
SIGGRAPH/Eurographics Graphics Hardware Workshop 2001

The F-Buffer: A Rasterization-Order FIFO Buffer for Multi-Pass Rendering

William R. Mark and Kekoa Proudfoot

Department of Computer Science�

Stanford University

Abstract

Multi-pass rendering is a common method of virtualizing graphics
hardware to overcome limited resources. Most current multi-pass
rendering techniques use the RGBA framebuffer to store intermedi-
ate results between each pass. This method of storing intermediate
results makes it difficult to correctly render partially-transparent
surfaces, and reduces the performance of shaders that need to
preserve more than one intermediate result between passes. We
propose an alternative approach to storing intermediate results
that solves these problems. This approach stores intermediate
colors (or other values) that are generated by a rendering pass
in a FIFO buffer as the values exit the fragment pipeline. On
a subsequent pass, the contents of the FIFO buffer are fed into
the top of the fragment pipeline. We refer to this FIFO buffer
as a fragment-stream buffer (or F-buffer), because this approach
has the effect of associating intermediate results with particular
rasterization fragments, rather than with an (x,y) location in the
framebuffer. Implementing an F-buffer requires some changes to
current mainstream graphics architectures, but these changes can be
minor. We describe the design space associated with implementing
an F-buffer, and compare the F-buffer to recirculating pipeline
designs. We implement F-buffers in the Mesa software renderer,
and demonstrate our programmable-shading system running on top
of this renderer.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture—Graphics processors; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Color, shading,
shadowing, and texture

1 Introduction

Real-time graphics hardware and applications are rapidly switching
from fixed shading algorithms to fully programmable shading.
Programmable shading is valuable because it can realistically
model the enormous variety of materials and lighting effects that
exist in the real world.

Over the past few years, each new generation of graphics
hardware has supported programmable shading better than the
previous generation by increasing the number of operations
provided in each rendering pass. The fall 1999 NVIDIA GeForce
chip supported two texture lookups and two pixel instructions in
one pass; the spring 2000 ATI Radeon chip supported three textures
and three instructions; and the spring 2001 NVIDIA GeForce3
chip supports four textures and eight instructions. However, the
complexity of the shading programs (shaders) that users want to
write continues to grow as well – it is easy to write shaders that
exceed the capability of a single GeForce3 rendering pass.

We expect that this situation will continue. Even if a
programmable pixel/fragment pipeline could support a large
number of instructions, shaders would be able to exhaust other

�Gates Building; Stanford, CA 94305 USA.
email: fbillmark j kekoag@graphics.stanford.edu
www: http://graphics.stanford.edu/ ˜ fbillmark j kekoag

resources, such as texture units, vertex-to-fragment interpolants, or
registers.

The standard solution to the problem of limited hardware
resources is to virtualize the hardware using some combination
of hardware and software techniques. For example, limited CPU
DRAM is virtualized using disk storage (i.e. virtual memory).

On graphics hardware, multi-pass rendering has been the
preferred technique for virtualizing limited hardware resources.
Figure 1 shows an example of the multi-pass technique; the top
of the figure illustrates a complex shader in the form of a shade
tree [3], and the bottom of the figure shows the mapping of this
shader onto multiple passes of a dual-texture OpenGL pipeline.
As is the case for most multi-pass shaders, this shader uses the
framebuffer to store intermediate results between rendering passes.
Each rendering pass uses the same viewpoint and geometry, but a
different pipeline configuration.�

VVV

V

T

T

V

TT

T

over

*

+

over

over

*

Fragment shade tree for
“opaque bowling-pin” shader

T = texture
V = interpolated color

TMapTMap TMap TMap TMap

TMapTMap TMap TMap TMap

BlendBlend Blend Blend Blend

Pass 2Pass 1 Pass 3 Pass 4 Pass 5

The shade tree above maps to five passes of a
dual-texture rendering pipeline, as shown below.
Only the dark-colored units are used by the shader.

Figure 1: A shade tree and its mapping onto five dual-texture
OpenGL rendering passes.

Application programmers, particularly game developers, have
made increasing use of multi-pass rendering techniques to achieve
sophisticated visual effects [1, 5]. However, this strategy of using

�In this paper, we are only concerned with multi-pass rendering used
for hardware-resource virtualization, which uses a single viewpoint for
all passes. Multi-pass rendering can also be used to generate images
from different viewpoints (e.g. to produce shadow maps), but we are not
concerned with this second type of multi-pass rendering.

SIGGRAPH/Eurographics Graphics Hardware Workshop 2001

the framebuffer to store intermediate results between rendering
passes has several problems:

� Overlapping, partially-transparent surfaces are rendered in-
correctly.

� Each pass can only store one RGBA per-pixel result in the
framebuffer, even though current programmable pipelines can
generate more than one intermediate result in a single pass.

� If texture memory is used to hold per-pixel intermediate
results (using frame-to-texture-copy or render-to-texture),
some of this texture memory is typically wasted, because it
is allocated but not used.

� Geometry must be re-specified and re-transformed for every
pass.

These problems are a key obstacle to correct and efficient execution
of complex, multi-pass shaders on current graphics hardware.

In this paper, we describe an alternative method for graphics
hardware to store the intermediate results produced by each pass
of a multi-pass shader. This alternative storage method eliminates
many of the problems with the current framebuffer-based approach
to storing intermediate results.

This new method is conceptually simple. It stores intermediate
colors (or other values) that are generated by a rendering pass in
a first-in, first-out (FIFO) buffer as the values exit the rasterization
pipeline. On a subsequent pass, the contents of the FIFO buffer
are fed into the top of the rasterization pipeline. We refer to this
FIFO buffer as a fragment-stream buffer (or F-buffer), because
this approach has the effect of associating intermediate results with
particular rasterization fragments, rather than with an (x,y) location
in the framebuffer.

In the next section, we will discuss the difficulties with the
conventional approach to multi-pass rendering in more detail.
These difficulties led us to develop the F-buffer approach. In
sections 3 and 4, we explain the F-buffer approach in more detail
and discuss its advantages. In section 5, we discuss a variety of
approaches to incorporating F-buffers into a graphics architecture.
We describe our demonstration implementation of the F-buffer in
section 6. In the last two sections of the paper, we compare the
F-buffer to other approaches and conclude.

2 Problems with Framebuffer Storage of
Intermediate Results

Using the framebuffer for temporary storage in multi-pass render-
ing presents efficiency problems for several classes of shaders. In
particular, shaders that require more than one simultaneously-live
intermediate result run inefficiently and shaders that represent
partially-transparent surfaces run either incorrectly or inefficiently.
We address these two cases in turn.

First, consider a multi-pass shader that requires two
simultaneously-live intermediate results. That is, at some
point in the shader’s execution there are two temporary per-pixel
variables that will be read at least once more. Because the
framebuffer can only hold one intermediate result at a time, the
framebuffer must be “spilled” to other storage – typically texture
memory [10] – to make room for the second intermediate result.
Figure 2 illustrates a shader that requires this spilling. Normally,
this spill texture must be the same size as the framebuffer, although
it can be smaller if the software maintains a screen-space bounding
box geometry.

If the graphics hardware lacks render-to-texture capability, then
a spill to texture memory requires an expensive framebuffer-
to-texture copy. On graphics hardware with a unified tex-
ture/framebuffer memory, this cost can be avoided, but other
problems remain.

Newer hardware with long programmable pipelines, such as the
GeForce3, can easily generate more than one intermediate result
in a single pass. Currently, only one of these intermediate RGBA
results can be saved; any other temporary results must be discarded
and re-computed on subsequent passes. This one-live-register
bottleneck at the end of a rendering pass is difficult for shading
compilers to deal with – as an analogy, consider the difficulty of
compiling to an x86 processor that invalides all but one of its
registers every eight instructions. This bottleneck also makes it
difficult to dynamically combine shader fragments at run time, and
this difficulty is one of the reasons that our programmable shading
system [11] requires that surface and light shaders be combined at
compile time rather than render time.

T

*

+

+

++

+ *

* *

*

Fragment shade tree

T = texture
V = interpolated color
C = constant color

T

V

C

VC

V V

V V

T

R
E

SU
LT

“A
” R

E
SU

LT
“B

”

Figure 2: This shader requires at least one framebuffer spill on
a two-texture rendering pipeline. Once “Result A” is computed,
the resulting image must be saved to texture memory so that the
framebuffer can be used to compute “Result B”.

A second problem with the current approach to multi-pass
rendering is that overlapping partially-transparent surfaces are
rendered incorrectly. Consider what happens at a single pixel
when two such surfaces are rendered using the same shader:
The intermediate result for the rear surface is overwritten by the
intermediate result for the front surface. If these two values are
different (e.g. due to different texture coordinates), then subsequent
passes will compute incorrect results for the rear surface, causing
the final blended color to be incorrect as well.

None of the work-arounds for this transparency problem on
current hardware are very satisfactory. The simplest solution is to
render each partially transparent polygon completely independently
(i.e. render all of its passes before proceeding to the next
polygon). This solution is usually prohibitively expensive due
to the state-change cost which is incurred. Alternatively, the
application or shading library can group polygons to ensure that
only non-overlapping polygons are rendered together. In most cases
this solution is not attractive either, because it requires the software
to perform screen-space analysis of polygons. Finally, Everitt’s
depth peeling technique [4] can solve the overlapping-transparency
problem, but only at the cost of a multiplicative increase in the
number of rendering passes.

2

SIGGRAPH/Eurographics Graphics Hardware Workshop 2001

3 The F-Buffer

The F-buffer provides an alternative method for storing intermedi-
ate results during multi-pass rendering. As fragments are rasterized
in the first pass of a shader, the fragment data generated by the pass
is stored in a FIFO buffer (an F-buffer). This data will generally
include one or more RGBA colors (or other temporary values) for
each fragment. For some variants of the F-buffer approach, this data
also includes each fragment’s X, Y, and Z values. In a subsequent
pass of the shader, this stored data is read from the FIFO buffer and
fed into the top of the graphics pipeline (e.g. as an input to texture
combiners), where it is used for the pass’s computations (Figure 3).

Generally, every rendering pass except the first reads from one or
two F-buffers, although if a pass represents a leaf of the shade tree
it does not need to read from an F-buffer. Every shader pass except
the last always writes to one F-buffer. The last pass of the shader
writes to the framebuffer in the usual manner. Although only one
F-buffer can be written at a time, multiple F-buffers can be stored
in memory, thus allowing multiple intermediate results to be saved
and re-used as needed.

Some rendering passes must combine results from two earlier
passes. In conventional multi-pass rendering, one such result is in
the framebuffer, while the other is read from its spilled location in
texture memory. When using F-buffers, this situation is handled
by simultaneously reading from two F-buffers, so that there are
two sets of colors (or other data) for each fragment. The shader
shown earlier in Figure 2 must read two F-buffers to perform the
addition operation at the root of its shade tree. Hardware that
can simultaneously read two F-buffers and write one F-buffer is
sufficient to render any shade tree composed of binary operations.

TMap TMap TMap TMap TMap

TMap TMap TMap TMap TMap

Blend Blend Blend Blend Blend

Pass 1 Pass 2 Pass 3 Pass 4 Pass 5

F-Buf F-Buf F-Buf F-Buf

Framebuffer

Figure 3: F-buffers are used to hold results in between rendering
passes.

The most important property of the F-buffer is that it associates a
unique storage location with each rasterized fragment. In contrast,
a framebuffer can associate more than one fragment with a single
pixel, if there are overlapping polygons rendered using the same
shader. The F-buffer can be considered to be a special case of
the stream buffers used in more general-purpose stream-oriented
architectures [8, 12]. The F-buffer is also related to an A-buffer
[2, 13], in the sense that the A-buffer can also store information for
multiple fragments associated with a single pixel.

4 Advantages of F-Buffers

F-buffers solve the problems with conventional multi-pass render-
ing that we discussed earlier, and provide other advantages as well.

An F-buffer associates each fragment with its own storage
location. As a result, the reads from an F-buffer are not subject
to read-after-write hazards as framebuffer reads are, removing one
of the major obstacles to making previous results available at the
top of the fragment pipeline. Feeding an F-buffer into the top of the
fragment pipeline allows intermediate results to be used as inputs
to any of the functional units in the fragment pipeline, rather than to

just the blend unit. These advantages are similar to those provided
by render-to-texture capability, although render-to-texture is still
subject to limited read-after-write hazards.

An F-buffer’s association of each fragment with its own storage
location eliminates the transparent-surface-rendering difficulties
of conventional multi-pass rendering. There is no longer a
storage-location conflict between multiple polygons covering the
same pixel, although partially-transparent surfaces must still be
rendered in back-to-front order.

F-buffers use graphics memory more efficiently and flexibly than
auxiliary framebuffers (deep framebuffers) would. An F-buffer uses
just enough memory to hold the fragments produced by the current
shader. In contrast, an auxiliary framebuffer also uses memory
for all of the pixels that are not touched by the current shader.
Thus, it is usually more efficient to use several F-buffers for a
multi-pass algorithm than it is to use several auxiliary framebuffers.
The render-to-texture or copy-to-texture technique falls in between
these two extremes, because a screen-space geometry bounding box
can be used to reduce the size of the texture. However, maintaining
this bounding box can be a serious imposition on the rest of
the system, and unless the object(s) being shaded are perfectly
rectangular, some memory is still wasted.

Unlike a deep framebuffer, an F-buffer can store an essentially
arbitrary number of values with each fragment without increasing
the total amount of graphics memory that is required for a given
screen resolution. For example, an F-buffer might store two
RGBA colors and a floating-point s,t texture coordinate with each
fragment. We expect that this capability will become more useful
as individual rendering passes become more powerful. There is of
course a tradeoff between the size of a single fragment’s entry in an
F-buffer and the total number of fragments than can be stored in an
F-buffer of a particular size. But as long as the rendering system can
handle overflow of an F-buffer (an issue that we discuss in Section
5.5), it is useful to have this tradeoff available. In contrast, with
the conventional framebuffer approach, the only available tradeoff
is between framebuffer depth and resolution. This depth/resolution
tradeoff can be made only once, for all shaders in the scene, rather
than separately for each shader.

The writes to an F-buffer and reads from an F-buffer are perfectly
coherent, since F-buffer accesses are FIFO rather than random. For
an off-chip F-buffer, this property allows memory reads and writes
to efficiently use large-granularity transfers.

An F-buffer allows multi-pass rendering algorithms to work
correctly even if the framebuffer uses a lossy compression format.
An example of such a format is the Z3 A-buffer format [6],
which approximates full multi-sample storage with only a few
stored values at each pixel. If such a framebuffer is used with
the conventional multi-pass approach, some shaders may not work
correctly, because they assume that data will not be modified
by compression. Difficulties are particularly likely to occur
when an intermediate value represents non-color data such as
texture coordinates, because compression errors in this data can be
non-linearly magnified in the final color image. These problems
can be avoided if intermediate results are stored uncompressed in
an F-buffer, with one entry in the F-buffer for every multi-sample.

5 Design Alternatives

There are many variants of the basic F-buffer idea. In the next few
sections, we discuss several important dimensions of the design
space. For each major design-space dimension, we list the major
alternatives, with some of their advantages and disadvantages. We
usually do not indicate a preferred alternative, because the choice
of a best alternative depends other hardware-design choices, and on
implementation costs that we can not precisely estimate.

3

SIGGRAPH/Eurographics Graphics Hardware Workshop 2001

5.1 Where are F-buffers stored?

F-buffers can be stored on-chip, in graphics DRAM, in host
DRAM, or in some combination of these three. The most promising
configurations are a moderately-sized on-chip F-buffer, and an
off-chip F-buffer in graphics DRAM. The former has the advantage
of conserving memory bandwidth, but is likely to be small enough
that it fills up when a shader’s geometry covers a large percentage
of the screen. A hybrid which uses on-chip storage until it fills up,
then uses off-chip storage, provides the benefits of both approaches.

5.2 Are polygons rasterized on every pass?

The F-buffer approach to multi-pass rendering provides the
opportunity to skip polygon rasterization on the 2nd through Nth
passes of a multi-pass shader. This single-rasterization variant of
the F-buffer approach requires that the screen-space x,y location
and depth be stored in the F-buffer with each fragment, since these
values will not be re-generated. It also requires that all polygon
interpolants (e.g. colors, texture coordinates) be generated during
the first pass, and stored in the F-buffer if they are needed on
subsequent passes. This requirement increases the size of F-buffers,
and the memory bandwidth needed to access them. It also makes
the F-buffer implementation more complex. Some shaders may
not run if the hardware places a limit on the number of polygon
interpolants available in a single pass. If programmable vertex
hardware is available, other shaders may not run if they exceed the
limit on the number of vertex instructions that can be executed in a
single pass.

An advantage of this single-rasterization approach is that it
avoids the need for the shading library or graphics driver to
feed geometry data to the graphics pipe multiple times. This
change reduces the demand for CPU-to-graphics-card bandwidth,
as compared to a multiple-rasterization approach which buffers
geometry on the host. The single-rasterization approach also
greatly simplifies the shading library or graphics driver’s task of
providing applications with the useful illusion that all shaders run
in one pass.

If the alternative multiple-rasterization approach is used, there
is an important requirement that is imposed on the hardware:
Rasterization of the same geometry data must always produce
the same set of fragments, in the same order, even if the
fragment-pipeline configuration is different. This restriction is
removed for the single-rasterization approach.

5.3 When are conventional framebuffer opera-
tions performed?

The natural time at which to perform conventional framebuffer tests
(depth test, alpha test, stencil test, etc.) is at the end of the last pass
of a shader. However, under some circumstances it is possible to
perform some or all of these tests at the end of the first pass of the
shader, thus allowing some fragments to be discarded before they
are written to the first F-buffer. We refer to such a test as an early
test. Note that the early test only guarantees rejection of fragments
that are occluded by pixels already in the framebuffer; another test
on the second or final pass is still required to resolve all occlusions
by other fragments in the same F-buffer.

In order to perform an early test, F-buffer writes must be deferred
until after the framebuffer tests, and all of the values upon which
the framebuffer test depends (e.g. Z for the depth test) must be
computed during the first shader pass. If all of the framebuffer tests
are performed in the first pass, the Z value and any other values
which are already computed can be written to the framebuffer at
the end of the first pass. The hardware must be able to write to both
an F-buffer and the Z-buffer on the same pass.

Early tests look less attractive for the multiple-rasterization
approach to F-buffering than they do for the single-rasterization
approach. The multiple-rasterization approach would require a
method to synchronize incoming F-buffer streams (which are
missing discarded fragments) with rasterized fragments in the
2nd through Nth passes. The complexity and cost of this
resynchronization using a technique such as fragment ID’s is likely
to outweigh the performance gains from early testing.

5.4 Where does F-buffer data enter the fragment
pipeline?

In our earlier overview of F-buffering, we were deliberately vague
about exactly where the data from an F-buffer entered the fragment
pipeline. Two major options are available, which we discuss in
terms of the OpenGL fragment-pipeline model [7].

The first option is for the F-buffer data to replace a texture color
when the pipeline is configured for F-buffer reads. A dual-texturing
pipeline then provides the needed capability to read from two F-
buffers simultaneously. This option has the potential to re-use the
texture-read hardware for F-buffer reads, but reduces the number of
textures that can be accessed when F-buffer(s) are being read.

A second option is for the F-buffer data to appear as a
new input to the programmable fragment hardware (e.g. as a
new register-combiner register). This option does not disable
any texture-read units when an F-buffer is being read, but may
require new hardware that is dedicated to F-buffer reads. If the
F-buffer architecture supports more than one RGBA value for each
fragment, each RGBA value from the F-buffer can appear in a
separate register.

5.5 Strategies for handling F-buffer overflow

The most difficult issue associated with F-buffers is the problem
of buffer overflow. If there is any maximum size imposed on an
F-buffer, it is possible for a shader to overflow the F-buffer if it is
used to rasterize a sufficiently large number of fragments. Even if
the F-buffer can grow to the size of a framebuffer, overflow will
still occur if enough overlapping polygons are rendered. Thus, any
architecture which uses an F-buffer must provide a hardware and/or
software method for dealing with this issue. It is important to note
that if the complete system is designed so that F-buffer overflows
are rare, the technique(s) used for handling overflow do not need to
be particularly efficient.

If the total amount of available F-buffer memory is fixed, the
maximum allowed size of each F-buffer varies depending on the
number of simultaneously-live F-buffers required by a shader.
Making an analogy to conventional CPU compilation, this number
is equivalent to the maximum number of live registers required
by a block of code. If n live F-buffers are required by a shader,
then the maximum number of fragments that can be held in each
F-buffer is 1=n of what it would be for the one-live-F-buffer case.�

Since the application or shading library knows how many F-buffers
are required by a shader, it can adjust its notion of the maximum
allowed size for each F-buffer accordingly.

There are several major approaches to the F-buffer overflow
problem:

� Allow the F-buffer to “overflow” to higher-capacity memory
(e.g. off-chip graphics memory, then main memory) to
provide the illusion of an infinite-sized buffer. Because
F-buffers are FIFO buffers, not random-access buffers,
providing a multi-level memory hierarchy for them is fairly

�This statement assumes that the framebuffer tests (e.g. depth test) are
performed at the tail of the last rendering pass, so that all F-buffers used by
a shader will require storage for exactly the same number of fragments.

4

SIGGRAPH/Eurographics Graphics Hardware Workshop 2001

simple. This solution is ideal in the sense that it minimizes
the impact on software of dealing with buffer overflows.

� Advertise the F-buffer size limit to the software, and shift
the burden of avoiding overflows entirely to software. The
software must process polygons in batches that fit into the
F-buffer, by executing all shading passes for one batch
before proceeding to the next. The major problem with
this solution is that buffer size is measured in fragments,
but software manipulates polygons or other higher-level
geometry. Expensive (and redundant) computations are
required for software to estimate the size of a polygon in
fragments.

� In a modification of the above approach, the hardware makes
the current F-buffer fragment count available to the software.
However, in most reasonable implementations this count will
always be out-of-date in the sense that it will not include
polygons that are currently in the geometry portion of the
graphics pipeline.

� The hardware allows the F-buffer to fill up, but provides the
software with information about exactly when this overflow
occurred, so that rendering can be restarted at the correct point
for the next batch of geometry. The hardware may need to
provide support for this rendering restart.

The first three options are straightforward, so we will not discuss
them further. The last option is more complex, with several possible
variants. In particular, the rendering restart can be designed to occur
one of at several different granularities. We will discuss fragment
granularity, although other granularities are also possible. Some of
the other possibilities include triangle granularity, span granularity,
primitive-group granularity (i.e. glBegin), or application-defined
granularity (inserting checkpoints in the graphics stream). Hybrids
of these are possible as well.

For fragment-granularity restart, the hardware notifies the
software of the fragment-number (f) that caused an F-buffer
overflow. The hardware discards any in-flight fragments and
polygons after the overflow. When the software detects this
overflow, it stops issuing geometry, and completes the 2nd through
Nth passes of the current batch of geometry. Rendering of the
2nd and subsequent batches of geometry is done in a slightly
different manner. For these batches of geometry, the software tells
the hardware to discard the first f fragments of geometry, then
starts rendering geometry from the beginning. This approach is
costly when buffer overflows occur; if B batches of geometry are
rendered, the cost is 1

2
B times the non-overflow cost. Thus, this

approach is designed to provide correctness on buffer overflow,
rather than high performance.

For fragment-granularity restart, the hardware must have the
following relatively-simple capabilities:

� Ability to discard output fragments less than f0, and greater
than f 0 + sizeof(FBuffer), on output to either an F-buffer or to
the framebuffer.

� Ability to inform software (even if only by polling) that
some fragments greater than f0 + sizeof(FBuffer) have been
discarded. From the software’s point of view, overflow
detection may be be delayed (due to pipeline latency);
however, the graphics API should also provide the option for a
non-delayed F-buffer status query, with the understanding that
using this option may require an expensive partial or complete
pipeline flush.

� Ability to avoid reading from an input F-buffer until after f0

fragments have been processed.

Hardware designers considering implementation of an F-buffer
will want to know how frequently overflows will occur for a given
buffer size. Figure 4 plots relevant data gathered from tracing
and analysis of Quake III’s demo001 sequence, with OpenGL
extensions disabled. We used heuristics to identify the start
and end of shaders within the OpenGL command stream, and
spot-checked these heuristics against QuakeIII’s built-in logging
capability, which identifies shaders. Surprisingly, a few one-pass
shaders produce more fragments than there are pixels on the screen.
In-depth examination of the traces showed that these shaders
were primarily full-screen “explosion” shaders and “blood-splat”
shaders.

If the geometry rendered using a particular shader is likely to
overflow the F-buffer, the software (application, library, or driver)
can improve performance by cycling through the passes of the
shader more than once per shader change. In other words, the
software can improve performance by batching large geometry that
is rendered using complex shaders. If the driver manages multi-pass
shading, it can perform this batching, thus hiding it completely from
the application.

0.01 0.1 1 10

F-Buffer size (as fraction of full-screen pixel count)

0.0

0.2

0.4

0.6

F
ra

ct
io

n
of

 s
ha

de
rs

 o
ve

rf
lo

w
in

g
bu

ff
er

1-pass shaders (45% of fragments)
2-pass shaders (53% of fragments)
3-pass shaders (2% of fragments)
4-pass shaders (0.7% of fragments)

Figure 4: Fraction of QuakeIII ’demo001’ shaders that encounter
overflow as a function of F-Buffer size

6 Demonstration Implementation

We have built a demonstration software implementation of
F-buffers by modifying version 3.1 of the Mesa renderer [9]. We
used Mesa’s software-only rendering path for this implementation,
and added our own OpenGL extensions to the Mesa API to support
F-buffers. We also added the GL EXT texture env combine
extension to Mesa, because it is necessary for effective use of
F-buffers.

We have modified our real-time programmable shading system
[11] to run on top of this version of Mesa. Our goal in this
effort was to demonstrate that F-buffers could be conveniently used
by a programmable-shading system. In particular, we wanted to
verify that we could adequately address the F-buffer-overflow issue
from a software architecture standpoint. Note that our “real-time”
programmable shading system is no longer truly real-time when
running on top of any software renderer.

For our F-buffer implementation, we made design choices which
we believe correspond to a minimization of the changes to existing

5

SIGGRAPH/Eurographics Graphics Hardware Workshop 2001

mainstream graphics hardware, while still satisfying the needs of a
programmable-shading system. We made the following choices:

� F-buffers hold a single RGBA value for each fragment.

� F-buffers are stored in a generic memory space, but have a
pre-determined maximum size.

� We handle F-buffer overflows using the fragment-granularity
restart technique discussed earlier. Our programmable-
shading library performs the software portion of overflow
management, so that application programmers can completely
ignore the issue of F-buffer overflows when they use our
shading library.

� For multi-pass shaders, triangle rasterization occurs on every
pass, rather than on just the first pass.

� F-buffers are written just prior to the OpenGL alpha test; all
conventional framebuffer tests (e.g. alpha, stencil, depth tests)
are performed at the end of the last pass of a shader.

� F-buffer data enters the fragment pipeline in place of a texture.
Mesa has two texture units, so up to two F-buffers can be read
in a single pass. If a texture unit is not used to read an F-buffer,
it is available for texturing as usual.

Figure 5 shows two screenshots from our real-time
programmable-shading system running on top of our modified
version of Mesa. Table 1 lists the memory bandwidth required by
different types of passes with and without F-buffers.

Figure 5: Screenshots from our programmable-shading system
running on top of our software F-buffer implementation. Without
F-buffers, the image on the left would require two copy-to-texture
(or render-to-texture) operations. The image on the right is a
partially-transparent bowling pin, which requires seven rendering
passes. All of the geometry is rendered together, demonstrating
that F-buffers support correct rendering of overlapping, partially-
transparent polygons.

7 Comparison with
Recirculating Pipeline

One alternative to the F-buffer for graphics-hardware virtualization
is what we refer to as a recirculating pipeline. A recirculating
pipeline allows fragments to make multiple trips through the
hardware pipeline without being stored in any type of intermediate
buffer. Enlarged pipeline-state tables allow a different set of

F-buffers Std. Multi-Pass
Read Write Read Write

First Rasterization Pass 0 1f 1f 0/2f
2..N-1 Rasterization Pass 1f 1f 1/2f 0/1f
Last Rasterization Pass 2f 0/2f 1/2f 0/1f
Copy-to-texture (if used) — — 1S 1S

Table 1: Bandwidth comparison between F-buffering and standard
multi-pass, measured in 32-bit words, assuming 32-bit color and
32-bit depth. The variable f represents the number of fragments
generated by the geometry. The variable S represents the number of
pixels covered by the rectangular area that could contain rendered
geometry. Two results separated by a slash indicate the cost for
surface-visible / surface-not-visible, with the assumption that color
is not read on a failed depth test. The following assumptions are
used for this table: The F-buffer variant is the one described in
Section 6; the surface being rendered is opaque; and only one F-
buffer is used for input on each pass.

operations to be performed on fragments during each pipeline trip.
This type of architecture does not have to be directly exposed at the
API level – it can instead be exposed as a very long pipeline.

The recirculating pipeline addresses most of the same problems
that the F-buffer addresses. It has the advantage that it uses less
memory bandwidth than an off-chip F-Buffer and is simple to
support in software. It also has the disadvantage that it may require
a larger texture cache, because more textures are simultaneously
active.

The advantages of a recirculating pipeline are sufficiently
compelling that we believe some variant of it is already being
used in current graphics architectures. However, there are several
limitations of recirculating pipeline designs. First, the maximum
number of pipeline trips is limited by the state-table size. Second,
the maximum number of live temporary variables (including
vertex-to-fragment interpolants) is limited by the number of
registers carried with each fragment. Finally, the maximum
number of vertex-program instructions is limited by the size of
the vertex-program storage memory. In summary, a recirculating
pipeline has all of the problems that a longer non-recirculating
pipeline would have, so a recirculating pipeline provides only
partial hardware virtualization.

All of these limitations can be overcome by providing support for
F-buffers in conjunction with a recirculating pipeline. An F-buffer
allows a complex shader to be broken into multiple hardware
passes, with each of these passes consisting of several trips through
the recirculating pipeline. Support for very complex shaders is
particularly valuable for applications such as previewing of off-line
rendering, where performance should be interactive, but does not
need to be 60 frames/sec.

8 Discussion and Conclusion

F-buffers efficiently support multi-pass shaders that require more
than one live intermediate result, and multi-pass shaders that
describe partially-transparent surfaces. They also allow more than
one result to be saved from each pass of a programmable fragment
pipeline. By removing some of the fundamental application-visible
differences between single-pass and multi-pass rendering, F-buffers
assist in providing a virtual fragment pipeline with an arbitrary
number of instructions and registers. This virtual fragment pipeline
gracefully and generally supports shaders of arbitrary complexity.

Although we anticipate that the capabilities of a single rendering
pass will continue to improve, we believe that users will always
want to be able to execute even more complex shaders by

6

SIGGRAPH/Eurographics Graphics Hardware Workshop 2001

using multiple hardware passes. This expectation is likely to
be particularly strong if users access programmable hardware via
high-level shading languages. The ability to support complex
shaders is especially valuable for applications such as scientific
visualization, game prototyping, and previewing of off-line
rendering.

The most serious difficulty in implementing F-buffers is the issue
of buffer overflow. We believe this issue is solvable with any one
of several approaches that we have suggested. The multi-level
memory approach minimizes the impact on software; but the
fragment-granularity-restart approach provides an alternative that
we believe minimizes the necessary changes to current hardware
designs. Because F-buffers should be able to draw from a common
pool of graphics memory, we expect that their size can be chosen
such that buffer overflows are a relatively rare event that only occurs
when performance is already poor due to a high rendered-pixel
count. Therefore, any additional performance degradation caused
by the system’s technique for handling F-buffer overflow is likely
to be tolerable.

If each rendering pass re-rasterizes polygons, the use of F-buffers
requires that the rasterizer generate identical fragments on each
pass, in a consistent order. In a hardware design which meets
this restriction, we believe that F-buffers can be implemented with
relatively minor changes to the design, primarily by adapting the
texture-read and framebuffer-write units to read and write F-buffers.

We also believe that F-buffers can be implemented on rendering
architectures which perform screen space subdivision in time (i.e.
tiling), or across parallel processors. On such architectures, each
screen region must maintain its own subset of each F-buffer.

9 Acknowledgments

This work was conducted as part of the Stanford real-time
programmable shading project, which is sponsored by ATI,
NVIDIA, SONY, and Sun. Our meetings with individuals at these
companies have contributed substantially to our understanding of
graphics hardware; we thank Roger Allen and Matt Papakipos in
particular for their comments on this work. We also thank the other
members of the Stanford Graphics Hardware group, in particular
Pat Hanrahan, for ongoing discussions about the ideas in this paper.

References

[1] SIGGRAPH 1999 course 29: Advanced graphics programming
techniques using OpenGL, August 1999.

[2] Loren Carpenter. The A-buffer, an antialiased hidden surface method.
Computer Graphics (Proceedings of SIGGRAPH 84), 18(3):103–108,
July 1984.

[3] Robert L. Cook. Shade trees. Computer Graphics (Proceedings of
SIGGRAPH 84), 18(3):223–231, July 1984.

[4] Cass Everitt. Interactive order-independent transparency. Tech-
nical report, NVIDIA Corporation, May 2001. Available at
http://www.nvidia.com/.

[5] Paul Jaquays and Brian Hook. Quake 3: Arena Shader Manual,
Revision 10, September 1999.

[6] Norman P. Jouppi and Chun-Fa Chang. Z
3: An economical

hardware technique for high-quality antialiasing and transparency.
In Eurographics/SIGGRAPH workshop on graphics hardware, pages
85–93, Los Angeles, CA, August 1999.

[7] OpenGL ARB, M. Woo, J. Neider, T. David, and D. Shreiner. OpenGL
programming guide. Addison-Wesley, third edition, 1999.

[8] John D. Owens, William J. Dally, Ujval J. Kapasi, Scott Rixner,
Peter Mattson, and Ben Mowery. Polygon rendering on a stream
architecture. In SIGGRAPH/Eurographics workshop on graphics
hardware, pages 23–32, Interlaken, Switzerland, August 2000.

[9] Brian Paul. The Mesa 3D graphics library. Available at
http://www.mesa3d.org.

[10] Mark Peercy, Marc Olano, John Airey, and Jeff Ungar. Interactive
multi-pass programmable shading. In Computer Graphics Annual
Conference Series (Proceedings of SIGGRAPH 2000), pages 425–
432, New Orleans, LA, July 2000.

[11] Kekoa Proudfoot, William R. Mark, Svetoslav Tzvetkov, and Pat
Hanrahan. A real-time procedural shading system for programmable
graphics hardware. In Computer Graphics Annual Conference Series
(Proceedings of SIGGRAPH 2001), Los Angeles, CA, August 2001.

[12] Scott Rixner, William J. Dally, Ujval J. Kapasi, Brucek Khailany,
Abelardo Lopez-Lagunas, Peter R. Mattson, and John Owens. A
bandwidth-efficient architecture for media processing. In Proceedings
of the 31st Annual International Symposium on Microarchitecture,
pages 3–13, Dallas, TX, November 1998.

[13] Andreas Schilling and Wolfgang Strasser. EXACT: Algorithm and
hardware architecture for an improved A-buffer. In Computer
Graphics Annual Conference Series (Proceedings of SIGGRAPH 93),
pages 85–91, Anaheim, CA, August 1993.

7

