
Proceedings of 2001 SIGGRAPH/Eurographics Workshop on Graphics Hardware

Compiling to a VLIW Fragment Pipeline

William R. Mark and Kekoa Proudfoot

Department of Computer Science∗

Stanford University

Abstract

The latest generation of graphics hardware supports fully pro-
grammable vertex and pixel/fragment operations, but programming
this hardware at a low level is difficult and time consuming. To
address this problem, we have developed a complete real-time
procedural shading system that compiles a high-level shading
language to programmable vertex and fragment hardware, as
described in a separate publication. In this paper, we describe in
detail the algorithms used by this system to generate and optimize
fragment code for NVIDIA’s register combiner architecture and
show that our compiler generates efficient code. The register
combiner architecture has some similarities to VLIW CPU
architectures, so we compare our compilation algorithms to those
described in the literature for VLIW CPU architectures. We
also discuss some of the lessons we learned from building and
using this compiler that may be useful to the designers of future
programmable graphics hardware.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture;
D.3.4 [Programming Languages]: Processors – Compilers and code
generation I.3.1 [Computer Graphics]: Hardware Architecture—
Graphics processors; I.3.6 [Computer Graphics]: Methodology and
Techniques—Languages

1 Introduction

Real-time consumer-level graphics hardware is rapidly becoming
application-programmable at both the vertex processing and
pixel/fragment processing stages. NVIDIA’s GeForce3 chip is the
first example of such hardware, but we expect others to appear
soon. Programmable graphics hardware enables applications to
implement complex shading algorithms while maintaining high
performance. These shading algorithms can more realistically
model the enormous variety of materials and lighting effects that
exist in the real world.

Applications specify vertex and fragment programs using either
the DirectX8 API, or vendor-specific OpenGL extensions. In either
case, the programs are specified at a level somewhere between
assembly-language and microcode. As a result, programs are

∗Gates Building; Stanford, CA 94305 USA.
email: {billmark | kekoa}@graphics.stanford.edu
www: http://graphics.stanford.edu/ ˜ {billmark | kekoa}

difficult to write, difficult to understand, and often not portable
across graphics chips from different vendors.

One solution to this problem is to write shading programs
(shaders) in a high-level shading language, and compile these
programs to the graphics hardware. Procedural shading languages
[14], such as RenderMan [1, 4], have been successfully used for
off-line rendering for many years. More recently, procedural
shading techniques have been adapted to real-time rendering,
for both PixelFlow’s SIMD pixel-processor arrays [12], and for
conventional non-programmable graphics hardware [5, 13].

We have developed a real-time procedural shading system [15]
that is designed to support graphics hardware with programmable
vertex and fragment units. This system’s compiler allows
per-fragment, per-vertex, and per-primitive-group computations to
be mixed within a single shader. The compiler’s front end separates
the three types of computations, and invokes separate compiler
back ends to generate the code for each. The system can currently
choose one of two different primitive-group back ends, one of three
different vertex back ends, and one of two different fragment back
ends.

Our system’s first fragment back end generates code for standard
OpenGL 1.2 hardware (plus a limited set of extensions), and the
second fragment back end generates code specifically for NVIDIA’s
register-combiner hardware. Thus, this second fragment back end
is the only one that targets what we consider to be programmable
fragment hardware. This back end is the most complex one in our
system, and is the subject of this paper.

In this paper, we
• Briefly describe the register combiner architecture.
• Describe in detail the algorithms used by our register-

combiner compiler, and the reasons for choosing these
algorithms.

• Compare our compilation strategy to that used by conven-
tional VLIW compilers.

• Demonstrate that the efficiency of code generated by our
compiler is comparable that of hand-written code.

• Discuss some of the lessons we learned by building and using
the compiler, and the implications of these lessons for the
design of future graphics hardware and compilers.

But first, we will describe the input to our compiler, and outline
the basic problem that our compiler addresses.

The input to our register-combiner compiler back end is a
directed acyclic graph (DAG) of operations such as ADD and
MULTIPLY. This DAG represents a unification of a surface shader
with zero or more co-compiled light shaders. The root node of this
DAG returns a single RGBA color to be stored in the framebuffer.
Most of the nodes that can appear in the DAG correspond directly
to operators supported by our shading language.

The DAG does not contain any control constructs such as
branches or loops – compiler writers would say that it represents a
single basic block. Thus, the compilation problem that we address
is that of generating and optimizing register-combiner code for a
single basic block.

In developing this compiler back end, we have focused on the
previously-unsolved problem of compiling as many operations as



Proceedings of 2001 SIGGRAPH/Eurographics Workshop on Graphics Hardware

possible into a single programmable rendering pass. Other systems
[5, 13] have already shown that multi-pass compilation is possible,
and our system’s other fragment backend uses these techniques.
Currently, our register-combiner compiler will fail with an error
message if a shader is too complex for a single rendering pass,
although we have designed the compiler’s infrastructure to facilitate
the future addition of multi-pass compilation capability.

Our compiler is re-targetable to two different generations
of the register combiner architecture. The first generation
(GeForce1 and 2) supports two register combiners with two
textures, while the second generation (GeForce3) supports eight
register combiners, four textures, and a different mechanism for
specifying constant values. Our compiler also makes partial use of
the GeForce3’s texture-shader hardware. Because our compiler’s
design is intimately tied to some of the properties of the hardware
architecture, we will describe the architecture in detail before
discussing the compiler further.

2 Register Combiner Architecture

Pipeline organization

Figure 1 depicts the complete architecture to which we are
compiling [11]. The host CPU or vertex program supplies a set of
interpolants (position, “colors”, and texture coordinates) with each
vertex. We use the more generic term vertex interpolant to refer
to the interpolated “colors”. The texture coordinates are used to
index textures, or when the NV texture shader extension is available,
to perform more complex texture-addressing operations. At the
top of the register-combiner pipeline, the vertex interpolants and
filtered texture colors are placed into specific registers.

L0 L1 V0 V1 T0 … Tn S0 S1 F0 Z0

Texture units

Texture shaders
or

Rasterize & Interpolate

L0 L1 V0 V1 T0 … Tn S0 S1 F0 Z0

…
T0

“c
on

st
an

ts
”

Tn

RGBA registers

ALPHA CombinerRGB Combiner

L0 L1 V0 V1 T0 … Tn S0 S1 F0 Z0

ALPHA CombinerRGB Combiner

FINAL
RGB Combiner

FINAL
ALPHA Combiner

… …

blend unit & framebuffer tests

Texture Coordinates

vertex parameters
(position, “colors”, texcoords)

Host or Vertex ProgramHost

V0 V1

Figure 1: The register combiner architecture.

Each register combiner stage has an “RGB combiner” and
“ALPHA combiner”. These combiners can read values from
several registers, operate on these values, and write the results

to registers. The RGB and ALPHA combiners are controlled
independently, and operate in parallel. For this reason, we consider
each register-combiner stage to be similar to an instruction for a
conventional VLIW CPU architecture. VLIW instructions allow
several completely independent register-to-register operations to be
performed concurrently.

Any register that is not written to by a particular register-
combiner stage preserves its value from the previous stage. Again,
this behavior is consistent with thinking of the register combiners as
a series of register-to-register VLIW instructions. On a GeForce3,
eight such VLIW instructions are available per rendering pass, and
on a GeForce1, two such instructions are available per rendering
pass.

The architecture also includes special “final” RGB and ALPHA
combiners. These final combiners calculate the RGBA value
to be placed in the framebuffer from values taken from the
RGBA registers. The capabilities of these final combiners are
different from those of the standard combiners. For example, the
final combiners operate on unsigned values, while the standard
combiners operate on signed values. For simplicity, our compiler
only uses the final combiners to choose which RGB and A registers
will be written to the framebuffer, and to perform simple input
mappings such as y = (1 − x).

The architecture has two read-only “constant” registers, as well
as a read-only zero-valued register (Z0). The values of the constant
registers are set by the host at pipeline-configuration time. Our
system uses these constant registers to hold both true constant
values and per-primitive-group values. On the GeForce1, the
constant registers are global, in the sense that the first constant
register has the same value at every combiner stage, as does
the second constant register. We refer to these global constant
registers as C0 and C1. On the GeForce3, which supports the
NV register combiner2 extension, the constant registers are per-stage,
meaning that they can hold a different value at every combiner
stage. This difference in behavior has a surprisingly broad
impact on the compiler, and to emphasize the difference from the
GeForce1’s constant registers we refer to the GeForce3’s constant
registers as L0 and L1.

Internal combiner structure

Figure 2 shows the internal structure of an RGB (3-vector)
combiner. The ALPHA (scalar) combiner is very similar, but
because it operates on scalar values it can not perform dot
products. The complexity of this internal structure is the main
feature that distinguishes the register combiner architecture from
most VLIW architectures. In a typical VLIW architecture,
the register-to-register operations are simple, but in the register
combiner architecture they can be quite complex – e.g. the
combination of two dot products, a multiplexing operation, and a
scale/bias.

Table 1 lists the possible combinations of scale, bias, and
clamping operations that can be performed by the input-mapping
units and output-mapping units in a combiner. Note that while
the input-mapping units can be controlled independently, the three
output-mapping units in an RGB or ALPHA combiner share the
same configuration. This coupling introduces added complexity to
the compilation algorithms.

If an RGB or ALPHA combiner’s ADD/MUX unit is not used,
we can split the combiner into two independent pieces. We refer to
each piece as a half combiner, as illustrated in Figure 3. In this case,
we think of the VLIW instruction as controlling up to two half RGB
combiners, and two half ALPHA combiners. Unfortunately, there
is still some potential coupling between half combiners, because
the OUTMAP must be the same in the two halves.

2



Proceedings of 2001 SIGGRAPH/Eurographics Workshop on Graphics Hardware

output
map

output
map

output
map

Register

Register Register

SPARE0.a

Register Register

Register Register

+ , MUX

, DOT*, DOT*

input
map

input
map

input
map

input
map

M
U

X
co

n
tr

o
l

Figure 2: Internal structure of a standard RGB combiner. All
operations are performed on 3-vectors. The DOT/MULTIPLY unit
can be configured to perform either a dot product or a vector
multiply. The ADD/MUX unit can be configured to perform either a
vector add or a vector multiplexing operation. A standard ALPHA
combiner is similar to the standard RGB combiner, but operates on
scalars.

INMAP’s OUTMAP’s
−x 0.5x

max(0, x) 2x
1 − x 4x

±2(x − 1
2
)* 2(x − 1

2
)*

±(max(0, x) − 1
2
)* x − 1

2
*

Table 1: Combiner input mappings (INMAP’s) and output
mappings (OUTMAP’s) other than identity. All mappings clamp to
[-1,1] after completion. The mappings with an asterisk can serve
as either type of mapping (what we call a BOTHMAP) under some
conditions.

An RGB combiner always writes its outputs to the RGB portion
of registers, and an ALPHA combiner always writes its outputs to
the ALPHA portion of registers. The possibilities for combiner
inputs are more complex. An RGB combiner may take an input
from an RGB register, or from an ALPHA register by replicating
the scalar value across all three components. Later, we will refer
to this second possibility as a TRIPLE operation. An ALPHA
combiner may take an input from an ALPHA register, or from the
BLUE component of an RGB register (which we will refer to as a
BLUE operation).

There are several other important properties of the register
combiner architecture. First, if the RGB combiner performs an
ADD in the ADD/MUX unit, it can not perform any dot products.
This restriction allows sharing of the adder hardware. Second,
the result of a DOT operation is replicated across all three RGB
components. Third, the register combiner architecture uses a [-1,1]
range for most values, but uses a [-2,2] range for values between the
MUL/DOT unit and the scale/bias unit. Fourth, the control input

Register

Register Register

, DOT*

OUTMAP

INMAPINMAP

Figure 3: Internal structure of a HALF combiner.

for the MUX unit is always taken from the ALPHA portion of the
SPARE0 register (S0.a). The control input is true if S0.a ≥ 0.5, and
false otherwise.

DirectX 8

Microsoft’s DirectX 8 pixel-shader instructions express a subset
of the capabilities of the NVIDIA register-combiner and texture-
shader OpenGL extensions. Although our compiler does not
currently target DirectX8, we believe that it would be relatively
easy to modify it to do so. The most important change would be
the use of a simpler model for each register combiner.

3 Compilation Overview

We use an example to both illustrate the capabilities of our compiler
and to provide a framework for understanding the compilation task.
Figure 4 shows a shader written in our shading language. Most
of the per-fragment operations expressed in the shading language

// Bump-mapping function
surface float3
lightmodel bumps(float3 a, float3 d, float3 s, texref bumps, floatv uv bumps) {

// Compute normalized tangent-space light vectors
vertex perlight float3 Ltan = tangentspace(L);
vertex perlight float3 Htan = tangentspace(H);
// Lookup from bump map
float4 Nlookup = texture(bumps, uv bumps); // alpha has short len
float3 Nbump = 2.0*(rgb(Nlookup)-triple(0.5));
float N avglen = Nlookup[3]; // Length of mipmap filtered N, before renorm
// Diffuse
perlight fragment float3 Lfrag = Ltan; // Interpolate vertex→ fragment
perlight float NdotL = dot(Nbump, Lfrag);
perlight float shadow = 4*(Lfrag[2] + Lfrag[2]); // Geometric shadow ramp
perlight float3 diff = d * clamp01(NdotL) * clamp01(shadow) * N avglen;
// Specular
perlight float3 Hlookup = cubenorm(Htan); // Interpolate and normalize
perlight float3 Hnorm = 2.0*(Hlookup-.5,.5,.5);
perlight float NdotH = clamp01(dot(Nbump, Hnorm));
perlight float NdotHs = select(Hlookup[2] >= 0.5, NdotH, 0.0);
perlight float NdotH2 = NdotHs * NdotHs;
perlight float NdotH4 = NdotH2 * NdotH2;
perlight float NdotH8 = NdotH4 * NdotH4;
perlight float3 spec = NdotH8 * shadow * s;
// Combine diffuse, specular, and ambient
perlight float3 C = diff + spec;
return integrate(rgb(Cl) * C) + a; // Sum over lights, and add ambient

}

// Surface shader for bowling pin
surface shader float4
bowling pin (texref basemarks, texref decals, texref bumps, float4 uv) {

// Per-vertex texture-coordinate computations omitted for brevity
. . .
// Fragment computations
float4 Decals = texture(decals, uv decals);
float4 BaseMarks = texture(basemarks, uv basemarks);
float Marks = alpha(BaseMarks);
float3 Base = rgb(BaseMarks);
float3 Ma = {.4,.4,.4}; float3 Md = {.5,.5,.5}; float3 Ms = {.3,.3,.3};
float3 Kd = rgb((Decals over {Base, 1.0}) * Marks);
float3 C = lightmodel bumps(Kd * Ma, Kd * Md, Ms, bumps, uv bumps);
return {C, 1.0};

}

Figure 4: Example surface shader (a bump-mapped bowling pin
inspired by [17]). This shader compiles to eight register combiners,
when it is used with a single light shader that returns a per-vertex
light intensity. The clamp01() function clamps a value to the range
[0,1], and the tangentspace() function transforms a vector into local
tangent space.

3



Proceedings of 2001 SIGGRAPH/Eurographics Workshop on Graphics Hardware

are operations such as adds, multiplies, dot products, and texture
lookups. The shading language also allows the user to extract a
scalar from a vector (using the [] index notation), and to join a three-
vector and scalar to form an RGBA four-vector (using the {} join
notation).

When we first decided to build a compiler for the register
combiner architecture, we hoped to adapt dynamic-programming
algorithms to the problem [3]. We had successfully used
these algorithms in our fragment backend for non-programmable
graphics hardware, as had Peercy et al. before us [13]. Both of
these systems used these algorithms to find the lowest-cost set of
rendering passes that could evaluate an expression, by matching
a set of rules describing possible passes (i.e. instructions) to an
expression tree.

However, this strategy proved to be unworkable for the register
combiner architecture. With eight combiners, it isn’t feasible
to treat each rendering pass as a single instruction, because
the instruction would be too complex. This problem can be
partially circumvented by representing the structure of the fragment
pipeline hierarchically, but these hierarchical representations don’t
allow dynamic-programming algorithms to properly track shared
resources, such as interpolants and registers. Furthermore, with
an eight-combiner pipeline it is crucial to be able to work
with expression DAGs as well as expression trees, but the
dynamic-programming algorithms do not support DAGs within a
single instruction.

In general, optimal compilation is an NP hard problem [9]. Code
generation for VLIW architectures is no exception [2]. We chose to
adopt the usual approach to this challenge – we break the problem
into a series of stages based on heuristic algorithms. While this
strategy does not guarantee optimal code, it typically works well.

Our partitioning of the compilation problem roughly matches the
structure of the register-combiner hardware. The five main stages
of our compiler are the following:

1. Extract texture-shader operations. Extract any operations
from the shader’s fragment DAG that must be mapped to
texture shaders rather than register combiners. We use
simple pattern-matching techniques to attempt to compile
these operations into a texture-shader configuration. The
texture-shader hardware is too idiosyncratic to be considered
to be truly programmable, so we will not discuss this part of
the compiler any further.

2. Rewrite DAG to use hardware operations (§4). Rewrite
the fragment DAG to use the basic operations and data types
supported by the register-combiner hardware. The data types
are three-vectors and scalars. The operations include ADD,
MULTIPLY, MUX controlled by compare with 0.5, INMAP,
OUTMAP, etc.

3. Select instructions (§5). Convert the DAG of basic
operations into a DAG of register-to-register operations. That
is, group basic operations together to form partial register
combiners. Each partial combiner is either a half combiner
(no ADD/MUX) or full combiner (uses ADD/MUX). Each
partial combiner is either 3-vector (RGB) or scalar (ALPHA).

4. Allocate pipeline-input registers (§6). Allocate registers for
the values that enter the top of the combiner pipeline. These
values include vertex interpolants, results from the texture
units (or texture shaders), and GeForce1 global constants.
They do not include GeForce3 per-stage constants.

5. Schedule instructions and allocate registers (§7). The
partial combiners from step #3 are placed into specific
positions in the register-combiner pipeline. The compiler also
allocates temporary registers and GeForce3 per-stage constant
registers.

We will describe each of these stages in detail in a corresponding
section of the paper. An important advantage of breaking the

compilation process into multiple stages is the flexibility it allows in
implementing each stage. For example, step #3 from the list above
uses a top-down DAG traversal, but step #5 uses a bottom-up DAG
traversal. If all of these stages were unified into a single compilation
stage, the compiler could only use one traversal order.

Our compiler takes less than one second to compile a shader,
because it uses greedy algorithms rather than exponential-time
algorithms. We have not performed in-depth studies of the
compiler’s running time because the compiler is already fast enough
that it could be invoked every time that a graphics application starts
up.

4 Rewriting the DAG to use Hardware
Operations

The DAG generated by our system’s compiler front end uses
data types and operations that correspond to those supported in
our shading language. However, these data types and operations
do not necessarily have a one-to-one correspondence with basic
capabilities of the register-combiner hardware. For example,
our language can express the addition of two four-vectors as
one operation, but to implement this operation in the combiner
hardware requires that both an RGB and ALPHA combiner be
configured to perform ADD operations. Therefore, the first step
in the code-generation process is to re-write the DAG to use
fundamental combiner operations and data types.

The compiler performs the following transformations:
• The compiler replaces four-vector operations with corre-

sponding combinations of three-vector and scalar operations.
As a side effect, the root node of the DAG is split into a paired
RGB root node and ALPHA root node.

• The compiler recognizes groups of operations that correspond
to combiner input mappings and/or output mappings, and
rewrites them as a single INMAP, OUTMAP, or BOTHMAP
node. A BOTHMAP node indicates an operation that can
be implemented using either an input mapping or an output
mapping. The compiler uses a top-down DAG traversal to
greedily perform this re-write. The compiler gives higher
priority to matches with more complex mappings.

• The compiler recognizes all conversions between 3-vector
and scalar data, and rewrites them to use either a TRIPLE
operation or BLUE operation. Given a scalar x and a three-
vector y, a TRIPLE operation represents y[0]=x; y[1]=x; y[2]=x,
and a BLUE operation represents x=y[2]. These operations
correspond to capabilities of the register-combiner hardware.
An example transformation is the conversion of x * y into
TRIPLE(x) * y. Another example is the conversion of y[0] into
BLUE(DOT(y, {1,0,0}).

• The mathematical dot product operation (MATHDOT) is
rewritten to use the combiner dot product operation (DOT),
which produces a three-vector result. So, MATHDOT(vec3,vec3)
becomes BLUE(DOT(vec3,vec3)).

• The language’s select() operation (which is similar to the
a ? b : c operator in C) is rewritten to use the MUX operation.
The control input to the MUX operation is implicitly tested
against the value 0.5.

When these transformations are applied to the example shader in
Figure 5, the compiler produces the DAG shown in Figure 6.

The strategy for grouping language operations into INMAP,
OUTMAP, and BOTHMAP operations is complex. Some of the
INMAP operations include a clamp to the range [0,1]. If the
compiler can guarantee that the value being operated on is already
in the range [0,1], it is acceptable to use such an INMAP even
though the shader did not explicitly request the clamp. The

4



Proceedings of 2001 SIGGRAPH/Eurographics Workshop on Graphics Hardware

surface shader float4
example(texref tex1, texref tex2, // Specifies textures #1 and #2

vertex float4 uv, vertex float4 c, // Texture coords. and interp. color
primitive group float g1, // Slowly-changing value #1
primitive group float g2) { // Slowly-changing value #2

float4 t1 = texture(tex1, uv);
float4 t2 = 2*(texture(tex2, uv) - {0.5,0.5,0.5,0.5});
float x1 = g1 * t2[2] + g2;
float x2 = dot(rgb(t1), N);
float3 x3 = rgb(t1)*x1 + x2*rgb(t2);
float x4 = c[3]*t1[3];
return {x3, x4};

}

Figure 5: An example shader that we trace through the compilation
process. Since we designed this shader for pedagogical purposes,
it doesn’t make much sense as a shader.

FRAMEBUFFER
RGB ALPHA

RGB A

TRIPLE

BLUE

BOTHMAP
2(x-0.5)

DOT

+

+

*

*

*

*

p-group

p-group

texture

texture

interpolant

interpolant

3-vector
dependency

scalar
dependency

Figure 6: The DAG for the example shader after it has
been rewritten to use combiner operations. Arrows indicate
dependencies (as is customary in DAGs), so the direction of data
flow is against the arrows.

compiler performs an interval-arithmetic analysis on the entire
fragment DAG to detect these cases.

OUTMAP operations include multiply-by-2 and multiply-by-4.
Therefore, a shader may specify a per-fragment multiply by 2.0 or
4.0. The compiler will issue an error for any other per-fragment use
of constants outside the range [-1,1]. It would be possible to support
multiplies by any constant in the range [-4,4] by automatically
factoring the constant (e.g. 3.5x → 4.0 · 0.875x), but the compiler
doesn’t currently perform this transformation.

5 Instruction Selection
(Creating a DAG of register-to-register operations)

Roughly speaking, the next stage of the compilation recognizes
groups of DAG operations that can be mapped to a single register
combiner. For example, the compiler maps a three-vector sum
of products to an RGB register combiner. Thus, this stage of the
compiler decides where to place operations within the structure of
a register combiner.

More precisely, this stage recognizes groups of operations that
can be mapped to a partial register combiner. We define a partial
register combiner as a subset of a combiner that reads one or more
inputs from register(s), operates on them, and writes the result(s)
to registers. Figure 7 shows the six types of partial combiners, and
Figure 8 shows the output of this compilation stage for our example
shader.

FULL
ALPHA

FINAL
RGB

FINAL
ALPHA

Framebuffer Framebuffer

FULL
RGB

HALF
ALPHA

HALF
RGB

Figure 7: The six types of partial combiners that we use to
represent register-to-register operations. In this figure, the outputs
from each combiner are on the top, and the inputs are on the bottom.
Note that the internal structure of a “HALF” combiner is described
earlier, in Figure 3.

FULL
ALPHA

FINAL
RGB

FINAL
ALPHA

FULL
RGB

HALF
ALPHA

HALF
RGB

interpolant

interpolant

RGB A
texture

texture
p-group p-group

FRAMEBUFFER
RGB ALPHA

3-vector
dependency

scalar
dependency

Figure 8: The DAG of partial register combiners for the example
shader. Again, arrows indicate dependencies.

The output of this stage of the compilation is a new DAG
whose nodes consist of partial combiners (i.e. register-to-register
operations). For a conventional VLIW architecture, this com-
pilation step can be greatly simplified or eliminated, because
language operations such as ADD and MULTIPLY already directly
correspond to the architecture’s register-to-register operations. This
direct correspondence is due to the fact that a conventional
VLIW architecture’s functional units always take their inputs
from a register and write their outputs to a register. In
contrast, the register combiner architecture directly connects some
functional-unit outputs to other functional-unit inputs. Some
application-specific signal processor architectures also have this
property [16].

When deciding what algorithm to use for this stage of our
compiler, we considered both dynamic programming algorithms
and greedy algorithms. We decided against using a BURG-style
dynamic programming algorithm [3] because this class of algo-
rithms does not readily support some optimizations we wanted
to perform. More specifically, the BURG-style algorithms have
two shortcomings. First, they work best when an “instruction”
produces only one result, but our FULL combiners produce up to
three results. Second, these algorithms are fundamentally designed
for expression trees rather than expression DAGs, but we need
to support DAG-like behavior (and associated optimizations) even
within a partial combiner. Despite these drawbacks, it would be
possible to design this stage of a register-combiner compiler using
a BURG-style algorithm, and such an approach might be attractive
as part of a retargetable compiler.

We considered several classes of greedy algorithms for this stage
of the compiler. Broadly speaking, these algorithms can work either
from the root of the DAG towards the leaves (top-down) or from
the leaves towards the root (bottom-up). Once these algorithms

5



Proceedings of 2001 SIGGRAPH/Eurographics Workshop on Graphics Hardware

have begun filling a particular partial combiner, they can work
either from the outputs towards the inputs, or from the inputs to
the outputs.

The structure of a partial register combiner is mostly tree-like;
the only exception is the DOT/MUL outputs from a FULL
combiner. Given this tree-like structure, it is natural to work from
the output(s) of a combiner towards the inputs, and this is the
strategy that we chose to use. This traversal direction corresponds
to a top-down traversal of the DAG, which we also chose to use. It
would be possible to combine an outputs-to-inputs combiner-filling
order with a bottom-up DAG traversal, but it would be more
awkward to do so.

Algorithm Details

Our algorithm fills one partial combiner at a time. When it begins
working on a new partial combiner, it starts with one particular
DAG node that it will place in that combiner. The algorithm
chooses this node by taking it from the head of a priority queue.
This queue contains all DAG nodes whose parents have all been
placed into partial combiners. At the start of this compilation stage,
the queue is initialized with the RGB and ALPHA root nodes from
the DAG.

The priority of nodes in the queue is their weighted distance from
the furthest leaf node beneath them. Thus, nodes closer to the root
of the DAG have greater priority. The weight of an ADD or MUX
node is slightly lower than that of other nodes (by epsilon), which
improves compilation quality for some combinations of ADD and
MULTIPLY operations.

Once the compilation algorithm has chosen a particular DAG
node to place into a partial combiner, it continues working on
that partial combiner until it is as full as possible. If the original
DAG node is the root RGB or root ALPHA node, then the partial
combiner is marked as a FINAL RGB or FINAL ALPHA combiner.
Otherwise, the type of combiner is determined by whether or not an
ADD or MUX node is encountered before a MUL or DOT node. In
the first case, a FULL combiner is created and filled, and in the
second case, a HALF combiner is created and filled.

Our algorithm begins at the output of the combiner and works
towards the inputs. For a FULL combiner, the algorithm first
fills the OUTMAP unit; then the ADD/MUX unit; then the left
DOT/MUL unit; then the two INMAP units for this DOT/MUL.
Next, it fills the right DOT/MUL unit and its two INMAP units.
One of the possible choices when “filling” a unit is to configure it
for pass-through.

For a FULL combiner, the two “side” DOT/MUL outputs are
handled specially, because the algorithm never uses them to start
working on a combiner. Instead, these outputs are handled when
the DOT/MUL unit is filled, by checking to see if the relevant
DOT/MUL DAG node has more than one parent (i.e. its result
needs to be stored in a register). There are some additional
complications in this procedure when the combiner’s OUTMAP is
set to something other than pass-through.

As a combiner is filled, the algorithm can dynamically transform
the original DAG in one of two ways to better match the combiner
structure. First, it can move a TRIPLE or BLUE operation leaf-
ward to allow additional operations to be packed into the combiner.
For example the expression y * TRIPLE(INMAP(x)) will be rewritten
as y * INMAP(TRIPLE(x)). The second expression is equivalent to the
first, and matches the combiner structure better.

The second type of DAG transformation is the replication of a
TRIPLE, BLUE, or INMAP node when the node has more than
one parent. This transformation provides each such parent with its
own copy of the node. The compiler performs this transformation
when it is necessary to allow the TRIPLE, BLUE, or INMAP
node to be incorporated into the current partial combiner. In

compiler terminology, this transformation is referred to as forward
substitution [9].

In general, the need to efficiently handle cases where a DAG
node has more than one parent (i.e. its result is used more than
once) adds significant complexity to the compiler. To handle these
cases, the compiler must keep track of which intermediate results
can be stored into a register, and which are blocked from being
stored in a register by other operations that have already been placed
into the combiner.

6 Register allocation for pipeline inputs

The compiler performs most register allocation work at the same
time that it schedules partial combiners into a pipeline (as we will
discuss in section 7). For example, if a variable holds the output of
a partial combiner, the compiler will perform register allocation for
that variable during scheduling.

However, the compiler uses a separate, earlier step to allocate
registers to values that enter the top of the combiner pipeline. We
refer to these values as pass inputs. The pass inputs include vertex-
to-fragment interpolants, results from the texture units (or texture
shaders), and GeForce1 global constants.

The compiler performs this register allocation separately because
there are so many constraints on the allocation, and because good
allocation is often critical to packing as much computation as
possible into a single rendering pass. For example, on a GeForce1,
vertex-to-fragment interpolants must be placed in either the primary
color register (V0) or the secondary color register (V1). But,
these two registers are not interchangeable – V0 supports RGBA
(4-vector) interpolants, but V1 only supports RGB (3-vector)
interpolants. On a GeForce3, the texture registers T0-T3 can also be
used to hold interpolants, by using the texture-shader pass-through
mechanism.

The pass-input register allocations are further constrained
because the RGB and ALPHA portions of a register are often tightly
coupled. For example, allocating a texture register to a texture
lookup is an all-or-nothing proposition. In contrast, it is possible
to allocate the RGB portion of a constant register to a 3-vector,
and allocate the ALPHA portion of that same constant register to
a completely unrelated scalar. Our compiler correctly handles both
of these cases.

We use a greedy algorithm to perform pass-input register
allocation. To allow our algorithms to adapt to different
architectures (GeForce1 vs. GeForce3), we use a fairly general
mechanism to describe the capabilities of each register for each
class of pass inputs.

There are four classes of pass inputs: True constants; primitive-
group values; vertex-to-fragment interpolants; and texture-unit
outputs. For each register and each class of pass inputs, we indicate
which part(s) of the register are available. The two parts are RGB
and ALPHA. So, secondary-color register V1 is marked as having
its RGB part available for vertex-to-fragment interpolants, but not
its (non-existent) ALPHA part. Global constant register C0 is
marked as having RGB and ALPHA available for true constants
and for primitive-group values, but not for vertex-to-fragment
interpolants.

For each class of pass inputs, we also specify whether or not each
of five possible sets of possible manipulations is allowed during
register allocation:

• SPLIT: A single RGBA value can be split up into an RGB
part and an ALPHA part, with each part placed in a different
register. This manipulation is allowed on constants, for
example.

• JOIN: An unrelated RGB and ALPHA value can be allocated
to the same RGBA register. This manipulation is not legal for

6



Proceedings of 2001 SIGGRAPH/Eurographics Workshop on Graphics Hardware

textures, and is only legal for vertex-to-fragment interpolants
when other parts of the compiler support it.

• PRETRIPLE: A scalar value can be replicated across an
RGB register, rather than being provided in an ALPHA
register as is typical.

• SCALAR AS BLUE: A scalar value can be provided in the
BLUE portion of a register.

• BLUE AS ALPHA: The blue part of an RGB value can be
provided via the ALPHA portion of a register, rather than via
the RGB portion as is typical.

The complete details of the greedy pass-input register allocation
algorithm are too complex to provide here, so we will just
summarize it. The algorithm classifies variables into one of several
categories of scheduling difficulty. For example, a four-vector
variable that is not allowed to be SPLIT is put into a more difficult
scheduling category than a scalar variable that is allowed to be
JOIN’d. The compiler first allocates registers to variables in the
hardest category, then proceeds to variables in successively easier
categories.

When it is time for the compiler to assign a particular variable
to a register, the compiler must choose one register from the pool
of not-yet-allocated registers. In general, the greedy algorithm
chooses the least-flexible register that can accommodate the
variable. For example, the compiler prefers to place a three-vector
in an RGB register rather than an RGB+ALPHA register. In some
cases, the compiler bases its choice on comparisons between several
counters that it maintains. These counters provide information
about the number of remaining unscheduled variables and registers
of certain types.

To allow unrelated three-vector and scalar interpolants to be
JOIN’d (that is, to share a register such as V0), the compiler
must modify the per-vertex code so that it combines the unrelated
values into one RGBA value. Our compiler doesn’t yet make this
modification, so JOIN’s are currently forbidden for interpolants.

7 Instruction scheduling and
register allocation

The final major stage in the compilation process is to schedule the
DAG of partial combiners into an ordered pipeline of complete
register combiners. During this stage, the compiler also allocates
temporary registers and GeForce3 per-stage constant registers.
The output of this stage is a complete configuration of the
register-combiner pipeline. Figure 9 illustrates the output of this
stage for our example shader.

The task performed by this stage is very similar to classical
VLIW instruction scheduling and register allocation. Chapter 7 of
Ellis’s book [2] discusses some of these algorithms. The task is
somewhat simpler for the register combiner architecture than it is
for some VLIW architectures because register-combiner operations
always complete in one “cycle”. However, our algorithm must
handle both three-vector and scalar operations, and must properly
cope with various quirks of the register combiner architecture.

Our compiler uses a variant of the operation scheduling approach
to instruction scheduling [2]. Our algorithm repeatedly picks
the deepest (furthest from root) node in the partial-combiner
DAG, and places this node as close as possible to the top of
the register-combiner pipeline. This approach gives the highest
scheduling priority to operations that are part of a long dependency
chain. Since these chains often determine the total number of
combiners required by a shader, it is critical to give them high
priority during scheduling.

Register allocation is performed on the fly, using a simple greedy
algorithm. After scheduling an operation that writes to a register,
the compiler chooses a free register and tentatively reserves it

V0.a = interpolate(c[3])
V1.rgb = interpolate(N)
T0.rgba = texture(tex1, uv)
T1.rgb = texture(tex2, uv)

L0.b = g1
L0.a = g2

C
O

M
B

IN
E

R
#0

#1
F

IN
A

L

V0.rgb = dot(T0.rgb, V1.rgb)
V1.rgb = V0.aaa * T0.aaa

V0.rgb = T0.rgb * T1.aaa +
V0.rgb * 2*(T1.rgb-0.5)

FRAMEBUFFER.rgb = V0.rgb FRAMEBUFFER.a = V1.b

T1.a = L0.a +
(L0.b * 2*(T1.b-0.5))

}

}
per-stage “constants”

pass inputs

RGB ALPHA

Figure 9: The complete pipeline configuration for our example
shader. The compiler has placed both of the HALF combiners
shown in Figure 8 (one RGB and one scalar) into the RGB portion
of combiner #0.

through the end of the combiner pipeline. After all operations that
use this register have been scheduled, the compiler releases the tail
portion of the tentative reservation. We treat RGB registers and
ALPHA registers as completely independent entities. The initial
allocation status of registers is determined by the results from the
pass-input register-scheduling stage described earlier.

We could have used a different VLIW instruction-scheduling
algorithm called list scheduling [9]. For our purpose, the
most important difference between operation scheduling and list
scheduling is that list scheduling finishes filling an entire instruction
(combiner) before moving to the next one. The bookkeeping
required for list scheduling algorithms is simpler than that required
for operation scheduling algorithms. If we were to re-implement
this stage of our compiler, we would consider switching to a
list-scheduling algorithm. However, we do obtain one advantage
from the operation-scheduling algorithm: It more efficiently
supports the lazy insertion of new operations in the DAG to spill
the SPARE0.ALPHA register to other registers. The compiler must
move values in and out of the SPARE0.ALPHA register when
there is contention for it due to its exclusive ability to control the
combiner’s MUX operation.

If the partial-combiner DAG is well balanced (tree-like rather
than chain-like), then any depth-first scheduling algorithm will
use a large number of live temporary registers. We were initially
concerned that this behavior would result in overflow of the register
file for some shaders, but we have not found this problem to occur
in practice. If this behavior had been a problem, we could have used
one of several known strategies for handling it [7, 10].

When our scheduling algorithm attempts to place a partial
combiner as close as possible to the top of the pipeline, it must
honor several constraints:

• The placement must honor the dependency constraints
expressed in the partial-combiner DAG. That is, all inputs to
the combiner must be computed in earlier combiner stages.

• There must be enough free registers for the partial combiner’s
outputs.

• If the partial combiner is a HALF combiner and it is being
paired with another HALF combiner, the OUTMAP’s of the
two partial combiners must be the same.

• If the partial combiner includes a MUX operation, the
control input must be in the SPARE0.ALPHA register. The
register allocator preferentially places control variables in this
register, but there may be contention for the register.

• On GeForce3, the set of partial combiners (both RGB and
ALPHA) that are scheduled into the same complete combiner

7



Proceedings of 2001 SIGGRAPH/Eurographics Workshop on Graphics Hardware

must not require a total of more than two RGBA per-stage
constants. The compiler uses the algorithm described in §6
to perform the optimized allocation of each stage’s constant
registers.

The compiler typically schedules scalar operations into ALPHA
combiners, but under some circumstances the compiler will
schedule a scalar operation into an RGB combiner. When checking
to see if a scalar operation can be placed into a particular pipeline
stage, the compiler first tries the ALPHA combiner, then the RGB
combiner. The compiler will only use the RGB combiner if the
combiner can be configured to produce the desired scalar result in
all three RGB components. The first version of our compiler did
not have this capability, but we found it to be important for shaders
with a high ratio of scalar operations to vector operations.

8 Efficiency of Generated Code

The code generated by our compiler is efficient, as compared with
manually-generated code for the same algorithm. The bowling-pin
shader in Figure 4 compiles to eight register combiners. By using
the compiler’s output to guide source-code-level optimizations in
the shader, it is possible to reduce it to seven combiners, with the
side effect that the optimized source code is messier. We have not
been able to do any better by hand coding the shader, although a
hand-coded shader could use the final combiner in place of one of
the standard combiners.

We have found this result to be typical. Usually the number
of combiners required by a complex shader is determined by the
longest dependency chain in the computation. Since the compiler
schedules operations in this chain first, it usually schedules them
well.

The user must modify the shader source code to perform
optimizations that the compiler can not perform. In particular:

• The compiler can not design algorithms that map well to
register combiners. The algorithm that we use in our
bump-mapping routine was designed for register combiners
[6], and thus shaders that call this routine usually compile
well. Note that using a high-level language for hand-crafting
of shader routines allows the compiler to efficiently combine
these routines with other code, which would not be possible if
the hand-crafted routines were written in assembly language.

• We forbid the compiler from reordering computations, just
as ANSI C forbids compilers from doing so. Given the
limited precision and range of register-combiner data types,
we believe it would be unwise to allow the compiler to
reorder operations that are mathematically commutative or
associative, but not computationally so. When we manually
optimize at the source-code level, we typically reorder
computations to better match the sum-of-products structure of
the register combiners, and to reduce the length of dependency
chains.

• Given the constraints of our overall system design, the
compiler can not reorganize texture data. A common
optimization that we perform manually is to combine an RGB
texture with a scalar texture to make a single RGBA texture.

9 Discussion

Vectors and Scalars

We were surprised to find that it is common for shaders to
use more scalar operations than three-vector operations. Most
shaders that use the register-combiner bump-mapping algorithm
fall into this category, as do some shaders that we have written

for volume rendering. By enhancing our compiler’s scheduler to
allow it to place a scalar computation into an RGB combiner, we
significantly reduced the total number of combiner stages required
by these shaders. In retrospect, perhaps we should have anticipated
this situation, since scalar operations are common in RenderMan
shaders.

This common use of scalar operations has implications for
any programmable fragment architecture that supports fine-grained
SIMD computations (i.e. operations on 3-vectors or 4-vectors).
With a naive compiler and hardware, the utilization of the
hardware’s functional units will be poor for scalar computations. To
improve utilization, either the compiler must group unrelated scalar
computations together into vectors, or the hardware must perform
some run-time scheduling of functional units. For hardware
that supports general dependent texture reads, this same potential
for under-utilization occurs with two-vector texture-coordinate
computations (which we plan to support in our shading language
by adding a float2 data type).

Compiler Complexity and Hardware

Our compiler is complex, and it is worthwhile to examine some
of the forces that drove this complexity. Broadly speaking, these
forces fall into three categories: Those that are specific to the
register combiner architecture, those that are specific to VLIW
fragment architectures, and those that will be common to almost
any fragment-processing architecture.

Much of the complexity in our compiler is driven by the large
variety of data types it supports. Almost all graphics hardware has
some support for data-parallel computations on short vectors. To
compile efficiently to such hardware, code generation and register
allocation algorithms must support scalars, three-vectors and four-
vectors. These algorithms are more complex than equivalent scalar-
only algorithms.

This inherent complexity is aggravated by the strange swizzling
capabilities of the register combiner architecture. For example,
the architecture can perform a scalar computation directly on the
BLUE component of an RGB value, but not on the RED or GREEN
components. The DirectX8/NVIDIA vertex program architecture
[8] provides a more orthogonal set of swizzling capabilities.

The register combiner architecture uses an enormous variety of
precisions and ranges for data at different points in the pipeline.
Unfortunately, these data types are not orthogonal to operations
(e.g. add, multiply, interpolate), so it is impossible to cleanly and
efficiently expose the data types at the language level. Table 2
shows the scope of this problem. In some cases, we have been
able to partially work around the limitations of the architecture. For
example, our compiler automatically collapses constants and vertex
interpolants into a [0,1] range then uses combiner input mappings
to expand them back to [-1,1]. However, we have not been able to
find a reasonable strategy for abstracting the [-1,1] and [-2,2] ranges
that are supported within a combiner, so we just directly expose the
combiner behavior to the user. We hope that future architectures
will eliminate this problem by orthogonally supporting a small
number of data types. Furthermore, we encourage all hardware
vendors to agree on a single set of these data types, so that they
can be exposed in portable shading languages and API’s.

In order to virtualize hardware resources using multi-pass ren-
dering, the hardware must be able to store data in the framebuffer
using any of the hardware’s data types. The GeForce3 lacks this
capability for its high-precision texture-shader intermediate results,
and thus it is impossible to properly virtualize the texture-shader
hardware. This inability to store certain intermediate results in the
framebuffer also makes it difficult to debug shaders.

VLIW architectures are inherently more difficult to target
than RISC-like architectures, because the compiler must extract

8



Proceedings of 2001 SIGGRAPH/Eurographics Workshop on Graphics Hardware

Range Where it occurs
[−1,1] registers, most computations, GeForce3 textures

[0,1] interpolants, constants,
GeForce1 textures, final combiner inputs

[−2,2] output of ADD and DOT units
[0,4] intermediate result in final RGB combiner

Table 2: Numeric ranges in the register combiner architecture and
where they occur.

instruction-level parallelism from the user’s code. It is not clear that
VLIW instruction sets are the best choice for graphics architectures,
because concurrent processing of multiple fragments or vertices can
provide enormous parallelism without relying on instruction-level
parallelism [8].

The register combiner architecture is a particularly complex
VLIW architecture because the inputs and outputs of some
functional units are not directly connected to a register file.
Although this property of the architecture makes compilation more
difficult, it has the obvious advantage that it allows a greater fraction
of the hardware’s gates to be used for functional units, rather than
register files.

Hardware Resource Constraints

The key resource constraints in a register-combiner pipeline are
combiners, registers, and pass inputs (interpolants and textures).
The two standard combiners in the GeForce1 pipeline are not
sufficient to write really interesting shaders, but the eight combiners
in the GeForce3 pipeline allow enormous creativity in shader
design. On a GeForce3, we have found that pass inputs are
generally the most critical resource, but that in some cases we run
out of combiners. We have not found any shader that runs out of
temporary registers before other resources.

10 Conclusion

We have demonstrated that it is possible to efficiently compile
shaders written in a high-level shading language to a programmable
fragment pipeline. The user can perform additional hand
optimization at the source-code level, avoiding the need to abandon
the high level language to achieve maximum performance. Our
programmable-shading system is available for download on the
Internet at http://graphics.stanford.edu/projects/shading.

We hope that the task of building a compiler for future fragment
architectures will be easier, because Moore’s law provides hardware
vendors with the opportunity to design more powerful hardware
with cleaner programming interfaces. As real-time shading
languages become more widely used, we also expect that compiler
issues will be considered during the hardware design process. The
coupling of hardware and compiler design has strongly influenced
CPU architectures over the past fifteen years, and we believe that
compiler technology will similarly influence the design of graphics
hardware.

11 Acknowledgments

Pradeep Sen and Ren Ng helped to debug this compiler, sometimes
involuntarily. Pat Hanrahan and the members of the Stanford
graphics hardware group made numerous useful suggestions as we
built this compiler. An early discussion with Reinhard Wilhelm and
Philipp Slusallek helped us decide how to partition the compilation
problem.

This research was performed as part of the Stanford real-time
programmable shading project, which is sponsored by ATI,
NVIDIA, SONY, and Sun.

We thank Matt Papakipos, Mark Kilgard, Svetoslav Tzvetkov,
and Nick Triantos for numerous valuable discussions, and for
providing us with extraordinary access to hardware, drivers, and
bug fixes.

References
[1] Anthony A. Apodaca and Larry Gritz. Advanced RenderMan:

Creating CGI for motion pictures. Morgan Kaufmann, 2000.
[2] John R. Ellis. Bulldog: A compiler for VLIW architectures. MIT Press,

1986.
[3] Christopher Fraser and David Hanson. A Retargetable C Compiler:

Design and Implementation. Addison-Wesley, 1995.
[4] Pat Hanrahan and Jim Lawson. A language for shading and lighting

calculations. Computer Graphics (Proceedings of SIGGRAPH 90),
24(4):289–298, August 1990.

[5] Paul Jaquays and Brian Hook. Quake 3: Arena Shader Manual,
Revision 10, September 1999.

[6] Mark J. Kilgard. A practical and robust bump-mapping technique
for today’s GPU’s. Technical report, NVIDIA Corporation, February
2000. Available at http://www.nvidia.com/.

[7] T. Kiyohara and J. Gyllenhaal. Code scheduling for VLIW/superscalar
processors with limited register files. In Proceedings of the 25th
Annual Workshop on Microarchitecture (MICRO 92), pages 197–201,
Portland, OR, December 1992.

[8] Erik Lindholm, Mark J. Kilgard, and Henry Moreton. A
user-programmable vertex engine. In Computer Graphics Annual
Conference Series (Proceedings of SIGGRAPH 2001), Los Angeles,
CA, August 2001.

[9] Steven S. Muchnick. Advanced compiler design and implementation.
Morgan Kaufmann, 1997.

[10] Cindy Norris and Lori L. Pollock. An experimental study of several
cooperative register allocation and instruction scheduling strategies.
In Proceedings of the 28th Annual Workshop on Microarchitecture
(MICRO 95), pages 169–179, Ann Arbor, MI, December 1995.

[11] NVIDIA Corporation. NVIDIA OpenGL Extension Specifications,
March 2001.

[12] Marc Olano and Anselmo Lastra. A shading language on graphics
hardware: The PixelFlow shading system. In Computer Graphics
Annual Conference Series (Proceedings of SIGGRAPH 98), pages
159–168, Orlando, FL, July 1998.

[13] Mark Peercy, Marc Olano, John Airey, and Jeff Ungar. Interactive
multi-pass programmable shading. In Computer Graphics Annual
Conference Series (Proceedings of SIGGRAPH 2000), pages 425–
432, New Orleans, LA, July 2000.

[14] Ken Perlin. An image synthesizer. Computer Graphics (Proceedings
of SIGGRAPH 85), 19(3):287–296, July 1985.

[15] Kekoa Proudfoot, William R. Mark, Svetoslav Tzvetkov, and Pat
Hanrahan. A real-time procedural shading system for programmable
graphics hardware. In Computer Graphics Annual Conference Series
(Proceedings of SIGGRAPH 2001), Los Angeles, CA, August 2001.

[16] Ken Rimey and Paul N. Hilfinger. Lazy data routing and
greedy scheduling for application-specific signal processors. In
Proceedings of the 21st Annual Workshop on Microprogramming
and Microarchitecture (MICRO 88), pages 111–115, San Diego, CA,
November 1988.

[17] Steve Upstill. The RenderMan companion: A Programmer’s Guide to
Realistic Computer Graphics. Addison-Wesley, 1990.

9


