Multi-perspective panoramic imaging: The Stanford-Google CityBlock Project

Marc Levoy Augusto Romàn Gaurav Garg

Computer Science Department Stanford University

A Stanford-Google collaboration

• goal

 to obtain a useful visual representation of every commercial city block in the United States

- applications
 - graphical yellow-pages associate images with web sites
 - in-car navigation get a picture of the place you' re going

• prototype

– digitize San Francisco by Summer 2005

The historical solution: panoramic maps

[Munster, 1549]

[Glover, 1888]

+ clearly depicts features of interest- laborious to create

Aerial photography

http://www.keyhole.com/

- + feels like flying
- not like driving or walking

360-degree panoramas

http://www.cambridgelive.co.uk

+ like being there

- but only at the street corners

Sequence of eye-level images

http://www.pagesjaunes.fr/

- + every building clearly shown
- no continuity

Eye-level photomosaics

http://www.seamlesscity.com/

- + buildings shown in context
- seams placed manually

A texture-mapped 3D model of Berkeley [Zakhor, 2004]

range data from airborne laser

triangulation

simplification

3D model + aerial photograph

Street-level acquisition [Zakhor, 2004]

3D model + street-level photograph

How good does it look?

- from the air: pretty good
- from the street: not as good

How good does it look?

- but good enough for an in-car display?
- and it looks like the view you see from your car

Other problems with 3D models

- unexpected objects embedded in model
- trees and other occluders create holes

© 2004 Marc Levoy

Our approach: multiperpective panoramas

- capture video while driving
- extract middle column from each frame
- stack them to create a panorama

Our approach: multiperpective panoramas

Our approach: multiperpective panoramas

© 2004 Marc Levo

Glide projections

left glide projection

centered glide projection

right glide projection

Cross-slit projection

Def: set of all lines connecting two line segments in general position

- applications
 - city street
 - museum gallery
 - neolithic or beauty cave
 - underwater shipwreck
 - mile-long coral reef
 - artery or intestine

[Zomet03]

Technical challenges

- pose estimation
- high dynamic range
- perspective distortion

No pose estimation [Zheng03]

© 2004 Marc Levoy

Pose from image matching

Pose from image matching

Pose from image matching

Pose estimation failure

Pose from active sensors

GPS + IMU + LIDAR + image

High dynamic range video

Basler A504kc

Low exposure

Medium exposure

High exposure

High dynamic range panoramas

single exposure

three exposures, combined and tone-mapped

Distortion in pushbroom panoramas

Interactive design of multi-perspective panoramas [Roman et al., Visualization 2004]

© 2004 Marc Levoy

Digitizing the United States

- 2.6 million miles of paved roads in the U.S.¹
- 900,000 miles of urban streets
- 180,000 hours at 10 mph (both sides of street)
- 50 vehicles × 6 hours/day × 600 days

¹ <u>http://www.bts.gov/publications/national_transportation_statistics/2003/html/table_01_05.html</u>

Digitizing San Francisco

- 950 miles of streets¹
 (~50% are commercial)
- 190 hours at 10 mph (both sides of street)
- 1 vehicle ×
 6 hours/day ×
 15 days
- 7,200 commercial blocks ×
 2 sides = 14,400 panoramas

The vehicle

- Sebastian Thrun's modified Volkswagen Toureg
- GPS + IMU + odometry + LIDAR + high-speed video
- <u>not</u> autonomous in S.F!

Storage requirements

raw video (compressed 20:1)

 San Francisco
 4 terabytes
 U.S.
 1.6 petabytes

panoramas (compressed 5:1)
 – San Francisco 50 gigabytes
 – U.S. 20 terabytes

Social issues

- avoid residential streets?
- 1st storey of buildings only?
- pixelate people and license plates?

Aesthetic issues: removing foreground objects

people

- reshoot to remove the big occluders
- small ones give a sense of place, and they' re hard to remove!

• aligning and blending videos

aligning and blending videossegmenting stores, OCRing addresses

- aligning and blending videos
- segmenting stores, OCRing addresses
- visualizing cityscapes

2004 Mar

- aligning and blending videos
- segmenting stores, OCRing addresses
- visualizing cityscapes
- rural highways (from forward-looking video?)
- linear panoramas of rivers, ski slopes, corals reefs, underwater shipwrecks, etc.

While we' re out there...

• other sensing modalities

- omni-directional video
- sound
- weather, air quality
- signal strength: cell phone / Wi-Fi / GPS / etc.
- easily derived data
 - driving speed \rightarrow traffic
 - $-3D \mod \rightarrow \text{ lines of sight (need aerial data?)}$
 - count parked cars, garages, people, graffiti
 - changes over time

Search images by...

- link to specific web site
- street address
- telephone number
- latitude / longitude / time
- category ("pizza"), type ("cheap"), brand ("Pizza Hut"), feature ("red roof")
- search for other images like this one

http://graphics.stanford.edu/projects/cityblock