Alignment of two digests takes around 1 ms. This is pre-
cisely the type of timing we designed the algorithm to have.
We never require more than one digest construction per in-
coming frame, so 20 ms is acceptable, and the time required
to align two digests is low enough that we can perform many
alignments per frame. The digest construction scales with
the number of pixels per frame, while the alignment step
scales with the width of each frame (and hence the length
of the edge arrays), so operating the viewfinder at different
resolutions changes the timing accordingly.

Testing Results

In order to test the limits of our alignment algorithm, we
constructed a pair of motorized mounts. One spun the cam-
era around its vertical axis, producing a horizontal transla-
tion in the viewfinder images. The second spun the camera
around its optical axis, producing a rotation in the viewfinder
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Figure 2: The percentage of alignments that succeed for a variety of scenes when using the algorithm to combat hand-shake.
From left to right we see: textured carpet, an off-angle black vinyl bag on a black suede background, the inside of a potted plant,

a bookshelf, and a typical outdoor scene on a windy day.
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Figure 3: The percentage of alignments that succeed when
panning at different speeds. Motion blur is the limiting fac-
tor, as the indoor light-starved result (blue) fails with slower
motions than the outdoor result (red).
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Figure 4: The percentage of alignments that succeed when
rotating the camera about its view direction at different
speeds. The algorithm does not fail before its built-in limit
of one degree per frame. Available light, and hence motion
blur, is not the limiting factor in this case.

images. We spun the camera at various speeds on the two
mounts, attempting to align each frame to the next. We
recorded what percentage of these alignments was success-
ful, where success was defined as finding at least 10 corre-
spondences between the frames and computing from them a
plausible transform. In order to estimate the effect of motion
blur and noise on the results, we performed the experiments
under two lighting conditions: indoors in dim lighting, and

outdoors on a bright sunny day. The indoor scene was a fur-
nished living room, with lights off and curtains closed. The
outdoor scene was a typical apartment complex courtyard.

The translation results (Figure 3) show that the algorithm
copes well with rapid translations, and the large difference
between the indoor results and the outdoor results suggests
that the algorithm is more likely to fail due to motion blur
than any inherent limitation. The rotation results (Figure 4)
show that the algorithm starts to fail above one degree per
frame, regardless of available light. This is expected; one de-
gree per frame was the limit we used to select the algorithm
parameters. The region between half a degree per frame and
one degree per frame shows that we do gain some benefit
from less noise and motion blur for moderate rotations.

Clearly, the alignment results depend on the content of the
scene, in particular on the presence of strong edges. Figure 2
shows the performance of our method on a variety of test
scenes. Typical indoor and outdoor scenes contain enough
edge information for successful alignment, and performance
degrades, as expected, on images which contain only soft
edges.

Limitations and Future Work

The main two advantages of our alignment algorithm are
that it is extremely fast, and extremely robust to noise. The
main disadvantage is that it can’t handle large warps from
one frame to the next. Specifically, it does not tolerate trans-
lations greater than about 10% of the frame (especially if
strong gradients enter or leave), rotations greater than about
one and a half degrees, or the perspective effects that oc-
cur when panning with a wide angle lens. This disadvan-
tage does not pose a serious problem when the algorithm is
used for viewfinder alignment. If the photographer moves
the camera quickly, the algorithm is more likely to fail due
to motion blur, and indeed our only application that requires
large movements (Section 3.2) is motion blur limited.

Given more processing power, there are a few ways the
algorithm could be scaled up. First, the number of gradi-
ent projections can be scaled all the way up to a full Hough
transform, which would allow detection of both translation
and rotation based on edges. A lighter weight approach to
also detect rotation would be to record a histogram of gradi-
ent directions as a fifth array.
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Second, our corner features are locations only with no
descriptors. We can’t tell two points apart. Calculating a
descriptor such as SIFT [Low04] would allow us to better
distinguish which points really match each other, reducing
the probability of false matches. Unfortunately, effective de-
scriptors are expensive to compute.

Third, we need not compute a simple least-squares sim-
ilarity transform. Our algorithm works in principle for any
warp which is close to a translation. Point features could be
used to compute a full homography, using RANSAC to re-
ject outliers, which would be more robust than simple thresh-
olding. The reason we use such a simple model for aligning
the point features is both due to computational cost and be-
cause the extra degrees of freedom introduced by more com-
plicated models are usually unneccessary.

Finally, one could attempt to break the motion blur limit
on the algorithm by explicitly estimating blur kernels and us-
ing those as motion tracks. However, current methods of esti-
mating blur kernels from a single image (such as [FSH*06])
are nowhere near real time.

Even with a growing amount of computing power there
will be a need for light-weight alignment methods for a long
time. Real-time alignment is usually used as a secondary
mechanism for some other application, and should ideally
use only a small fraction of CPU time. Additionally, mobile
phones are battery-powered devices, and CPU and memory
usage consume valuable power.

3. Applications
3.1. Low-Noise Low-Light Viewfinding

Running a viewfinder at 30 fps necessarily limits the expo-
sure time of each frame to at most 1/30s. In dark environ-
ments, where one would normally use a flash to take a casual
photo, this requires a large analog gain, and hence a very
noisy viewfinder. Many cameras have a ’night’ viewfinder
mode, which doubles the exposure time and halves the frame
rate. This reduces noise a little, but reduces responsiveness
and increases motion blur from handshake. One could imag-
ine increasing exposure time without sacrificing frame rate
by maintaining a ring buffer of the last n frames, and dis-
playing the average of them. However, this kind of temporal
filter increases motion blur too much to be useful.

We instead propose using an aligned temporal filter,
which computes an average of earlier frames after align-
ment. The advantage over regular viewfinding is dramati-
cally reduced noise (see Figure 5). The only disadvantage is
motion blur on objects moving within the scene (but not due
to handshake or panning). If the alignment fails (for exam-
ple due to sudden movement or overwhelming noise), then
the viewfinder merely displays the most recent viewfinder
frame, so our worst case scenario is the regular viewfinder.

Prior Work. Image and video denoising is a fundamen-
tal problem in image processing. An excellent survey of de-
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Figure 5: The regular viewfinder (top left) suffers from noise
in low-light situations. To reduce this, we take an aligned
temporal filter of the previous few frames (top right). With-
out alignment, such a temporal filter introduces blur due to
hand shake (bottom left). A downside of using this technique
indiscriminately is that the filter causes moving subjects to
exhibit motion blur (bottom right). If noise were preferred to
motion blur, one could detect such motion with aligned dif-
ferencing and selectively turn off the temporal filter at those
pixels.

noising methods can be found in [BCMOS5]. Video-specific
denoising methods greatly benefit from combining informa-
tion from adjacent frames to remove noise [DS84,JASS98]
and to enhance dynamic range [BMOS5].

Implementation. Our application maintains a single ac-
cumulation buffer. Every frame, the buffer is aligned and
warped to match the incoming frame. The incoming frame
is then multiplied by o and added to (1 — o) times the accu-
mulation buffer. This produces an aligned exponentially de-
caying temporal filter. Small values of o produce very low
noise and much motion blur, while larger values produce less
motion blur and more noise. The right value to use is just
enough to remove visible noise. We use o = %. In addition,
we calibrate for fixed pattern noise by running the camera at
the same settings with the lens cover closed and averaging
a long sequence of frames. We subtract this average fixed
pattern noise from each incoming frame, to ensure the aver-
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Figure 6: The photographer sweeps the camera back and forth. On the left we see the frames automatically captured by the
panorama assistance program, translated according to the translation estimates from viewfinder alignment. Note the accumu-
lated global error especially visible in the posts of the stair railing. On the right, we see the result after stitching the frames in
a conventional panorama stitcher [BLO3]. These frames took less than 15 seconds to acquire.

aging truly removes the noise, rather than just presenting us
with the average noise image.

Warping the accumulation buffer to match the incoming
frame leaves blank areas at the edges where no earlier infor-
mation is available. In these areas we simply use the values
from the incoming frame. When the photographer pans, the
edge of the frame will be slightly noisier than the center, as
fewer samples have been recorded there.

One unexpected benefit of the algorithm we observed was
the removal of aliasing on image edges (caused by sensor
subsampling). Hand shake corrected with alignment serves
as a stochastic sampling mechanism.

Limitations and Future Work. The concept of an
aligned temporal filter can lend itself to uses other than
noise reduction. For example, differences between subse-
quent aligned frames could be computed to use as a trig-
ger based on scene motion that ignores hand shake. Alter-
natively, if a photographer wishes to view a scene ignoring
transient occluders, an online median of the last n aligned
frames may be useful. This, for example, can be used to
record a busy street as if it were deserted. Approximations
to the online median could circumvent the otherwise heavy
computational and memory requirements.

More robust statistics than the average may also be use-
ful for noise reduction. For example, a bilateral filter in time
(as in [BMO5]), would reduce noise without causing motion
blur. A real-time approximation could average the incom-
ing frame with the accumulation buffer where the values are
within some threshold distance, and use values from the in-
coming frame where they are not.

3.2. Panorama Capture

Taking the source images to make a panorama is slow and
error prone. A photographer is likely to either miss part of
the scene, or more commonly, waste time and memory by
capturing a massively redundant set of photos. Some cam-
eras include panorama assist modes, which show a ghost of

the right half of the previously captured frame in the left
half of the viewfinder. These modes are very helpful for 1D
panoramas but not for more general 2D panoramas.

Viewfinder alignment can help by triggering the camera
whenever it is pointed at a previously uncaptured part of the
scene. In addition a map of previously captured areas can
be presented to the photographer and displayed in a corner
of the screen, as in Figure 8, to avoid common panorama
capture mistakes like missing the corners of the scene. This
alignment-based triggering lets the photographer simply pan
over the scene to be captured, pressing no buttons at all,
without having to worry about wasting memory or missing
any part of the scene. It is a very fast and easy way to capture
a panorama (see Figure 6).

Prior Work. There are many methods that deal with
alignment and stitching of collections of images to create
panoramas [Sze06]. Methods such as [BTS*06] can incre-
mentally compute a panorama at near real-time speed on a
PC, but are still too heavy duty to be able to run on our target
device. In contrast, our method is fast since it does not seek
to compute the exact panorama on the fly. Instead we only

D Iree, b images stored

Figure 8: A screenshot from the panorama capture pro-
gram. The top left shows a map of the relative locations of
the 6 frames captured so far.
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Figure 7: Viewfinder alignment acts as a continuous input on devices which otherwise lack them. This figure illustrates how
horizontal translation and camera rotation are used to control a game of Breakout. Horizontal translation moves the paddle

left and right, while rotation steers the ball.

keep track of approximate locations of all previously taken
images using viewfinder alignment. By being conservative
about the amount of displacement allowed between pairs of
images, we can be sure that the captured frames will be able
to be aligned into a panorama later.

Implementation. To compute a global position for the
current viewfinder frame, we accumulate local frame to
frame warps. We resist the accumulation of small local er-
rors into a large global error by aligning each viewfinder
frame to 5 previous viewfinder frames, or rather, their di-
gests. Recall that our alignment algorithm was specifically
designed to allow many alignments per frame in this way.
We use the confidence values from each alignment to com-
pute a weighted average global position for the new frame,
based on the global positions of the previous frames, and
the relative alignments from the new frame to the previ-
ous frames. If the computed global position is greater than
some minimum distance from any previously saved frame,
we save this frame to disk to use in our panorama.

Limitations and Future Work. Even using measures to
resist global error accumulation, the final set of saved frames
cannot be simply blended together after applying their re-
spective warps. It is impossible to lay out all the frames in a
panorama on a plane and have them align without first warp-
ing to a cylindrical or spherical projection surface. The set
of saved frames, however, is ideal for stitching by a conven-
tional panorama stitcher, and the computed warps could be
used as good initial estimates of frame position.

It is possible, if the camera is moved rapidly, for all align-
ments to the 5 previous frames to fail. In this case the UI
notifies the photographer, and she can return the camera to
the most recently captured area to reacquire the tracking. In
practice the speed of camera motion is limited by the desire
to avoid motion blur in the captured frames, rather than by
any limitation of the tracking.

This is an application where the camera decides for it-
self when to save a frame, so the work could be extended
to select frames not only based on their location, but also
their inherent quality. For example an application could re-
ject blurry or poorly exposed frames. In applications where
motion blur is unavoidable, such as bad lighting conditions,
we can also instruct the user to hold the camera still when

(© 2007 The Author(s)
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the algorithm detects that a new frame needs to be acquired.
We can then use viewfinder alignment to determine when
the user has complied with the request, and only then take a
photo.

Digests take very little memory, so there is no reason we
can’t store hundreds of them at once. We chose to align to
the most recent five, but one could imagine more sophis-
ticated schemes that attempted to align to very old frames
in an attempt to reduce global error. This task is a two-
dimensional analogue to SLAM [TBF05]—we wish to si-
multaneously construct an environment map and localize the
viewfinder within it. An algorithm along these lines would
become more accurate at estimating camera pose the longer
it ran, and could be very useful for augmented reality appli-
cations.

3.3. Camera Pose as a Continuous Input Device

Mobile phones typically do not have a continuous input de-
vice, such as a mouse. When they do it is usually a touch
screen, which, while excellent for interacting with a user in-
terface, has several disadvantages: it ties up one of the user’s
hands, obscures the display, and it either has low resolution
or requires use of a stylus. Viewfinder alignment does not tie
up an extra hand, leaves the display free, and has high resolu-
tion. In addition, it offers an extra degree of freedom (camera
roll), and is unbounded. These properties make it excellent
for use as a game controller, and as a proof of concept, we
have implemented the well-known arcade game Breakout, as
illustrated in Figure 7.

Prior Work. As more processing power becomes avail-
able, video games have started to include ideas from com-
puter vision. A camera, known as the ‘EyeToy’ was sold as a
peripheral for the PlayStation 2 to be used with games based
on simple motion detection. The ‘Eye of Judgment’ for the
PlayStation 3 uses more sophisticated vision techniques,
recognizing cards in a physical card game, and augment-
ing them with graphics displayed on the screen. Motion-
based controllers have also become more popular, with the
PlayStation 3 using accelerometers in the controller, and the
Nintendo Wii controller using a combination of accelerom-
eters and vision.
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Computer vision techniques have also been used for
browsing of 3D models and maps on a small screen de-
vice [HPGO5], as a game controller on mobile phones
[Sie03, WZCO06], for scrolling through large documents and
interactive games on a camera phone [CHSWO06], selecting
menu items and input characters [WZC06], and even paint-
ing the strokes of input characters [HSHO7].

Implementation. For use as an input device, we compute
alignment between each frame and the most recent frame.
The resulting similarity transform gives us three useful de-
grees of freedom: translation in x and y, and rotation. Scale
is not useful in practice, because it either requires a close
planar target, or a large back and forth motion. If the confi-
dence value is low, we can either return a zero result, or we
can return the last known good result. Returning a zero re-
sult works well, because it correctly freezes the cursor if the
mobile phone is dropped, passed to another person, or put
down on a table.

For our version of Breakout we use the estimated horizon-
tal translation to move the paddle back and forth, and, in a
literal twist to regular Breakout, we use rotation to affect the
heading of the ball.

Limitations and Future Work. While viewfinder align-
ment allows for high accuracy control at low speeds, it can’t
handle large movements. It could be coupled with a de-
vice that provides a coarser estimate but can handle higher
speeds, such as an accelerometer. Some high end mobile
phones have accelerometers, and we expect them to become
more widespread and more easily accessible to the program-
mer in the future.

Viewfinder alignment could also find use as an input de-
vice on dedicated cameras. Pointing with the camera is a
natural way to specify things such as autofocus or light me-
tering points.

4. Conclusion

In this paper, we have argued that viewfinder alignment is
a useful technique for photography and general interaction
with camera devices. We do this by presenting an alignment
algorithm that runs in real time at full viewfinder resolution
on a mobile phone camera, along with three sample applica-
tions of viewfinder alignment.

This paper is also a demonstration of the benefit in making
camera devices programmable by third parties. As a cam-
era, the mobile phone is merely adequate, but the advantage
obtained from being able to directly program the device is
significant. A programmable high quality consumer camera
or DSLR could be instrumental in bringing computational
photography to a broader audience.
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