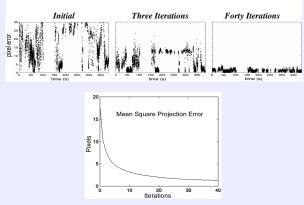
Wide Area Camera Calibration Using Virtual Calibration Objects

Xing Chen, James Davis, Philipp Slusallek

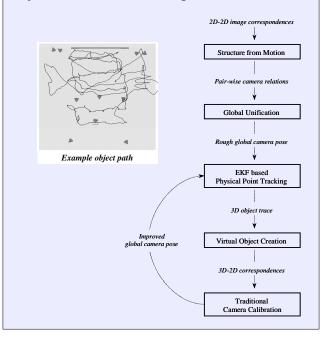
Goal

Calibrate many cameras arranged to cover a wide area working volume. Building a large physical calibration object is impractical.

Solution


Build a large *virtual* calibration object, that covers the entire working volume.

Results


Camera arrangement to be calibrated: Note that since the cameras cover a wide area, traditional calibration is not possible.

Projection error as a function of iterations using a virtual calibration object: Note that very stable convergence to the correct camera calibration is obtained.

Method

Use all cameras to observe a moving object. Iterate between solving for the object path, and using this path as a *virtual* calibration object to solve for camera position.

Comparison with traditional calibration

A space in which a comparison with traditional calibration is possible.

Traditional	Virtual calibration object		
calibration	Initial	One iteration	Five iterations
000 000 000 000 000 000 000 000 000 00	time (6)	time (s)	time (s)

Projection error of a moving object: Note that the quality of the calibration obtained using our method compares favorably with traditional calibration methods.