
Data Parallel Computing on
Graphics Hardware

Data Parallel Computing on
Graphics Hardware

Ian Buck
Stanford University

July 27th, 2003 2

Brook
General purpose Streaming language

Brook
General purpose Streaming language

• DARPA Polymorphous Computing Architectures
– Stanford - Smart Memories
– UT Austin - TRIPS Processor
– MIT - RAW Processor

• Stanford Streaming Supercomputer
• Brook: general purpose streaming language

– Language developed at Stanford
– Compiler in development by Reservoir Labs

• Study of GPUs as Streaming processor

July 27th, 2003 3

Why graphics hardwareWhy graphics hardware
Raw Performance:

Pentium 4 SSE Theoretical*
3GHz * 4 wide * .5 inst / cycle = 6 GFLOPS

GeForce FX 5900 (NV35) Fragment Shader Obtained:
MULR R0, R0, R0: 20 GFLOPS
Equivalent to a 10 GHz P4

And getting faster: 3x improvement over NV30 (6 months)

2002 R&D Costs:
Intel: $4 Billion
NVIDIA: $150 Million

*from Intel P4 Optimization Manual

GeForce FX

July 27th, 2003 4

GPU: Data ParallelGPU: Data Parallel

– Each fragment shaded independently
• No dependencies between fragments

– Temporary registers are zeroed
– No static variables
– No Read-Modify-Write textures

• Multiple “pixel pipes”
– Data Parallelism

• Support ALU heavy architectures
• Hide Memory Latency

[Torborg and Kajiya 96, Anderson et al. 97, Igehy et al. 98]

July 27th, 2003 5

Arithmetic IntensityArithmetic Intensity

Lots of ops per word transferred
Graphics pipeline

– Vertex
• BW: 1 triangle = 32 bytes;
• OP: 100-500 f32-ops / triangle

– Rasterization
• Create 16-32 fragments per triangle

– Fragment
• BW: 1 fragment = 10 bytes
• OP: 300-1000 i8-ops/fragment

Courtesy of Pat Hanrahan

July 27th, 2003 6

Arithmetic IntensityArithmetic Intensity
• Compute-to-Bandwidth ratio
• High Arithmetic Intensity desirable

– App limited by ALU performance, not off-chip bandwidth
– More chip real estate for ALUs, not caches

Chip64-bit FPU
(to scale)

Courtesy of Bill Dally

July 27th, 2003 7

Brook
General purpose Streaming language

Brook
General purpose Streaming language

Stream Programming Model
– Enforce Data Parallel computing
– Encourage Arithmetic Intensity
– Provide fundamental ops for stream

computing

July 27th, 2003 8

Brook
General purpose Streaming language

Brook
General purpose Streaming language

• Demonstrate GPU streaming coprocessor
– Make programming GPUs easier

• Hide texture/pbuffer data management
• Hide graphics based constructs in CG/HLSL
• Hide rendering passes

– Highlight GPU areas for improvement
• Features required general purpose stream

computing

July 27th, 2003 9

Streams & KernelsStreams & Kernels

• Streams
– Collection of records requiring similar computation

• Vertex positions, voxels, FEM cell, …

– Provide data parallelism
• Kernels

– Functions applied to each element in stream
• transforms, PDE, …

– No dependencies between stream elements
• Encourage high Arithmetic Intensity

July 27th, 2003 10

BrookBrook

• C with Streams
– API for managing streams
– Language additions for kernels

• Stream Create/Store
stream s = CreateStream (float, n, ptr);
StoreStream (s, ptr);

July 27th, 2003 11

BrookBrook
• Kernel Functions

– Pos update in velocity field
– Map a function to a set

kernel void updatepos (stream float3 pos,
float3 vel[100][100][100],
float timestep,
out stream float newpos) {

newpos = pos + vel[pos.x][pos.y][pos.z]*timestep;
}

s_pos = CreateStream(float3, n, pos);
s_vel = CreateStream(float3, n, vel);
updatepos (s_pos, s_vel, timestep, s_pos);

July 27th, 2003 12

Fundamental OpsFundamental Ops
• Associative Reductions

KernelReduce(func, s, &val)

– Produce a single value from a stream
– Examples: Compute Max or Sum

50927368

40

July 27th, 2003 13

Fundamental OpsFundamental Ops
• Associative Reductions

KernelReduce(func, s, &val)

– Produce a single value from a stream
– Examples: Compute Max or Sum

• Gather: p = a[i]
– Indirect Read
– Permitted inside kernels

• Scatter: a[i] = p
– Indirect Write
ScatterOp(s_index, s_data, s_dst, SCATTEROP_ASSIGN)

– Last write wins rule

July 27th, 2003 14

GatherOp & ScatterOpGatherOp & ScatterOp

Indirect read/write with atomic operation
• GatherOp: p = a[i]++

GatherOp(s_index, s_data, s_src, GATHEROP_INC)

• ScatterOp: a[i] += p
ScatterOp(s_index, s_data, s_dst, SCATTEROP_ADD)

• Important for building and updating data
structures for data parallel computing

July 27th, 2003 15

BrookBrook

• C with streams
– kernel functions
– CreateStream, StoreStream
– KernelReduce
– GatherOp, ScatterOp

July 27th, 2003 16

ImplementationImplementation

• Streams
– Stored in 2D fp textures / pbuffers
– Managed by runtime

• Kernels
– Compiled to fragment programs
– Executed by rendering quad

July 27th, 2003 17

ImplementationImplementation

• Compiler: brcc

foo.br

foo.cg

foo.fp

foo.c

• Source to Source compiler
– Generate CG code

• Convert array lookups to texture
fetches

• Perform stream/texture lookups
• Texture address calculation

– Generate C Stub file
• Fragment Program Loader
• Render code

July 27th, 2003 18

GromacsGromacs
Molecular Dynamics Simulator

7
11 9

1514

4

16

5

13

19
17

10

20

12

18
21

21

6

3

8

Force Function (~90% compute time):

Energy Function:

Acceleration Structure:

Eric Lindhal, Erik Darve, Yanan Zhao

July 27th, 2003 19

Ray TracingRay Tracing
Tim Purcell, Bill Mark, Pat Hanrahan

July 27th, 2003 20

Finite Volume MethodsFinite Volume Methods

σ = pI+ 2 W1 + I1W2()B− W2B2{ }+ W4a⊗ a

Wi = ∂W/∂Ii

σ
1t
r

2t
r

3t
r

1f
ur

2f
ur

3f
ur

Joseph Teran, Victor Ng-Thow-Hing, Ronald Fedkiw

July 27th, 2003 21

ApplicationsApplications

Sparse Matrix Multiply
Batcher Bitonic Sort

July 27th, 2003 22

SummarySummary

• GPUs are faster than CPUs
– and getting faster

• Why?
– Data Parallelism
– Arithmetic Intensity

• What is the right programming model?
– Stream Computing
– Brook for GPUs

July 27th, 2003 23

GPU GotchasGPU Gotchas

NVIDIA NV3x: Register usage vs. GFLOPS

Time

Registers Used

July 27th, 2003 24

GPU GotchasGPU Gotchas

• ATI Radeon 9800 Pro
• Limited dependent

texture lookup
• 96 instructions
• 24-bit floating point

Texture Lookup

Math Ops

Texture Lookup

Math Ops

Texture Lookup

Math Ops

Texture Lookup

Math Ops

July 27th, 2003 25

SummarySummary

“All processors aspire to be general-purpose”
– Tim van Hook, Keynote, Graphics Hardware 2001

July 27th, 2003 26

GPU IssuesGPU Issues

• Missing Integer & Bit Ops
• Texture Memory Addressing

– Address conversion burns 3 instr. per array
lookup

– Need large flat texture addressing
• Readback still slow
• CGC Performance

– Hand code performance critical code
• No native reduction support

July 27th, 2003 27

GPU IssuesGPU Issues

• No native Scatter Support
– Cannot do p[i] = a (indirect write)
– Requires CPU readback.
– Needs:

• Dependent Texture Write
• Set x,y inside fragment program

• No programmable blend
– GatherOp / ScatterOp

July 27th, 2003 28

GPU IssuesGPU Issues

• Limited Output
– Fragment program can only output single 4-

component float or 4x4 component float (ATI)
– Prevents multiple kernel outputs and large

data types.

July 27th, 2003 29

ImplementationImplementation

• Reduction
– O(lg(n)) Passes

• Gather
– Dependent texture read

• Scatter
– Vertex shader (slow)

• GatherOp / ScatterOp
– Vertex shader with CPU sort (slow)

July 27th, 2003 30

AcknowledgmentsAcknowledgments

• NVIDIA Fellowship program
• DARPA PCA
• Pat Hanrahan, Bill Dally, Mattan Erez, Tim

Purcell, Bill Mark, Eric Lindahl, Erik Darve,
Yanan Zhao

July 27th, 2003 31

Status Status

• Compiler/Runtime work complete
• Applications in progress
• Release open source in fall
• Other streaming architectures

– Stanford Streaming Supercomputer
– PCA Architectures (DARPA)

