
Models of the Impact of Overlap in Bucket Rendering

Milton Chen, Gordon Stoll, Homan Igehy, Kekoa Proudfoot and Pat Hanrahan

Computer Systems Laboratory

Stanford University

Abstract
Bucket rendering is a technique in which the framebuffer is sub-
divided into coherent regions that are rendered independently.
The primary benefits of this technique are the decrease in the size
of the working set of framebuffer memory required during ren-
dering and the possibility of processing multiple regions in paral-
lel. The drawbacks of this technique are the cost of computing the
regions overlapped by each triangle and the redundant work re-
quired in processing triangles multiple times when they overlap
multiple regions. Tile size is a critical parameter in bucket ren-
dering systems: smaller tile sizes allow smaller memory footprints
and better parallel load balancing but exacerbate the problem of
redundant computation.

In this paper, we use mathematical models, instrumentation,
and trace-driven simulation to evaluate the impact of overlap and
conclude that the problem of overlap is limited in scope. If trian-
gles are small, the overlap factor itself is also small. If triangles
are large, overlap is high but pixel work dominates the rendering
time. In pipelined rendering systems, the worst-case impact of
overlap occurs when the area of an input triangle is equal to the
area for which the pipeline is balanced—that is, the triangle-
related computation time is equal to the pixel-related computation
time. Thus, as the current trends of exponentially increasing tri-
angle rate, slowly increasing screen resolution, and increasing
per-pixel computation continue to push this balance point toward
triangles with smaller area, bucket rendering systems will be able
to utilize smaller tiles efficiently.

CR Categories and Subject Descriptors: I.3.1 [Computer
Graphics]: Hardware Architecture.

1 INTRODUCTION
Bucket rendering is a technique in which the framebuffer is sub-
divided into coherent regions that are rendered independently.
This technique has two primary benefits: a reduced framebuffer
memory working set and the ability to process multiple regions in
parallel. Standard rendering requires random access to framebuf-
fer data for the entire screen, implying a memory system that is
simultaneously large and fast. Bucket rendering requires random
access to only a single tile, and smaller tiles are better as they lead
to smaller (and thus faster) working memories. Additionally,

bucket rendering allows for the possibility of rendering into a
working set memory that is much deeper than the framebuffer
itself: the tile working set memory can hold color, transparency,
depth, stencil, etc., for multiple samples while the framebuffer
retains only the display color. Bucket rendering also introduces
image-space parallelism to the rendering pipeline and allows for
multiple rasterizers that can render into independent tiles simulta-
neously. One advantage of such a subdivision is the fact that each
triangle does not necessarily have to be processed by every
rasterizer. In a tile-based parallel rasterizer, smaller tiles have the
advantage of improving rasterization load balancing. The primary
drawback of bucket rendering with small tiles is the large number
of tiles overlapped by each triangle. As overlap increases, the
work required to sort triangles into the appropriate tiles increases.
More importantly, the fixed per-triangle work associated with
rendering a triangle into a tile must be performed repeatedly.

The goal of this paper is to show that the impact of overlap on
systems using small tiles is limited despite high overlap factors.
We develop two simple models of the efficiency of bucket ren-
dering, focusing on the impact of redundant work due to overlap.
We first analytically model the per-pixel and per-triangle compu-
tations performed after bucket sorting, including triangle setup,
scan conversion, texturing, depth buffering, and composting.
Then, we present quantitative data on the overhead of tiling and
compare it with the predictions of the analytic model. We con-
clude that the problem of overlap is limited in scope. If triangles
are small, the overlap factor itself is also small. If triangles are
large, overlap is high but per-pixel work dominates rendering
time. In systems where triangle work and pixel work are pipe-
lined, the worst-case impact of overlap occurs when the area of an
input triangle is equal to the area for which the pipeline is bal-
anced—that is, the triangle-related computation time is equal to
the pixel-related computation time. Thus, as the current trends of
exponentially increasing triangle rate, slowly increasing screen
resolution, and increasing per-pixel computation continue to push
this balance point toward triangles with smaller area, bucket ren-
dering systems will be able to utilize smaller tiles efficiently.

2 RELATED WORK
Bucket rendering, also known as tiled rendering or chunking, is a
feature of many previous systems including RenderMan [12],
Talisman [11], PixelPlanes 5 [4], PixelFlow [10], and two systems
developed at Apple [6][7]. Tiling in RenderMan serves to limit
the large framebuffer memory working set required for oversam-
pling, true transparency, CSG, motion blur, and other advanced
features. In Talisman, the Apple systems, PixelPlanes 5, and
PixelFlow, tiling is used to fit the working set into on-chip mem-
ory. In PixelPlanes 5 and PixelFlow, multiple tiles are also proc-
essed simultaneously by independent rendering engines.

Bucket rendering incurs redundant work that is characterized
by the overlap factor (the number of tiles a triangle covers). Most
systems approximate the tiles that a triangle overlaps by comput-
ing the intersection of the triangle’s bounding-box with the grid of

{miltchen,gws,homan,kekoa,hanrahan}@graphics.stanford.edu

tiles [1][3][4][10][11]. Molnar [8] presents an equation for the
expected overlap of rectangular bounding-boxes on rectangular
tiles that is experimentally verified in both Molnar [9] and Cox
[2]. Sorting triangles into tiles exactly, rather than by bounding-
box, is certainly possible and would result in lower overlap fac-
tors, but we are not aware of an analysis of the costs and benefits
of such a technique or of any systems that use it.

Previously, the impact of bucket rendering has been analyzed
by Cox [2] on a specific PC-based bucket rendering architecture.
The paper concludes that for small tiles (32x32 pixels), the redun-
dant storage and transfer of triangles due to high overlap factors
can overwhelm current PC memory and I/O systems. In that
work, the impact of triangle overlap is analyzed as it pertains to
the architecture and bandwidths of a particular system. Our work
focuses on the fundamental relationship between the overlap fac-
tor and the relative costs of per-triangle and per-pixel work within
a general rendering framework.

3 ANALYTIC MODELS
In this paper, we model the pixel and triangle processing per-
formed in relation to rasterization (i.e., after the object-space tri-
angle has been transformed and sorted into the appropriate tiles).

The key terms used in our analytic model are presented in Figure
1. The computation required for a pixel is assumed to be con-
stant, though our model could be extended to analyze the render-
ing of scenes with a mix of rendering modes on systems with
varying fill rates. The computation required for processing a sin-
gle triangle in a non-tiled system is also assumed to be constant.
The per-pixel cost is normalized to one, and the per-triangle cost,
denoted by k, is normalized to a multiple of the per-pixel cost. In
a bucket rendering system, when a triangle overlaps multiple tiles,
its per-triangle costs are multiplied by the overlap factor, O.
Figure 2 shows the simple relationships between triangle area,
overlap factor, and the costs associated with per-pixel work and
per-triangle work. We use this graph as a baseline for creating
two models of a rasterization system, a software model and a
hardware model.

The software model abstracts a system with a single unit for
both triangle and pixel processing. The hardware model is moti-
vated by the fact that many systems perform triangle and pixel
processing on independent units in a pipeline. Figure 3 shows the
relationship of triangle area to processing time on several such
systems: the Silicon Graphics O2, RealityEngine, and InfiniteRe-
ality. When triangles are small, the processing times are fixed.
When triangles are large, the processing times are directly pro-
portional to triangle area. As we will show, these characteristics
significantly change the effect of overlap on pipelined systems
when compared to non-pipelined systems.

3.1 Modeling Overlap
Overlap of multiple tiles by a single triangle is characterized by
the overlap factor, O, and is central to evaluating the efficiency of
bucket rendering. Due to the high cost of calculating the exact
tiles overlapped by a triangle, we instead calculate overlap using
axis-aligned bounding-boxes. The exact overlap factor for a spe-
cific triangle can be calculated easily, but for general analytic
calculations, the Molnar-Eyles equation [8] can be used to calcu-
late approximate bounding-box overlap. The equation approxi-
mates the expected overlap factor of a triangle by utilizing S (the
dimension of a tile), a (the triangle area), and ρ (the ratio of the
area of a triangle’s bounding-box to the area of the triangle):

2

 +
=

S

aS
O

ρ (1)

Figure 1: Terminology used in the models.

0 20 40 60 80 100

Triangle area (pixels)

0

20

40

60

80

100

P
ro

ce
ss

in
g

ti
m

e
(p

ix
el

 c
lo

ck
s)

Pixels
Triangle (tiled)
Triangle (untiled)

k k′

Figure 2: Approximate relationships between per-pixel
computation, per-triangle computation in an untiled system,
and per-triangle computation in a tiled system (the original
per-triangle computation multiplied by the overlap factor).
Assumes k set to 25 and S set to 32.

0 100 200 300

Triangle area (pixels)

0

1

2

3

4

5

6

T
im

e
pe

r
tr

ia
ng

le
 (

µs
) O2

RE
IR

Figure 3: The graph above shows the average rendering
time per triangle as triangle area changes on an SGI O2, Re-
alityEngine, and InfiniteReality. Triangles are isolated, axis-
aligned, right isosceles, flat-shaded, and untextured with
depth buffering and blending disabled.

Terminology

Term Definition

a The area of a triangle, in pixels.

ρ The ratio of the area of the bounding-box of a trian-
gle to the area of the triangle.

S The length of the side of a screen tile (assumed to
be square), in pixels.

O The overlap factor that represents the average num-
ber of tiles a triangle (or its bounding-box) over-
laps.

k The ratio of the processing time for a triangle to the
processing time for a pixel.

R The inefficiency due to overlap: the ratio of ren-
dering time with tiling to rendering time without
tiling.

The primary source of error in this approximation is the assump-
tion of unit aspect ratio (i.e., a square bounding-box). Further-
more, if we interpret Equation 1 to account for a set of triangles in
a scene rather than a single triangle, we must assume that all of
the bounding-box areas are the same. Unit aspect ratio is a best
case for overlap [2], while uniform triangle area is a worst case
(see the Appendix for a derivation). The two effects tend to offset
each other in the simple form of the equation above, and adjusting
the equation to account for one and not the other generally results
in worse agreement with measured overlap. Analytic calculations
in this paper use the simple form above, and use the approxima-
tion ρ = 3 (as justified in [8]).

3.2 Software Model
In our software model of rasterization, a single processing unit is
responsible for both the per-triangle work and the per-pixel work
associated with the rasterization of a triangle. Thus, the total
processing time required for a triangle is equal to the sum of the
per-triangle and per-pixel times. With our normalization of the
per-pixel cost to one, the total processing time for a triangle is
simply k+a. In a tiled system, the per-triangle cost is incurred O
times, making the total processing time kO+a. Thus, the expected
ratio of the processing time of a triangle with tiling to that without
tiling is:

ak

akO

akSUM

akOSUM
Rsw +

+==
),(

),(
(2)

Figure 4 shows Rsw for k = 25 and S = 32, with overlap calculated
analytically using Equation 1. We define aworst to be the value of
a which maximizes Rsw; this is the triangle area that results in the
worst efficiency. The formula for deriving this value can be
found in the Appendix. A formula for the limiting value of Rsw as
a approaches infinity is also given in the Appendix. Equation 2
describes the inefficiency ratio of tiling for a single triangle.
However, because the terms involved are linear, we can use the
same equation for calculating the inefficiency ratio for a distribu-
tion of triangles by interpreting a as the average triangle area and
O as the average overlap.

3.3 Hardware Model
The hardware model of rasterization abstracts a system in which
triangle and pixel processing are performed by independent proc-

essing units in a pipeline. Furthermore, we assume perfect pipe-
lining between these two units, meaning that an infinite amount of
buffering exists between the two. This buffering decouples the
pixel work from the specific triangle that generated it; thus, the
total processing time for a triangle is the maximum of the total
time spent in per-pixel processing and the total time spent in per-
triangle processing. We experimentally evaluate the effects of the
infinite buffering assumption in Section 4.3.

In Figure 2, the curve for pixel processing intersects the curves
for triangle processing with and without tiling, dividing the range
of triangle areas into three regions. For triangles with area less
than k, triangle processing dominates both the tiled and untiled
cases. For triangles with area between k and k’, triangle process-
ing dominates the tiled case while pixel processing dominates the
untiled case. For triangles with area greater than k’, pixel proc-
essing dominates both cases. The value of k’ is derived in the
Appendix, and the expected ratio of the processing time of a sin-
gle triangle with tiling to that without tiling is given by:

ak

kak

ka

a

kO

O

akMAX

akOMAX
Rhw

≤

≤≤

≤<

==

’

’

0

1

),(

),(
(3)

Figure 5 shows Rhw with overlap calculated analytically using
Equation 1. The triangle area with the lowest efficiency (aworst)
occurs at k pixels, independent of the tile size. This property of
the hardware model is derived in the Appendix. Equation 3 was
derived for a single triangle, but we can generalize it to a distribu-
tion of triangles because the assumption of infinite buffering de-
couples the pixel work from any specific triangle. In this case, a
is simply the average triangle area of the triangle distribution, and
O the average overlap.

The key point of Equation 3 and Figure 5 is that the ineffi-
ciency of tiled rendering due to triangle overlap is limited in
scope. For large triangles, pixel costs dominate. For small trian-
gles, the overlap factor is small, and thus the inefficiency is small.
Interestingly, the worst case behavior for the hardware model
occurs at precisely the triangle area for which the system is bal-
anced between triangle processing and pixel processing (k pixels).
Furthermore, this worst case is independent of the tile size.

0 20 40 60 80 100 120 140 160 180 200

Triangle area (pixels)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

R
sw

aworst

Figure 4: The graph above shows the expected ratio of
rasterization time with tiling to that without tiling for a soft-
ware system (Rsw) as triangle area (a) changes. The values
for the graph are computed from Equation 2 with k set to 25,
 set to 3, and S set to 32.

0 20 40 60 80 100 120 140 160 180 200

Triangle area (pixels)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

R
hw

aworst k′

Figure 5: The graph above shows the expected ratio of
rasterization time with tiling to that without tiling for a
hardware system (Rhw) as triangle area (a) changes. The val-
ues for the graph are computed from Equation 3 with k set to
25, set to 3, and S set to 32.

4 EXPERIMENTAL EVALUATION
In Section 3, we provided analytic calculations that characterize
the overhead associated with overlap in a bucket rendering sys-
tem. We now present experimental data on this overhead in order
to confirm the predictions of the analytic models and expose the
shortcomings of the various assumptions that were made in for-
mulating the equations.

4.1 Datasets
In order to gather relevant real-world experimental data, we cap-
tured scenes by tracing OpenGL programs with an OpenGL
Stream Codec (GLS) [13] tracing tool. One frame from each of
five test scenes is used in this study, two with texture and three
without texture. These scenes, summarized in Figure 6, were
rendered at 1024x768 screen resolution with varying tile sizes.
Pictures of these frames can be found at the end of this paper.
These scenes were selected due to the wide variation in the aver-
age triangle size. This leads to a wide range of overlap factors:
Figure 6 also shows the exact bounding-box overlap factor for
these scenes for a variety of tile sizes. These values are derived
by summing the number of tiles overlapped by the bounding-box
of each individual triangle and dividing by the total number of
triangles. At one extreme, Head has an overlap of only 2.4 even
when there are 12,288 tiles (8x8 tiling). At the other extreme,
Quake has an overlap of 132 at that same tiling.

4.2 Software Model
The computational overhead of tiling for a uniprocessor software
renderer was measured by rendering the test scenes through our
research rendering system Argus. In order to gather accurate,
fine-grained timing information, Argus was run on top of the full
machine simulator SimOS [5]. The instrumentation capabilities of
SimOS allowed measurements to be taken at a per-pixel granular-
ity without altering timing behavior.

Figure 7 shows the ratio of rasterization time with tiling to that
without tiling for each of the test scenes, as measured in Argus.
The rasterization time is separated into per-pixel, per-scanline,
and per-triangle categories. Computation time which could not be

Input

Triangles

Visible

Triangles

Avg.

Area

Depth

Cmplx.

Shading

Quake 1138 536 2784.4 1.90 Texture

Flight 3100 643 1544.3 1.26 Texture

Studio 15036 1676 807.8 1.72 Gouraud

Cylhead 11802 4836 38.3 0.24 Gouraud

Head 59592 29045 8.4 0.31 Gouraud

1

10

100

128 64 32 16 8

Tile dimension (in pixels)

O
ve

rl
ap

 F
ac

to
r Quake

Flight

Studio

Cylhead

Head

Figure 6: Statistics for the five test scenes used to evaluate
our models are shown in the table above. The bounding-box
overlap factors of these scenes (which were measured on a
triangle-by-triangle basis) are shown in the graph.

0.0

0.5

1.0

128 64 32 16 8

0.0

0.5

1.0

1.5

128 64 32 16 8

0.0

0.5

1.0

1.5

128 64 32 16 8

0.0

0.5

1.0

1.5

2.0

128 64 32 16 8

0.0

0.5

1.0

1.5

128 64 32 16 8

Quake

Flight

Studio

Cylhead

Head

1.37

1.55

1.90

2.38

1.67

0

2

1 2 3 4 5
P ixel Scanline Triangle

Tile dimens ion (in pixe ls)

Figure 7: Measured R of software rasterization in Argus.
The three categories are per-pixel work, per-scanline work
and per-triangle work. Per-triangle work includes triangle
setup.

In
ef

fi
ci

en
cy

 r
at

io
 -

R

easily assigned to one of these categories was measured, but was
less than four percent in all cases and is not included in the figure.

Processing times for Quake, Flight, and Studio are dominated
by pixel processing, limiting the effect of overlap. For Cylhead
and Head, scanline and triangle processing dominate. Note that in
all scenes, per-pixel processing is independent of the tile size. All
of the test scenes have significantly better efficiency than their
overlap alone would indicate. Rendering efficiency is close to
100% for all scenes with 128x128 tiles. The best efficiency at
8x8 tiles is 1.37 for Quake, which has the highest overlap at 132.
The worst efficiency is 2.38 for Cylhead, with an overlap of 7.2.
As expected from the model, the worst efficiency occurs for the
scene with triangles of moderate size.

In order to quantify the effect of approximations used in the
model, we need k, O and a for use in the Rsw calculation in
Equation 2. Two values of k for Argus were measured from test
data, one for non-textured rendering (k = 9.3) and one for textured
rendering (k = 3.6). The overlap is derived in two ways: Oreal

uses data from measured bounding-box overlap, and Ocalc uses the
Molnar-Eyles equation. The average triangle area of each scene is
used for a. Figure 8 shows Rsw calculated with the two overlap
factors along with the inefficiency ratios measured from Argus.
Argusw/ scan is the same data shown in Figure 7. Argusw/o scan is the
same data without the scanline costs.

Figure 8 shows that each of the derivations of Rsw generate
qualitatively similar curves. All curves peak at Cylhead and drop
off sharply on either side of Cylhead. However, the software
model has significant limitations. Comparing Rsw(Oreal) and
Rsw(Ocalc) to Argusw/o scan, notice the large gap between Rsw(Ocalc)
and Argusw/o scan, for Cylhead. This gap is due to the error from
the Molnar-Eyles overlap factor approximation (Equation 1).
Comparing Argusw/ scan and Argusw/o scan to Rsw(Oreal), notice the
deviation of Argusw/ scan from other curves for scenes Studio,
Flight, and Quake. This gap shows that the lack of a scanline
processing factor is also a significant source of error in the ana-
lytical model of Section 3.2.

4.3 Hardware Model
In the analytic equations of Section 3.3, we assumed that a hard-
ware rasterizer consisted of a triangle unit and a pixel unit sepa-
rated by an infinite amount of buffering. In order to evaluate the
overhead of tiling for a hardware rasterizer without the assump-
tion of perfect pipelining, we simulated a system with only a sin-
gle triangle of buffering between the triangle and pixel processing
stages. For each triangle, for each tile overlapped by the triangle,
the number of pixels in the tile which are covered by the triangle
is counted. The rendering of these pixels is pipelined with the
triangle processing for the following triangle, so the maximum of
k and the number of covered pixels is counted toward the total
rendering time.

Figure 9 shows the ratio of the simulated rasterization time
with tiling to that without tiling for each of the test scenes for k =
25. Rendering efficiency is close to 100% for all scenes at
128x128 pixel tiles. The best efficiency at 8x8 pixel tiles is 1.62
for Studio, with an overlap of 37. As expected from the model,
the scene with the worst efficiency is again Cylhead at 3.63.

In order to quantify the effect of approximations used in the
model of Section 3.3, we need k, O and a for use in the Rhw cal-
culations of Equation 3. The value of k is set to 25, as in the
simulation. The overlap O is derived in two ways: from measured
data (Oreal) and from the Molnar-Eyles equation (Ocalc). The av-
erage area of each scene is used for a. Figure 10 compares the
inefficiency ratios measured using the simulator (Simfinite) to those
calculated using Equation 3 (Rhw). Both Rhw(Oreal) and Rhw(Ocalc)
assume the buffer between the triangle and pixel stages can hold
an unlimited number of triangles. Despite this simplifying as-
sumption, our simple model predicts correctly that the ineffi-
ciency ratios will peak for scenes with triangle area close to k, as
in Cylhead.

It is interesting to understand why Simfinite is smaller than
Rhw(Oreal) for Cylhead but larger for Studio, Flight, and Quake in
Figure 10. To understand this phenomenon, we must first look at

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

1 100 10000

In
ef

fi
ci

en
cy

 r
at

io
 -

 R

Argus
w/ scan

Argus
w/o scan

Rsw
(O real)

Rsw
(O calc)

a worst

Avg. triangle area
Figure 8: Comparison of the inefficiency as measured in the
Argus renderer and as calculated from the software model
using both measured and calculated overlap. aworst equals 70
for non-textured scenes. The curves for the two k’s (textured
and non-textured) are separated. All data is for an 8x8 tiling.

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

128 64 32 16 8
Tile dimension (in pixels)

In
ef

fi
ci

en
cy

 r
at

io
 -

 R

Cylhead

Head

Flight

Quake

Studio

Figure 9: Observed R for a simulated rasterizer with a single
triangle of buffering between pipelined triangle and pixel
processors. Simulated for k = 25.

H
ea

d

C
yl

he
ad

S
tu

di
o

F
li

gh
t

Q
ua

ke

how triangles with varying size are handled in each timing. The
only difference between Simfinite and Rhw(Oreal) is the size of the
buffer space between the triangle and pixel stages. In general, the
pipeline will stall if the per-triangle stage cannot find a slot to
store the intermediate data for a new triangle. More buffer space
means that the pixel stage has a larger window of triangles with
which to catch up to the triangle stage, thus avoiding some stalls.
The exact relationship between this buffer size and rendering time
depends on the distribution of triangles. In general, buffering is
most effective when triangle area is close to k. For scenes with
average triangle areas far greater than k, the pixel stage is likely to
determine total processing time regardless of buffer size. For
scenes with average triangle areas far less than k, the triangle
stage is the limiting step, and buffering again has little effect.

The observations above are experimentally confirmed. With-
out tiling, the simulated processing time for Quake with finite
buffering is 1.496 million cycles, while with infinite buffering it is
predicted to be slightly lower at 1.492 million cycles. The change
is small because the average triangle area (2784 pixels) is much
greater than k (25 pixels). If we take tiling into account, when
Quake is rendered with 8x8 tiles, the simulated processing time
with a single triangle of buffering is 2.57 million cycles, while
with infinite buffering, it is predicted to be 1.77 million cycles.
Using an 8x8 tiling lowers the average effective triangle area seen
by the rasterizer to 21 pixels, and infinite buffering significantly
lowers the rendering time. This results in Rhw(Oreal) being signifi-
cantly lower than Simfinite for Quake (Flight and Studio behave
similarly). The same reasoning explains the reverse behavior
observed for Cylhead in Figure 10. Cylhead benefits significantly
from buffering without tiling, but 8x8 tiling moves the effective
triangle area below the region where buffering is effective. This
results in Rhw(Oreal) being greater than Simfinite for Cylhead.

The agreement of Simfinite and Rhw(Ocalc) for Cylhead is coinci-
dental – the buffering effect described above closely matches the
error in the Molnar-Eyles overlap for Cylhead. The small peak at

Flight which is missing for Rhw(Ocalc) is also due to overlap cal-
culation error.

5 SUMMARY AND DISCUSSION
In this paper, we have evaluated simple models of the impact of
overlap on the efficiency of rasterization in bucket rendering sys-
tems. The impact is shown to be highest for scenes in which tri-
angle and pixel work are approximately balanced rather than for
scenes with very large triangles (and correspondingly high over-
lap factors). In particular, the impact of overlap in pipelined sys-
tems is limited to a window of triangle sizes around the design
point of the system. This in turn limits the magnitude of the ob-
served overheads at levels far below the raw overlap factors.

The analytic models used in this paper are quite simple, and
have a number of limitations. First, a system might have a sig-
nificant amount of work associated with each scanline. Second,
we assume that triangle meshing is not maintained through the
bucket sorting stage. Rasterization accelerators that take advan-
tage of meshing (e.g., for efficient communication of triangles)
will suffer in a bucket rendering system if meshing is not main-
tained. Even though meshing can be maintained, vertex redun-
dancy will occur at tile boundaries. Third, triangle and pixel op-
erations are not necessarily independent. For instance, changing
the processing order of triangles can affect texture locality and
thus the cost of pixel processing. Fourth, the possible effects of
tiling on graphics state change overhead is not modeled by our
framework. Finally, the cost of sorting triangles into tiles is not
currently modeled.

Our experiments focused on a rasterizer with k = 25, a design
point we consider representative of current and near-future archi-
tectures. The behavior of systems at the extremes of this design
space is instructive. A system with k = 0 performs all processing
on a per-pixel basis. Such a system is insensitive to triangle
overlap. A system with k = S2 rasterizes a triangle into a tile in
time independent of the number of pixels covered, as in the Pixel-
Planes 5 system [4]. The efficiency of this system suffers in di-
rect proportion to overlap.

It is interesting to consider the use of current pipelined rasteri-
zation accelerators, or similar devices, in bucket rendering sys-
tems. These rasterizers are being designed for smaller and smaller
triangles. Given that the impact of overlap is greatest at this de-
sign point, the worst-case overlap factors will decrease. Design-
ing for smaller triangles would seem to indicate that more chip
resources should be dedicated to triangle processing. However,
the cost of pixel processing is increasing rapidly due to features
such as tri-linear mip-mapping, multi-texturing, and anti-aliasing.
This decreases the relative impact of engineering the rasterizer for
these smaller triangles, or even over-engineering it to accommo-
date overlap.

It is also interesting to consider the use of rasterization accel-
erators in parallel tiled rendering systems. Such systems can be
highly scalable in both triangle rate and pixel rate, but rendering
efficiencies degrade for two reasons. Inefficiencies due to the
overlap factor of tiling, as described in this paper, limit the ideal
speedup of a parallel system over a non-tiled system; this limit
can be raised by utilizing larger tiles. Parallel tiled systems also
suffer from spatial and temporal load imbalance. To combat this
load imbalance, smaller tiles (with higher inefficiencies) may be
used, or a dynamic load balancing algorithm may be employed.
We are currently exploring the tradeoffs between dynamic tile
scheduling and static assignment of small tiles, with the goal of
creating scalable architectures based on tiled rasterization.

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 100 10000

In
ef

fi
ci

en
cy

 r
at

io
 -

 R

Sim
finite

Rhw
(O real)

Rhw
(O calc)

a worst k’

Avg. triangle area
Figure 10: Comparison of the inefficiency of the simulated
rasterizer and the inefficiency predicted by the hardware
model using both measured and calculated overlap. k is set
to 25 for both the simulation and the calculations. The value
of aworst is 25 and the value of k’ is 3670. All data is for an
8x8 tiling.

H
ea

d

C
yl

he
ad

S
tu

di
o

F
li

gh
t

Q
ua

ke

Acknowledgements
We would like to thank Yung-Hsiang Lu, Robert Bosch, and the
SimOS group for supporting us through our SimOS effort. We
thank Matthew Eldridge and John Owens for their reviews of this
paper and Jingli Wang for deriving the equations of aworst and k’.
We thank Phil Lacroute for providing glstrace. Financial support
was provided by Silicon Graphics, Intel, DARPA contract
DABT63-95-C-0085-P00006, and the Department of Defense
Graduate Fellowship with contribution from the US Air Force.

References
[1] M. Cox. Algorithms for Parallel Rendering, Ph.D. thesis, Prince-

ton University, May 1995.

[2] M. Cox, N. Bhandari. Architectural Implications of Hardware-
Accelerated Bucket Rendering on the PC, 1997 Sig-
graph/Eurographics Workshop on Graphics Hardware, pp. 25-34.

[3] D. Ellsworth. Polygon Rendering for Interactive Visualizations on
Multicomputers, Ph.D. thesis, University of North Carolina at
Chapel Hill, December 1996.

[4] H. Fuchs, J. Poulton, J. Eyles, T.Greer, J. Goldfeather, D.
Ellsworth, S. Molnar, G. Turk, B. Teggs, L. Israel. Pixel-Planes 5:
A Heterogeneous Multiprocessor Graphics System Using Proces-
sor-Enhanced Memories, Computer Graphics (Proc. Siggraph),
Vol. 23, No. 3, July 1989, pp. 79-88.

[5] S. Herrod. Using Complete Machine Simulation to Understand
Computer System Behavior, Ph.D. thesis, Stanford University, Feb-
ruary 1998.

[6] M. Kelley, K. Gould, B. Pease, S. Winner, A. Yen. Hardware Ac-
celerated Rendering of CSG and Transparency, Computer Graph-
ics (Proc. Siggraph), July 1994, pp. 177-184.

[7] M. Kelley, S. Winner, K. Gould. A Scaleable Hardware Render
Accelerator using a Modified Scanline Algorithm, Computer
Graphics (Proc. Siggraph), Vol. 26, No. 2, July 1992, pp. 241-248.

[8] S. Molnar. Image-Composition Architectures for Real-Time Image
Generation, Ph.D. thesis, University of North Carolina at Chapel
Hill, October 1991.

[9] S. Molnar, M.Cox, D.Ellsworth, H. Fuchs. A Sorting Classifica-
tion of Parallel Rendering, IEEE Computer Graphics and Applica-
tions, Vol. 14, No. 4, July 1994, pp. 23-31.

[10] S. Molnar, J. Eyles, and J. Poulton. PixelFlow: High-Speed Ren-
dering Using Image Composition, Computer Graphics (Proc. Sig-
graph), Vol. 26, No. 2, July 1992, pp. 241-248.

[11] J. Torborg, and J.T. Kajiya. Talisman: Commodity Realtime 3D
Graphics for the PC, Computer Graphics (Proc. Siggraph), August
1996, pp. 353-363.

[12] S. Upstill. The RenderMan Companion, Addison-Wesley, Reading
MA, 1989.

[13] http://trant.sgi.com/opengl/docs/Specs/glsspec.txt

APPENDIX

Worst-Case Overlap Factor
The expected number of tiles overlapped by two triangles of total
bounding-box area 2B is:

22

2

 ++

 −+=
S

bS

S

bBS
O

The derivative of O is

−
−=

bBbS
O

2

111
’

which is positive for b < B, zero at b = B, and negative for b > B.
Therefore O is maximized at b = B, i.e., any two triangles of a
given total area have maximum expected overlap if their areas are
equal. This derivation can be generalized to conclude that any set
of triangles has a maximum expected overlap if all of the triangle
areas are equal.

Value of aworst

In the software model, bucket rendering efficiency is described by
Equation 2:

ak

akO
Rsw +

+=

The overlap factor can be estimated with Molnar-Eyles equation:

2

 +
=

S

aS
O

ρ

The maximum value of Rsw can be derived by substituting the
Molnar-Eyles overlap into Equation 2 and taking the derivative of
the resulting expression. The triangle area where Rsw is maximum
is:

2
222

2

4

 ++
=

ρ

ρρρ

S

kSkk
aworst

In the hardware model, bucket rendering efficiency is described
by:

ORhw = ka ≤<0 (3.1)

a

kO= ’kak ≤≤ (3.2)

 1= ak ≤’
Equation 3.1 is a monotonically increasing function while Equa-
tion 3.2 is a monotonically decreasing function. Therefore, the
triangle area where Rhw is maximum is:

kaworst =

Value of k’
The triangle area at which the per-pixel processing curve and the
tiled per-triangle processing curve intersects is indicated by k’.
To find k’, find the triangle area such that:

akO =
Using the Molnar-Eyles equation to estimate the overlap factor in
the above equation, the triangle area of the intersection point is:

2

2

2
’

−

−−
=

Sk

kSkS
k

ρ

ρ

Value of Rsw as triangle area approaches infinity
Using the Molnar-Eyles overlap in Equation 2, and taking the
limit as a approaches infinity, Rsw approaches:

2
1

S

k
Rsw

ρ+=

