
SIMD Column�Parallel Polygon Rendering

by

Matthew Willard Eldridge

Submitted to the Department of Electrical Engineering and Computer

Science

in partial ful�llment of the requirements for the degrees of

Bachelor of Science

and

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May ����

c� Matthew Willard Eldridge� MCMXCV� All rights reserved�

The author hereby grants to MIT permission to reproduce and

distribute publicly paper and electronic copies of this thesis document

in whole or in part� and to grant others the right to do so�

Author �

Department of Electrical Engineering and Computer Science

May ��� ����

Certi�ed by �

Seth Teller

Assistant Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Certi�ed by �

Elizabeth C� Palmer

Director� Employment and Development� David Sarno� Research

Center

Company Supervisor

Accepted by �

Frederic R� Morgenthaler

Chairman� Departmental Committee on Graduate Students

�

SIMD Column�Parallel Polygon Rendering

by

Matthew Willard Eldridge

Submitted to the Department of Electrical Engineering and Computer Science

on May ��� ����� in partial ful�llment of the

requirements for the degrees of

Bachelor of Science

and

Master of Science

Abstract

This thesis describes the design and implementation of a polygonal rendering system
for a large one dimensional single instruction multiple data �SIMD� array of pro	
cessors
 Polygonal rendering enjoys a traditionally high level of available parallelism�
but e�cient realization of this parallelism requires communication
 On large systems�
such as the ����processor Princeton Engine studied here� communication overhead
limits performance

Special attention is paid to study of the analytical and experimental scalability
of the design alternatives
 Sort�last communication is determined to be the only
design to o�er linear performance improvements in the number of processors
 We
demonstrate that sort��rst communication incurs increasingly high redundancy of
calculations with increasing numbers of processors� while sort�middle communication
has performance linear in the number of primitives and independent of the number
of processors
 Performance is thus be communication�limited on large sort��rst and
sort�middle systems

The system described achieves interactive rendering rates of up to �� frames per
second at NTSC resolution
 Scalable solutions such as sort�last proved too expensive
to achieve real�time performance
 Thus� to maintain interactivity a sort�middle
render was implemented
 A large set of communication optimizations are analyzed
and implemented under the processor�managed communication architecture

Finally a novel combination of sort�middle and sort�last communication is pro	
posed and analyzed
 The algorithm e�ciently combines the performance of sort�
middle architectures for small numbers of processors and polygons with the scala	
bility of sort�last architectures for large numbers of processors to create a system
with speedup linear in the number of processors
 The communication structure is

substantially more e�cient than traditional sort�last architectures both in time and
in memory

Thesis Supervisor� Seth Teller

Title� Assistant Professor of Electrical Engineering and Computer Science

Company Supervisor� Elizabeth C
 Palmer

Title� Director� Employment and Development� David Sarno� Research Center

SIMD Column�Parallel Polygon Rendering

by

Matthew Willard Eldridge

Submitted to the Department of Electrical Engineering and Computer Science

on May ��� ����� in partial ful�llment of the

requirements for the degrees of

Bachelor of Science

and

Master of Science

Abstract

This thesis describes the design and implementation of a polygonal rendering system
for a large one dimensional single instruction multiple data �SIMD� array of pro	
cessors
 Polygonal rendering enjoys a traditionally high level of available parallelism�
but e�cient realization of this parallelism requires communication
 On large systems�
such as the ����processor Princeton Engine studied here� communication overhead
limits performance

Special attention is paid to study of the analytical and experimental scalability
of the design alternatives
 Sort�last communication is determined to be the only
design to o�er linear performance improvements in the number of processors
 We
demonstrate that sort��rst communication incurs increasingly high redundancy of
calculations with increasing numbers of processors� while sort�middle communication
has performance linear in the number of primitives and independent of the number
of processors
 Performance is thus be communication�limited on large sort��rst and
sort�middle systems

The system described achieves interactive rendering rates of up to �� frames per
second at NTSC resolution
 Scalable solutions such as sort�last proved too expensive
to achieve real�time performance
 Thus� to maintain interactivity a sort�middle
render was implemented
 A large set of communication optimizations are analyzed
and implemented under the processor�managed communication architecture

Finally a novel combination of sort�middle and sort�last communication is pro	
posed and analyzed
 The algorithm e�ciently combines the performance of sort�
middle architectures for small numbers of processors and polygons with the scala	
bility of sort�last architectures for large numbers of processors to create a system
with speedup linear in the number of processors
 The communication structure is

substantially more e�cient than traditional sort�last architectures both in time and
in memory

Thesis Supervisor� Seth Teller

Title� Assistant Professor of Electrical Engineering and Computer Science

Company Supervisor� Elizabeth C
 Palmer

Title� Director� Employment and Development� David Sarno� Research Center

Acknowledgments

I would like to thank David Sarno� Research Center and the Sarno� Real Time Cor	

poration for their support of this research
 In particular� Herb Taylor for his expertise

in assembly level programming of the Princeton Engine and many useful discussions�

Jim Fredrickson for his willingness to modify the operating system and programming

environment during development of my thesis� Joe Peters for his patience with my

complaints� and Jim Kaba for his tutoring and frequent insights
 I would like to

thank Scott Whitman for many helpful discussions about parallel rendering and so

willingly sharing the Princeton Engine with me
 Thanks to all my friends at David

Sarno� Research Center and Sarno� Real Time Corporation� you made my work and

research very enjoyable

I would like to thank my advisor� Seth Teller� for providing continual motivation to

improve and extend my research
 Seth has been a never ending source of suggestions

and ideas� and an inspiration

Most of all� a special thank you to my parents for supporting me here during my

undergraduate years and convincing me to pursue graduate studies
 Without their

love and support I would have never completed this thesis

This material is based upon work supported under a National Science Foundation

Graduate Research Fellowship
 Any opinions� �ndings� conclusions or recommenda	

tions expressed in this publication are those of the author and do not necessarily

re�ect the views of the National Science Foundation

�

Contents

� Introduction ��

�
� Background ��

�
�
� Hardware Approaches ��

�
�
� Software Approaches ��

�
� Overview ��

� Princeton Engine Architecture ��

�
� Processor Organization ��

�
� Interprocessor Communication �

�
� Video I�O � Line�Locked Programming � � � � � � � � � � � � � � � � ��

�
 Implementation ��

� Graphics Pipeline ��

�
� UniProcessor Pipeline �

�
�
� Geometry �

�
�
� Rasterization �

�
�
� Details ��

�
� MultiProcessor Pipeline ��

�
�
� Communication ��

�
�
� Geometry ��

�
�
� Rasterization ��

�
� Summary ��

�

� Scalability ��

� Geometry ��

� Rasterization ��

� Communication �

�
� Model �

�
� Sort�First ��

�
� Sort�Middle ��

�
 Sort�Last ��

 Analysis ��

� Sort�First vs
 Sort�Middle �

� Sort�Last� Dense vs
 Sparse �

� Sort�Middle vs
 Dense Sort�Last � � � � � � � � � � � � � � � � ��

� Summary ��

� Communication Optimizations ��

�
� Sort�Middle Overview ��

�
� Dense Network ��

�
� Distribution ��

�
 Data Duplication ��

�
� Temporal Locality ��

�
� Summary ��

� Sort	Twice Communication �
�

�
� Why is Sort�Last so Expensive� ���

�
� Leveraging Sort�Middle ���

�
� Sort�Last Compositing ��

�
 Sort�Twice Cost ���

�
� Deferred Shading and Texture Mapping � � � � � � � � � � � � � � � � � ���

�
� Performance ���

�
� Summary ���

�

� Implementation ���

��� Parallel Pipeline ���

��� Line�Locked Programming ���

��� Geometry ��	

����� Representation ��	

����� Transformation ���

����� Visibility
 Clipping ���

����� Lighting ���

����� Coecient Calculation ���

��� Communication ���

����� Passing a Single Polygon Descriptor � � � � � � � � � � � � � � � ���

����� Passing Multiple Descriptors ���

��� Rasterization ���

����� Normalize Linear Equations ���

����� Rasterize Polygons ��	

����� Rasterization Optimizations ���

����� Summary ���

��� Control ���

��� Summary ���

� Results ���

��� Raw Performance ���

����� Geometry ��	

����� Communication ��	

����� Rasterization ���

����� Aggregate Performance ���

��� Accounting ���

��� Performance Comparison ���

�

� Future Directions ���

��� Distribution Optimization ���

��� Sort�Twice ��	

��� Next Generation Hardware ��	

�� Conclusions ���

A Simulator ���

A�� Model ���

A���� Input Files ���

A���� Parameters ���

A�� Operation ��	

A���� Data Initialization
 Geometry � � � � � � � � � � � � � � � � � ��	

A���� Communication ���

A���� Rasterization ���

A�� Correctness ���

A�� Summary ��	

�	

List of Figures

��� Princeton Engine Video I�O ��

��� Princeton Engine ��

��� Communication Options on the Princeton Engine � � � � � � � � � � � ��

��� Princeton Engine ��

��� Synthetic Eyepoint ��

��� Beethoven ��

��� Crocodile ��

��� Teapot ��

��� Texture Mapped Crocodile ��

��� Sample Texture Image ��

��� Uniprocessor Geometry Pipeline ��

��� �D Perspective Transformation ��

��� Polygon Linear Equations ��

���	 Triangle De�nition by Half�Plane Intersection � � � � � � � � � � � � � ��

���� Uniprocessor Rasterization �	

���� Sort Order ��

���� SIMD Geometry Pipeline ��

���� SIMD Rasterization ��

��� Sort�First Load Imbalance ��

��� Sort�Middle ��

��� Communication Costs ��

��

��� Communication Optimizations �	

��� Sort�Middle Communication ��

��� Simulation of Sparse vs� Dense Networks � � � � � � � � � � � � � � � � ��

��� Pass Cost ��

��� i� vs� d for Distribution Optimization � � � � � � � � � � � � � � � � � � ��

��� Polygon Duplication ��

��� Polygons Per Processor vs� m ��

��� Instructions Per Polygon as a function of m and d � � � � � � � � � � � ��

��� Temporal Locality ��

��� Multiple Users on a Parallel Polygon Renderer � � � � � � � � � � � � � �	�

��� Sort�Last Compositing �	�

��� Pixel to Processor Map �	�

��� Sort�Twice Compositing Time �	�

��� Predicted Sort�Middle vs� Sort�Twice Communication Time � � � � � ���

��� Simulated Sort�Middle vs� Sort�Twice Communication Time � � � � � ���

��� Simulated Sort�Middle vs� Sort�Twice Execution Time � � � � � � � � ���

��� Beethoven ���

��� Crocodile ���

��� Texture Mapped Crocodile ���

��� Teapot ���

��� Polygon Representation ���

��� Polygon Descriptor ���

��� Implementation for Data Distribution � � � � � � � � � � � � � � � � � � ���

��� Linear Equation Normalization ���

��� Rasterizing ���

���	 Virtual Trackball Interface ���

��� Execution Pro�le ���

��

A�� Bounding�box Input File ���

A�� Sample Screen Map ���

A�� Simulator Model ���

A�� Destination False Positive ���

A�� Simulator Communication ���

A�� Destination Vector Alignment ���

A�� Destination Vector for g �� ���

��

��

List of Tables

��� Communication Modeling Variables ��

��� Communications Costs ��

��� Communication Modeling Values ��

��� Rendering Performance for Typical Scenes � � � � � � � � � � � � � � � ���

A�� Simulator Parameters ���

��

��

Chapter �

Introduction

This thesis explores the implementation of an interactive polygonal renderer on the

Princeton Engine� a �	���processor single�instruction multiple�data �SIMD� parallel

computer� Each processor is a simple arithmetic core able to communicate with its

left and right neighbors�

This is an important architecture on which to study the implementation of polygon

rendering� for many reasons�

� The interprocessor communication structure is simple and inexpensive� making

the construction of larger systems practical� with cost linear in the number of

processors�

� The use of SIMD processors allows very carefully managed communication to

be implemented� and a�ords signi�cant opportunities for optimizations�

� Current polygon rendering algorithms and architectures often exhibit poor scal�

ability� and are designed with large and expensive crossbars to insure adequate

interprocessor bandwidth� A reduction in the amount of communication re�

quired and the careful structuring of the communication algorithm� as man�

dated by the modest communication resources of the Princeton Engine� will

have large e�ects on the feasibility of future larger machines�

��

Many parallel renderers have been implemented� but most were either executed

on smaller machines or on machines with a higher dimension communication network

than the Princeton Engine� The use of a large machine with narrow interconnect such

as the Princeton Engine makes the polygon rendering problem signi�cantly di�erent�

Polygon rendering provides a viewport into a three�dimensional ��D� space on a

two�dimensional ��D� display device� The space may be of any sort� real or imagined�

There are two broad approaches taken to polygon rendering� realism and interactivity�

Realism requires precise and generally expensive computation to accurately model a

scene� Interactivity requires real�time computation of a scene� at a possible loss of

realism�

Polygon rendering models a scene as composed of a set of polygons in �D being

observed by a viewer from any arbitrary location� Geometry computations trans�

form the polygonal scene from a �D model to a �D model and then rasterization

computations render the �D polygons to the display device� Both the geometry and

the rasterization computations are highly parallel� but their parallelization exposes a

sorting problem� Polygon rendering generally relies on the notion of polygons being

rendered in the �correct� order� so that polygons nearer to the observer�s viewpoint

obscure polygons farther away� If the polygon rendering process is distributed across

processors this ordering constraint will require interprocessor communication to re�

solve�

The ordering constraint is generally resolved in one of three ways� referred to

by where they place the communication in the rendering process� Sort��rst and

sort�middle algorithms place polygons that overlap once projected to the screen on

the same processor for rasterization so that the occlusion can be resolved with local

data� Sort�last rasterizes each polygon on the processor that performs the polygon�s

geometry calculations� and then uses pixel by pixel information after the fact to

combine all of the processor�s rasterization results� The advantages and disadvantages

of these approaches are discussed� both in general� and with a speci�c focus on an

ecient implementation on the Princeton Engine�

��

A major goal of this thesis is to �nd and extract scalability from the explored com�

munication algorithms� so that as the number of processors increases the rendering

performance will increase commensurately� We demonstrate that for some communi�

cation approaches� most notably sort�middle� the communication time is linear in the

number of polygons and independent of the number of processors� Without some care

communication can dominate execution time of polygon rendering on large machines�

Sort�last algorithms make constant�time communication possible� independent of

both the number of polygons and the number of processors� but unfortunately the

constant cost is very large�

A novel combination of sort�middle and sort�last communication is proposed and

analyzed to address the problem of �nding scalable communication algorithms� The

algorithm e�ciently combines the performance of sort�middle architectures for small

numbers of processors and polygons with the scalability of sort�last architectures to

create a system with performance linear in the number of processors�

The system described in this thesis achieves interactive rendering rates of up to ��

frames per second� To maintain interactivity a sort�middle render was implemented�

as scalable solutions such as sort�last proved too expensive to achieve real�time per�

formance� A large set of optimizations are analyzed and implemented to address the

scalability problems of sort�middle communication�

This thesis signi�cantly di	ers from current work on parallel polygon render�

ing� Contemporary parallel rendering focuses very heavily on multiple�instruction

multiple�data
MIMD� architectures with large� fast and expensive networks� We

have instead pursued a SIMD architecture with a rather narrow network� Back�

ground is provided for software and hardware parallel renderers� both of which have

signi�cantly in�uenced this work�

�

��� Background

Polygon rendering systems vary widely in their capabilities beyond just painting poly�

gons on the screen� The most common features found in most of the systems described

below include�

Depth Bu�ering A pixel�by�pixel computation of the distance of the polygon from

the users eye is stored in a �depth bu	er�� Polygon are only rendered at the

pixels where they are closer to the observer than the previously rendered poly�

gons�

Smooth Shading The color of the polygon is smoothly interpolated between the

vertices to give the impression of a smoothly varying surface� rather than a

surface made up of �at�shaded planar facets�

Texture Mapping The color of the polygon is replaced with an image to increase

the detail of the scene� For example� an image can be texture mapped onto a

billboard polygon�

More complex capabilities are present in many of the systems and� while tech�

nically interesting� are left unaddressed as they don�t bear directly on the polygon

rendering system described herein�

There have been numerous parallel polygon rendering systems built� I will discuss

some of them here� and provide references to the literature� It is signi�cant that

most of the work deals either with large VLSI systems� or MIMD architectures with

powerful individual nodes� and a rich interconnection network� This thesis bridges

the gap between these approaches� merging the very high parallelism of hardware

approaches with the �exibility of software approaches�

����� Hardware Approaches

High performance polygon rendering has traditionally been the domain of special

purpose hardware solutions� as hardware can readily provide both the parallelism

��

required and the communication bandwidth necessary to fully exploit the parallelism

in polygon rendering� Turner Whitted provides a survey of the ��� state of the art

in hardware graphics architectures in ����

I will brie�y discuss three speci�c systems here� the PixelFlow architecture from

the University of North Carolina� and two architectures from Silicon Graphics� Inc��

the IRIS �D�GTX and the Reality Engine� All of the architectures provide interactive

rendering with various degrees of realism�

PixelFlow

PixelFlow� described in ��� and ���� is a large�scale parallel rendering system based

on a sort�last compositing architecture� It provides substantial programmability of

the hardware� and at a minimum performs depth bu	ering� smooth shading and

texture mapping of polygons�

PixelFlow is composed of a pipeline of rendering boards� Each rendering board

consists of a RISC processor to perform geometry calculation and a ��� �� SIMD

array of pixel processors that rasterize an entire polygon simultaneously� providing

parallelism in the extreme� The polygons database is distributed arbitrarily among

the rendering boards to achieve an even load across the processors� After rendering

all of its polygons each rendering board has a partial image of the screen� correct only

for that subset of the polygons it rendered� The separate partial images of the screen

are then composited to generate a single output image via a ���� gigabit�second

interconnection bus�

PixelFlow implements shading and texture mapping in two special shading boards

at the end of the pipeline of rendering boards� Each pixel is thus shaded at most once�

eliminating needless shading of non�visible pixels� and the amount of texture memory

required of the system is limited to the amount that will provide su�cient bandwidth

to texture map full resolution images at update rates�

The sort�last architecture provides performance increases nearly linear in the num�

ber of rendering boards and readily admits load balancing� The PixelFlow architec�

�

ture� when complete� is expected to scale to performance of at least � million poly�

gons per second� By comparison the current Silicon Graphics Reality Engine renders

slightly more than million polygons per second�

IRIS �D�GTX

The Silicon Graphics IRIS �D�GTX� described in ���� was �rst sold in ��� and is the

Princeton Engine�s contemporary� The GTX performs smooth shading and depth�

bu	ering of lit polygons and can render over ������ triangles a second� The GTX

provides no texture mapping support�

Geometry computations are performed by a pipeline of � high performance proces�

sors which each perform a distinct phase of the geometry computations� The output

of the geometry pipeline is fed into a polygon processor which dices polygons into

trapezoids with parallel vertical edges� These trapezoids are consumed by an edge

processor that generates a set of vertical spans to interpolate to render each polygon�

A set of � span processors perform interpolation of the vertical spans� Each span

processor is further supported by � image engines that perform the composition of

the pixels with previously rendered polygons and manage the fully distributed frame�

bu	er� The span processors are interleaved column by column of the screen and the

image engines for each span processor are interleaved pixel by pixel� The �ne grain

interleaved interleaving of the span processors and image engines insure that most

primitives will be rasterized in part by all of the image engines�

Communication is implemented by the sort�middle screen�space decomposition

performed between the edge processor and the span processors� This choice� while

limiting the scalability of the system� avoids the extremely high constant cost of

sort�last approaches such as PixelFlow�

Reality Engine

The Reality Engine� described in ��� represents the current high�end polygon render�

ing system from Silicon Graphics� It supports full texture mapping� shading� lighting

��

and depth bu	ering of primitives at rates exceeding one million polygons a second�

Logically the Reality Engine is very similar to the architecture of the GTX� The

��processor geometry pipeline has been replaced by � independent RISC processors

each implementing a complete version of the pipeline� to which polygons are assigned

in a round�robin fashion� A triangle bus provides the sort�middle interconnect be�

tween the geometry engines and a set of up to �� interleaved fragment generators�

Each fragment generator outputs shaded and textured fragments to a set of � im�

age engines which perform multisample antialiasing of the image� and provide a fully

distributed framebu	er� The most signi�cant change from the GTX are the frag�

ment generators� which are the combination of of the span processors and the edge

processors�

The texture memory is fully duplicated at each of the �� fragment generators to

provide the high parallel bandwidth required to access textures at full throttle by all

fragment generators� and as such the system operates with little performance penalty

for texture mapping�

A fully con�gured Reality Engine consists of over ��� processors and nearly half

a gigabyte of memory� and provides the closest analog to the Princeton Engine in

raw computational power� Substantial di	erences in communication bandwidth and

the speed of the processors make the comparison far from perfect however� and the

Princeton Engine�s performance is more comparable to its contemporary� the GTX�

����� Software Approaches

There have been a number of software parallel renderers implemented� both in the

interests of realism and�or interactivity� The majority of these renderers have either

been implemented on small machines
tens of processors� or on large machine with

substantial interconnection� In either case the severity of the communication problem

is minimized�

��

Connection Machine

Frank Crow et al� implemented a polygonal rendering system on a Connection Ma�

chine �
CM��� at Whitney�Demos Productions� as described in ���� The CM�� ���

is a massively parallel SIMD computer composed of up to ������ bit�serial processors

and ����� �oating�point coprocessors� The nodes are connected in a �D mesh and

also via a ��dimensional hypercube with � processors at each vertex� Each node in

the CM�� has �KB of memory� for a total main memory size of ��MB�

Crow distributes the framebu	er over the machine with a few pixels per processor�

Rendering is performed with a polygon assigned to each processor� All processors ren�

der simultaneously and as pixels are generated they are transmitted via the hypercube

interconnect to the processor with the appropriate piece of the framebu	er for depth

bu	ering� This is therefore a large�scale implementation of sort�last communication�

The issue of the bandwidth this requires from the network is left untouched� It is

reasonable to assume that it is not inexpensive on such a large machine� Crow alludes

to the problem of collisions between pixels destined for the same processor� but leaves

it unresolved�

The use of a SIMD architecture forces all processors to always perform the same

operations
on potentially di	erent data�� Thus if polygons vary in size all processors

will have to wait for the processor with the biggest polygon to �nish rasterizing before

they proceed to the next polygon� This problem is exacerbated by the ��D nature of

the polygons� which generally breaks the rasterization into a loop over the horizontal

�spans� of the polygons� with an inner loop over the pixels in each span� Without

care this can result in all processors executing in time proportional to the worst

case polygon width� Crow addresses this problem in part by allowing processors to

independently advance to the next span of their current polygon every few pixels�

but constrains all processors to synchronize at polygon boundaries� Our experience

suggests that a substantial amount of time is wasted by this approach�

Crow provides a good overview of the di�culties of adapting the polygon rendering

algorithm to a very large SIMD machine� but leaves some critical load balancing issues

��

unresolved� and unfortunately provides no performance numbers�

Princeton Engine

Contemporaneous with this thesis� Scott Whitman implemented a multiple�user poly�

gon renderer on the Princeton Engine� The system described in ���� divides the

Princeton Engine among a total of � simultaneous users� assigning a group of ��

processors to each user�

Sort�middle communication is used� with some discussion made of the cost of this

approach� As in Crow ���� Whitman employs a periodic test during the rasterization

of each scan�line to allow processors to independently advance to the next scan�line�

He also synchronizes at the polygon level� constraining the algorithm to perform in

time proportional to the largest polygon on any processor�

Whitman suggests that his algorithm would attain performance of approximately

������� triangles per second per �� processors on the next generation hardware we

discuss in x���� This assumes that the system remains devoted to multiple users� so a

single user will not attain an additional ������� triangles per second for every group

of �� processors assigned to him�

Whitman also provides a good general discussion and background for parallel

computer rendering methods in his book ����

Parallel RenderMan

Michael Cox addresses issues of �nding scalable parallel algorithms and architectures

for rendering� and speci�cally examines a parallel implementation of RenderMan ����

Cox implements both a sort��rst renderer� as an e�cient decomposition of the ren�

dering problem in image space� and a sort�last renderer� as an e�cient decomposition

in object space� to study the di	erences in e�ciency between these two approaches�

Both implementations were on a CM�� from Thinking Machines� a �� processor

MIMD architecture with a powerful communication network�

The problems of each approach are discussed in detail� Sort��rst
and sort�

��

middle� can su	er from load imbalances as the distribution of polygons varies in

image space� and sort�last su	ers from extreme communication requirements� Cox

addresses these issues with a hybrid algorithm which uses sort�last communication

as a back end to load balance to sort��rst communication�

Distributed Memory MIMD Rendering

Thomas Crocket and Tobias Orlo	 provide a discussion of parallel rendering on a

distributed memory MIMD architecture in ��� with sort�middle communication� Par�

ticular attention is paid to load�imbalances due to irregular content distribution over

the scene�

They use a row�parallel decomposition of the screen� assigning each processor

a group of contiguous rows for which it performs rasterization� The geometry and

rasterization calculations are performed in a loop� �rst performing some geometry

calculations and transmitting the results to the other processors� then rasterizing

some polygons received from other processors� then performing more geometry� etc�

This distributes the communication over the entire time of the algorithm and can

result in much better utilization of the communication network by not constraining

all of the communication to happen in a burst between geometry and rasterization�

Interactive Parallel Graphics

David Ellsworth describes an algorithm for interactive graphics on parallel computers

in ���� Ellsworth�s algorithm divides the screen into a number of regions greater

than the number of processors� and dynamically computes a mapping of regions to

processors to achieve good load balancing� The algorithm was implemented on the

Touchstone Delta prototype parallel computer with �� Intel i��� compute nodes

interconnected in a �D mesh�

Polygons are communicated in sort�middle fashion with the caveat that processors

are placed into groups� A processor communicates polygons after geometry calcula�

tions by bundling all the polygons to be rasterized by a particular group into a large

��

message and sending them to a �forwarding� processor at that group that then redis�

tributes them locally� This approach amortizes message overhead by creating larger

message sizes�

This amortization of the communication network overhead is a powerful idea� and

is the central theme of several optimizations explored in this thesis�

��� Overview

This thesis deals with a number of issues in parallel rendering� A great deal of atten�

tion is paid to e�cient communication strategies on SIMD rings� and their speci�c

implementation on the Princeton Engine�

Chapter � provides an overview of the Princeton Engine architecture which will

drive our analysis of sorting methods� and our implementation�

Chapter � discusses the uniprocessor polygon rendering pipeline and then extends

it to the multiprocessor pipeline� Approaches to the sorting problem are addressed�

and issues in extracting e�ciency from a parallel SIMD machine are raised�

Chapter � examines the scalability of polygon rendering algorithms� by looking

at the scalability of the three primary components of rendering� geometry� com�

munication� and rasterization� A general model for the performance of sort��rst�

sort�middle and sort�last communication on a D ring is proposed and used to make

broad predictions about the scalability of the sorting algorithms in both the number

of polygons and the number of processors� Attention is also paid to the load bal�

ancing problems that the choice of sorting algorithm can introduce and their e	ects

on the overall scalability of the renderer� Chapter � concludes with justi�cation for

the choice of sort�middle communication for the Princeton Engine polygon rendering

implementation� despite its lack of scalability�

Chapter � proposes and analyzes optimizations for sort�middle communication�

both with an analytical model� and with the support of instruction�accurate sim�

ulation� The feasibility of very tight user control over the communication network

��

is exploited to provide a set of precisely managed and highly e�cient optimizations

which more than triple the overall performance from the most naive communication

implementation�

Chapter � proposes and analyzes a novel communication strategy that marries the

e�ciency of sort�middle communication for small numbers of polygons and processors

with the constant time performance of sort�last communication to obtain a highly

scalable algorithm� Cycle by cycle control of the communication channel is used to

create a communication structure that while requiring the same amount of band�

width as sort�last communication achieves nearly a factor of � speedup over a typical

implementation by amortizing the communication overhead� The VLIW coding of

the Princeton Engine allows a full deferred lighting� shading and texture mapping

implementation which increases rasterizer e�ciency by a factor of more than two�

Chapter � details our implementation of polygon rendering on the Princeton En�

gine� A complete discussion of the e�cient handling of the communication channel

is made� speci�cally discussing the queueing of polygons for communication to main�

tain saturation of the channel� and the use of carefully pipelined pointer indirection to

achieve general all�to�all communication with neighbor�to�neighbor communication

without any additional copy operations� Speci�c mechanisms and optimization for

the implementation of fast and e�cient parallel geometry and rasterization are also

discussed�

Chapter � discusses the performance of our system� and provides an account of

where all the instructions go in a single second of execution� Statistics from execu�

tions of the system are provided for three sample scenes of varying complexity� along

with benchmark �gures of the raw throughput of the system for individual geome�

try� communication� and rasterization operations� The results are compared with the

GTX from Silicon Graphics� a contemporary of the Princeton Engine� and with the

Magic�� our next generation hardware�

Chapter � discusses our next generation hardware� the Magic�� currently under

test and development� The Magic provides signi�cant increases in communication and

��

computation support� in addition to a greatly increased clock rate� and is predicted

to provide an immensely powerful polygon rendering system� Our estimations for an

implementation of a sort�twice rendering system on this architecture are provided�

and indicate a system with performance in the millions of polygons� with �exibility

far beyond that of current high performance hardware systems�

Chapter �� summarizes the results of this thesis� and concludes with a discussion

of the contributions of this work�

Appendix A discusses the instruction�accurate simulator developed to explore the

e�ciency of di�erent communication algorithms and the load�balancing issues raised

on a highly parallel machine�

	

��

Chapter �

Princeton Engine Architecture

The Princeton Engine ��� a super�computer class parallel machine� was designed and

built at the David Sarno� Research Center in �
��� It consists of between ��	 and

	��� SIMD processors connected in a neighbor�to�neighbor ring� The Engine was

originally designed purely as a video processor� and its only true input�output paths

are video� It accepts two NTSC composite video inputs and produces up to four

interlaced or progressive scan component video outputs� as shown in Figure 	���

The Princeton Engine is a SIMD architecture� so all processors execute the same

instruction stream� Conditional execution of the instruction stream is achieved with

a �sleep� state that processors may conditionally enter and remain in until awakened�

Camera Princeton Engine

VCR

Figure 	��� Princeton Engine Video I�O� the Princeton Engine supports 	 si�
multaneous video inputs and � simultaneous outputs�

��

The instruction stream implicitly executes

if wakeup then

asleep � false

execute instruction

if �asleep then

commit result

for every instruction� More complex if ��� then ��� else ��� execution can

be achieved by �rst putting some subset of the processors to sleep� executing the then

body� toggling the asleep �ag� and executing the else body�

The details of the processors� the communication interconnect and the video I�O

capabilities are described below� The video I�O structure is particularly critical as it

determines what algorithms can be practically implemented on the Princeton Engine�

��� Processor Organization

The Princeton Engine� shown schematically in Figure 	�	� is a SIMD linear array

of ��	� processors connected in a ring� Each processor is a ���bit load�store core�

with a register �le� ALU� a ��� �� multiplier and ���KB of memory�

The ����� multiplier computes a �	 bit result� and a product picker allows the se�

lection of which �� bits of the output are used� providing the operation c � �a�b��	n�

This allows e�cient coding of �xed�point operations� The Princeton Engine was

designed to process video in real�time� and as such extended precision integer arith�

metic �beyond �� bits� and �oating�point arithmetic delegated to software solutions

and are relatively expensive operations� A �	�bit signed integer multiply requires ���

instructions� and a �	�bit signed integer division requires over ��� instructions�

The memory is composed of 	 types� �	�KB of fast memory and ��	KB of slow

memory� Fast memory is accessible in a single clock cycle� Slow memory is divided

into � banks of �	�KB and is accessible in 	 cycles� The compiler places all user

�	

IPC

Register

File

28MB/s

ALU

P

P
ro

du
ct

 P
ic

ke
r

144bit

Instruction Bus

Synchronous

640KB
SRAM

16bit

M
ul

tip
lie

r

PPP

IPC

Register

File

28MB/s

PPPP P PPP

16bit

M
ul

tip
lie

r

P
ro

du
ct

 P
ic

ke
r

ALU

SRAM
640KB

Figure 	�	� Princeton Engine� the processors are organized in a �D ring� The
instruction stream is distributed synchronously from the sequencer�

data and variables into fast memory� Any use of the slow memory is by explicit

programmer access�

The instruction stream supplied by the sequencer is ��� bits wide� The VLIW

�Very Long Instruction Word� coded instruction stream provides parallel control over

all of the internal data paths of the processors� The average amount of instruction

level parallelism obtained within the processors is between 	 and �� Unlike typical

uniprocessors� the Princeton Engine processors are not pipelined� as the instruction

decode has already happened at the sequencer� The parallelism obtained by VLIW on

the Princeton Engine is comparably to the parallelism obtained by pipelined execution

in a RISC processor� and the ��MHz execution of the processing element is roughly

equivalent to �� RISC MIPS�

The processors are controlled by a central sequencer board which manages the

program counter and conditional execution� Each of the ��	� processors operates

at ��MHz for an aggregate performance of approximately ������ RISC MIPS or ��

billion instructions per second�

��

��� Interprocessor Communication

The processors are interconnected via a neighbor�to�neighbor �interprocessor com�

munication� �IPC� bus� Each processor may selectively transmit or receive data

on any given instruction� allowing multiple communications to occur simultaneously�

There is no shared memory on the Princeton Engine� all communication between

processors must via the IPC�

Interprocessor communication �IPC� occurs via a ���bit data register usable on

every cycle� for a bisection �neighbor to neighbor� bandwidth of 	�MB�s� The ring

can be con�gured as a shift register with ��	� entries� Each processor has control over

one entry in the shift register� After a shift operation each processor�s IPC register

holds the value of its neighbor�s �left or right� IPC register previous to the shift

operation� During any given instruction the IPC is shifted left� right or unchanged�

The IPC register may be read non�destructively� so once data is placed in the IPC

registers it may be shifted and read arbitrarily many times� to distribute a set of

values to multiple processors�

There are several modes of communication supported on the Princeton Engine�

They are represented schematically in Figure 	���

Neighbor�to�Neighbor The most natural option� Each processor passes a ���bit

word to either its left or right neighbor� All processors pass simultaneously

either to the left or to the right�

Broadcast One processor is the broadcaster� and all other processors are receivers�

Neighbor�to�Neighbor�N Each processor passes a single datum to a processor

N processors away� All processors do this in parallel� so this is as e�cient as

neighbor�to�neighbor communication in terms of information density in the

ring�

Multi�Broadcast Some subset of the processors are designated broadcasters� Each

broadcaster transmits values to all processors� including itself� between itself

��

1 33143

3 21

Multi-Broadcast

Neighbor-to-Neighbor-N

Broadcast

Neighbor-to-Neighbor

41 342

32

1

1 2 4 143

2

21

143 111

Figure 	��� Communication Options on the Princeton Engine� the right hand
side depicts the contents of the communication register on each processor after a
single step of the communication method�

and the next broadcaster�

The discussion of communication approaches will ignore the possibility of using

broadcast �in either mode� because it requires more instructions than neighbor�to�

neighbor to transfer the same amount of data� Consider the transmission of p data

around a machine of size n� where each datum is the width of the communication

channel� At the start of the communication each processor holds one datum� and at

the end of the communication each processor has a copy of every datum� We can

count the cycles required for each approach�

approach parallelism inst�datum total inst

neighbor�to�neighbor n � � 	 � n p � �� � 	 � n��n � 	 � p

broadcast � � � � p

The neighbor�to�neighbor approach is three to four times faster than broadcasting

because it never has to pay the expense of waiting for data to propagate to all of the

processors �the propagation delay between neighbors is small�� The instructions per

datum is ��	 �n instead of � �n because each processor loads their datum in parallel

��

�� instruction� then performs repeated shifts and non�destructive reads of the com�

munication register� Similar results apply to neighbor�to�neighbor�N communication

versus multi�broadcast communication�

��� Video I�O � Line�Locked Programming

The video I�O structure of the Engine assigns a processor to each column of the

output video� Each processor is responsible for supplying all of the output pixels

for the column of the display it is assigned to� The addition of an �Output Timing

Sequence� �OTS� allows processors to be assigned regions somewhat more arbitrary

than a column of the output video�

When the Princeton Engine was originally designed it was conceived of only as a

video supercomputer� It was expected that the processing would be virtually identical

for every pixel� and thus programs shouldn�t operate on frames of video� they should

operate on pixels� and every new pixel would constitute a new execution of the pro�

gram� The paradigm is enforced by resetting the program counter at the beginning

of each scanline�

Before the end of the scanline all of the processors must have processed their

pixel and placed the result in their video output register� Because the program

counter is reset at the beginning of each scanline all programs must insure that their

longest execution path is within the scanline �instruction budget� of
�� instructions

at ��MHz� This necessarily leads to some obscure coding� as complex operations

requiring more than
�� instructions must be decomposed into a sequence of smaller

steps that can individually occur within the instruction budget�

��� Implementation

The processors are fabricated in a ��� micron CMOS process which allows two

processors to be placed on the same die� The physical con�guration of the machine is

��

and video

2 processors w/

640KB memory

piggy-backed

on each.

I/O chips for

ring communication

512 Processor Cabinet

2 Processor Cabinets + Sequencer

1024 Processor System

Figure 	��� Princeton Engine� each of the cabinets shown is approximately 	 feet
wide� � feet deep and � feet high� The processors are cooled by a forced air system�

shown in Figure 	��� The machine consists of � to � processor cabinets and a sequencer

cabinet� The processor cabinets hold ��	 processors each� along with their associated

memory� The sequencer cabinet contains the sequencer which provides instructions

to the processors� the video input and output hardware� a HiPPi interface� and a

dedicated controller card with an ethernet interface�

The sequencer provides the instruction stream to the processors� Serial control

�ow �procedure calls� is handled by the sequencer� Conditional control �ow is per�

formed by evaluating the conditional expression on all the processors in parallel�

Processor � then transmits its result to the sequencer via the interprocessor commu�

nication bus� The sequencer branches conditionally based on the value it sees�

High�level program control is performed via an ethernet connection and a ded�

icated controller� The controller allows the starting and stopping of the sequencer�

and the loading of programs into sequencer memory and data into processor memory�

Facilities for non�video input and output are not supported in the video processing

mode of operation� so they are not discussed here� Similarly� the HiPPi input�output

channel is not compatible with the realtime video processing mode of operation� A

piece of the HiPPi implementation� a status register used for �ow control� can be

��

used as a crude data�passing method between the controller and the processors� Data

input through this channel is limited to relatively low rates �hundreds of values a

second� as there is no handshaking provided�

The video input and output channel are distributed through a mechanism similar

to the interprocessor communication register� Over the course of a video scanline the

I�O chips sit in the background and shift in 	 composite video inputs and shift out

� component video outputs� At the start of each scanline the user program can read

the video input registers� and before the end of each line time the user program must

write the video output registers�

��

Chapter �

Graphics Pipeline

Polygonal rendering uses a synthetic scene composed of polygons to visualize a real

scene or the results of computation or any number of other environments� Objects in

the virtual space are de�ned as sets of �D points and polygons de�ned with vertices

at these points� In the most straightforward application of polygon rendering� these

vertices are projected to the display plane �the monitor� via a transformation de�ned

by a synthetic eyepoint and �eld of view� as shown in Figure ���� Subsequently the

polygons de�ned by the set of vertices within the clip volume are rendered� En�

hancements to this basic algorithm include occlusion� lighting� shading� and texture

mapping�

Per	pixel occlusion insures that the polygons closest to the observer obscure poly�

display plane

frustum

eyepoint

Figure ���
 Synthetic Eyepoint� a synthetic eyepoint and frustum de�nes both the
set of visible objects and a display plane�

��

gons further away� Occlusion has been implemented a number of ways� but is most

commonly implemented with a depth	bu�er� By computing the depth of each vertex

of a polygon we can interpolate these depths across the interior pixels of the polygon

to compute the depth of any pixel� When we write a pixel to the display device we

actually perform a conditional write� only writing the pixel if the surface fragment it

represents is closer� to the eye than any surface already rendered at that pixel�

Lighting and shading greatly increase the realism of a scene by providing depth

cues via changes in intensity across surfaces� Lighting assumes for any given polygon

that it is the only polygon in the scene� so there are no shadows cast by the obstruc�

tion of light sources by other scene elements or re�ection of light o� of other surfaces�

These e�ects are captured in other approaches to rendering such as ray	tracing� and

are not generally implemented in polygonal renderers� Shading is performed by apply�

ing a lighting model� such as the Phong model ����� to a normal which represents the

surface normal of the object being approximated at that point� The lighting model

may either be applied at every pixel the polygon covers� by interpolating the vertex

normals to determine interior normals� or it may be applied just to the vertex normals

of the polygon� and the resulting colors interpolated across the polygon� The former

approach �Phong shading� will often yield more accurate results and is free of some

artifacts present in the latter approach �Gouraud interpolation� but it more compu�

tationally expensive� Figures ���� ��� and ��� are all examples of depth	bu�ered�

Phong	lit� Gouraud	interpolated polygonal scenes�

Texture mapping is a further enhancement to polygonal rendering� Instead of just

associating a color with each vertex of a polygon� we associate a �u� v� coordinate in

an image with each vertex� By careful assignment of these coordinates� we can create

a mapping that places an image onto a set of polygons� for example
 a picture onto

a billboard� carpet onto a �oor� even a face onto a head� Texture mapping� in a

fashion analogous to shading and depth	bu�ering� linearly interpolates the texture

coordinates at each vertex across the polygon� The color of a particular pixel within

the polygon is determined by looking up the pixel in the texture map corresponding

��

Figure ���
 Beethoven� a ����� polygon model with ����� non�culled polygons�

to the current values of u and v� Figure ��� shows a sample texture mapped scene

along with the corresponding texture map in Figure ����

��� UniProcessor Pipeline

All of the above is combined into an implementation of a polygonal renderer in a

graphics pipeline�� The sequence of operations is a pipeline because they are ap�

plied sequentially� The depth	bu�er provides order invariance� so the results of one

computation �polygon� have no e�ect on other computations�

The uniprocessor pipeline consists of two stages
 geometry and rasterization� The

geometry stage transforms a polygon from its �D representation to screen coordi�

nates� tests visibility� performs clipping and lighting at the vertices� and calculates

interpolation coe�cients for the parameters of the polygon� The rasterization stage

takes the computed results of geometry for a polygon and renders the pixels on the

screen�

A more complete description of the uniprocessor pipeline is now presented�

��

Figure ���
 Crocodile� a ������ polygon model with ������ non	culled polygons�

Figure ���
 Teapot� a ����� polygon model with ����� non	culled polygons�

��

Figure ���
 Texture Mapped Crocodile� a ������ polygon model with � ��� ���
visible polygons�

Figure ���
 Sample Texture Image� the image of synthetic crocodile skin applied
to crocodile�

��

next polygon

light

clip

Y N

visible?

transform

calculate coefficients

Figure ���
 Uniprocessor Geometry Pipeline

����� Geometry

The geometry stage can be formed into a pipeline of operations to be performed� as

shown in Figure ��� and explained below�

Transform The vertices are projected to the user�s point	of	view� This involves

translation� so the �D origin of the points becomes the user�s location� and

rotation� so that the line of sight of the observer corresponds to looking down the

z	axis �by convention� in �D� This transformation is performed with a matrix

multiplication of the form

�
���������

x�

y�

z�

�

�
���������
�

�
���������

a b c tx

d e f ty

g h i tz

� � � �

�
���������
�

�
���������

x

y

z

�

�
���������

�����

The use of a homogeneous coordinate system allows the translation to be in�

cluded in the same matrix with the rotation�

��

Z

Y
�z� y�

Z � d

�z�� y�

display	plane

d � y�z�

d � y�z

Figure ���
 �D Perspective Transformation� the �D case is analogous to the �D
case� Here the axes have been labeled to correspond to the standard �D coordinate
system�

The vertex eye	coordinates are now projected to the screen� This introduces the

familiar perspective in computer �and natural� images� where distant objects

appear smaller than closer objects� The screen coordinates of a vertex� �sx� sy�

are related to the transformed �D coordinates �x�� y�� z�� by

sx � d
x�

z�
�����

sy � d
y�

z�
�����

The �D to �D projection is shown in Figure ���� The �D to �D projection is

identical� just repeated for each coordinate�

Clipping � Rejection Once the polygons are transformed to eye	coordinates they

must be clipped against the viewable area� The rays cast from the eye	point of

the observer through the four corners of the viewport de�ne a viewing frustum�

All polygons outside of this frustum are not visible and need not be rendered�

Polygons that intersect the frustum are partially visible� and are intersected

with the visible portion of the display plane� or clipped�� Clipping takes a

polygon and converts it into a new polygon that is identical within the viewing

��

frustum� and is bounded by the frustum�

Backface culling culls polygons based on the face of the polygon oriented towards

the observer� Each polygon has two faces� and of course you can only see one of

the two faces at any time� For example� if we constructed a box out of polygons

we could divide the polygon faces into two sets� a set of faces potentially visible

for any eyepoint inside the box� and a set of faces potential visible for any

eyepoint outside of the box� and the union of these sets is all the faces of all of

the polygons� If we know a priori that the viewpoint will never be interior to

the box we never have to render any of the faces in the interior set� Polygons

that are culled because their interior� face is towards the viewer are said to be

backfacing� and are backface culled�

Lighting Lighting is now applied to the vertex normals� A typical lighting model

includes contributions from di�use �background or ambient� illumination� dis�

tant illumination �like the sun� and local point illumination �like a light bulb��

Polygons are assigned properties including color �RGB�� shininess and specu�

larity which determine how the incident light is re�ected� See Foley and van

Dam ��� pg� ��� for a description of lighting models�

The normal associated with each vertex may also be transformed� depending

on the viewing model� If the model of interaction assumes the viewer is moving

around in a �xed space� then the lighting should remain constant� as should

the vertex normals used to compute lighting� However� if the model assumes

that the object is being manipulated by an observer who is sitting still then the

normals but also be transformed� A normal is represented by a vector

�
���������

nx

ny

nz

�

�
���������

�����

��

and is transformed by the inverse transpose of the transformation matrix�

Linear Equation Setup Rasterization is performed by iterating a number of linear

equations of the form Ax�By�C� The coe�cients of these equations represent

the slopes of the values being iterated along the x and y axes in screen space�

A typical system interpolates many values� including the color of the pixel� the

depth of the pixel� and the texture map coordinates�

The computation of these linear equation coe�cients� while straightforward� is

time consuming� It requires both accuracy and dynamic range to encapsulate

the full range of values of interest� Figure ��� shows the form of the computation

for the depth� The same equations are evaluated for each component to be

interpolated across the polygon�

Due to the similarity of the work performed �lots of arithmetic� and in anticipa�

tion of the parallel discussion� I include linear equation setup with the geometry

pipeline� but it could also be considered the start of the rasterization stage�

The rasterization stage described next renders the set of visible polygons by iter�

ating the linear equations calculated during the geometry stage�

����� Rasterization

Rasterization must perform two tasks� It must determine the set of pixels that a

polygon overlaps �is potentially visible at� and for each of those pixels it must evaluate

the various interpolants associated with the polygon�

The typical uniprocessor software implementation of polygon rasterization ana�

lyzes the polygon to be rendered and determines for each horizontal scanline the

left	most and right	most edge of the polygon� The algorithm can then evaluate the

intersection of the polygon edges with any given scanline and rasterize the pixels

within� This algorithm is e�cient� as it examines only the pixels within the polygon

and it is easy to determine the left and right edges�

��

X

Y

Z

1

2

0

�z�

�x�

�y�

�z�

�y�

�x�

Linear equation for an edge from vertex � to vertex �

E�x� y� � Ax�By � C �����

A � ��y� �����

B � �x� �����

C � x� � y� � y� � x� �����

�����

Linear equation for depth

Z�x� y� � Ax�By � C ������

� � �x� � �y� � �y� � �x� ������

A � ��z� � �y� � �y� � �z���� ������

B � ��x� � �z� � �z� � �x���� ������

C � z� �A � x� �B � y� ������

������

Figure ���
 Polygon Linear Equations� The edge equations are unnormalized as
only the sign of subsequent evaluations is important� Accurate magnitude is required
for the other equations� resulting in more complex expressions for the coe�cients�

��

positive

negative

half-plane

half-plane

Figure ����� Triangle De�nition by Half�Plane Intersection� a positive and
negative half�plane are de�ned by a line in screen space� The interior of a polygon is
all points in the positive half�plane of all the edges� Diagram is after 	�
��

Typical hardware implementations� for example 	���� take a dierent approach�

Each polygon can be de�ned as the intersection of the n semi��nite plains bound by

the n edges of the polygon� as explained by Pineda in 	�
�� We can de�ne the equation

of a line in �D as Ax�By�C � � and thus a half�plane is given by Ax�By�C � ��

With the appropriate choice of coe�cients we can insure that the equations of the

n semi��nite plains will all be positively �or negatively valued� within the polygon�

Figure ���� depicts this approach�

This provides us with a very cheap test �the evaluation of one linear equation per

vertex� to determine if any pixel is inside of a polygon� Furthermore� we can cheaply

bound the set of pixels that are potentially interior to the polygon as the set of pixels

interior to the bounding box of the polygon� This approach results in examining

more pixels then will be rendered� as the bounding box is generally a conservative

estimate of the set of pixels in a polygon� For triangles at least half of the pixels

examined will be exterior to the polygon� Experimentally this has been determined

to be a good tradeo against the higher computational complexity of span algorithms

because SIMD implementations bene�t from a simple design with few exceptional

cases�

The rasterization process is actually poorly described as a pipeline� because it con�

sists of a series of early�aborts� at least in its serial form� Figure ���� shows a typical

view of the rasterization process� The next pixel operation takes step horizontally

until it reaches the right side of the bounding box� and then takes a vertical step and

��

interior pixel?

pixel visible?

shade pixel

write RGBZ

N

compute z

textured polygon?

next polygon

NN

N N

more pixels?

next pixel

N Y

N

compute z

interior pixel?

pixel visible?

write RGBZ

get texture RGB

shade pixel

next pixel

more pixels?

Figure ����� Uniprocessor Rasterization

��

returns to taking horizontal steps� The interior pixel test is the simple linear equation

test shown in Figure ����� Compute Z evaluates the linear equation for depth and

the pixel visible test determines if this pixel is closer to the observer than the current

pixel in the frame buer� If so it is then shaded and written to the frame buer� The

procedure for texture mapped polygons is identical� except the pixel that gets shaded

is retrieved from a texture map� rather than just being the color of the polygon�

Considerable complexity has been swept under the rug in this view of rasteriza�

tion� Most signi�cant is the texture mapping operation� which is relatively complex

in practice� The simplest way to perform texture mapping is �point sampling�� Point

sampling takes the color of a texture mapped pixel as the color of the closest texel

�texture pixel� to the current interpolated texture coordinates� A more pleasing

method uses a weighted combination of the � closest texels from the texture map� A

yet more complex and pleasing approach is achieved with MIP�Mapping� described

by Lance Williams in 	���� All of these methods attempt to correct the inaccuracy of

point sampling a transformed image� A mathematically correct resampling of the in�

put image would involve complex �ltering and di�cult computation� Approximation

methods attempt to correct the sampling errors at lower cost� usually with acceptable

visual results�

����� Details

There are a few auxiliary details which accompany the rendering process which have

been ignored so far� Most importantly� there is generally a way for the user to interact

with the system� A similarly important subject is double�buering�

The particular input method provided by the system is not important� just some

method must exist� These methods vary greatly� from being able to modify the

polygon database and view matrix continually and interactively� to simply executing

a script of prede�ned viewpoints�

Double�buering is used to hide the machinery of polygon rendering� Users are

�usually� only interested in the �nal rendered image� not all the work that goes into

��

it� To this end� two frame buers are used� One completed frame buer is displayed�

while the second frame buer is rendered� When the rasterization of all polygons is

complete� the frame buers are exchanged� usually during the vertical retrace interval

of the display� so the images don�t �icker distractingly�

��� MultiProcessor Pipeline

The parallel version of the graphics pipeline diers signi�cantly from the uniprocessor

pipeline� There are now n processors working on the rendering problem instead of

a single processor� and optimally we would like a factor of n speedup� How do we

divide the work among the processors� Given that we have divided the work� how

do we execute it in parallel� While these questions appear super�cially obvious� they

are not� By parallelizing the algorithm we have exposed that it is actually a sorting

problem� resolved by the depth�buer in the uniprocessor system� but presumably

resolved in parallel in a multiprocessor implementation�

It is relatively obvious how to partition the geometry work� Instead of giving

p polygons to � processor� give p�n polygons to each processor� and allow them to

proceed in parallel� This should yield a factor of n speedup� which is the most we can

hope for� The rasterization stage is less obvious� Do we let each processor rasterize

��n of the polygons� Do we let each processor rasterize ��n of the total pixels� When

a polygon has to be rasterized do all processors work on it at the same time�

We would also like to divide the work as evenly as possible among the processors�

If we put more work on any one processor we have compromised the performance of

our system� However� it is not always the case that the same number of polygons on

each processor corresponds to the same amount of work� if� for example� the polygons

vary in size�

Rasterization is actually a sorting algorithm based on screen location and depth�

If we divide the work across multiple processors we must still perform this sorting

operation� The addition of communication to the rendering pipeline enables us to

��

resolve the sorting problem and render correct images� that is� the same images a

uniprocessor renderer would generate�

Because the rasterization sorting issue has forced us to introduce communication�

our �rst departure from the uniprocessor pipeline� it is natural to start by discussing

its parallelization�

����� Communication

Given that we have to perform communication to produce the �nal image� we must

choose how we parallelize the rasterization� This choice bears heavily on how the

image is generated and will determine what communication options are available to

us� There are two ways we could divide the rasterization among the processors�

�� give each processor a set of pixels to rasterize� or

�� give each processor a set of polygons to rasterize�

If we choose the �rst option then the sorting problem is solved by making the

pixel sets disjoint� so a single processor has all the information necessary to correctly

generate its subset of the pixels� This requires communication before rasterization�

so that each processor may be told about all the polygons that intersects its pixel

set� These approaches are referred to as �sort��rst� and �sort�middle� because the

communication occurs either �rst� before geometry and rasterization� or in the middle�

between geometry and rasterization�

If we choose the second option then the polygons rasterized on any given processor

will overlap some subset of the display pixels� and there may be polygons on some

other processor or processors that overlap some of the same display pixels� So if we

parallelize the rasterization by polygons rather than pixels then the sorting problem

must be solved after rasterization� This approach is referred to as �sort�last� because

the sorting occurs after both rasterization and geometry�

Figure ���� shows these communication options schematically� In all cases the

communication is shown as an arbitrary interconnection network� Ideally we would

��

G

SORT-FIRST

display

polygon database

R

R

G R

Distribute Pixels

SORT-LAST

display

polygon database

G

R

G

R R

GG

Distribute Polygons

R

G

R R

G

display

G

Distribute Polygons

SORT-MIDDLE

polygon database

Figure ����� Sort Order� some possible ways to arrange the polygon rendering
process� Figure is after 	����

like this network to be a crossbar with in�nite bandwidth� so that the communication

stage requires no time to execute� Of course in practice we will never obtain such a

communication network�

Sort�First

Sort��rst performs communication before geometry and rasterization� The screen is

diced up into a set of regions and each processor is assigned a region or regions� and

rasterizes all of the polygons that intersect its regions� All of the regions are disjoint�

so the �nal image is simply the union of all the regions from all the processors�

and no communication in necessary to combine the results of rasterization� The

communication stage must give each processor a copy of all the polygons that overlap

its screen area� This information can only be determined after the world�space to

screen�space transformation is made� so there is generally some non�trivial amount

of computation done before the communication is performed�

��

Sort�Middle

Sort�middle also assumes that each processor is rasterizing a unique area of the

screen� However� the communication is now done after the geometry stage� so rather

than communicating the polygons themselves� we can directly distribute the linear

equation coe�cients that describe the edges of the polygon on the screen along with

the depth� shading� etc�

Sort�Last

Sort�last assigns each processor a subset of the polygons to rasterize� rather than a

subset of the pixels� As the polygons rasterized on dierent processors may overlap

arbitrarily in the �nal image� the composition is performed after rasterization� Each

processor can perform the geometry and rasterization stage with no communication

whatsoever� only communicating once they have generated all of their pixels for the

output image�

Comparison

These three sorting choices all incur dierent tradeos� and the particular choice of

algorithm will depend on both details of the machine �speed� number of processors�

etc�� and the size of the data set to be rendered�

Sort��rst communication can exploit temporal locality� Generally a viewer will

navigate a scene in a smooth and continuous fashion� so the viewpoint changes slowly�

and the location of each polygon on the screen changes slowly� If the location of poly�

gons is changing slowly then the change in which polygons each processor will rasterize

will be small� and sort��rst will require little communication� This is most obvious

if the viewer is standing still� in which case the polygons are already correctly sorted

from rendering the previous frame to render the current frame� However� sort��rst

incurs the overhead of duplicated eort in the geometry stage� Every polygon has its

geometry computation performed by all processors whose rasterization regions it over�

laps� For large parallel systems� which will have correspondingly small rasterization

��

regions� this cost could become relatively high�

Sort�middle communication calculates the geometry only once per polygon and

thus will not have the duplication of eort incurred by sort��rst� However� sort�

middle must communicate the entire polygon database for each rendered frame� which

is presumably substantially more expensive than a method which exploits temporal

locality�

Sort�last communication tra�cs in pixels instead of polygons� and has the in�

teresting property that the amount of communication is constant� Each processor

will have to communicate no more than a screen�s worth of pixels to composite the

�nal image� so as the polygon database grows arbitrarily large sort�last will oer the

cheapest communication� Although this constant bound on communication is useful�

it is shown later to be a very large amount of communication compared to sort��rst

and sort�middle for our scenes of interest�

We have laid a framework for the discussion to follow� and� while there are interac�

tions� the actual geometry and rasterization stages are to some extent independent of

the communication topology� The communication topology will determine precisely

what polygons are computed on what processor for each stage� but will have little

eect on the nature of the computation itself� We will defer the actual choice of� and

justi�cation for� a communication topology until Chapter ��

����� Geometry

The geometry calculations consists of �ve distinct steps�

� transform

� clip�reject

� project to screen coordinates

� light

� linear equation setup

�

clip/reject

transform

next polygon

add to visible list

N

project to screen

next visible polygon

calculate coefficients

light

Y

Figure ����� SIMD Geometry Pipeline� the pipeline is split between clipping and
lighting�

Each of these stages has an upper�bound on the amount of work performed per

polygon� The calculations to be performed for each polygon� while executing on

dierent data and yielding dierent results� are identical algebraically� The execution

of each processor over its subset of the polygons� whether obtained from the input

polygonal database dierently� or from the results of sort��rst communication� will

be identical� and the execution time will be determined by the processor with most

polygons to process�

Often after the clip�reject stage a very large number of processors will have dis�

carded their polygon and have nothing to do while the other processors compute�

This will achieve poor utilization of the processors and a less than optimal speedup

��

for the geometry stage� A revised geometry pipeline appropriate for parallel execu�

tion is shown in Figure ����� By breaking the geometry pipeline into two separate

pieces and queueing the work between them we will �rst perform work proportional

to the maximum number of polygons on any processor� then work proportional to

the maximum number of visible polygons on any processor� The cost of the second

stage of the pipeline per polygon will prove to be substantially higher than the �rst

stage� so if the number of visible polygons is much smaller than the total number of

polygons the savings could be substantial� Section ��� provides a discussion of this

implementation issue�

����� Rasterization

The simple rasterization algorithm suggested in Figure ���� has the same implemen�

tation problems as the geometry stage� If the number of polygons varies signi�cantly

across processors the amount of work to be done on each processor will also vary

signi�cantly� This problem is compounded by the varying sizes of polygons� If we

assume our algorithm can rasterize a pixel in some constant amount of time� we would

like our time to rasterize a polygon to be proportional to the area of the polygon�

However� the uniprocessor implementation has a forced serialization of the polygons�

which introduces an expensive synchronization point in the algorithm� This synchro�

nization forces all processors to rasterize their polygon in the worst case time� To

achieve an e�cient execution it will be necessary to decouple the rasterization process

from the speci�c polygon being processed�

Figure ���� shows a suggested implementation for a more e�cient parallel ren�

derer� The double loop in the uniprocessor implementation� shown in Figure �����

has been replaced with a single loop� and the test case has been made more com�

plex� This decouples the size dierences in polygons between processors at the cost

of making each iteration of the loop more expensive�

Dierences in the size of polygons aside� there is reason to believe there will be

substantial dierences in the numbers of polygons on each processor� If we use a

��

next polygon next pixel

more pixels?

NY

get texture RGB

textured polygon?

Y

NY

interior pixel?

N
pixel visible?

compute z

N

shade pixel

write RGBZ

Figure ����� SIMD Rasterization� the rasterization process on a SIMD multi�
processor� The double loop is replaced with a single loop to decouple the processor
execution time from polygon size di�erences�

	

sort��rst or sort�middle communication structure then any imbalances in the dis�

tribution of polygons across the screen �which there often are will be re�ected in

imbalances in the number of polygons overlapping each processor�s rasterization re�

gion� leading to further load imbalances� This suggests that an algorithm based on

sort�last communication� which can assign polygons to processors arbitrarily� could

perform signi�cantly better than either sort��rst or sort�middle communication� at

least during the rasterization stage�

��� Summary

The major functionality of a polygon rendering pipeline has been described� Particu�

lar attention has been paid to the requirements for an e�cient SIMD implementation�

In general an attempt is made to queue up a sizable portion of work for each stage

of computation on all processors to minimize the number of idle processors at any

point in time� In e�ect an e�cient SIMD graphics pipeline will move all polygons

simultaneously through the pipeline� so that statistically each processor should be

kept busy despite polygon by polygon variations in the amount of work to be done�

Unfortunately lack of uniformity in the polygon database� particularly with re�

gards to asymmetric distribution of polygons over the screen� can result in di�cult

load balancing problems� The next chapter will discuss the scalability of the di�erent

communication schemes with an eye both to their inherent e�ciency and their e�ects

on the e�ciency of the geometry and rasterization stages�

��

Chapter �

Scalability

While we are interested speci�cally in a fast polygon rendering algorithm for the

Princeton Engine� we are more generally interested in a fast algorithm for arbitrary

parallel computers� In particular we would like a scalable algorithm so we can readily

construct bigger and proportionally faster systems� Optimally we would like a linear

speedup in the number of processors� so our algorithm must be O�p�n� Two forces

will prevent us from actually achieving this performance�

Communication Communication is necessary in a parallel renderer to combine the

results of the parallel executions of the algorithm� Communication not only

represents a cost non�existent in the uniprocessor case� it will also prove to

be an O�p operation for our implementation� so communication will come to

dominate performance for a large enough system� O�� solutions exist� but are

extremely expensive� requiring time proportional to the number of pixels in the

display�

Imperfect load balancing To obtain perfect linear speedup we must be able to per�

fectly divide the work among the processors� In general there are unavoidable

di�erences in computational load between processors� Many rendering systems

attack this problem by subdividing the problem to �ner levels of parallelism

which are more easily balanced� but for large systems these regions may be�

��

come arbitrarily small� and the subdivision itself will start to incur substantial

overhead�

While we desire linear performance improvements in the number of processors� we

also desire the fastest possible solution for our particular architecture� the Princeton

Engine� In particular� the goal of interactive frame rates will preclude the use of

existing linearly scalable solutions� For example� sort�last communication requires

constant time� independent of the number of processors� Unfortunately it will prove

prohibitively expensive for our scenes of interest�

In this chapter we will discuss the expected scalability of the geometry� communi�

cation and rasterization stages� In addition we will provide a framework for picking

the most e�cient communication strategy in general� and speci�cally apply it to the

Princeton Engine� The choice of sort order will play an important role� not only

by determining the total amount of time spent performing communication and the

scalability of the algorithm� but also by a�ecting the load balance and duplication of

e�ort in the geometry and rasterization stages�

��� Geometry

The geometry calculations are identical for every polygon� Some polygons will be

culled because they are out of the viewing frustum� or rejected because they are

backfacing� but as discussed in x����� this can easily be countered by breaking the

geometry pipeline into two pieces and queueing the visible polygons between these

stages� The geometry calculations required for a polygon is constant� so we should be

able to distribute polygons over processors uniformly� and obtain performance that

is O�p�n for the geometry stage�

��

��� Rasterization

The driving factor of our analysis of parallelism has been the number of processors

involved� particularly large numbers of processors� As the number of processors in�

volved becomes larger the division of the work �assuming a constant amount of work

to be done requires a �ner and �ner granularity of the problem� Even for very large

numbers of processors �thousands there is generally enough parallelism available dur�

ing the geometry stage to keep them all occupied� This is not as readily true for the

rasterization stage�

If we assume a polygon parallel implementation of rasterization� we give each

processor p�n of the polygons to rasterize �and have thus assumed a sort�last archi�

tecture and with a few weak assumptions about the distribution of polygons and

their sizes� we obtain a system that exhibits excellent parallelism� Unfortunately we

will soon see that sort�last algorithms are prohibitively expensive on the Princeton

Engine� This leaves sort��rst and sort�middle algorithms to be considered� Both of

these assign a region of the screen to each processor for rasterization� rather than

some number of primitives� and thus require image parallel rasterization�

Sort��rst and sort�middle divide the screen into multiple regions and assign them

to the processors in some fashion� As discussed in the following sections� sort��rst

and sort�middle are most e�cient for small numbers of processors and small numbers

of polygons� In particular the communication time for sort�middle proves to be linear

in the number of polygons and independent of the number of processors� Sort��rst

introduces redundant calculation which increases with the number of regions the

screen is tiled into� and thus with the number of processors� So both sort��rst and

sort�middle lack scalability for our systems of interest�

Sort��rst and sort�middle also a�ect the e�ciency of the rasterization stage� If we

statically divide the screen into n regions these regions will become quite small �tens

of pixels for large n� Unfortunately the polygon complexity of a scene is usually not

distributed uniformly over the display� so some regions will have very few polygons�

��

while other regions will have many� This can lead to substantial rasterization load

imbalances between processors� However� if we implement sort�last communication

this problem is avoided� as we will assign polygons rather than pixels to each processor�

Chapter � discusses a hybrid algorithm entitled �sort�twice� that combines the low

cost of sort�middle for small numbers of polygons and processors with the excellent

scalability of sort�last to obtain a system more e�cient than either approach for

scenes of tens of thousands of polygons�

��� Communication

The communication stage acts as a crossbar� communicating the results of one phase

of computation to another� and may be placed in three distinct places in the rendering

algorithm� as shown schematically in Figure ����� Sort��rst and sort�middle both

communicate polygons� or some partially computed representation of them� while

sort�last tra�cs in pixels�

Neither the scalability nor the e�ciency of any of the sort options appear in�

tuitively obvious� As evidenced by the rasterization discussion the ordering of the

communication will have e�ects on both the rasterization and geometry stages� A

model is introduced to quantify a number of aspects of these systems and provide a

basis for their comparison�

����� Model

The model abstracts quite far away from the actual rendering process� An attempt

has been made to capture all of the �rst order e�ects in communication and as

many of the second order e�ects as deemed practical� We will make a number of

simplifying assumptions� and note when we are being overly optimistic or pessimistic

in our assumptions� We have found that even with crude assumptions the model can

provide a clearly preferable communication strategy� Because the communication

structure has a signi�cant impact on the geometry and rasterization stages they are

��

variable de�nition
p number of polygons
n number of processors
G time to perform geometry per polygon
R time to rasterize a pixel
f asymmetry factor� ratio of maximum number of polygons in a region

of the screen to the average number of polygons per region�
o number of regions that a polygon overlaps
Q area of screen in pixels
A average area of a polygon in pixels
C time to communicate a datum from neighbor�to�neighbor� Di�erent

for each communication structure�

Table ���� Modeling Variables

included in the model�

Table ��� presents our variables for modeling the communication problem� We will

model the rendering process as occurring on a machine with n processors� rendering

a p polygon scene�

We model the geometry stage as requiring time G to execute per polygon� and the

total time spent will be G times the maximum number of polygons on any processor�

Similarly� the rasterization stage is modeled as requiring time R to rasterize a pixel�

and will require a total time equal to the maximum number of pixels rasterized by

any processor� times R�

For each communication scheme we will determine the amount of data q that it

communicates and the distance d that each datum must travel� The communication

topology is a ��D ring so for e�ciency reasons we will consider neighbor�to�neighbor

communication� Passing a datum from processor na to processor nb will therefore

require jna � nbj passes� so time is proportional to distance�

All processors may pass a datum to their neighbor simultaneously� so at any point

in time n data can be in communication� So the total amount of time required to

communicate the data between processors is O�q � d�n � each datum takes time

proportional d to communicate� we can communicate n of them simultaneously� and

�	

there are a total of q data to distribute�

In general the distribution of polygons over the screen is not uniform� The de�

viation from uniformity� expressed as the maximum number of polygons in a screen

region divided by the average� is f � In addition polygons can overlap more than a

single region� The average number of regions a polygon overlaps is o� Note that the

size of a region is decreasing in n� because the screen must be subdivided further

and further to share the work among all processors as n increases� As the size of the

regions decreases both f and o will increase� f will increase because the sampling of

smaller and smaller regions of the screen will expose larger variations in the polygon

distribution� Likewise� as the size of the regions decrease each polygon will overlap

more regions� so o will increase� The dependence of f and o on n will have important

e�ects on the e�ciency of the di�erent communication approaches�

We will now analyze the communication options using this framework to quantify

their performance� Note that optimally we would like an algorithm which runs in

time

toptimal �
p

n
�G �AR ����

so that as we increase the number of processors we obtain a perfect linear speedup�

This assumes that we perform no communication� that we aren�t penalized by the

overlap factor� and there is no asymmetry in the distribution of load across the pro�

cessors� The following analysis will show how each of the communication algorithms

violates these assumptions in some way�

����� Sort�First

Sort��rst places the communication stage as early as possible in the algorithm� ac�

tually preceding the geometry stage� Communication will place each polygon on the

processor�s responsible for rasterizing it�

If the set of processors responsible for rendering a polygon will change slowly� sort�

��

�rst can leverage this temporal locality to perform less communication� Modeling the

exploitation of locality is di�cult with our model� and we will make the optimistic as�

sumption that sort��rst algorithms operate with no communication� This assumption

proves to be useful� as the sort��rst approach still incurs substantial overhead over a

uniprocessor pipeline which alone can be used to compare it to other approaches� In

particular� by placing communication before geometry each processor that a polygon

overlaps will have to perform the geometry computations for the polygon� The overlap

factor o expresses this duplication� Furthermore any asymmetries in the distribution

of polygons over the screen regions� f � will be exposed to the geometry stage� so we

will spend time Gfo p

n
performing geometry computations�

The rasterization stage will also be penalized by the asymmetry factor f � and the

worst case processor will have to rasterize f p

n
polygons� However� the processor will

only have to rasterize A�o pixels of each polygon� for a total rasterization time of

ARf

o

p

n
�

The total time for sort��rst communication is then

tsf �
p

n
f�oG �R

A

o
 ����

which is near optimal for f and o close to �� We expect both f and o to be

increasing in n however� making the scalability of sort��rst communication question�

able� Our analysis in addition has completely ignored the communication overhead�

which is presumably non�zero�

����� Sort�Middle

Sort�Middle performs the geometry calculations and then distributes computed re�

sults to the processors responsible for rasterization� No locality is exploited� so the

processor which performs the geometry computations is uncorrelated with the ras�

terization processor and the expected distance a datum will travel is n��� In reality

many polygons will be rasterized by more than one processor� The overlap factor o

��

will determine how many processors each polygon will be rasterized by� and thus have

to be communicated to� In general there is no reason to believe that the processors

will be local to each other� so the actual distance may approach n as o increases� We

will pessimistically assume d � n here�

Sort�middle only computes the geometry once for each polygon� so it avoids the

penalty of duplicated work incurred in sort��rst� Like sort��rst however� it pays the

asymmetry penalty in screen polygon distribution during rasterization�

If we call the time to pass the computed results of a polygon from one processor

to its neighbor Csm then communication will require time p

n
� n � Csm Rasterization

time is identical to the sort��rst case� so we have a total time of

tsm �
p

n
��f

R

o
 � pCsm ����

Note that the total communication time for sort�middle is pCsm which is inde�

pendent of the number of processors� so as n gets large sort�middle algorithms will

spend all their time communicating�

����� Sort�Last

Sort�Last is a bit of a wild card� It doesn�t communicate polygon data� but instead

communicates pixels� the rasterization results� Each processor renders some arbitrary

subset of the database� and sorting is performed after rasterization� as these subsets

will overlap in some arbitrary way in the �nal image�

There are two ways to think about compositing this information� The rasterization

results could either be considered as a framebu�er on each processor� or as a set of

polygon fragments on each processor� The former view suggests that we combine the

framebu�ers from all processors to obtain a �nal framebu�er� The latter view suggests

we combine the rendered pixels from each processor to generate a framebu�er� These

two possibilities are referred to respectively as �dense�� because it communicates an

entire framebu�er from each processor� and �sparse�� because it communicates only

��

the pixels rasterized on each processor�

In both cases the total geometry and rasterization work is p�G � AR��n� The

asymmetry factor f is not exposed because we can evenly divide the polygons over

processors� and the overlap factor o is not exposed because we allow processors to

rasterize overlapping regions� Ignoring communication overhead� sort�last o�ers the

linear scalability we have been seeking� and in fact provides the optimal parallel

speedup�

Dense sort�last communicates a screens worth of pixels from each processor� How�

ever� each pixel only has to be sent to the processor	s neighbor� Upon receipt of a

pixel the processor either passes the pixel on to the next processor if it occludes the

processor	s pixel� or instead forwards its own pixel� Section
�� provides an example

of this communication structure� and a more careful explanation of why the distance

each pixel must travel is ��

The screen is a total of Q pixels� so dense sort�last must communicate a total

of nQ total pixels� n pixels are communicated in parallel� and each pixel travels a

distance of �� so the total communication time is QCsldense� A constant amount of

time is spent in dense sort�last communication� independent of both the number of

polygons and the number of processors�

Sparse sort�last lacks a complete framebu�er on each processor� If we assume

the framebu�er for the nal complete image is distributed over all the processors

then each processor has to communicate each of its rasterized pixels to some other

arbitrary processor� Thus the expected distance a pixel will travel is pessimistically

n� Each polygon has an average area A� and there are a total of p polygons� so there

are Ap pixels to communicate� We can communicate n pixels in parallel� each over a

distance n� for a total communication time of ApCslsparse�

Dense sort�last requires a total amount of time

tsldense �
p

n
�G �AR� �QCsldense �����

to render a scene� while sparse sort�last requires time

�

tslsparse �
p

n
�G�AR� �ApCslsparse �����

to render a scene� Dense sort�last o�ers communication that is constant over�

head� while sparse sort�last closely resembles sort�middle� but lacks the asymmetry

penalties in�icted on rasterization in sort�middle structures�

��� Analysis

Thus far our model has only assumed that our execution times are bounded by the

sum of the worst case times of each stage� This is true for any SIMD architecture�

We will now quantify each of the variables in the model for the Princeton Engine� In

some cases we will use actual gures obtained by examining an implementation� and

in other cases representative numbers will be used�

Determination of the cost of communication of course requires a model of the

actual communication mechanism� On the Princeton Engine each processor can pass

a single �
�bit datum to its neighbor in � operations� write the communication

register� performs the pass� and read the communication register� Passing a datum

of size a will require

i � � � a� b ���
�

where b is an overhead factor relating to setup and test of the received datum� The

factor of � re�ects that passing a single integer through the communication register

requires writing the register� performing the pass� and reading the register� Due to

resource constraints these operations can	t be pipelined over each other�

There are � distinct communication approaches to analyze� Sort�rst and sort�

middle both deal in polygons �or computed results thereof� and sort�last deals in

pixels� A good estimate of the size of the datum for each is necessary to determine

realistic execution times� A polygon is described in our implementation by �� integers�

��

approach datum size overhead C

sort�rst �� �� ���
sort�middle �� �� ��

sort�last

full � �� ��
sparse � �� ��

Table ���� Communication Costs� comparison of datum sizes for di�erent com�
munication approaches�

while a polygon descriptor �the sort�middle datum� is �� integers� Dense sort�last

requires the communication of three color components of ��bits each and a ���bit z

value� A sparse sort�last approach also requires each pixel to be tagged with screen

coordinates� for an additional two integers�

The overhead gures and datum size are based on an implementation for sort�

middle� The sort�rst datum size is the size of a polygon in our database� and the

overhead gure is taken as equal to the sort�middle case because they are compara�

ble operations� Sort�last has been approximated and is based on experience� The

overhead gures re�ect that during the dense approach the coordinates of the next

pixel received are known a priori� so less computation needs to be performed on each

received pixels� Sparse sort�last on the other hand requires a framebu�er address cal�

culation for each received pixel� and the unpredictability of the pixels received makes

overlapping operations di�cult�

Our modeling made a number of assumptions� The simulator was instrumented

to measure a number of the relevant quantities� and veried our assumptions� In par�

ticular� Figure ��� shows the distribution of polygons over processors for a sort�rst

algorithm� and in particular demonstrates the severe load balance problems resulting

from the object detail being centered in the screen� Figure ��� veries our assumption

that the number of communication operations for sort�middle would depend linearly

on the number of polygons� and independent of the number of processors�

Given the values of the parameters common to all the algorithms� specied in

��

variable value
p left unspecied for a more general analysis
n ���� the number of processors in our Princeton Engine
G ���� obtained from our implementation
A ��� the common benchmark is ����pixel polygons
R ��� obtained from our implementation
Q �����
 the screen is �
�x��� pixels
f ��� taken from the sample teapot scene
o ��� taken from the sample teapot scene

Table ���� Modeling Values

0

50

100

150

200

250

300

350

400

0 256 512 768 1024

po
ly

go
ns

processor

Figure ���� Sort�First Load Imbalance� the number of polygons per processor
varies dramatically� The worst case processor has ��� polygons intersecting its region�
while the average case is ���� polygons��

��

0

0.2

0.4

0.6

0.8

1

1.2

0 512 1024 1536 2048

sh
ift

s/
po

ly
go

n

processors

beethoven
crocodile

teapot

Figure ���� Sort�Middle� the number of shifts per polygon is the total number of
shifts required to distribute the polygons� divided by the total number of polygons�
The marginal cost of communicating a polygon is approximately constant at � shift
per polygon�

��

Table ���� and the size of the datum each communication structure uses� given in

Table ���� we now perform comparisons between these communication approaches to

determine which is most practical on the Princeton Engine�

����� Sort�First vs� Sort�Middle

If we compare sort�rst and sort�middle we see that sort�middle is faster than sort�

rst when

tsm � tsf �����

p

n
�G � fR

A

o
� � pCsm �

p

n
f�oG �R

A

o
� �����

G � nCsm � foG �����

fo � � �
nCsm

G
������

For our numbers sort�middle is superior if fo � ����� This analysis suggests

that sort�rst will be about a factor � faster than sort�middle� as fo � �
�� for

our sample scene� Nonetheless sort�middle was implemented preferentially because

it is believed that in reality sort�rst will be signicantly slower than assumed here�

for two reasons� First� the analysis above assumed that sort�rst would require no

communication� which is clearly false� Second� it compared a worst�case behavior for

sort�middle� In reality through optimizations �which do not apply to the sort�rst

case� we can implement sort�middle about twice as fast as assumed here� Overall we

expect that sort�middle is at least as fast as sort�rst on this architecture� and likely

to be signicantly faster�

����� Sort�Last� Dense vs� Sparse

Ignoring common factors �the rasterization and geometry time� we see that the time

required for a sparse sort�last algorithm is proportional to p� while the dense sort�last

��

time is constant� Thus we can calculate the number of polygons where dense sort�last

communication is preferable to sparse to be

p �
Q � Csldense

A �Cslsparse

������

or p � ����� A ���� polygon scene is extremely simple� At ��fps a mere �����

polygons per second would be rendered� So for all but the most trivial scenes dense

sort�last proves superior to sparse sort�last�

����� Sort�Middle vs� Dense Sort�Last

Our two remaining algorithms are sort�middle and sort�last� Sort�middle has per�

formance linear in the number of polygons� and dense sort�last has constant perfor�

mance� so once again we can nd the tradeo� point where dense sort�last will be the

algorithm of choice�

p �
Q � Csldense

Csm � �f�o���AR
n

������

If p �
�� ��� then sort�last will be preferable� The time required to perform

the sort�last composite will be Q � Csldense � ����M instructions� which is nearly an

entire second on the Princeton Engine� So sort�last� while o�ering constant time

performance� and thus scalability� proves prohibitively expensive�

Figure ��� compares the performance of these algorithms� As would be expected�

sort�rst requires the fewest instructions� followed by sort�middle and nally the

sort�last sparse implementation�

Sort�middle is a denite win on this architecture� A number of optimizations

are discussed later in the paper which will apply to most of these communication

topologies� however orders of magnitude separate the performance of these algorithms�

and there are no orders of magnitude in performance to be found in any optimizations�

so sort�middle remains the optimal choice of communication structure�

��

1

10

100

1000

1000 10000 100000

10
^6

 in
st

ru
ct

io
ns

polygons

sort-first
sort-middle

dense sort-last
sparse sort-last

optimal

Figure ���� Communication Costs� comparison of instructions required to execute
various communication structures versus number of polygons�

�

��� Summary

A framework has been provided to examine various communication alternatives for

polygonal rendering� To provide a straightforward and analytical solution a number

of assumptions have been made� Assumptions have been both optimistic �sort�rst

requires no communication� and pessimistic �sort�middle requires all�to�all commu�

nication� and have yielded insightful results�

The application of this analysis to the Princeton Engine reveals that algorithms�

such as sort�last� which execute in constant time� may prove to be prohibitively

expensive� while communication that executes in linear time� such as sort�rst� may

induce so much overhead that they prove impractical� Sort�middle� which runs in

linear time in the number of polygons and independent of the number of processors

would seem at rst glance to be an infeasible solution� but actually proves to be the

most e�cient of the algorithms for our scenes of interest�

The observation that sort�last yields constant performance and sort�middle yields

performance independent of the �clumping� of primitives that sort�rst is subject to

is signicant� We will return to these two algorithms in Chapter
 to develop a hybrid

algorithm which extracts the constant time benets of sort�last and the e�ciency of

sort�middle for small numbers of processors�

��

��

Chapter �

Communication Optimizations

Chapter � motivated the implementation of a sort�middle communication scheme to

maximize performance� However� if we look at the ratio of the time spent communi�

cating to the total execution time

n � Csm

G� n � Csm � fAR

o

���	

and evaluate for the Princeton Engine we see that communication will occupy

approximately ��� of our total execution time� Even allowing for our pessimistic

assumptions� we are already clearly facing the issue of scalability for sort�middle

communication� The single largest obstacle to the implementation of a high�speed

polygonal renderer on a SIMD ring is the communication bottleneck�

We have already determined that sort�middle communication will execute in O�p

time� so we will focus considerable eort on minimizing the constant factors in the

performance�

A number of possibilities could be exploited in the design of a more e�cient sort�

middle communication algorithm� They are largely orthogonal to each other� so when

combined they yield a tree of implementations� show in Figure ��	� Fortunately some

of the branches prove ineective� and they can be abandoned early in the analysis�

The options to be explored in the design of the communication algorithm have

��

dense

m>1

m=1

network localityduplication
data

distribution

sparse
striped

unstriped
yes

no

Figure ��	� Communication Optimizations� the set of possible communication
optimizations create a tree of possibilities to explore�

��

been ordered by both ease of implementation� and expected importance� The options

are�

Network The communication network has a �nite capacity for information� It may

be desirable to attempt to saturate this channel� placing as much information

into it as possible� There is a cost associated with saturating the channel be�

cause the setup and tests to achieve saturation require time� during which no

communication is achieved� The optimization to keep the network as full as

possible is referred to as a �dense� network �not to be confused with dense

sort�last compositing
�

Distribution The cost of passing a datum between arbitrary processors is decreasing

in the size of the passes used� Using large passes �neighbor�to�neighbor�N

amortizes the cost of writing and reading the communication register� along

with the overhead of the pass operation� A two�phase sort�middle algorithm

which uses large initial passes to get data close to its destination� followed by

neighbor�to�neighbor passes to precisely deliver the data could be more e�cient

than a naive sort�middle algorithm�

Data Duplication The polygon database could be duplicated on the processors� so

that instead of there being a copy of a polygon on only 	 processor� there is

a copy on m processors� By duplicating the polygons periodically across the

processors we have reduced the maximum distance any polygon must travel be�

tween geometry computations and rasterization� thus reducing communication

time� at the possible expense of geometry time�

Temporal Locality Interactive polygon rendered scenes� such as animations� build�

ing walkthroughs� and molecular modeling� generally have high frame�to�frame

coherence� A polygon rendered in one frame will be rendered in very nearly the

same position in the next frame� Communication could account for this and

allow polygons to �migrate� around the ring� staying reasonably close to the

processors that have to rasterize them� As time progresses the polygons will

�	

move from processor to processor to track the changing view frustum� but these

moves will be small� thus decreasing the amount of time spent in communica�

tion�

All of these options� while appealing� are di�cult to analyze without actually

implementing the algorithms� In general they deal with the subtle points of the

communication� and while they may prove to be predictable� a general model is

di�cult to �nd�

Before discussing the optimization in detail a description of the implementation

of sort�middle communication is given to clarify the issues addressed�

��� Sort�Middle Overview

The most straightforward implementation of sort�middle communication is shown in

Figure ���� After the geometry stage each processor has a queue of computed polygon

�descriptors�� shown schematically as triangles in the �gure� Communication begins

with each processor sending the �rst polygon in its queue to its right neighbor� and

simultaneously receiving its left neighbor�s polygon� The processors then perform n��

more passes� each time passing the descriptor they received from their left neighbor

to their right neighbor� A copy of each received polygon is kept if it overlaps the

rasterization region for the processor� Once the �rst batch of polygons has traveled

all the way around the ring the processors then all dequeue the next polygon from

their queues and repeat the process until all polygons have been communicated� When

complete each processor has seen each of the �rst polygons from all the processors

queues�

��� Dense Network

The communication of a polygon has been assumed to require n passes� where n is

number of processors� This assumes that each processor is interested in each poly�

��

1

processor
3

operation

2

0

2

1

2

2

0 1

Figure ���� Sort�Middle Communication� the work queues� with a single polygon
in each� are shown at the top� The �rst operation �	
 passes the �rst polygon from
each processor to its neighbor� The subsequent operations ��
 pass these polygons
around the ring until everyone has seen them�

gon� In reality only some small subset of the processors will rasterize any particular

polygon� and once all processors in this set have seen the polygon it needn�t be com�

municated any further� On any given pass operation up to n polygons will be in

communication� By ceasing the communication of polygons that have been fully dis�

tributed we can more fully utilize the communication slots available on each iteration

of the algorithm�

These options can be referred to as sparse and dense communication� not to be

confused with the sort�last approaches� The sparse approach naively communicates

every polygon to every processor� and the dense approach stops communicating a

polygon as soon as all of its rasterization processors have seen it�

Figure ��� compares the performance of sparse and dense communication under

simulation� The data sets shown all have an average distance between the geometry

processor and the rasterization processor for each polygon of approximately �	� pro�

cessors �half the total number of processors
� It has been assumed that the cost of

the sparse and dense distribution schemes per pass operation are identical� which is

��

0

5000

10000

15000

20000

25000

30000

35000

beethoven crocodile teapot

sh
ift

s

dense
sparse

Figure ���� Simulation of Sparse vs� Dense Networks� the sparse network can
require up to twice as long to distribute a given data set�

��

not strictly true� However� unless the tests necessary to obtain dense communication

were very expensive it is clearly advantageous to use dense communication� The re�

mainder of the optimization analyses are performed with the assumption that dense

communication is used�

��� Distribution

The number of instructions required by a neighbor�to�neighbor pass is i � �a � b

where a is the size of the datum and b is the overhead of the operation� The factor of

� re�ects the distinct operations on the Princeton Engine of writing the communica�

tion register� performing the pass operation� and reading the communication register�

Architecture constraints prohibit pipelining these operations over each other�

If we perform a pass of some arbitrary distance d �neighbor�to�neighbor�N
 it will

then require i � ���d
a�b instructions� A datum could be communicated a distance

d by performing a single pass of length d� or d neighbor�to�neighbor passes� Clearly

a single long pass is substantially cheaper� as you only pay the setup and overhead

costs once� rather than d times� Ellsworth discusses an analogous strategy in ���

which places processors into groups and bundles together polygon messages across

group boundaries into a single message to amortize the cost of message overhead�

Similar amortization isn�t possible here� as our overhead is per polygon� not per

message�

The cheapest way to get a polygon from one processor to another is to perform

a single shift of the size necessary� rather than a number of small shifts� However�

performing a number of special shifts of varying sizes will lead to poor utilization

of the communication network� Instead we consider a two�stage algorithm in which

polygons �rst take strides of size d around the ring to get close to their destinations

cheaply� and then are passed neighbor�to�neighbor to be precisely aligned� The

instruction cost saving in this approach could prove to be substantial� Figure ���

shows the tradeo between cost and distance� Note that we can obtain performance

��

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35

in
st

/d

d

Figure ���� Pass Cost� the cost of communicating a datum per unit distance is
inversely proportional to the distance of the pass�

no better than the case of a single pass which places the polygon precisely on its

destination� so our performance improvement is limited to the ratio of the time for a

single pass of length d to the time for d neighbor�to�neighbor passes�

lim
d��

a�� � d
 � b

d��a� b

� � �

b

a
����

For our system a � �� and b � ��� so we can expect best�case speedup of ��� in

the time required to communicate a single datum�

We can solve for the optimal stride size d under some assumptions about the

distribution of data�

Uniform Source Distribution The polygons to be rasterized are uniformly dis�

tributed across the processors after the geometry stage� This is a good as�

sumption� as the polygon database is distributed uniformly over the processors

initially�

��

Uniform Destination Distribution The number of polygons to be rasterized by

each processor is the same� This therefore assumes a uniform polygon distribu�

tion over the screen� It is likely some processors �those rasterizing the middle of

the scene
 will receive many more polygons than other processors� This intro�

duces asymmetries in the communication pattern and will be a source of error

between our analysis and simulation results�

Single Destination Each polygon is rasterized by a single processor� so the over�

lap factor is 	� This is a strong assumption� As we have already seen in

Chapter � the average polygon is rasterized on about � dierent processors�

However� column�parallel decompositions of the screen� in which each proces�

sor is assigned a column of the screen to rasterize� closely match this assumption

because the processors that rasterize a polygon will be adjacent�

Full Ring At any step in the distribution all points of the ring are carrying data�

This is not strictly true� because as the communication reaches completion there

is no abrupt transition from the ring being full of information to being empty�

For large data sets �p � n
 and the dense distribution scheme this should be a

reasonable approximation�

Given these assumptions� and their accompanying caveats� we can calculate an

optimal distribution pattern� and its performance relative to a simpler neighbor�to�

neighbor algorithm�

We have assumed that the polygon sources and distributions are uniformly dis�

tributed� so the expected distance a polygon will travel is n��� A two�stage distribu�

tion scheme� were we �rst perform passes of some stride d and then passes of stride

	 will require a total of i� instructions� composed �rst of instructions that perform

passes of size d� and then instructions that perform the neighbor�to�neighbor passes�

The size d passes will require id instructions�

id �
p

n

n

�

	

d
f�� � d
a� bg ����

��

Each pass requires �� � d
 � a � b instructions� each polygon takes an average of

n�� � 	�d passes to communicate in the �rst stage� and there are a total of p polygons

being communicated� n at a time�

After this �rst pass of communication each polygon will be an average of d��

processors from where it needs to be� so� similar to equation ���� the second pass of

distribution will require i� instructions�

i� �
p

n

d

�
f�� � 	
a� bg ����

and i� � id � i��

i� �
p

n

�
n

�

	

d
��� � d
a� b� �

d

�
��� � 	
a� b�

�
����

Solving to �nd the minimum number of instructions yields

d �

s
��a� b
n

�a� b
����

i� � p

�
�
s
��a� b
��a� b

n
�
a

�

�
� ����

The optimal stride is d � ����� for n � 	���� a � �� and b � ���

Figure ��� compares the predicted and simulated performance of the algorithm�

The curve is very �at at the minimum� which is reasonable to expect� since the cost per

unit distance traveled approaches 	 asymptotically with increasing d� As d increases�

data is distributed less closely to its optimal position in the �rst stage and the cost

of the second stage grows�

The simulation shows a clear minimum number of instructions per polygon for

d � � or d � 	�� This is a little more than half of the analytically determined optimal

d� The discrepancy arises because the �Dense Ring� assumption starts to break down

earlier for large values of d� so our analysis underestimated i�� The simulations show

speedups of 	���� ���� and 	���� while our predicted speedup is ��	�� compared to the

��

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120

in
st

/p

d

beethoven
crocodile

teapot
predicted

Figure ���� i� vs� d for Distribution Optimization� data based on simulation of
a �����processor machine	 d is constrained to be a factor of n by the simulator	

�

maximum speedup of �		

��� Data Duplication

Data duplication is an intriguing possibility for reducing the total communication re�

quirements	 By placing more than one copy of each polygon in the processor array we

reduce the maximum possible distance any polygon must travel to be communicated

to any given processor	

If we duplicate the polygon database m times across the array then a polygon

which lies on processor k � n�m also lies on processor k � n�m� processor k �

�n�m� through processor k � �m � ��n�m	 The maximum distance a polygon will

have to travel from a source to destination is now n�m instead of n	 Furthermore�

the distribution of the copies across the array is deterministic� so any processor can

determine without communication which of m processors should source each polygon

for which it has a copy	 Thus we have reduced the amount of communication we have

to perform at the expense of doing extra work in the geometry stage	 Each processor

will now have to examine pm�n polygons� and compute the geometry for the subset

of them that it determines it is the best source for	

To analyze the potential performance improvements of data duplication we will

use the same assumptions as used during the distribution analysis� namely� uniform

source and destination distribution� single destination and dense ring	

To make a meaningful analysis we have to keep an eye on the cost of the geometry

operations	 As already discussed� the geometry stage may be broken into two pieces�

�rst examining all of the polygons on a processor and determining which of them are

visible� and then performing the complete geometry calculations only for the visible

polygons	 In the case of data duplication the visibility test will include deciding

if this processor can communicate the polygon most cheaply of the m processors

with a copy of it	 Let Gi be the number of instructions required for a processor to

transform a polygon to the screen and determine if it should source it	 Let Gf be the

��

remaining instructions to complete the geometry stage per polygon	 The number of

instructions required to perform the geometry calculations and distribute the results

for a duplication factor m is im�

im �
pm

n
Gi �

p

�n
Gf �

p

�n

n

�m
��a� b� ��	
�

Note that the duplication costs a factor m on the number of polygons we have to

examine �Gi�� but costs nothing for the Gf calculations� as these are only performed

by one processor for each polygon	 The �nal term in the sum is the communication

time� which now takes distance n

�m
for each polygon� thanks to the duplication	 We

assume that half of all polygons are visible	

Implementation reveals that Gi � ���� and Gf � ���� instructions	 Solving for

the optimal choice of m yields

m �

s
n��a� b�

�Gi

��	��

im � p

�
�
s
Gi��a� b�

n
�
Gf

�n

�
� ��	���

and m � ���� for n � ����� a � �� and b � ��	

It is interesting to note that the optimum constraint does not depend on the cost

of Gf � as we have assumed that the visible polygons are uniformly distributed across

the processors for the Gf stage of computation	 If there are any non�uniformities

in the destination distribution these will be re�ected back in the choice of which

processors source the polygons for them� creating a non�uniformity in the geometry

stage	

Our analysis thus far has been largely ad hoc due to the di�culty of modeling

asymmetries in the source distribution and destination distribution	 The simulator

can model these e�ects precisely� and yields interesting results	 Figure ��� compares

the analytical expression for the optimal choice of m to the simulator results	

��

0

20

40

60

80

100

120

140

160

0 8 16 24 32

in
st

/p
ol

y

m

simulated
predicted

Figure ���� Polygon Duplication� instructions executed per polygon on a simulated
���� processor machine vs	 m	

��

Although the curves have the same general shape� there is a large discrepancy

between the two results	 Part of the discrepancy is due to the mistaken assumption

that ��� of the polygons will be visible� while the actual number is closer to �� in

this scene	 The simulator also expresses results in instructions per visible polygon�

which is in some ways more useful than instructions per total polygon� because it

re�ects the e�ort that goes into the useful �visible� polygons� rather than all of the

polygons	 However� these two factors alone far from account from the di�erence in

the results	

Figure �� reveals how our analysis could have led us so far astray	 The clumping

of the object in the middle of the scene creates a clumping of the geometry work

on approximately one fourth of the processors� so the geometry stage was � times

more expensive then we expected	 Furthermore the communication is more expensive

because it has all become relatively local� and large parts of the ring go unutilized	

However� the simulation still reveals a performance improvement on the order of ���

for the best case improvement at m � ��	

It appears that we have found another method for reducing the total amount of

communication� at the expense of increased geometry computation	 At the optimal

point m � �� we spend an average of ��� instructions per polygon versus ��� for the

no duplication case� a savings of ���	 The logical extension to to this simulation is to

incorporate the distribution optimization already discussed for a further performance

improvement	

Figure ��
 shows the instructions per visible polygon as a function of d� the data

distribution step size� and m� the duplication factor	 The minimum point is found at

d � �� and m � �� which indicates that the duplication optimization� while e�ective

in and of itself� does not combine well with other optimizations	 Intuitively the

duplication optimization is minimizing the distance any polygon has to be traveled�

thus making the distribution optimization less e�ective	

��

0

5

10

15

20

25

30

35

40

45

50

0 256 512 768 1024

po
ly

go
ns

processor

m = 1
m = 8

Figure ��� Polygons Per Processor vs� m� the asymmetric distribution of scene
content is re�ected in the distribution of polygons during geometry processing	 Data
is displayed as the maximum of
 adjacent processors for readability and is taken
from a simulation of the teapot data set	

��

1 2 4
8

16 1 2
4

8

16
50
60
70
80
90

100
110
120
130

d

m

inst/poly

Figure ��
� Instructions Per Polygon as a function of m and d� the optimal
choice of d ���� and the optimal m �
� do not together yield an optimal solution	
Simulation is based on the crocodile data set	

��

��� Temporal Locality

Temporal locality attempts to exploit locality in a similar fashion to data duplication	

The polygons are allowed to migrate around the ring for the geometry computations�

rather than always being computed on the same source processor	 A polygon remains

as close as possible to the processors that will be rasterizing it� thus minimizing

communication time	 Unlike sort��rst only a single copy of the polygon is computed

during the geometry stage� thus removing the duplicated computation penalty� but

still incurring any load imbalances due to non�uniform polygon distribution over the

screen	 As in the data duplication case� this is most meaningful for maps of processors

to pixels that keeps adjacent screen areas on adjacent processors� such as a column�

parallel decomposition	

Temporal locality can be thought of as data duplication where m � n� except we

don�t have to actually duplicate the entire database on each processor	

The communication time is greatly reduced because each polygon is rasterized

on processors immediately adjacent to the processor which performed its geometry	

The average distance a polygon must travel becomes the average width of a polygon	

In this case another communication cost gets added into the overhead� we must

now communicate the polygon �not the computed representation we will rasterize�

between processors from frame to frame	 These moves will be small in general� as

we are exploiting locality	 However� they are complex	 For instance� a polygon could

move slightly to the left of where it is on the screen� or slightly to the right� so we

must now do passes in each direction if we don�t want to have to pass polygons all

the way to the right to move them slightly to the left	 Furthermore we need to do

something with the culled polygons	 At some point they could be visible again and

we need to keep them around on some processor	

Ignoring these issues we can �rst just examine the kind of load imbalances we

are facing in this system	 In general they will be much higher than those of data

duplication because we are getting the polygons in an optimal position which will

��

expose all of the asymmetries in the load distribution	 Figure ��� shows the polygon

distribution during the geometry stage for the teapot dataset	 Here the worst case

processor has �� visible polygons to perform the geometry for� at a cost of Gi �Gf

instructions per polygon� ignoring the culled polygons which must also be handled	

The overhead of this approach over a balanced geometry stage is the excess number

of polygons on this processor	 The teapot data set has ����
 polygons� or �� polygons

per processor� so temporal locality imposes a ��� polygon penalty on the e�ective

polygon load per processor	 We can compute the number of extra instructions this

requires per visible polygon as ��� ��Gi�Gf ��pvis � ���
 which exceeds even a naive

implementation of sort�middle communication which incurs a marginal cost of ���

instructions per polygon	 Once we include the necessity to perform communication

both to pass a polygon to its neighbors for rasterization and to maintain temporal

locality we are likely to be far in excess of this �gure	

Temporal locality remains an intriguing optimization due to its similarity with

sort��rst communication structures	 However� its vulnerability to asymmetries in

the polygon distribution over the screen make it unsuitable for use here	

��� Summary

Four communication optimizations were examined� network� distribution� duplica�

tion� and locality	 Speci�c attention is paid to the application of the optimizations

to the Princeton Engine� and the interaction of the optimizations	

Maximizing the density of information in the communication channel� the most

obvious optimization� produces startlingly positive results	 Distribution continues

this trend and o�ers speedups of greater than ���� by amortizing the cost of loading

and storing the communication register over passes larger than neighbor�to�neighbor	

Data duplication strives to improve the performance of the communication time

by decreasing the maximum �and the mean� distance between a source processor and

the destination processors	 Non�uniform scene content distribution becomes re�ected

�

0

20

40

60

80

100

120

140

160

180

0 256 512 768 1024

po
ly

go
ns

processor

Figure ���� Temporal Locality� the number of polygons per processor for geometry
computations directly re�ects the underlying scene complexity for each column	 The
worst case processor has �� polygons to perform geometry calculations for� almost ��
times the average number of polygons to compute	 Data is displayed as the maximum
of
 adjacent processors for readability	

�

in the distribution of work during geometry computations� making this approach more

similar to sort��rst� While o�ering a signi�cant speedup� it o�ers a smaller perfor�

mance improvement than the distribution method� and does not o�er any performance

improvements when combined with distribution�

Temporal locality is conceptually the logical extreme of data duplication� where

the duplication is achieved by sort��rst style communication� It proves to be vulner�

able to the same load imbalances that sort��rst communication falls victim to� The

extremely �ne subdivision of the screen coupled with a highly variable distribution of

scene content creates a few extremely heavily loaded processors which impose a huge

performance penalty on the geometry calculations�

��

�		

Chapter �

Sort�Twice Communication

As part of this thesis a novel new approach to the sorting problem was developed� en�

titled
sort�twice�� Sort�twice leverages the e�ciency of sort�middle communication

for low polygon count scenes to create an implementation of sort�last compositing

that is practical with modest bandwidth processor interconnect� The implementation

of a two�stage communication algorithm allows a novel overlapping of the rasteriza�

tion pipeline with the second communication stage to create a highly e�cient deferred

shading and texturing system�

��� Why is Sort�Last so Expensive�

Sort�last has primarily been the domain of hardware solutions due to the very high

bandwidth required� For example� PixelFlow ��� uses a dedicated ����bit bus at

���MHz� for a bisection bandwidth of ���GB�s� to provide the necessary compositing

interconnect� By comparison� the Princeton Engine� which employs the same style of

linear interconnect� has a meager ��MB�s of interconnection bandwidth� more than

two orders of magnitude less than PixelFlow�

Why is so much bandwidth required� The bandwidth for sort�last is purely driven

by the number of samples to composite and the update rate of the display� A modest

single�sample system of of ��� pixels by ��� pixels at �	 frames per second requires

�	�

a staggering ��MB�s of communication� which� although attainable on our second

generation machine� would leave little time for any other computation�

��� Leveraging Sort�Middle

Sort�twice communication leverages the low expense of sort�middle communication

over short distances to make sort�last compositing practical on a general purpose

machine such as the Princeton Engine� The use of sort�middle communication in a

system supporting multiple users provides the foundation for this new approach�

Figure ��� shows a �� processor machine supporting � simultaneous users� Each

user is assigned to a group of � processors for geometry calculations� and an adja�

cent group of � processors for rasterization� The skew between the geometry and

rasterization processors allows all communication shifts to be performed in the same

direction� a performance boon on a SIMD machine� The communication stage only

has to pass a polygon across a maximum of � processors� rather than �� processors

if the machine were dedicated to a single user� This system delivers performance to

each user indistinguishable from a machine the same size as the group of processors

assigned to the user�

If we increase the total number of processors while leaving the number of processors

assigned to each user unchanged the aggregate polygon rendering performance will

increase linearly� Whitman discusses the implementation of a parallel renderer on the

Princeton Engine speci�cally to support multiple users in �	��

Note that the number of processors assigned to a user has no e�ect on the number

of polygons each processor can transform per second� or the number of pixels it can

rasterize� If we assign a single processor to each user we don�t need to perform any

communication and we can maximize the aggregate rendering performance of the

system� of course at the expense of the per user polygons delivered each second�

If we wish to focus all of our computing resources on a single user we can still use

the multiple user decomposition� except each group of processors while conceptually

�	�

7 8 10 11 1365

User 4User 2 User 3User 1User 0

4 149 120 1 2 3

12

Communication

Rasterization

Geometry 9632 7540 81 14131110

Figure ���� Multiple Users on a Parallel Polygon Renderer� each user is
assigned to a small fraction of the processors�

working for di�erent users will in reality be working for the same user� We will

divide the machine into groups of g processors� where g is the group size �g � � in

Figure ����� Similarly� we divide the screen into g non�overlapping regions� numbered

	 through g � �� A polygon that overlaps a region r� 	 � r � g may be rasterized

by any processor m� m � r � k � g� If we distribute the polygon database over

all processors� no matter what processor performs the geometry computations for a

polygon the polygon descriptor will have to travel a maximum of g � � processors

to arrive at a processor that can rasterize it� as opposed to a maximum of n � �

processors in the typical sort�middle implementation� After all the processor groups

complete rasterization� we can composite the images generated by the distinct sets of

processors in a fashion analogous to dense sort�last compositing to generate the �nal

output image�

Equation ��� gives the time for sort�middle rendering� If we change this equation

to re�ect the new maximum distance a polygon must travel we see

t�
sm

�
p

n
�G � gCsm � f

R

o
� �����

and our new implementation requires time proportional to the number of polygons

�	�

and inverse in the number of processors� for a linearly scalable system� However� we

now must pay the cost of performing sort�last composition to combine the results of

all the individual rendering groups�

��� Sort�Last Compositing

Sort�last compositing deserves further explanation for this algorithm� as it departs

signi�cantly from the classical dense sort�last approach� Processors may no longer

rasterize arbitrary pixels from the entire screen� Instead each processor may render

only pixels in its region of the screen� The n�g processors that have rendered pixels

in the same region of the display must then composite their results to generate the

�nal output image�

As Figure ��� shows� the region of the screen that a processor is responsible for re�

peats every g processors� Thus the communication for the sort�last compositing stage

of sort�twice is completely deterministic� Most importantly� this compositing can be

performed in constant time� in a fashion analogous to normal sort�last compositing�

The �nal result of the composition operations is each pixel is known at some

deterministic processor m� The correct pixel is not known at all the processors that

could have rendered the pixel� as this requires all�to�all communication and would

require time proportional to n� If we only have
the correct answer� for any particular

pixel on one processor we can achieve the composition in constant time�

The composition of a single pixel is performed as follows� processor m�g takes its

copy of the pixel and passes it to processor m� �g� which composites the pixel with

its own rendered pixel� and passes the result to processor m� �g� This processor is

repeated until �nally the pixel is passed to processor m� which composites the pixel

into its framebu�er� Thus n�g � � shifts are required to composite a single pixel�

Following the path of pixel � in Figure ���� it starts on processor 	 which simply

passes its copy of the pixel to processor �� Processor � then composites the received

pixel with its pixel � and passes the result to processor �� This continues� until �nally

�	�

7

12

8

9

4 5
2

14

0

11

63 148

6

10

3
1

13

0

11

9

1 2 4

13

7

12

5

10

4 0 1

1

23

3

1 2

2

3

1

2 3

4

4

0

0

0

4

Figure ���� Sort�Last Compositing� a sample machine with �� processors and a
group size of �� The assignment of processors to regions is shown on the display at
left�

processor �� receives the pixel and composites it into its framebu�er�

As Figure ��� shows� all n�g processors responsible for the same region can si�

multaneously composite n�g pixels in n�g � � shifts� There are g such groups of

processors compositing� so n pixels are composited in n�g�� operations� The result�

ing composited image will be distributed across the processors� The processor that

will hold the �nal composited version of each pixel is shown in Figure ����

There are P pixels in the output frame� so the frame will require

P

n
�
n

g
� �� � P �

�

g
�

�

n
� �����

shifts to composite� The number of shifts is bounded by P�g� a constant time

solution for some choice of g� independent of the number of processors and the number

of polygons� Note that if g � � then we have the dense sort�last composition� as

discussed previously�

While this composition requires communication operations inversely proportional

to the group size� each communication operation is across g processors� with cost

proportional to the group size� for overall constant performance�

�	�

4

8510

7

11

9

9

14

14

7

0

0

12

4

2

2

1

1

10

13

6 9

9

6

612

0

0

0

0 3

12

12

3

3

9

3

3

3

3

6

Figure ���� Pixel to Processor Map� the �nal mapping of fully composited pixels to
processors results from the interleaving of the compositing operations� The processor
that is responsible for each pixel labels the pixel�

��� Sort�Twice Cost

Compositing the �nal image will require P ��
g
� �

n
� communication operations� Each

operation will be a pass of a pixel across g processors�

The cost of communicating a pixel is of the same form as given for polygons�

i � �� � d�a � b� In this case d � g �each pass is across an entire group�� a � �

��� bits of color and �� bits of z� and b � ��� as taken from table ���� So while

the number of shifts is decreasing linearly in the group size� the cost of the shifts is

increasing linearly in the group size� and the composition will require constant time�

Examining the total number of instructions required to perform the compositing

we see

i � P �
�

g
�

�

n
� �� � g�a� b� �����

i

P
� a�

�a� b

g
if �n� g� �����

Equation ��� is enlightening� While the number of instructions executed per sam�

�	�

ple is independent of n and p� it is inversely proportional to g� so we would like to

make g large to minimize the cost of each sample we composite� For our model we

have a � � and �a� b � ��� As g increases we pay less and less per sample� asymp�

totically approaching a mere � instructions per pixel� for a factor of � speedup over

the classical sort�last approach �g � ��� As with the
distribution� optimization�

we are amortizing the cost of the tests and write�read of the communication register

over a larger pass �caused by a larger g�� It is interesting that the classical dense

sort�last compositing case is simultaneously the most expensive to composite� requir�

ing �� instructions per pixel� and the most expensive in memory� requiring an entire

framebu�er on each processor�

��	 Deferred Shading and Texture Mapping

As shown in Figure ���� the time required to perform sort�last composition is de�

creasing in the group size� so logically we would like to maximize the group size �with

an eye on the cost of sort�middle communication� to maximize our overall perfor�

mance� During the pure communication of the current pixel data �not loading or

storing registers or performing tests on the data� but the actual time the data is in

transit�� the processors are essentially idle� It is known a priori that the processors

next operation will be to composite the pixel it receives with its own pixel� While

waiting to receive this pixel� shading and texture mapping for this processor�s pixel

may be performed� By overlapping shading and texture mapping operations until the

sort�last communication stage we save time and e�ort in the rasterization stage� and

leave our communication time una�ected�

Our expression for the cost of a pass is ���d�a�b instructions� �a instructions are

spent writing and reading the communication register� and b instructions are spent

testing the received datum and preparing to transmit the next� da instructions are

spent with data simply in transit� which means our VLIW processors are executing

essentially just passRight for each instruction� and nothing more� For a pixel size of

�	�

0

5

10

15

20

25

0 16 32 48 64 80 96 112 128

in
st

/p
ix

el

group size

Figure ���� Sort�Twice Compositing Time� the payo� for increasing g dimin�
ishes rapidly� Note that simultaneous with increasing g and decreasing the composi�
tion time� the sort�middle time is increasing�

�	�

a � � and a modest group size of g � ��� this amounts to ��� instructions per pixel

which go almost completely unused by the processors	

If we look ahead to the results in Chapter
� our current implementation requires

��� instructions per bilinearly interpolated texture mapped pixel and only
� instruc�

tions per shaded pixel� so texture mapping is a ��� instruction premium	 Clearly with

��� instructions available we could defer both texture mapping and shading	

By deferring these operations until after rasterization� the rasterization stage is

made much simpler	 In particular� consider the case of texture mapping	 Previously

if any polygon was texture mapped� all processors had to operate in texture mapped

mode and take the performance penalty	 Now the performance penalty except the

extra parameters to interpolate� is completely deferred until sort�last composition� so

the texture mapping overhead is entirely hidden	

A rapid prototype of this system shows that in unoptimized compiler generated�

code it will rasterize a single pixel with deferred texture mapping and shading in �

instructions� a factor of � improvement over our current implementation	

��� Performance

The time to composite a frame is completely deterministic� and we have had good luck

predicting sort�middle communication� so we can con�dently predict the performance

of sort�twice communication	 Figure ��� shows the instructions required per pixel for

various choices of g	 If we consider the limiting case n � g � �� we must have

at least � instructions per pixel to composite� and we can see that this will require

���� � ��� instructions for a ��
 by ��� pixel display	 The Princeton Engine operates

at ��MHz so the total execution time to composite an output image is ���
� seconds	

If we do nothing but composite frames we can operate at a maximum of ���� frames

per second	 Clearly this solution is infeasible for an interactive rendering environment

on the Princeton Engine	

It is interesting to consider the attainable performance of this system in and of

���

itself however	 Part of the performance is still tied up in the sort�middle commu�

nication	 As discussed earlier� a reasonable model for sort�middle communication

assumes that each polygon will have to be passed over half the processors	 Sort�twice

reduces the number of e�ective processors to the group size	

The sort�middle stage will execute

ism� �
p

n

g

�
� � d�a� b� �

p

n

�g �	��

instructions� where p is the number of visible polygons	 The sort�last stage�

assuming n�g � �� will execute

isl� � P � �
��

g
� �	��

instructions	 Solving for the optimal group size as determined by the minimum

number of instructions� gives

g �

s
��Pn

�p
�	��

is� � ism� � isl� � �P �

s
���Pp

n
�	
�

so the group size increases with number of processors� amortizing the �xed costs

of a pass operation� and decreases in the number of polygons� reducing the cost of

the sort�middle operations	

By comparison� pure sort�middle communication with the distribution and dense

network optimizations requires

���

0

0.5

1

1.5

2

2.5

3

3.5

4

20000 40000 60000 80000 100000 120000

10
^6

 in
st

ru
ct

io
ns

polygons

sort-middle
sort-twice

Figure ���� Predicted Sort�Middle vs� Sort�Twice Communication Time�

at about ������ polygons per frame the performance of sort�twice will exceed the
performance of sort�middle	

ism � p

�
�
s
�a� b��a� b�

n
�

a

�

�
A � p

�
�����p

n
� ��

�
�	��

instructions	 The number of instructions required by sort�middle and sort�twice

intersect at p � �����	 This is a reasonably high number of polygons per frame	

Assuming we are rendering at �� frames per second this implies a polygon rate of

over �	�M rendered polygons per second	

Figure ��� shows the predicted performance of the sort�twice communication al�

gorithm versus the performance of sort�middle	 In particular� note the extremely

gentle increase in communication time as a function of the number of polygons for

sort�twice	

Figure ��� compares the simulated performance of sort�middle and sort�twice

���

0.1

1

10

100

10 100 1000

10
^6

 in
st

ru
ct

io
ns

10^3 polygons

sort-twice
sort-middle

Figure ���� Simulated Sort�Middle vs� Sort�Twice Communication Time�

the raw communication times of the algorithms closely match the predicted results	
Note that the simulator restricts the choice of group size g to be a factor of the number
of processors	 At each data point g was chosen as the largest factor of n smaller than
the predicted optimal choice of g	

communication algorithms for scenes of up to �	�
M polygons	 The scenes were

generated as random polygons uniformly distributed over the screen with ��� of the

polygons visible	

Figure ��� includes the costs of geometry and rasterization	 For scenes beyond

������ polygons sort�twice consistently outperforms sort�middle	

��� Summary

Sort�twice o�ers an extremely e�cient method to obtain linearly scalable perfor�

mance in the number of processors� without paying the full cost of dense sort�last

compositing	

The display is divided into g regions� and every processor r � kg is allowed to

rasterize any polygon that intersects region r	 By allowing a number of di�erent

���

0.1

1

10

100

10 100 1000

10
^6

 in
st

ru
ct

io
ns

10^3 polygons

sort-twice
sort-middle

Figure ���� Simulated Sort�Middle vs� Sort�Twice Execution Time� in�
struction counts include geometry and rasterization stages for both approaches	 All
polygons are textured� and the sort�twice implementation uses deferred shading and
texturing during the sort�last operation	

processors to rasterize the same region the amount of sort�middle communication

required is minimized	 The n�g copies of each region of the screen are then composited

after rasterization in sort�last fashion	 The number of pixels to composite from each

processor is ��g of the total display pixels but they must be passed a distance g during

composition	 The increased distance for each communication operation amortizes the

overhead operations associated with communication� and substantially reduces the

total time spent in sort�last communication	

The intelligent use of the communication instructions during sort�last composition

allows the implementation of deferred shading and texture mapping at no cost	 Ras�

terization can be made more than twice as fast as the non�deferred implementation

provided with sort�middle schemes	

The sort�last composition still requires operations proportional to the number of

pixels� and in the limit can execute in no fewer instructions than the total number

of pixels in the display times the size of each pixel	 In the limiting case a factor

���

of
 speedup is obtainable on the Princeton Engine over a normal sort�last imple�

mentation	 Sort�twice communication creates an e�cient sort�last implementation�

not only in time and in memory� but also by admitting a more e�cient rasterization

scheme with fully deferred shading and texture mapping	

���

Chapter �

Implementation

The previous chapters� while providing the background and analysis necessary to

specify the system� have only hinted at the actual underlying implementation	 This

chapter will discuss the issues in the actual implementation of an interactive polygon

rendering system on the Princeton Engine	 I will primarily discuss e�ciency issues

and optimizations	 The actual line�by�line details of the code are straightforward�

and representative of the calculations performed in any number of polygon renderers	

The polygon renderer supports depth bu�ering� lighting� shading and texture

mapping of triangular primitives	 The rasterization stage has been implemented

with a column�parallel decomposition of the screen� which readily admits the future

inclusion of various optimizations of the communication structure� and in addition

simpli�es the rasterization process for each polygon	 Figures ���� ���� ���� and ��� are

representative output of the system� captured through a digital frame store attached

to the Princeton Engine	 The histogram across the bottom of the �gures is linearly

proportional to the number of polygons that intersect each column of the display	

There are a number of caveats to implementing polygon rendering on the Prince�

ton Engine	 First is the general issue of managing the implementation pipeline on

a SIMD machine� discussed in x�	�� and second is the di�culty of dealing with the

line�locked programming paradigm� discussed in x�	�	 These constraints provide sub�
stantial motivation for our implementation� so we will discuss them �rst� and then

���

Figure ���� Beethoven� � �� ��� visible polygons in a ����� polygon model rendered
at �� frames per second	 The histogram in green represents the number of polygon
slices rasterized by each processor	 The peak number of slices at approximately the
center of the �gure� is ���	 The short red bars note which processors had a time
consuming rasterization load	

Figure ���� Crocodile� � ��� ��� visible polygons in a ������ polygon model ren�
dered at � frames per second	 The peak rasterization load is ��� polygon slices	

���

Figure ���� Texture Mapped Crocodile� � ��� ��� visible polygons in a ������
polygon model rendered at � frames per second	 The peak rasterization load is ���
polygon slices	

Figure ���� Teapot� � �� ��� visible polygons in a ����
 polygon model rendered at
�� frames per second	 The peak rasterization load is ��� polygon slices	 Note the
highlights from two light sources	

���

the actual implementation of the � pipeline stages� geometry� communication and

rasterization	

��� Parallel Pipeline

The pipeline model of execution provides a great deal of parallelism� but lends it�

self to a direct implementation only where a true pipeline exists in hardware	 The

Princeton Engine� while highly parallel� is not a pipeline of processors� it is a vector

of processors	 To extract maximum e�ciency from the system the pipeline algorithm

must be carefully implemented	

A straightforward implementation would assign each of n processors a polygon�

perform all the geometry� communication and rasterization for those n polygons�

and then process the next n polygons	 Why is this not a good approach� The

graphics pipeline rejects information as it proceeds	 The �rst step in the geometry

stage transforms and culls polygons	 In general� some large fraction of the polygons

we start with will almost immediately be thrown away� leaving large amounts of

resources unused	 Furthermore� di�erent polygons will require di�ering amounts of

time to rasterize� as a good implementation will make rasterization proceed in time

proportional to the area of the primitive	 If all processors rasterize at most a single

polygon and then return to geometry computations the algorithm will execute in time

proportional to the biggest polygon	

This motivates a rearrangement of the pipeline into a set of sequentially executed

stages	 An e�cient implementation will �rst transform and test visibility for all

polygons� then perform lighting� then clipping� etc	 This serialization of the algorithm

imposes no loss in performance� as clearly all of the same operations must be executed

regardless of order	 The only cost associated with this serialization is the storage

necessary to bu�er results between stages	 By processing the entire polygon database

at each stage before proceeding variations in load between processors exposed on a

polygon by polygon basis should be minimized	

��

��� Line�Locked Programming

A polygon rendering implementation on the Princeton Engine faces a number of obsta�

cles beyond extracting parallelism� Most challenging is the line�locked programming

paradigm enforced by the hardware�

During each horizontal scanline the processors execute an instruction budget of

��� instructions� at the end of which the program counter is reset to the start of

the program in preparation of the next line of video� After the overhead of clocking

out video and other bookkeeping tasks the available program instruction budget is

approximately �	� instructions per scanline�

The forced segmentation of the program into blocks of code �	� instructions long

greatly increases the di
culty of extracting e
ciency from the implementation� Code

must not only be e
cient in its utilization of processors� it must be e
cient in its use

of code blocks� Any code block less than �	� instructions in length wastes execution

time needlessly�

A clever approach is taken to handling this constraint� The program is broken

into a set of procedures� each of which executes in less than �	� instructions� At the

beginning of each scanline the procedure addressed by a global function pointer is

called� Each procedure is then responsible for setting this pointer to the address of

the next procedure to execute� In large areas of straight�line code� such as during

the geometry stage� each procedure just sets the pointer to the procedure which

continues its execution� while in sections of code with a single tightly coded loop�

such as rasterization� the procedure may leave the pointer unchanged until it detects

completion by all processors� thus executing the same function for multiple scan�lines�

This method� while somewhat awkward� maps relatively easily to polygon render�

ing� For example� all of the state is already maintained in global variables to minimize

the overhead of passing variables� so the function dispatch does not need to concern

itself with parameters� and can be a very low overhead operation�

Of course� just performing the packing of instructions into instruction budget sized

���

blocks is di
cult� as every time the program is recompiled careful attention must be

paid that the instruction budget has not been exceeded by any of the procedures� In

some cases complete utilization of the instruction budget is impossible� For example�

long division requires slightly more than ��� instructions to execute on the Princeton

Engine� making it nearly impossible to execute more than a single long divide within

the instruction budget� so sections of the geometry code which execute multiple long

divides are often ine
cient because they don�t have enough extra work to pack into

the left�over instructions� Unfortunately the compiler provides no direct support for

these code packing operations� and the process is often an arduous trial and error

eort� The Magic��� our next generation hardware described in x���� eliminates the

line�locked programming constraint�

��� Geometry

The geometry stage provides the most obvious parallelism� as all visible �after rejec�

tion and clipping� polygons require exactly the same amount of work to compute�

However� to extract e
ciency we still have to break the pipeline into two pieces�

First we transform all the polygons and test for visibility� generating a list of visible

polygons on each processor� and then we complete the geometry processing on just

the visible set of polygons� This two stage process allows us to e
ciently handle a

large set of polygons� hopefully many of which are not visible� Thus we can perform

a cheap transform and test operation on all polygons� and defer the expensive work

till later� when we will have to perform it on fewer polygons�

����� Representation

The polygon representation is shown in Figure ��	� All polygons are triangles for

simplicity� An all integer representation has been chosen for its greater e
ciency

than �oating point�

Each vertex has associated with it a �D location� �x� y� z�� a normal� �nx� ny� nz�

���

VERTEX: (14 bytes)

member

Vertex 2

Vertex 0

Vertex 1

1

2

2

2

2

2

bytes

Green

1

bytes

3

14

14

14

(48 bytes)

1

Red

Blue

texture reference

1

POLYGON:

1

(x,y,z)

(u,v)(x,y,z)

(x,y,z)

(u,v)
0

0

(Nx,Ny,Nz)

(Nx,Ny,Nz)
2

r,g,b

(u,v)
1

Nx

Ny

Nz

u

v

member

2

Z

1

1

22

Y

X
(Nx,Ny,Nz)

0

Figure ��	� Polygon Representation

and a texture coordinate� �u� v�� The vertex coordinates are ���bit integers� The

vertex normals are ���bit signed �xed�point with �� fractional bits� The texture

map coordinates are ��bit unsigned integers� with � fractional bits� for the full range

of ��� �� in texture coordinates� The decision was made not to support per vertex

color to save space and simplify the lighting model� The polygon� in addition to �

vertices� includes a color� �r� g� b�� and a reference to the texture to use� if applicable�

����� Transformation

The polygon data set is modeled as a single rigid object� so a single transformation

matrix may be used for all polygons�

Transformation matrices are transmitted to the Princeton Engine by a control

application running on a remote workstation� There is no direct method to input data

in real time to the Princeton Engine� with the obvious exception of video information�

A clever reuse of a HiPPi register allows transformation matrices to be sent to the

engine at frame rates�

The transformation matrix is input as �� integers� specifying the � elements of

���

the rotation matrix with �� fractional bits and the transformation entries as signed

integers�

The use of ���bit integers for both the vertex coordinates and the transformation

matrix provides a signi�cant advantage� The world to eyespace transformation may

now be performed with ���bit arithmetic which allows the fast �single clock cycle�

single�precision data paths to be used throughout�

The transformation to screen�space requires � divides� sx � x�z and sy � y�z� As

already discussed� division is particularly expensive on this machine� so we make the

optimization of performing division by table lookup� Division of a k�bit number by a

k�bit number may always be performed by lookup in a �k entry k�bit table with no

loss of precision� A ��� entry lookup table of ��z is provided on each processor� A full

��� entries are not necessary as division is only done by positive z� While expensive

in memory� this table will prove to be invaluable later for perspective correct texture

mapping�

����� Visibility � Clipping

Visibility is performed as a set of screen�space tests� To be visible a polygon must

lie in front of the display plane and the bounding box of the polygon must intersect

the visible area of the display�plane� All other polygons are rejected as they must be

non�visible�

All polygons are de�ned with vertices in counterclockwise order when facing the

viewer� admitting a trivial backfacing test� The backfacing test is performed by

evaluating one vertex of the triangle in the linear equation de�ned by the other two

vertices� If the vertex lies in the negative half�plane the polygon is back�facing and

is culled�

Clipping is not explicitly performed in this implementation� as our particular

method for rasterization makes it unnecessary� The rasterizer never examines o�

screen pixels� so the details of the polygon intersection with screen edges are unim�

portant�

���

The optimization discussed earlier of generating a visible list of polygons �rst

and then completing the geometry processing only for the visible polygons is not

implemented� For scenes of interest the geometry stage typically consumes less than

�	� of the total instructions without this optimization�

����� Lighting

The implemented lighting model supports three light sources� an ambient� a direc�

tional� and a point light source� All three light sources are constrained to be white�

and the polygon is constrained to be a single color� so that we can interpolate a single

quantity� the white light intensity re�ected from a face to the observer� rather than

separate interpolations of the red� green and blue light re�ected to the observer�

The ambient light controls the background level of illumination in the scene� Con�

trol is provided over the intensity of the light�

The directional light acts as a light source in�nitely far away from the scene� so

all light incident upon the scene has the same direction vector� Controls are provided

to modify the direction and intensity of the light�

The point light source models a physical light placed somewhere in close proximity

to the scene� so the direction of incident rays to a vertex depends on the position of

the vertex relative to the light source� Controls are provided over the position and

intensity of the light�

Separate controls are provided over the diuse component of re�ection and the

specular component of re�ection for the object�

The use of a lighting model with directional and point light sources also requires

the ability to compute unit vectors from arbitrary vectors� A lookup table is used to

perform the required inverse square root�

���

����� Coe	cient Calculation

Calculation of coe
cients is the most time consuming function of the geometry stage�

The world to eye transformation� culling� clipping and lighting are all performed in

less than �	�� instructions� The calculation of the coe
cients of the linear equations

to iterate require another �	�� instructions to execute�

Figure ��� shows the form of the equations to compute� The expense of these oper�

ations results from the necessity of performing two ���bit divides for each parameter

to interpolate� Note that the divisor � is common to all the calculations �depth�

intensity� texture coordinates�� as it only depends on vertex screen coordinates� and

not the parameter being interpolated�

One optimization that would provide a large performance improvement would be

careful calculation of the inverse of the common denominator � once into a ���bit

�xed point number� Subsequent divisions could be performed as a multiply and a

shift� Unfortunately this requires a ���bit multiply with a ���bit result� an option

not supported by the compiler� and deemed to troublesome to implement in light of

the relatively small �less than �	�� fraction of time spent executing the geometry

code�

The polygon descriptor generated as the �nal result of the geometry computations�

shown in Figure ���� completely describes the polygon for rasterization� Communica�

tion� the next stage of operation� will transmit these descriptors between processors

for rasterization�

��� Communication

The implementation uses sort�middle communication� All of the optimization anal�

ysis for sort�middle communication was based on the assumption of locality of des�

tination for each polygon to be communicated� This directed our choice of screen

decomposition for rasterization� as already suggested� to be column�parallel� By as�

signing each processor a single column of pixels on the display to rasterize we leave

���

C

2

2

4

B

(84 bytes)

A

coefficient coefficient bytes

(8 bytes)

-or-

(12 bytes)
LINEAR EQUATION:

bytes

A

B

C 4

4

4

POLYGON DESCRIPTOR:

bytes

8

12

8

12

12

8

texture v

linear equation

edge0

edge1

edge2

zdepth

intensity

texture u

8 3

2

2

2

2

2

bytes

3texture reference

r,g,b

left

right

support information

passes

bottom

top

Figure ���� Polygon Descriptor� result of all of the geometry computations for a
single polygon�

a quarter of the processors idle during rasterization �the display is only ��� columns

wide� but we gain a great deal of locality in polygon destination� All processors ras�

terizing a polygon are guaranteed to be contiguous� so our previous analyses which

relied on the assumption of a single destination processor for communication are

approximately correct� and our optimizations will prove eective�

The use of the �distribution� scheme for decreasing communication time was un�

fortunately not implemented� The consideration and analysis of this possibility did

not arise until late in the implementation� preventing its inclusion� However� analysis

shows that it happens to map to the line�locked programming paradigm very e
�

ciently� Passing a single polygon from neighbor to neighbor would require ���d��a�b

operations� where a � �� �a �� integer polygon descriptor�� b � �� �the test overhead�

and d � �� optimally� for a total of ��� instructions� ��� instructions �t comfort�

ably within the budget of �	� instructions� and allows time for a global�if to detect

completion of the �rst pass of the distribution algorithm�

A description of the mechanics for performing neighbor�to�neighbor communica�

tion of the polygon descriptors is now presented� Neighbor�to�neighbor�N for the

distribution optimization is an obvious extension� simply using large pass sizes�

��	

����� Passing a Single Polygon Descriptor

The most essential communication operation is the neighbor�to�neighbor pass� Ar�

bitrary communication can then be performed with repeated neighbor�to�neighbor

passes� Passing a polygon descriptor �represented as �� ���bit integers� from one

processor to its neighbor is a loop over the descriptor� passing a ���bit piece of it at

a time�

void pass� int �sourceDescriptor� int �destDescriptor �

�

int counter�

for � counter � �� counter 	
�� counter�� � �

communicationRegister � sourceDatumcounter��

passRight��� �� or passLeft��� ��

destDatumcounter� � communicationRegister�

�

�

The passRight�� �or passLeft��� operation is a compiler primitive that shifts the

datum in each processor�s communication register one processor to the right �or left��

Each processor is performing the same action� so each processor is simultaneously

sourcing and receiving a polygon descriptor� The loop is completely unrolled and

coded in assembly language for e
ciency�

����� Passing Multiple Descriptors

In general each processor will have more than a single descriptor to distribute� and

more than a single descriptor will be destined for this processor� It is the responsibility

of each processor to store this data as it arrives�

Each processor manages a source array of data and a receive array of data� The

source array contains all of the descriptors that this processor will communicate to

the other processors� The receive array contains� at the end of the communication�

all of the descriptors that the other processors communicated to this processor�

���

void distribute� int n� DESCRIPTOR source�� DESCRIPTOR receive� �

�

DESCRIPTOR �s� �r�

s � source�

r � receive�

while� globalAnd� n � � � � �

pass�s�r��

s � r�

if � GOOD�r� � r���

if � �INTERESTING�s� �� �n�� � ���

s � ��source�

�

�

Figure ���� Implementation for Data Distribution

The variable s points to the next descriptor to pass� while r points to the location

to store the next descriptor received� s ping�pongs back and forth between the source

array and receive array� Initially each processors sources a datum from its source

array� and receive a datum into its receive array� When a processor receives a

descriptor it immediately points s at it� the assumption being that it will probably

have to pass this descriptor further along� as it is unlikely this processor is the last

processor that needs to see this polygon� This store and forward operation insures

that each polygon descriptor travels around the ring far enough to be seen by all

processors rasterizing it� Note that whatever descriptor s was pointing at it was

just passed to this processors neighbor� which is now responsible for it� Thus the

automatic s�r operation forgets which descriptor this processor just sourced� but it

simultaneously becomes another processors responsibility�

If the descriptor received is GOOD �a descriptor for a polygon that this processor

will be in part responsible for rasterizing� the processor increments the receive pointer

r so that it doesn�t overwrite it with the next polygon received� Otherwise r is left

alone� and the next descriptor received will overwrite it� This can cause �and generally

���

does� a situation where s �� r� and the processor just continually forwards polygons

for other processors�

If the descriptor received by a processor on any given cycle is not INTERESTING

then it has already been communicated to all processors that need to see it� The

processor will then source one of its remaining source polygons if it has any left�

If the processor has no more descriptors to contribute it will simply pass o this

�uninteresting� polygon to the next processor� which may or may not choose to

replace it with a polygon of its own� etc�

The while loop terminates when no processor is still communicating data of in�

terest� If no one is communicating data of interest then the communication must be

complete� and the function terminates� This has to be done via a global test as it isn�t

known a priori how long it will take to communicate a given number of polygons��

This implementation avoids as many copy operations as possible� as a copy will

require a reads and a writes �a is the descriptor size�� which is almost as expensive

as the communication operation itself� This is particularly important for communi�

cation� as it is generally the case that on a given cycle only some small percentage of

the processors will be handling data they need a copy of� and the rest will be just for�

warding data intended for others� Any conditional operations �such as a conditional

copy� would be particularly expensive� as only a small fraction of the machine would

be utilized�

When communication has completed each processor has a copy of all the descrip�

tors for the polygons it will be responsible for rasterizing� and the algorithm proceeds

directly to rasterization�

�The actual implementation optimizes to perform this test periodically by making an optimistic
guess of how many iterations of the loop the remaining descriptors will take to communicate� and
after that many iterations a new estimate is formed� etc� The estimates will decrease monotonically
�because they are based on the remaining number of polygons each processor has to communicate�
which is decreasing if progress is being made� and the frequency of completeness checks will therefore
increase until actual completion� With a little care the number of tests can be minimized without
performing more communication than necessary�

���

F(x,y) = Ax + By + C F’(x,y) = By + C’; C’ = Asx

Figure ���� Linear Equation Normalization� linear equations are normalized to
the horizontal position of the processor in screen space�

��� Rasterization

After communication each processor has a copy in the receive array of all polygon

descriptors that intersect its rasterization region� A column�parallel decomposition

of the screen has been implemented� so each processor is responsible for rasterizing a

vertical slice of each of these polygons into its single column of the framebu�er�

Rasterization is broken into a 	�step process in the implementation�

� Normalize linear equations to processor column position

� Rasterize polygons

����� Normalize Linear Equations

The equations that reside on every processor as part of the polygon descriptors are

of the form F
x� y� � AxByC� We have implemented a column�parallel decom�

position of the screen� so each processor is responsible for rasterizing a single column

of pixels� thus each processor only needs to iterate the linear equations vertically�

The normalization C � � C Asx is made for each equation� where sx is the horizon�

tal position of this processor�s column on the display� These normalizations require

approximately ��� instructions per polygon and are applied to the receive polygon

array on each processor immediately after the completion of the communication stage�

�	�

Now simpler equations of the form F �
x� y� � By C � can be evaluated on each

processor� as shown in Figure ���� Of course the equations are evaluated iteratively�

so the actual evaluation process is F
x� y� � F
x� y� �� B for each vertical step�

Rasterization begins once all the processors have normalized their linear equations

for all received polygons�

����� Rasterize Polygons

Polygon rasterization� discussed in section ��	��� is implemented by iterating a set of

linear equations over the bounding box of a polygon� In this case we only iterate the

equations over a vertical span of the polygon due to the column�parallel decomposi�

tion of the screen� To rasterize a single pixel we compare the currently interpolated

depth for the polygon to the corresponding pixel in the depth�bu�er� If the current

pixel occludes the pixel in the depth�bu�er we then shade and texture map the pixel

and place it in the framebu�er and its depth value in the depth�bu�er� Thus we have

an occlusion model that is accurate on a pixel�by�pixel basis�

There are a number of issues and optimizations which were tackled in the im�

plementation� The di�cult implementation issues will be discussed �rst� and the

optimizations will be discussed at the end of the section�

Decoupling Rasterization and Polygon Size

The most important issue
although arguably an optimization� in the rasterizer is

allowing processors to independently advance to their next polygon after completing

rasterization of their current polygon� This decouples the rasterization process from

size di�erences in the particular polygons being rasterized on each processor at any

point in time� Without this decoupling each processor would rasterize its �rst polygon�

wait until all other processors were done� and then all processors would simultaneously

proceed to their second polygon� etc� forcing all processors to rasterize their polygon

in time proportional to the size of the worst case polygon�

The decoupling is achieved by performing a periodic test during pixel rasterization

���

to allow processors to move on to their next polygon� Every k�pixels all processors

test if they have �nished rasterizing their current polygon� and those that have update

the equations they are iterating with the coe�cients of their next polygon to raster�

ize� This test and conditional advancement is expensive because it requires copying

indirectly addressed data into registers� Furthermore� the line�locked programming

paradigm makes some choices of how often to perform the test
the value of k� more

e�cient than other� in terms of total instructions executed every during each scan�

line� The shaded polygon rasterizer performs one test and eight pixel rasterizations

k � �� per scanline� and the full texture mapping rasterizer performs one test and

four pixel rasterizations per scanline�

This optimization is similar to those implemented by Crow ��� and Whitman �	���

Crow and Whitman both use a similar test to decouple the scanline of the polygon

each processor is working on� but still force synchronization at the polygon level�

This suggests they only gain e�ciency where polygon are similar in area� but have

varying aspect ratios� Our approach is insensitive to polygon aspect ratios
because

each processor only rasterizes a single column of any polygon� and to polygon area�

which would seem to o�er a more substantial advantage�

Perspective�Correct Texture Mapping

Our model of textured polygons associates a texture coordinate
u� v� with each of the

vertices of the polygon� and the texture coordinate of any point within the polygon

may be found as the linear combination of these vertex values� However� this is

linear interpolation in object space� but not in screen space� The general form of the

interpolation should be

u � AxBy C
����

v � Dx Ey F
��	�

���

in object space� but we interpolate all our parameters in screen space�

Naive screen space interpolation of quantities nonlinear in screen space leads to

distracting artifacts� perhaps most noticeable in texture mapping� The errors made

destroy the foreshortening e�ect associated with objects twisted away from the ob�

server� If we carefully perform only interpolations of quantities that are linear in

screen space we can create a perspective correct renderer�

Examining our perspective transformation� sx � x�z and sy � y�z� we see we can

express these equations as

u � z
Asx Bsy C�
����

v � z
Dsx Esy F �
����

so linear interpolation of u�z and v�z can be correctly performed in screen space�

and the value of u and v recovered at each pixel by multiplication with z� However�

multiplication by z reintroduces the problem of screen space linearity�

If we examine the equation of a plane in �D� and thus the equation of depth�

we see that like texture coordinates� depth is not linear in screen space� the inverse

depth is linear in screen space� However� we can easily interpolate inverse z instead

of z� and still use depth�bu�ering� Our compositing test for ��z values is simply the

complement of the test for z�

Now we can trivially interpolate u�z� v�z and ��z for each polygon� and texture

mapping will require the calculation

u �
u�z

��z

����

v �
v�z

��z

����

at each pixel� We reuse the inverse z table used to perform the perspective division�

��	

avoiding the very high cost of performing two divides per iteration of the rasterization

loop�

Heckbert and Moreton provide a comprehensive treatment of the issue of object�

linear vs� screen�linear quantities in ����

Bilinear Interpolation

Texture mapping is muddied further beyond perspective correction by the necessity of

performing sampling� A simple texture mapping algorithm performs point�sampling

of the texture image� taking the color of the polygon pixel as the texel closest to the

current interpolated
u� v� coordinate� Unfortunately small motions of objects can

induce jittering in the sampling of the texels and create unpleasant artifacts under

point sampling� Bilinear interpolation helps to reduce these e�ects by computing a

pixel color as the weighted average of the � texels nearest to the texture coordinate�

On many architectures this provides a substantial performance penalty� as it re�

quires performing � texel fetches for every texture mapped pixel� However the Prince�

ton Engine has enormous aggregate memory bandwidth� and in fact there is a copy

of all of the textures on every processor� so the additional texel fetches are a trivial

expense�

����� Rasterization Optimizations

Distinct Texture�Mapped and Non�Texture�Mapped Algorithms

The inclusion of texture mapping adds signi�cantly to the cost of rasterization� A

texture mapped pixel requires approximately twice as long to rasterize as a pixel

without texture mapping� Many scenes of interest have no texture mapping at all� so

a control is provided in the interface to disable texture mapping which results in the

use of an optimized shading�only rasterizer�

Early Abort

���

(a) (b)

error
aliasingfor this slice

rasterization
complete

Figure ���� Rasterizing� triangles occupy less than half of the pixel covered by
their bounding boxes� In both cases signi�cant advantage can be made of noting
when rasterization exits the polygon� Case
b� adds the complexity that a careless
rasterizer will step over the polygon due to integer pixel coordinates and rasterize
forever� waiting to enter the polygon�

Observe that when rasterizing polygons� shown in Figure ���� that at least one

half of the area in the bounding box of a triangle is not within the triangle� It

would be advantageous to avoid examining all of these pixels needlessly� We include

a simple test which on average avoids rasterizing ��� of these �exterior� pixels� As

rasterization proceeds� a �ag is set when the polygon is entered� Because triangles

are necessarily convex� as soon as one of the edge equations test negative and the �ag

is set� the rasterizer knows that it has completely rendered its piece of this polygon

and rasterization of the next polygon can begin�

����� Summary

This section has described the major implementation issues and optimizations in

the rasterizer� Particular attention has been paid to the decoupling of the polygon

being processed from rasterization� In addition perspective�correct texture mapping�

requiring an expensive two divides per pixel� has been e�ciently implemented with a

table lookup�

The use of separate rasterization algorithms with and without texture mapping

support provides a substantial performance gain for scenes without texturing� An

���

early abort mechanism allows rasterization to detect completion of a polygon before

the entire vertical extent of the bounding box has been examined� and provides a

signi�cant reduction in the total pixels examined to rasterize a given polygon�

Thus far the geometry� communication and rasterization stages have been de�

scribed� The next section will discuss the �nal issue� the actual control of the ren�

derer�

��� Control

A virtual trackball is used to interact with rendering software� A workstation is used

to display a �control cube�� shown in Figure ����� which represents the orientation

and translation of the object rendered by the Princeton Engine� The cube may be

grabbed with the mouse and rotated and translated arbitrarily� The user may also

set the cube spinning about an arbitrary axis of rotation� Quaternions� described

in ����� are used to interpolate between successive positions of the rotating control

cube� The GL modelview matrix ���� corresponding to the orientation of the cube is

transmitted to the Princeton Engine continually via an auxiliary data channel� The

renderer may be operating at less than the matrix update rate� in which case some of

the updates are ignored� so while the update rate of the engine display may not match

the virtual trackball� the rate of rotation and translation of the rendered object does�

Clever reuse of a communication register used to support a HiPPi� interface allows

a single integer to be input to all processors per scanline� We can input �	���� � �����

integers a second to the engine through this channel� A low data rate� but more than

adequate for simple updates� such as the transformation matrix� The bandwidth into

the engine through this �auxiliary� channel is obviously substantially larger than that

required for simple matrix updates� and allows the future possibility of sending extra

information through this channel� such as the positions and properties of light sources

�Unfortunately use of the actual HiPPi channel requires reprogramming the IO circuitry of the

engine and can�t be used concurrently with video output�

���

Figure ����� Virtual Trackball Interface

within the world� or simulation data�

A full handshaking protocol is used between the workstation and the engine�

which insures perfect synchronization� The channel is also robust and readily han�

dles dropped� scrambled and delayed data� so that the occasional error is gracefully

handled� A serial interface between the workstation running the virtual trackball

software and the Princeton Engine controller is used to avoid control di�culties due

to variations in ethernet tra�c�

��� Summary

This chapter has discussed the implementation of a column�parallel polygon renderer

on the Princeton Engine� The polygon renderer supports depth bu�ering� lighting�

shading and texture mapping of triangular primitives�

An explanation of the geometry stage has been provided� including the details of

the representation of the polygon database and the form of the calculations performed�

The inclusion of a per processor inverse z table supports e�cient perspective divisions�

and is reused later to support e�cient perspective�correct texture mapping�

The communication stage has been carefully described� as it dominates the exe�

cution time of the algorithm� and its e�ciency bears heavily on the overall e�ciency

���

of the program� The details of queueing polygon descriptors for transmission and

receipt is explained� and a careful explanation of the actual programmed managed

communication algorithm is given�

Signi�cant issues and optimization of the rasterization stage� second only to com�

munication in total execution time� have been examined� Decoupling of the polygon

size dependence in rasterization in conjunction with an early abort mechanism a�ords

an e�cient implementation� The use of an inverse z lookup table provides visually

pleasing perspective correct texture mapping cheaply�

An intuitive virtual trackball interface provides real�time user interaction and

control of the rendered scene�

Chapter � will provide performance results of this implementation and a compar�

ison with the performance of a Princeton Engine contemporary� the Silicon Graphics

GTX�

���

���

Chapter �

Results

The polygon renderer has achieved peak performance of over ������ visible� shaded

and bilinearly interpolated texture mapped polygons per second� There are a number

of per polygon and per pixel performance �gures that combine to yield the �nal aggre�

gate performance of the system� This chapter will �rst provide the raw performance

of each operation� and then an accounting of how these instructions are spent per

visible polygon rendered� Finally a comparison will be made between the Princeton

Engine performance and that of its contemporary� the Silicon Graphics GTX�

��� Raw Performance

The raw performance of each of the individual stages of the implementation is readily

quanti�ed� Unfortunately the line�locked programming paradigm of the the Princeton

Engine often obscures the true performance of the algorithm� Where feasible �gures

are provided both for the actual implementation and for a hypothetical Princeton

Engine lacking the line�locked constraint�

The line�locked programming constraint makes it most natural to express oper�

ations as the number of operations achieved per line time� where a line time is �	�

instructions� and includes the framebu
er management code and any unused cycles�

	��

NTSC video operates at �� frames per second� and �� lines per frame� for a total of

	���� lines per second�

����� Geometry

Transforming to screen coordinates� lighting� and computing linear equation coe��

cients is very fast�

	�� procs �
	

�

polygon

proc � lines
� 	����

lines

second
� ���������

shaded polygons

second

���	�

with texture mapping �which requires the calculation of linear equations for the

additional parameters u and v��

	�� procs �
	

		

polygon

proc � lines
� 	����

lines

second
� ���������

textured polygons

second

����

����� Communication

Characterizing the communication performance is di�cult� as the distribution of poly�

gons and average distance they have to travel will a
ect the e�ciency of the shift ring�

A useful benchmark is the number of polygon passes �proc n � proc n�	� per second�

	�� procs � �
passes

proc � line
� 	����

lines

second
� ����������

polygon passes

second
�����

If each polygon requires approximately �	 passes �travels halfway around the

ring to reach its destination� then the polygons communicated per second is

�NTSC video� as de�ned by the SMPTE draft standard actually operates at ����������� �elds

per second� or approximately ����� frames per second	

	��

��� ���� ���
passes

second
�

	

�	

polygon

passes
� ��	����

polygons

second
�����

����� Rasterization

Performance remains largely communication limited� which is independent of polygon

size�� This makes the usual �	���pixel polygon� a less useful benchmark� as it stresses

the rasterizing performance excessively over the communication performance� More

relevant is pixels per second� as this yields insight to the average depth complexity

that can be handled� An aggregate rate of almost �� million bilinearly interpolated�

Gouraud shaded texture mapped pixels is attained� Without texture mapping� almost

	�� million pixels can be rendered per second� A second of NTSC video is ��� �

����� � 	� ���� ��� pixels� or less than one eighth of the peak pixel �ll rate of this

implementation�

If we consider texture�mapped �bilinearly interpolated�� Gouraud�shaded pixels

per second� we can characterize the resulting performance as��

��� procs � �
pixels

line � proc
� 	����

lines

second
� ����������

pixels

second
�����

Without the bilinear interpolation necessary for texture mapping� the pixel �ll

rate doubles�

��� procs � �
pixels

line � proc
� 	����

lines

second
�
��	������

pixels

second
�����

Without the line�locked programming paradigm� and ignoring the overhead to

�This is true to �rst order	 Of course larger polygons will have to stay in the ring longer before

everyone has seen them� but generally the size of a polygon is small compared to the distance it

must travel	
��
� processors are speci�ed� as only the rendering of on�screen processors is used in this

algorithm	

	�	

change active polygons� the rasterizer requires � instructions per shaded texture

mapped pixel� for an aggregate �ll rate with a fully distributed framebu
er �all 	��

processors� of�

	�� procs � 	� � 	��
inst

sec � proc
�

	

�

pixel

inst
� 	��
	���
	

pixels

second
�����

Shaded pixels only require �� instructions per pixel� for an aggregate �ll rate of�

	�� procs � 	� � 	��
inst

sec � proc
�

	

��

pixel

inst
� �	
��������

pixels

second
�����

The full pixel rendering rate is never realized because we perform a bounding box

scan of the triangular primitives� which guarantees we will test �and not render� some

non�primitive pixels� We also perform a periodic test �not after every pixel� to con�

ditionally advance to the next polygon� which while improving overall performance�

also increases the number of pixels we will examine for each primitive necessarily� If

we approximate the loss in e�ciency due to the pixels examined outside of the poly�

gon and the granularity in the rasterization algorithm� the rasterizer achieves ���

parallel e�ciency� Assuming uniform load balancing� the renderer can rasterize�

��� ���� ���
pixels

second
� ���� �

	

	��

polygon

pixels
� ����
��

����pixel polygons

second
�����

without texture mapping�

��� ���� ���
pixels

second
������

	

	��

polygon

pixels
� �������

����pixel polygons

second
���	��

����� Aggregate Performance

	�

percent of time in each phase
object frames�s�� polys�s�� geometry communicate rasterize
beethoven 	��� ������ � �� ��

	��� ����� � � ��
	��� ����� � �� ��

crocodile ��� ������ 	� �	 �
��� ������ 	� �� ��
��� ����� 	� �� 	�

teapot 	��� ������ 	 � ��
	��� ������ 	� �� ��
	��� ������ 	� �� ��

Table ��	� Rendering Performance for Typical Scenes� Rendered scenes always
count an integral number of frame times to compute� as framebu
ers can only be
swapped at frame boundaries� Any �excess� time in the frame spent idling is counted
as render time� causing an unfairly high estimate of render time versus computation
and distribution�

The actual performance of the renderer is measured by rendering the scenes shown

in �gures ��	� �� and ���� Typical results are given in Table ��	� Multiple entries

for the same object are at di
erent orientations� as communication and rendering

cost will depend on orientation� Figure ��	 shows the breakdown of rendering time

between geometry� communication and rasterization�

��� Accounting

The Princeton Engine provides an aggregate 	�BIPs of computing performance� At

������ polygons a second this implies approximately ������ instructions per rendered

polygon� This cost seems excessive� but we can account for where all the instructions

have gone� Examining the scene with our peak performance� the texture mapped

crocodile� we tally the instruction usage�

Our scene has ������ polygons� 	����� of which are visible at the given orienta�

tion� The scene is rendered at �fps� for an aggregate performance of ����� polygons

per second� We will express times for operation in terms of scanlines� because all

functionality is implemented in scanline sized procedure blocks�

	��

0

10

20

30

40

50

60

70

beethoven crocodile teapot

pe
rc

en
t

geometry
communication

rasterization

Figure ��	� Execution Pro�le� the communication time for most scenes is the
dominant performance factor� As the number of polygons increase �and their size
decreases� communication time becomes even more dominant�

The geometry stage is not optimized to perform a two�stage pipeline� so all poly�

gons have to be fully processed� A texture�mapped polygon requires 		 scanlines to

compute� for a total of

�	�
inst

line
� 		

lines

polygon
� 	�� �	�

inst

polygon
���		�

there are a total of ������ polygons� for

��� ���
polygons

frame
� 	�� �	�

inst

polygon
� �
frames

second
� ��� � 	��

inst

second
���	�

We�ll count the communication stage a bit di
erently� A single pass consumes

MIPs across all of the processors and we can perform � passes in a scanline� for

�	�
inst

line � proc
�

	

�

lines

pass
� 	��procs � 	��� ���

inst

pass
���	��

	��

Each polygon has a marginal pass cost �total number of passes divided by the

number of polygons� of ���� for a total of

	��� ���
inst

pass
� ���

pass

polygon
� 			� ��

inst

polygon
���	��

The communication stage thus requires

	�� ���
polygons

frame
� 			� ��

inst

polygon
� �
frames

second
� ���� � 	��

inst

second
���	��

By the time we reach the rasterization stage we have hit a large load imbalance�

due to the asymmetric distribution of scene content� If we examine Figure �� and

note the histogram we see that the peak processor has ��� polygons intersecting

its column� The average polygon height is ��� pixels �obtained from the simulator�

and our texture mapping code forces polygons to rasterize in � pixel chunks� so each

polygon will have an e
ective average height of � pixels� polygons can be normalized

in a scanline� and � pixels can be rasterized in a scanline� so the instructions required

to process a single polygon are

�	�
inst

line
� �	

normalize

polygon
�

	

line

normalize
� �

pixels

polygon
�

	

�

line

pixel
� � 	� ���

inst

polygon

���	��

and our worst�case processor has ��� polygon slices to rasterize� for a total of

���
polygons

proc
� 	���

inst

polygon
� 	��procs � �

frames

second
� ��� � 	��

inst

second
���	��

Our total instructions for rendering this scene are thus 	��� � 	�� instructions per

second� which very closely matches the 	�BIP capability of the Princeton Engine�

The extra BIPs �a non�trivial number of instructions� is accounted for in a number

of places� There are a number of procedures that are called a single time� for example�

	��

to place the histogram on the image� or to initialize the database for rendering� In

addition any cycles between the end rasterization and the start of the next frame

�when the framebu
ers can be swapped� are missing from this analysis� They have

been counted by the renderer as rasterization instructions in Figure ��	�

��� Performance Comparison

The performance of Princeton Engine polygon renderer is compared to that of that

of its contemporary� the Silicon Graphics GTX� described in ���

The comparison is a bit stilted of course� The GTX represents the state of the

art in special purpose polygon rendering hardware for 	���� Likewise� the Princeton

Engine� although never sold in volume� is a million dollar machine� Nonetheless

they are comparable on a number of levels� Both machines exhibit a high level

of parallelism� and are implemented in the technology era� so clock speeds may be

expected to be similar� etc�

The geometry stage of the GTX is composed of � high performance �geometry

engines� connected in a pipeline� with each processor handling a speci�c aspect of

the geometry calculations� Together they provide an aggregate performance of 	��

million �oating point operations per second �M�ops�� By comparison the Princeton

Engine can perform a �oating point multiply and divide in a single line time on each

processor� for an aggregate performance of approximately �M�ops� The Princeton

Engine was not designed to perform �oating point operations� and consequently pays

a premium for their use�

By direct comparison both of these systems are implementing a geometry pipeline�

The Princeton Engine implementation sacri�ces dynamic range and uses an all in�

teger representation for its primitives and can consequently compute approximately

 million triangular primitives per second� The GTX performs �with substantially

fewer processors of course� 	������ triangular primitives per second�

It is hard to quantify the analog of the Princeton Engine communication stage

	��

on the GTX� The GTX has a dedicated high speed bus which transports primitives

between the geometry pipeline and their �nal destination at the image engines� The

bus was speci�cally designed to accept primitives at the full rate the geometry stage

generates them� and will thus never be a performance limiting factor�

The rasterization stage requires some guessing to determine the performance of

the individual image engines of the GTX� They are cited as having an aggregate

performance of �� million depth�bu
ered pixels per second� which is less than half of

our pixel �ll rate� Assuming each image engine must perform on the order of � integer

operations per depth�bu
ered pixel the aggregate performance of the image engines

is ���MIPs� or ���BIPs� slightly less than �� of the Princeton Engine performance�

Of course the Princeton Engine spends approximately 		� instructions per pixel� so

they aren�t directly comparable�

Curiously� the GTX has realtime video input and output capability� making it a

particularly apt comparison to the Princeton Engine� Although not part of the poly�

gon rendering problem� the performance of the Princeton Engine doubtless exceeds

the GTX for video related operation�

Some features have no comparison� Most notably� the Princeton Engine renderer

performs full bilinear�interpolated texture mapping� which the GTX o
ers no support

for� In addition the Princeton Engine is a software solution� and will admit many

extensions that are simply impossible in a hardware solution�

The �nal and most telling comparison is of course the aggregate performance� The

GTX can render 	������ connected �shared vertex� triangles per second� compared

to the Princeton Engine implementation� which achieves a peak of ����� texture

mapped triangles per second� Given the luxury of costless communication� as provided

in the GTX� the Princeton Engine would immediately double its performance and

become directly comparable to the GTX�

In 	���� the time of the Princeton Engine�s �rst operation� it would have provided

polygon rendering directly comparable to high end graphics workstations of the era�

More signi�cantly it o
ers an unparalleled �exibility of operation through an all

	��

software implementation�

	��

Chapter �

Future Directions

Due to time and resource constraints a couple of ideas in this thesis have remained

unimplemented� Future work will address these issues when possible�

First and foremost is the implementation of the �distribution� optimization� ex�

pected to double the sort�middle communication optimization of the current im�

plementation� The other issue to be addressed is an implementation of sort�twice

communication� Both of these issues must also be examined in light of the next

generation Princeton Engine� just becoming operational at the time of this writing�

which will o�er greatly improved capabilities�

The implementation of the �distribution� algorithm is expected to double the

performance of the algorithm� obtaining at least �		�			 polygons per second on the

Princeton Engine� Its implementation should consist chie
y of the addition of another

procedure to the renderer and some careful management of the communication bu�ers�

��� Distribution Optimization

The distribution optimization for sort�middle communication promises a factor of �

improvement in communication time� The distribution optimization performs com�

munication in two stages� �rst sending polygons close to their �nal destination with

a number of large steps� and then placing polygons on their �nal destination proces�

��

sors with neighbor�to�neighbor passes� Distribution gains performance over a regular

sort�middle implementation because the overhead for communicating a polygon is per

pass� so a large pass is comparatively cheaper than a neighbor�to�neighbor pass�

The distribution optimization yields a factor of � speedup in communication in

simulation� Examining our peak performance scene� the crocodile at ���		 polygons

a second� we see that ��� of the time is spent in communication� If that time could

be halved an immediate �	� improvement in performance would be seen� bringing

the performance of the system to ���			 polygons per second�

As discussed in x��� the distribution optimization maps very neatly to the line�

locked programming paradigm of the Princeton Engine and implementation should

be reasonably straightforward�

��� Sort�Twice

Sort�twice o�ers the most promising potential performance improvement seen so far�

Our initial analysis suggests that sort�twice implemented on our second generation

hardware� discussed in x��� would operate more than times faster than sort�twice

on the Princeton Engine� thanks to a tripling of the clock rate� and a wider commu�

nication bu�er�

An implementation of sort�twice rendering would provide a further exploration

of this design space and interesting feedback on the speci�c costs of the sort�last

compositing step� Hopefully it could in
uence the design of future machines to include

low cost support hardware to further streamline its operation�

��� Next Generation Hardware

The Princeton Engine is an eight year old architecture at this point� Currently a

spin�out company from the David Sarno� Research Center� the Sarno� Real Time

Corporation� is developing a commercial version of the engine called the �Magic�

��	

��� The Magic� although based on the original Princeton Engine� has signi�cant

enhancements� and represents an intermediate step between the Princeton Engine

and the �Sarno� Engine�� as described in ��	��

The improvements include a tripled clock rate� more memory� disk array capabil�

ity� ���bit interprocessor communication� elimination of �line�locked� programming

model� hardware support for bilinear and trilinear interpolation� support for high

bandwidth video and non video data input� and a computed output timing sequence�

The faster clock rate will directly yield a �� performance improvement per processor�

The increased memory provides the possibility of very large polygonal data sets� and

large texture maps� A computed �output timing sequence� enables each processor to

independently determine when its pixel is output� this combined with a unique feed�

back capability that feeds the output of the engine into the input allows exploration

of e�cient sort�last compositing algorithms�

Beyond the basic clock rate improvements� the doubling of the width of the com�

munication register will provide substantial performance gains� as pass operations will

pass twice as much data� The overhead will be the same to write and read the register

�still only a ���bit core� and the test operations will presumably be the same� but

distant passes will require fewer cycles to transmit the same amount of data� This

will have a substantial impact on the performance of a sort�middle implementation

with the �distribution� optimization�

More signi�cantly� it will greatly cheapen the cost of a sort�twice approach� If

we take the write�read and test overhead as negligible �due to the size of the passes

employed� then compositing has become twice as cheap� Coupled with the clock�

rate improvements� composition will only require one sixth of the time as the current

architecture� a sizable improvement� which brings the attainable performance into the

�	Hz update rate regime�

The new support for non video input data during operation will provide �	MB�s

of input bandwidth which may be directed to any arbitrary subset of the processors

simultaneously� This will allow the render to operate in a more convenient immediate

���

mode style of rendering and to support databases of polygons and textures too large

to �t in main memory�

Magic is fully operational at this point� and porting the polygon rendering to it

will be a matter of obtaining adequate time on the machine given other con
icting

demands�

���

Chapter ��

Conclusions

This thesis has addressed two parts of the broad topic of parallel polygon rendering�

A careful analysis of the sort�middle communication problem has demonstrated its

lack of scalability� However� particular attention to optimizations has demonstrated

the e�ectiveness of a carefully tuned and controlled communication algorithm for ob�

taining substantial performance improvements over typical communication structures�

The use of a two�pass communication algorithm reduces the high cost of performing

many neighbor�to�neighbor communication operations and achieves network utiliza�

tion much closer to maximum throughput�

The search for scalable and cost�e�ect communication strategy led to the devel�

opment of a novel new communication strategy entitled sort�twice communication�

Sort�twice communication marries the e�ciency of sort�middle for small numbers

of both polygons and processors with the constant time performance to obtain an

algorithm with the scalability of dense sort�last communication while amortizing the

high cost of neighbor�to�neighbor communication over groups of processors� Cycle

by cycle control of the communication channel creates a very e�cient pipeline of

communication operations� The VLIW architecture of the Princeton Engine is lever�

aged to support a fully deferred shading and texture mapping model� with substantial

increases in the performance of the rasterizer�

An implementation of a �D rendering engine on a distributed framebu�er SIMD

���

architecture that achieves �ll rates of �		 million pixels a second and over �	�			

texture�mapped� lit and shaded polygons a second was presented� The renderer

implementation addressed several issues�

� Communication of polygon descriptors in a ring topology

� Rasterization in a processor per column organization

� Flexible interaction with a real�time rendering environment on a slave machine

True real�time rendering performance has been demonstrated on a SIMD proces�

sor array� with results that scale well with increasing numbers of processors� Polygons

are of relatively arbitrary size� and benchmarked as the classic ��		�pixel polygon��

The algorithms are readily modi�ed and adapted to experimentation�

The Princeton Engine provides a unique
exible architecture for real�time in�

teractive rendering� The next generation of the Princeton Engine� the Magic��� is

expected to provide rendering performance of over � million polygons per second in

a sort�twice implementation�

��

Appendix A

Simulator

A detailed and accurate simulator was developed to experimentwith algorithm changes

and optimizations without having to rewrite the implementation� The simulator pro�

vides the
exibility and ease needed to rapidly try many options and combinations

of features with little e�ort� The simulator also provides the ability to simulate ma�

chines unavailable for actual use� such as machines with more processors� or our next

generation hardware�

This thesis has presented a large number of communication algorithms and options

to be analyzed� It is impractical to rewrite the implementation to analyze each

optimization� for a number of reasons�

� Writing code for the Princeton Engine is intricate and time consuming�

� The line�locked programming constraint often obscures the true performance of

an algorithm by making it di�cult to use all available cycles for computation�

� It is di�cult to establish correctness of the implementation� The lack of debug�

ging tools make data distribution errors di�cult to detect and analyze�

Fortunately the Princeton Engine lends itself very well to simulation� The Prince�

ton Engine is a SIMD architecture� so by observing the worst case execution path of a

program we observe the total execution time required� Interprocessor communication

���

is completely controlled by the user program� allowing any communication algorithm

to be studied at the cycle level with complete accuracy�

Within the simulator attention is paid almost exclusively to the details of the

communication stage� but only because it has proven the most di�cult stage to ana�

lytically model� particularly when the interactions of more than a single optimization

must be considered� The geometry and rasterization stages� while requiring signi�cant

amounts of computation in the implementation� are trivially simulated by observing

that the worst case processor �most polygons to compute� most pixels to render� will

determine the performance of each stage�

A�� Model

The simulator model is signi�cantly abstracted from the Princeton Engine� It assumes

some arbitrary number of processors connected in a neighbor�to�neighbor ring� The

structure of the simulated algorithm is based largely on implementation experience�

and is organized to support the maximum amount of
exibility in the communication

stage�

A���� Input Files

The input to the simulator consists of two pieces� a �bounding�box� �le that describes

the polygon database as a set of polygon bounding boxes in screen space� and a �screen

map� that speci�es the decomposition of the screen for rasterization�

The bounding�box �le is generated by preprocessing a polygon database as ob�

served from a speci�c viewpoint� Every polygon in the original database is speci�ed

in the bounding�box �le� including polygons that are culled as out of the viewing

frustum or backfacing� Each bounding�box is tagged with a � or a � indicating vis�

ible�culled� The inclusion of culled polygons in the bounding�box �le helps model

the geometry stage� during which some fraction of the polygons computed will be

backfacing and�or out of the viewing frustum� It is important to model these culled

���

NumPolygons��

� �������	
 ��������

� ��������
 ��������

� ��������
 ������

� ���	����
 ��������

� �������	
 ���	����

� �	������
 �	�����	

� �	������
 �	������

Figure A��� Bounding�box File� Each polygon is speci�ed as a visible�nonvisible
tag and a rectangular bounding�box�

polygons because�

� Culled polygons have a computational cost associated with rejecting them�

� It may be cheaper to compute and reject a polygon than a visible polygon�

which will a�ect the total instructions executed in the geometry stage�

� Polygon culling yields asymmetries in the distribution of polygons across pro�

cessors� which may a�ect the execution time of both the geometry and commu�

nication stages�

The use of a bounding�box �le allows the details of the actual geometry calcu�

lations to be removed from consideration� insuring that we maintain a stable input

data set for di�erent simulations� It also removes the burden of insuring that the ge�

ometry pipeline is correctly implemented in the simulator in addition to the renderer�

Figure A�� shows a sample bounding�box input �le�

The screen map allows completely arbitrary maps of pixels to processors for ras�

terization to be speci�ed� A default column�parallel decomposition of the screen is

assumed� but general rectangular regions may be speci�ed� including non�contiguous

regions� allowing the analysis of static load balancing techniques such as those sug�

gested in ��	�� The only constraints on the screen map is that every pixel is rasterized

by precisely one processor�� A sample screen map is show in Figure A���

�The sort�twice case� for which multiple processors rasterize the same region of the screen� is

���

� � �� �
 �	�	� �

� � �� �
 �	�	� ��

� �	��� �
 ����� �

	 �	��� ��
 ����� ��

Figure A��� Sample Screen Map� a processor system� with each processor as�
signed a quadrant of a ��� by ��� pixel screen� The processor is given in the �rst
column� followed by the rectangular region it rasterizes� Processors may be listed
multiple times in the �le for non�contiguous rasterization regions�

Given the polygon bounding boxes in the bounding�box �le and the pixel to

processor map in the screen map it can be determined precisely what processors will

rasterize each polygon� Any given polygon is rasterized by the union of the processors

whose pixels it overlaps�

A���� Parameters

The simulator is fully parameterized� All of the parameters of interest may be speci�

�ed via command line options� and more drastic changes �such as in the width of the

interprocessor communication bus� etc�� may be trivially made through recompila�

tion� The parameters of interest are shown in Table A���

Most of the parameters are fairly obvious� The particular parameters of interest

for specifying the communication structure are m� t� d�� and g� which enable the

simulation of the duplication� dense� distribution and sort�twice optimizations�

Data Duplication The data duplication pattern is speci�ed by m� which is the

number of times the polygon database is duplicated across the processors� It is

speci�ed as a geometry parameter because it is fully resolved by the geometry

stage of the simulator� and not exposed to the communication stage�

Dense Communication The period between tests� t� speci�es how often the simu�

lated processors will test the polygon they just received to see if it is completely

discussed later�

���

parameter default meaning
n ���� number of processors

polyfile �none� bounding�box �le
mapfile column pixel to processor map

parallel
geometry

Gi ���� instructions to transform and keep�reject polygon
Gf ���� instructions to light and compute linear equations for

a polygon
m � duplication factor

communication
t � period between tests

d	
 	�
 array specifying sequence of pass sizes to be used
g n number of processors per group

rasterization
R ��� instructions to rasterize a pixel

Table A��� Simulator Parameters

communicated and can be replaced with their next polygon to communicate�

Dense communication t � � has been determined to always be a useful opti�

mization and is used by default� For simulation of the sparse communication

case discussed in x��� t � n�

Distribution The distribution pattern is speci�ed in d	
 as a sequence of pass sizes

to be used during communication� The optimal distribution strategy as deter�

mined experimentally would be represented as d � 	��� �
�

Sort�Twice The group size g is used for sort�twice simulations and speci�es the

number of processors responsible for rasterization of one complete copy of the

screen�

All of these parameters interact as would be expected� Thus a duplication fac�

tor m �� � and a distribution pattern can be combined in the same simulation for

example�

Notably absent is support for temporal locality optimizations� Temporal locality

���

requires a substantial extension of the simulator� A common benchmark for temporal

locality used in 	��
 for example is to render a scene slightly change the viewpoint

and render the scene again� The small change in the viewpoint forces some commu�

nication to be performed so that the e�ciency of temporal locality in communication

can be modeled� However the use of a bounding�box �le to collapse the polygon

information destroys the very information necessary to specify arbitrary viewpoints�

Simulation of temporal locality load imbalances in x��� exposed severe enough inef�

�ciencies that the approach was abandoned at that point eliminating the need for

simulator support�

In addition to these parameters there are a number of instrumentation knobs that

may be turned on for any given simulation to collect extra data� Of particular use

is the option to generate a histogram of the number of polygons on each processor

before and after each phase of communication� This exposes both geometry load

imbalances as may be created by m �� � and rasterization load imbalances as may

be created by a non�uniform distribution of polygons over the display�

A�� Operation

The high�level diagram in Figure A�� schematically represents the execution of the

simulator� Almost all of the operation is wrapped up in the details of the as yet

unspeci�ed communication simulation� In addition there is some preprocessing to

load the polygon database into the processors and some post processing to count the

expected instructions for rasterization� The following sections describe the operation

of the stages of the simulator in detail�

A���� Data Initialization � Geometry

Data initialization determines the mapping of polygons to processors for geometry

computations and the mapping of pixels to processors for rasterization� The former

is speci�ed by simply placing polygons on processors while the latter is determined

���

clip/reject

geometry

transform

rasterizationproc 3proc 2proc 1proc 0

algorithms & optimizations
communication

polygon database

proc 2

screen map

proc 0

calculate coefficients

light

proc 1 proc 2 proc 3 geometry

2 3

proc 0 proc 1 proc 3

10

Figure A��� Simulator Model� a � processor polygon renderer with a � polygon
database�

���

by calculating a �destination vector� for each polygon which tags each processor

responsible for rasterizing a part of the polygon�

The bounding�box �le only de�nes the total set of polygons in the simulation and

leaves unspeci�ed the mapping between polygons and processors for the geometry

calculations� The simulator allows two distribution patterns�

Normal The polygons are assigned to the processors in round robin fashion� Num�

bering the polygons sequentially as they are read from the bounding�box �le

polygon b will lie on processor i � mod�b� n� on an n processor system�

Duplicated A duplication factor m � � speci�es that each polygon should be du�

plicated m times across the processor array� A polygon b is instantiated on all

processors i � mod�b� n�m� � km�

The normal distribution is just a degenerate case �m � �� of the duplicated

distribution pattern�

The possibility of a random assignment of polygons to processors was not included

as this can be simulated by shu�ing the bounding�box input �le before it is read by

the simulator and experimental results show that any correlation in the data set is

already broken up by the round robin assignment of polygons to the processors�

The combination of the polygon bounding boxes from the bounding�box �le and

the pixel to processor map from the screen map provides all of the necessary in�

formation for performing communication� Each polygon is described in part by an

n�bit destination vector where a bit i is set if and only if the polygon bounding box

intersects the set of pixels rasterized by processor i� Figure A�� shows the destina�

tion vectors associated with each polygon as a short bit vector next to the polygon�

Note that multiple bits are set if more than a single processor will be responsible for

rasterization of the polygon�

The use of a bounding�box �le which speci�es the rectangular extent of the poly�

gons guarantees that we will never incorrectly assume a polygon doesn�t overlap a

���

proc 2 proc 3

proc 0 proc 1

Figure A��� Destination False Positive� the polygon is incorrectly assumed to
intersect the rasterization region of processor ��

processor�s pixels however in some cases we may incorrectly assume coverage� Con�

sider the polygon and screen map shown in Figure A��� processor � will attempt to

rasterize a piece of this polygon even though it doesn�t actually overlap processor ��s

region� It is assumed that these occasional false positives incur a lower cost than a

precise test� Given the cost of sort�middle communication it may make sense to per�

form a test to eliminate false positives however it is unnecessary for our simulations

of interest� For both our implementation and most of our simulations �barring sort�

twice approaches� a column�parallel decomposition of the screen is used in which

case the bounding box of the polygon will only overlap a processor�s column of the

screen if there will be pixels to rasterize so there is no excess communication done

due to false positives�

The �rst stage of geometry computation will process a worst case of dp � m�ne

polygons on a processor and requires Gi instructions per polygon to perform� In

general each processor will be responsible for communicating and thus performing

the second stage of geometry computation all visible polygons assigned to it� The

data duplication optimization discussed in x��� introduces a slight twist as the same

polygon will exist on m processors� however only one processor should communicate

the polygon in particular the processor which can perform the communication most

cheaply� Each processor will source a polygon only if it is the rightmost processor left

���

of the �rst processor rasterizing this polygon��

After the polygon database is loaded onto the processors the lighting model is

applied to the visible polygons on each processor and linear equation coe�cients are

calculated� This is a �pseudo�step� in the simulator which only deals with polygon

bounding boxes and is included to model the actual algorithm� It requires maxi�piv� �

Gf instructions to execute where piv is the number of visible polygons on processor i�

Note that at this point we only have a single copy of each polygon ready to distribute

regardless of the choice of m� The duplication factor m is hidden from the remainder

of the simulator in e�ect��

A���� Communication

Communication is the most challenging part of the polygon rendering algorithms

to simulate� All other aspects of the simulation may be performed at a gross level

by simply counting polygons �pixels� and multiplying by the number of instructions

required per polygon �pixel�� Communication however requires a detailed understand�

ing of what happens in the interprocessor communication channel on a pass by pass

level�

Communication is modeled as occurring on a �D ring of processors� Each proces�

sor is assigned a �slot� in the ring which it can place a polygon descriptor into and

read a polygon descriptor from� The ring is represented by an array of pointers to

polygon descriptors� Each polygon descriptor represents a minimal set of information

a reference number for the polygon �for later verifying the correctness of the commu�

nication� and a destination vector which speci�es the processors that must receive

a copy of this polygon for this stage of communication� Figure A�� shows the ring�

�This is what we mean by �closest� � the processor that will have to make the fewest passes before

the polygon has at least started to arrive at its destination� This proves to be a useful cost metric

for column�parallel decompositions of the screen� where all destination processors are contiguous�

A more sophisticated communication cost measure must be used for disjoint decompositions of the

screen�
�Of course duplication may introduce large asymmetries in the values of piv� but that will a�ect

only the simulated execution cost�

���

proc 3proc 2proc 1proc 0

proc 3proc 0 proc 1 proc 2

Figure A��� Simulator Communication� the interprocessor communication is ab�
stracted as passing an entire polygon descriptor neighbor�to�neighbor at once�

Processor � points to a �null� which indicates that there is no polygon descriptor

currently associated with that location in the ring�

Each processor has an array of polygon descriptors to source and an array of

polygons received from communication analogous to the source and receive arrays

in the implementation� Initially the ring is empty and the processors all have their

source arrays full and their receive arrays empty exactly like the actual implemen�

tation� Similarly at the end of communication each processor will have an empty

source array and a receive array with all polygons it will have to rasterize�

Communication operations are performed by �rotating� the ring� All of the point�

ers are shifted one place to the right in the array with the pointer that falls o� the

end shifted back to the middle� Larger shifts �for the distribution optimization� are

implemented by performing a larger rotation of the ring� The communication isn�t

actually broken down to the �nest granularity of simulating each individual commu�

nication operation necessary to pass a polygon descriptor from processor to processor�

The cost model for a pass is precisely the i � ���d�a�b model used in the analytical

analyses with a � �� and b � ���

After each pass operation each processor tests the destination vector of the polygon

descriptor in its slot of the ring and if the polygon is destined for it notes the reference

number in the receive array and clears its bit in the vector� A polygon has been

communication to all interested processors when no bit in destination vector is set�

The dense distribution and sort�twice communication optimizations are all ex�

���

posed within the communication simulation and are discussed in turn below�

Dense Communication

The sparse vs� dense communication optimizations are implemented via the t variable

which speci�es how often the processors test the polygon descriptor in their �slot�

to see if everyone has seen it� For simplicity�s sake each processor will automatically

replace a null in its slot of the ring with one of the polygons from its source array� The

periodicity t of the test determines how often the destination vector of each descriptor

in the ring is tested and turned into a null if all zero�

Distribution

The distribution optimization is relatively tricky to implement� It is performed by

executing the communication algorithm a number of times and between each execu�

tion the receive array for each processor is used to rebuild the source array� During

all stages of communication except the last the shifts that are performed are of size

greater than � so the notion of the destination vector becomes a bit muddied� Poly�

gons can no longer be arbitrarily routed but can only be sent to processors i � s�kd

where s is the processor this polygon is sourced from and d is the size of the pass� To

achieve this distribution pattern the destination vectors are built for the actual poly�

gon destinations and then all of the destinations are adjusted to align with the �rst

valid destination before the desired destination processor as shown in Figure A��a�

In our simple example d � 	�� �
 and processor � is sourcing a polygon destined

for processors � � and ��� The �rst stage of distribution results in both processor

� and processor � having a copy of the polygon� The second pass of communication

will be of size � and will route the polygon to its �nal destinations processors � �

and ��� If we aren�t careful both processor � and � will try to route the polygon to all

of these processors which in the worst case results in these processors rasterizing the

polygon twice and also wastes communication bandwidth� The observation is made

that after performing a communication stage with passes of size d each processor can

���

12840

(b)

(a)

processor

smooshed/masked destinationsvalid destinationssource processor

Figure A��� Destination Vector Alignment� a �� processor system using a distri�
bution pattern of ���� The destination vectors are for a polygon that is distributed
from processor � to �nal destinations of processors � � and ��� �a� is the destination
vector used for the �rst pass of communication and �b� are the destination vectors
for processors � and � to perform the second and �nal pass of communication�

only pass any polygons it has to source over d�� processors to avoid duplication� Thus

processor � will only pass polygons as far as processor � etc� In fact we can always

think of communication as starting with a pass of size n the number of processors

after which each polygon may only be passed over at most n� � processors before it

will be seen twice by some processor� Figure A��b shows the destination vectors used

by processors � and � for the second stage of communication�

Sort�Twice

The �nal optimization to deal with is sort�twice communication� The placement of

processors into groups of size g introduces a subtle complexity into the communication

structure by making processors equivalent at some level� If a polygon overlaps region

r it can be rasterized by any processor r � kg so the communication pattern is no

longer deterministic� In reality of course it is deterministic because we want each

polygon to travel the minimum amount of distance possible which means its only

destination is the �rst processor r � kg after the processor it starts on� However

���

0 4

expand

mask

processor

valid destinationssource processor

128

destinations

Figure A��� Destination Vector for g �� �� the destination processor set is inferred
from the �rst g processors and then masked so that the polygon is received at most
one of the processors which can rasterize the region�s� it overlaps�

the pixel to processor map will only map pixels to the �rst g processors because the

screen is divided into g regions and only a single processor may be responsible for

any pixel� Thus when the destination vector is built it only speci�es destinations in

the �rst g processors� Figure A�� shows a sample destination vector for sort�twice

communication� The destination vector is expanded to set or clear all of the bits

based on the �rst g processor bits to re�ect all the valid rasterization processors�

The vector is then masked so that the polygon is shifted a maximum of g � � times

to avoid unnecessary communication� After this more complex destination vector

construction the communication may proceed as it normally would although of

course the extra instructions required to perform the sort�last compositing must

be accounted for later� The sort�last composition is a data independent operation

and the number of instructions required is just calculated based on the group size

and the number of processors� The contribution is � instructions for g � n �vanilla

sort�middle communication� as would be expected�

This section has described all of the major features of the communication simula�

tion and some of the care that is necessary in their implementation� It is worth noting

that complexity in the simulation will likely also be re�ected in any implementation

and any additional insight the simulator provides in implementation can be quite

���

valuable�

A���� Rasterization

The rasterization stage is simulated in a fashion similar to the geometry stage� It is

possible with reasonably high accuracy to guess how long it will take to rasterize a

set of polygons� For each processor i� ri is computed� which is the sum of the number

of pixels �rasterized by this processor� that all polygon bounding boxes overlap� The

total rasterization time is then just maxi�ri� � R� where R is the time to rasterize a

single pixel� This ignores details of the implementation such as the cost of advancing

to the next polygon� and the e�ects of performing the test for advancement to the

next polygon periodically rather than after every single pixel� These e�ects have been

included in an ad hoc fashion by increasing the cost of rasterizing a single pixel� While

not strictly correct� this approximation yields good results� The goal of the simulator

has been to measure the e�ectiveness of various communication optimizations� the

e�ects of which are entirely wrapped up in the geometry and communication stages�

making the accuracy of the rasterization stage simulation less important�

A�� Correctness

The results of the simulator are to a large extent veri�able� A simple �and therefore

probably correct� check is done at the end of the communication stage that checks

that�

� Each polygon was received on all processors whose pixels it overlapped�

� No processor received a polygon it didn�t need�

� No processor received more than one copy of a polygon�

The �rst check is of course most critical� If any processor doesn�t receive a poly	

gon that it needs to rasterize it could result in a hole in the rendered scene� The

��

second check insures we aren�t introducing extra work by giving processors polygons

to rasterize that don�t overlap their screen areas�

The necessity of the third check is not immediately obvious� This detects subtle

errors which can be introduced with the distribution optimization� In this case a bug

in the algorithm could �and did� accidentally distribute polygons in duplicate �and

even triplicate� in some boundary cases�

Of course� there are some errors that the simulator can�t detect� and they will

necessary all relate to performance� rather than the correctness of the result� Such

errors would include distributing a polygon further than necessary �past the last

processor interested in it�� or miscounting the instruction cycles for some operation�

These areas of the code have all been carefully checked� and the results given by the

simulator reect our expectations� so it is believed they are correct�

A�� Summary

The analysis of various optimizations has demonstrated that while analytical mod	

els may accurately model the form of the correct answer� simulation may yield a

substantially di�erent� and presumably more accurate� solution� Largely these di�er	

ences in accuracy are caused by the assumptions used to make the analytical problem

tractable� Assumptions such as a �dense ring� are made to compensate for the lack

of any good model for the actual distribution of information in the ring� Variations

in the distribution of sources and destinations for polygons from uniformity exacer	

bates things further� making simulation invaluable to obtain accurate answers for real

polygon databases�

The very factors that make the communication so hard to analytically model make

it equally hard to simplify the simulation� Fortunately for our data sets it is not

prohibitively expensive to perform a full simulation of the communication structure�

��

Bibliography

�
� Akeley� K� Reality Engine Graphics� In Proceedings Siggraph �� �August

����� pp�
���

��

��� Akeley� K�� and Jermoluk� T� High�Performance Polygon Rendering� In

Proceedings Siggraph �� �August
����� pp� ��������

��� Chin� D�� Passe� J�� Bernard� F�� Taylor� H�� and Knight� S� The

Princeton Engine� A Real�TIme Video System Simulator� IEEE Transactions

on Consumer Electronics �� �May
�����

��� Cox� M� B� Algorithms for Parallel Rendering� PhD dissertation� Princeton

University� Department of Computer Science� May
����

��� Crockett� T� W�� and Orloff� T� A Parallel Rendering Algorithm for

MIMD Architectures� In Proceedings Parallel Rendering Symposium �New York�

����� ACM Press� pp� ������

��� Crow� F� C�� Demos� G�� Hardy� J�� McLaughlin� J�� and Sims� K� �D

Image Synthesis on the Connection Machine� In Parallel Processing for Computer

Vision and Display� Addison Wesley�
����

��� Ellsworth� D� A New Algorithm for Interactive Graphics on Multicomputers�

IEEE Computer Graphics and Applications ��� � �July
����� ������

��� Foley� J� D�� van Dam� A�� Feiner� S� K�� Hughes� J� F�� and Phillips�

R� L� Introduction to Computer Graphics� Addison	Wesley�
����

�

��� Heckbert� P�� and Moreton� H� Interpolation for Polygon Texture Mapping

and Shading� In State of the Art in Computer Graphics� Visualization and

Modeling� Springer�Verlag�
��
�

�
�� Knight� S�� Chin� D�� Taylor� H�� and Peters� J� The Sarno� Engine� A

Massively Parallel Computer for High De�nition System Simulation� Journal of

VLSI Signal Processing� � �
�����
���
���

�

� Molnar� S�� Cox� M�� Ellsworth� D�� and Fuchs� H� A Sorting Classi�	

cation of Parallel Rendering� IEEE Computer Graphics and Applications �July

����� ������

�
�� Molnar� S�� Eyles� J�� and Poulton� J� PixelFlow� High�Speed Rendering

Using Image Composition� In Proceedings Siggraph �� �July
����� pp� ��
�����

�
�� Molnar� S� E� Image�Composition Architectures for Real�Time Image Gen�

eration� PhD dissertation� The University of North Carolina at Chapel Hill�

Department of Computer Science� October
��
�

�
�� Neider� J�� Davis� T�� and Woo� M� OpenGL Programming Guide� Addison	

Wesley�
����

�
�� Phong� B� T� Illumination for Computer Generated Pictures� Communication

of the ACM ��� � �
����� �

��
��

�
�� Pineda� J� A Parallel Algorithm for Polygon Rasterization� In Proceedings of

SIGGRAPH 	�� �
����� pp�
�����

�
�� Shoemake� K� Animating Rotation with Quaternion Curves� In Proceedings

Siggraph �
 �July
����� pp� ��������

�
�� Connection Machine Model CM	� Technical Summary� Tech� Rep� HA��	��

Thinking Machines� April
����

��

�
�� Whitman� S� Multiprocessor Methods for Computer Graphics Rendering� AK

Peters� Wellesley� MA�
����

���� Whitman� S� A Load Balanced SIMD Polygon Render� unpublished article

�August
�����

��
� Whitted� T� A Taxonomy of Image Composition Architectures� In Interna�

tional Summer Institute on State of the Start in Computer Graphics �
�����

���� Williams� L� Pyramidal Parametrics� Computer Graphics ��� � �July
�����

�

�

��

