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Abstract 

Nearly all existing methods for stereo reconstruction as-
sume that scene reflectance is Lambertian, and make use of 
color constancy as a matching invariant. We introduce a new 
invariant for stereo reconstruction called Light Transport 
Constancy, which allows completely arbitrary scene reflec-
tance (BRDFs). This invariant can be used to formulate a 
rank constraint on multiview stereo matching when the scene 
is observed in several lighting configurations. In addition, 
we show that this multiview constraint can be used with as 
few as two cameras and two lighting configurations. 
Unlikely previous methods for BRDF invariant stereo, Light 
Transport Constancy does not require precisely configured 
or calibrated light sources, nor calibration objects in the 
scene. Importantly, the new constraint can be used to pro-
vide BRDF invariance to any existing stereo method, when-
ever appropriate lighting variation is available. 

 

1. Introduction  
Stereo reconstruction of scene depth is a well studied 

and important topic in computer vision. Most existing stereo 
methods rely on the assumption that objects in the scene 
reflect light equally in all directions. This assumption on 
surface reflectance is commonly referred to both as a Lam-
bertian BRDF and as “color constancy.” Unfortunately this 
assumption is violated for nearly all real world objects, lead-
ing to incorrect depth estimates. 

Several methods for overcoming this limitation have 
been proposed but all require some combination of calibrated 
light sources, calibration objects in the scene, or smoothness 
assumptions on the surface reflectance. This paper introduces 
light transport constancy as a constraint on stereo matching. 
Light transport constancy simply asserts that the percentage 
of light reflected by a particular surface patch (the BRDF) 
remains constant for a given viewing direction. This con-
straint has not been previously exploited and allows stereo 
correspondence to be correctly determined for surfaces with 
an arbitrarily complex BRDF and does not require calibrated 
light sources or objects.  

As an intuitive introduction to this constraint, consider 
the scene configuration in Figure 1. The scene is illuminated 
by a single point light source, L. A particular point in the 
scene xi will reflect light to each of cameras C1 and C2 ac-
cording to:  

ICj(xi) = L(xi) R(xi, θL, θCj)  (1)

where ICj(xi)  is the reflected intensity in the direction of Cj 
from the point xi, L(xi) is the incident light intensity at point 
xi, and R(xi, θL, θCj) is the reflectance function or BRDF at 
point xi, indexed by the vectors in the direction of L and Cj.  

The traditional Lambertian assumption is that the re-
flected light is equal in the directions of C1 and C2. 

R(xi, θL, θC1) = R(xi, θL, θC2)  (2)

Thus we legitimately have IC1(xi) = IC2(xi). However this 
relation will not in general hold for arbitrary BRDFs. 

Light transport constancy assumes that the surface re-
flectance function, R(xi, θL, θCj), remains constant under 
variable illumination. If we vary the lighting conditions, so 
that the incident illumination varies by a factor of k(xi), then 
the observed reflected light, I′Cj(xi), will also vary by a factor 
of k(xi). 

I′Cj(xi) =  k(xi) L(xi) R(xi, θL, θCj) (3)

Note that in general neither the incident light intensity, 
nor the change in intensity, will be equal at different scene 
points. That is, L(x1) ≠ L(x2) and k(x1) ≠ k(x2). This is in 
contrast to the assumption made in many vision algorithms 
that the light source is a precisely isotropic emitter. Consider 
the two scene variants in Figure 1. The configuration of 
components is identical, but the emitted light intensity field 

 

  
Figure 1 (left) The reflectance function at x1 deter-
mines the percentage of light reflected from light 
source L towards each of cameras C1 and C2. (right) 

The spatial position of all components is the same, 
but the light distribution has been altered. Although 
the incident intensity at x1 has changed, the percent-
age of light reflected remains constant. 



has been changed by rotating the flashlight. The emitted light 
is not uniform in all directions, and thus L(x1) ≠ L(x2) and 
k(x1) ≠ k(x2).  

Redefining our observation, I′′Cj(xi), as the ratio of two 
different lighting conditions gives: 
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Note that the observations are invariant to camera view-
point and I′′C1(xi) = I′′C2(xi) regardless of the surface BRDF.  

The simplified formulation just given is sufficient to de-
sign a practical stereo system which uses two cameras and a 
single uncalibrated light source. This design is practically 
easier to implement than existing methods for BRDF invari-
ant stereo, because it requires fewer known or precisely cali-
brated scene components.  

More importantly from a theoretical standpoint, the in-
troductory formulation can be extended to handle incident 
lighting for which a single constant ki can not explain the 
lighting variation. By factoring the incident light field into a 
number of basis functions which vary independently, a series 
of linear equations which relate observations to lighting and 
reflectance can be derived. We can then use light transport 
constancy to formulate a rank constraint on multiview stereo 
matching, providing a relation between observations, lighting 
complexity, and BRDF complexity. One implication of this 
relation is that stereo matching can be performed precisely 
even when scenes contain arbitrary BRDFs. 

This paper makes several contributions: the derivation 
of a rank constraint for stereo using light transport constancy 
which allows correspondence of arbitrary surface BRDFs, a 
practical implementation which is easier to reproduce than 
existing methods for BRDF invariant stereo, and an evalua-
tion of our method on several real scenes showing that it is 
both practical and effective. 

2. Related Work 
All stereo depth recovery methods make an explicit or 

implicit assumption about which image features are held 
constant. The primary differences arise from the choice of 
invariant. A number of possible invariants that allow stereo 
matching have been explored. 

Stereo matching of specular surfaces has most com-
monly been approached by treating specularities as outliers 
to the color constancy invariant, which should be detected 
and either removed or avoided [1, 2, 3, 11, 12]. An alternate 
approach treats surfaces as diffuse-plus-specular and formu-
lates a multiview constraint that all observations must lie on 
a line in color space [19]. Unfortunately all of these methods 

limit the range of surface reflectance functions to those 
which can be represented as a simple combination of diffuse 
and specular terms. The light transport constancy invariant 
presented in this work allows stereo matching of surfaces 
with completely arbitrary BRDF. 

Jin et. al. show that a multiview rank constraint on re-
flectance complexity is implied by a diffuse-plus-specular 
surface model, and use this constraint to reconstruct non-
Lambertian surfaces [9]. Although our work also formulates 
a rank constraint, we rely on a different matching invariant 
and allow for truly arbitrary surface BRDFs at each scene 
point.  

Helmholtz stereopsis allows matching of arbitrary 
BRDFs and uses reflectance function reciprocity as an in-
variant. That is, R(xi, θA, θB) = R(xi, θB, θA) [13, 21, 22, 23]. 
By collocating point light sources with each camera it is pos-
sible to record reciprocal pairs using two different lighting 
conditions, such that image A is illuminated by light B, and 
image B is illuminated by light A. Due to reciprocity the 
reflected light to cameras A and B will be equal. Unfortu-
nately, this method requires the light sources be collocated 
with the optical center of each camera. Although acceptable 
results are possible by simply placing the light nearby, a 
proper implementation will require calibrated optics to en-
sure collocation. The method presented in this paper makes 
use of a different invariant and does not require the position 
of light sources to be precisely calibrated or even known.  

Orientation constancy has been used to allow recon-
struction of scenes with arbitrary BRDF in both photometric 
stereo and multiview stereo configurations [8, 17]. Although 
very accurate results are possible, these methods require a 
known calibration object with BRDF similar to the unknown 
scene, as well as distant cameras and light sources. In con-
trast, this work does not require a known object, and allows 
for arbitrarily located light and camera positions. 

The invariant proposed by this paper, light transport 
constancy, has not previously been explored for stereo 
matching. However, in the case of laser scanning, it was 
explicitly identified and articulated by Curless and Levoy 
[5]. In addition, it has implicitly been used in other domains. 
Magda et. al. capture hundreds of images illuminated by 
precisely calibrated light source positions on two concentric 
spheres surrounding an object. The two sampled representa-
tions of the incoming illumination field can then be aligned 
to find the depth of a given scene point [13].  

This paper makes use of illumination variation to formu-
late a constraint on stereo matching. Prior authors have also 
made use of illumination change as a correspondence aid. 
For example, spacetime stereo formulates  multiview stereo 
matching in the presence of illumination variation and 
achieves good results [6, 20]. Image intensity ratios are also 
a well studied method for recovering depth that utilize illu-
mination variation [4, 14]. Surprisingly none of these prior 
authors have discussed BRDF invariance. In fact some have 
gone so far as to argue that image ratios are only applicable 



to diffuse surfaces [18]. We believe that some of these prior 
methods implicitly support arbitrary scene BRDFs, and an 
important contribution of this work is introducing and char-
acterizing a new invariant which describes precisely when 
this is true. 

3. Light Transport Constancy 
Light transport constancy can be used to formulate a 

general constraint on multi-baseline stereo matching regard-
less of the surface BRDF complexity, provided that suffi-
cient lighting variation and viewpoints are available.  

This section first presents the rank constraint in the con-
text of multiple point light sources, each of which varies 
independently. We then show how this can be applied to 
arbitrary lighting, by replacing point lights with arbitrary 
lighting basis functions. Finally, we expand the formulation 
to include the concept of BRDF complexity, and show that 
simple reflectance functions also provide a rank constraint. 

1.1. LTC as a rank constraint 
The simplified introduction given in section 1 assumes 

that the incident lighting field is due to a single light source 
and varies by a single multiplier ki. This section derives a 
series of linear equations that can accommodate an arbitrary 
number of light sources. These equations are the basis for a 
rank constraint on stereo matching.  

Figure 2 shows a scene observed from multiple cameras 
and illuminated by multiple light sources. We can explain the 
reflected illumination from a particular scene point, xi, in the 
direction of a particular camera, Cj, as a combination of the 
reflected light from each individual source, L1..LM. 

ICj(xi) = L1(x1)R(xi,θL1,θCj)+L2(x1)R(xi,θL2,θCj)+… (5)

For notational convenience we will hereafter drop the 
indexing for scene location, xi, since it is understood that 
each scene location is considered separately. Further we will 
simplify reflectance function notation by defining sub-
scripted scalar values which correspond to the BRDF for 
particular pairs of light-camera directions.  

RC1L1 = R(xi, θL1, θC1) (6)

Equation (5) can be rewritten using the new notation as:  

ICj = L1RCjL1 + L2RCjL2 + L3RCjL3 +… (7)

Light transport constancy makes use of the fact that the 
reflectance function, RCjLm, remains constant when the illu-
mination conditions change. In general the illumination in-
tensity from each light source varies arbitrarily in each 
illumination condition. We can include the notion of lighting 
variation by writing L1V1 for the illumination from source L1 
under the first illumination variation, and  IC1V1 for the ob-
served intensity at camera C1 under the illumination variation 
V1.  

We can write a sequence of bilinear equations relating 
the observations from each camera, C1..CJ under illumination 
conditions, V1..VN, to the incident illumination from each 
light source. 

 
IC1V1 = L1V1RC1L1 + L2V1RC1L2 + L3V1RC1L3 +… 

IC2V1 = L1V1RC2L1 + L2V1RC2L2 + L3V1RC2L3 +… 
… 
IC1V2 = L1V2RC1L1 + L2V2RC1L2 + L3V2RC1L3 +… 
IC2V2 = L1V2RC2L1 + L2V2RC2L2 + L3V2RC2L3 +… 
… 

(8)

 
Note that, light transport constancy says that RCjLm is 

constant for a given pair of light source and camera position 
regardless of how we vary the illumination conditions. In 
addition, the illumination variation for a given light source, 
LmVn, is related only to the light source and does not depend 
on either the reflectance function or the camera viewpoint.  

This set of linear equations can be rewritten in matrix 
form as:  
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(9)

Note that there is a rank constraint on matrix I. When 
the number of light sources, M, is less than both the number 
of lighting variations and the number of cameras, matrix I 
has rank of at most M. This constraint allows stereo corre-
spondence to be determined. 

1.2. Arbitrary lighting basis functions 
Light transport constancy applies even when light 

sources are not simple point light sources. Each light in the 
preceding analysis can be replaced with a lighting basis func-
tion, each of which might have broad spatial support. 

In general the reflected light from a scene point, xi,  in 
the direction of camera Cj can be written as an integral over 
all incoming light directions.   

Figure 2 Light reflected towards camera C1 can be 
explained as a combination of reflected light from 
each of L1 and L2.  
 



Cj CjI  = ( ) R( ,θ ) 
φ

φ φ φ⋅ ∂∫ L  (10)

where ICj is the reflected intensity, L(φ) is the incident light 
intensity function indexed by incoming angle φ. As before, 
R(φ, θCj) is the reflectance function at xi.  

In order to accommodate more complex variation, the 
incident illumination field L can be decomposed into a set of 
basis vectors.  

( ) ( ) ( ) ( )1 2 Mφ φ φ φ= + + +L L L L…   (11)

It is conceptually helpful to think of each basis as a 
separate light source. Each light has compact angular sup-
port, varies its output independently and resides in a disjoint 
segment of the direction hemisphere (φ). This allows for area 
light sources, rather than the simple point light sources dis-
cussed previously. The only requirement is that from the 
perspective of a particular scene point, the incident illumina-
tion from this area source varies by a uniform factor. 

We can now rewrite equation (10) taking into account 
the lighting bases and indexed by illumination condition. 

( ) ( ) ( ) ( )CjVn L1Vn 1 Cj L2Vn 2 CjI = k R ,θ +k R ,θ ...
φ φ

φ φ φ φ φ φ∂ ∂ +∫ ∫L L (12)

That is, the observation from camera Cj under illumina-
tion condition Vn, is a summation over the individual lighting 
bases, each modified by their own variation multiplier, kLmVn.  

The key thing to notice is that each integral term is con-
stant since it relies only on the lighting basis and the surface 
BRDF. Just as was true in the case of discrete point light 
sources, lighting variation will induce a set of bilinear equa-
tions. These equations can be written identically to equation 
set (8) by redefining variables in terms of the new continuous 
formulation.  

mVn LmVn

CjLm m Cj

L  = k

R  = ( )R( ,θ ) 
φ

φ φ φ∂∫L  (13)

Although most readers will find the mental model of 
disjoint lighting bases helpful, there is no need for the bases 
to be this restricted. For example, a wavelet decomposition 
of the incident illumination field would work equally well. 
By truncating the wavelet expansion after a sufficient 
amount of variation has been accounted for, completely arbi-
trary lighting can be modeled using a finite set of coeffi-
cients. The graphics community has in fact used such an 
expansion to represent incident illumination fields [15].  

1.3. Limited BRDF complexity 
So far we have formulated the problem assuming com-

pletely arbitrary surface reflectance. However most real 
world BRDFs are not arbitrary and it is unlikely that the re-
flectance is truly independent in every camera direction. In 

this case we can further factor the reflectance matrix, R, into 
a set of reflectance bases, B, and a mixing matrix M. 
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We now have a trilinear equation I=LBM, which has a 
rank constraint on I if either L or B has a small number of 
columns. For example, if the surface is Lambertian, then a 
single BRDF basis describes the outgoing light in all camera 
directions, and B has a single column. Thus we have a rank 
constraint if the illumination is sufficiently “simple”, or if the 
surface reflectance is sufficiently “simple”. In this work we 
allow arbitrary BRDFs so require a limited number of light-
ing bases. 

1.4. Stereo matching 
It is not necessary to find an actual factorization of the 

observation matrix I in order to evaluate stereo correspon-
dence. It is sufficient to calculate the singular values of ma-
trix I, and select the disparity which results in a matrix of 
minimum rank.  

Since the matrix will be corrupted with noise, it is im-
possible to calculate rank exactly. Conceptually, we prefer 
matrices which have most of their energy in the first few 
principal components, rather than those with evenly distrib-
uted energy. Thus, we use moments to approximate the no-
tion of minimum rank, and select the disparity with 
minimum score. If the singular values of I are encoded in 
w1..wn then we choose the disparity which minimizes M . 

2 2
i i

i i

i w w= ⋅∑ ∑M  (15)

When a single light source and only two cameras are 
used, then simply minimizing the second singular value is 
equivalent to equation (15). However, in general it is impos-
sible to use the second (or any particular) singular value as a 
matching metric, because the expected rank of the matrix is 
not known a priori.  

The introductory matching metric which uses image ra-
tios given in equation (4), is also provably equivalent to 
equation (15). Conveniently, it allows existing stereo imple-
mentations to be used without modification, simply by 
matching ratio images rather than raw camera images.  

Scharstein and Szeliski have introduced a taxonomy of 
stereo algorithms which includes matching cost, aggregation, 
and disparity selection [16]. Light transport constancy and 
the implied rank constraint are local operators and replace 
only the matching cost in existing stereo algorithms. Aggre-
gation, disparity selection, and any global regularization are 
all orthogonal issues, and the new invariant introduced in this 
work can be used in conjunction with a wide variety of exist-
ing algorithms. 



4. Experiments 
To facilitate the evaluation of our technique, we cap-

tured several stereo data sets under varying illumination con-
ditions. Our data acquisition setup includes up to four 
synchronized VGA cameras and two light projectors, as 
shown in Figure 3. The cameras are calibrated with respect 
to each other, but the projectors are completely uncalibrated. 
It should be noted that much simpler light sources could be 
substituted, for example the flashlight shown in Figure 1. 
We use projectors only because they allow the light distribu-
tion to be controlled remotely, rather than by physically ma-
nipulating the light source. The actual light output of the 
projector is unknown to our algorithm. 

Two view stereo is the dominant method by which 
stereo algorithms are evaluated. Although our method is 

inherently multiview, we defer to tradition and first evaluate 
our method in the arrangement we believe will be most 
commonly implemented, two cameras and a single light 
source. Following these evaluations we provide some 
analysis of the rank constraint when multiple cameras and 
lights are present.  

We first experimented to evaluate our method against 
traditional stereo. We captured images from each of two 
cameras under two different lighting configurations. Figure 
4 shows the two lighting variations from the viewpoint of 
one of the cameras. Color constancy was evaluated using one 
of the two lighting configurations. Light transport constancy 
was evaluated by first computing a new image as the ratio of 
the two illumination conditions, as given in equation (4). 
This is mathematically equivalent to evaluating the rank con-
straint. The resulting ratio image is shown in Figure 5. Note 
that neither the specular highlights nor any other view de-
pendant effect are visible in the ratio image.  

Standard stereo matching was applied to the stereo pairs 
arising from both color constancy and light transport con-
stancy using a Sum-of-Absolute-Differences (SAD) metric. 
Since we are interested in the performance of a local match-
ing operator, we use a winner-takes-all approach and simply 
accept the minimum SAD disparity as correct, rather than 
applying a global regularization method.  

Figure 6 shows the stereo results from each method. 
The left column is derived from color constancy, while the 
right column is from light transport constancy. The first row 
shows the disparity map computed by each method.  Depth is 
coded such that white pixels indicate depths closer to the 
camera. The second row shows the same data along a single 
scan-line as scaled disparity values. In both visualizations, it 
is clear that our new method has superior results. Note the 
garbled depth values in the case of color constancy.  

In the third row of Figure 6, we investigate the reason 
that our method performs well by plotting the matching pro-
file for a single pixel. Note that color constancy has no clear 
global minimum, while our method has a very clear mini-
mum at the correct disparity. This presumably leads to much 
better depth estimates.  

In order to validate that existing stereo methods can be 
adapted to handle non-Lambertian objects, we tested the 
same two sets of stereo pairs with a stereo implementation 
available on the web [7]. This implementation happens to be 
based on graph cuts [10], allowing us to further verify that no 
undesirable artifacts are caused by integration with a global 
regularization method. Since we have computed a ratio im-
age to use for matching, absolutely no modification to the 
existing code was required. The computed disparity maps are 
shown in Figure 7. Similar to the winner-takes-all example 
above, the disparity map computed using light transport con-
stancy shows much better results.  

It is possible that our improved results come merely be-
cause by imposing lighting variation, more information is 
available when computing disparity, rather than because our 

 

 
Figure 3 Our experimental setup with four cameras 
and two variable light sources.  
 
 

 
Figure 4 A plastic pumpkin illuminated by a single 
light source, under two different lighting conditions. 

 
Figure 5 The ratio of images taken under two lighting 
conditions. This ratio can be used to compute stereo 
in place of the raw images, allowing BRDF invariance. 

 
 



new invariant actually performs better. In order to evaluate 
whether this is true, we computed disparity using a data set 
with six lighting variations, as shown in Figure 8. Color 
constancy was evaluated as the sum-of-absolute-difference 
over the vector of all six image pairs. Light transport con-
stancy was evaluated as a rank constraint over the same input 
images. Although it is clear that additional lighting variations 
improve the result from color constancy, the result from light 
transport constancy also improves. We conclude that addi-
tional lighting variations will improve the results from either 
constraint, but that our new invariant performs better on ob-
jects such as the pumpkin which exhibit non-Lambertian 
effects. 

Our second test scene is a piece of silk glued onto a 
slightly curved surface. The view dependent reflectance of 
the silk is very obvious in the stereo pair, as shown in Figure 
9. Using seven lighting variations, we evaluate color con-
stancy against our new invariant and find that light transport 
constancy is better able to deal with this highly non-
Lambertian scene. The improvement is particularly obvious 
in the plot of disparity along a scan-line, shown in the bottom 
row of Figure 10. Color constancy results in many incorrect 
disparity estimates, while light transport constancy results in 
a smooth curve.  

To evaluate our method on a more complex scene, we 
chose a live tree with substantial specular highlights. This 
scene would be challenging for traditional stereo algorithms 
both due to the non-Lambertian effects and because there are 
many depth discontinuities. We use thirty lighting variations 
to calculate the disparity map shown in Figure 11. With such 
a large number of lighting conditions, we would anticipate 
good performance. As expected, the results are of high qual-
ity. Individual leaves are well represented by clean bounda-
ries and smooth estimates of depth, despite the fact that no 
global regularization method was applied. 

To evaluate the behavior of the rank constraint under 
multi-view conditions, we computed disparity on the pump-
kin scene using four cameras, two light sources and thirty 
lighting variations. The resulting disparity map can be scene 
in Figure 12. As a whole, the results are very good, with 
smooth estimates of depth across the surface of the pumpkin. 
There is an error in the lower left corner which we believe is 
caused by occlusion from some camera viewpoints. Account-
ing for partial occlusion is typically handled during the ag-
gregation stage of stereo processing, and as mentioned 
earlier we focus on the matching cost in this work. 

When two light sources are used, the rank of the obser-
vation matrix is limited to 2 for surfaces with arbitrary 
BRDF. In this case, we expect the third singular value to be 
minimized at the correct disparity. However, if the complex-
ity of the surface reflectance is limited, the rank may be 
lower. This could happen either if the surface was actually 
Lambertian, or merely because it appears Lambertian from 
the limited set of viewpoints available.  
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Figure 6 (row 1) Disparity maps computed by stereo 
matching using each invariant. (row 2) Scaled dispar-
ity estimates along a single scan line. (row 3) Match-
ing profile for the pixel marked with a red cross.  
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Figure 7 Disparity maps computed using an unmodi-
fied graph-cut stereo algorithm together with our new 
invariant.  
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Figure 8 Disparity maps computed using six illumina-
tion variants. Our new invariant performs better than 
traditional stereo in this case as well. 



To provide some insight into the behavior of our rank 
constraint, we plotted the 2nd, 3rd, and 4th singular values as a 
function of disparity for two different scene points, drawn 
from the multiview example above. For the scene point in 
the top plot of Figure 13, we see that the 2nd singular value 
has an obvious minimum and that the combined metric M is 
minimized at this same disparity. However, in the case of the 
scene point in the bottom plot, M is minimized at the same 
disparity as the 3rd singular value. Although the 4th singular 
value is not precisely zero as would be expected in as ideal 
environment without noise, we can see that M  has an easily 
locatable global minimum which confirms that our approxi-
mation of “minimum rank” is performing as expected. 

5. Conclusions 
Light transport constancy is a new invariant for mul-

tiview stereo matching which allows the depth of surfaces 
with arbitrary BRDF to be computed. We introduce a rank 
constraint based on this invariant which allows stereo algo-
rithms to combine observations of non-Lambertian surfaces 
from different viewpoints in a theoretically principled way.  

Our rank constraint can be applied with as few as two 
cameras and two lighting configurations. In addition, unlike 
existing methods for non-Lambertian stereo matching, we do 
not require that light sources be precisely calibrated, nor do 
we require known calibration objects in the scene. 

The rank constraint implied by light transport constancy 
can easily be employed as a replacement to color constancy. 
Thus, whenever sufficient lighting variation is available, any 
existing stereo algorithms can be enhanced to allow match-
ing of non-Lambertian surfaces.  

We have verified experimentally that stereo matching is 
possible using our rank constraint. In addition, we show that 
it performs better than color constancy on a variety of scenes. 

There are a few aspects of our work which may limit the 
conditions under which light transport constancy can be 
used. The rank constraint requires multiple illumination con-
ditions to be available. All previously existing methods for 
arbitrary BRDF stereo also require illumination variation 
[13, 17], and it is interesting to wonder if this is a fundamen-
tal requirement. In addition, the rank constraint is a multi-
view constraint, and we do theoretically require more camera 
viewpoints than light source positions when the surface 
BRDF is truly arbitrary. However the BRDF of most real 
surfaces is not arbitrary and we have shown that BRDF com-
plexity can be traded for lighting complexity. Thus an inter-
esting avenue for future work would be to characterize the 
actual matrix rank, and thus actual number of viewpoints 
required, for a wide class of naturally occurring scenes and 
lighting.  
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Figure 12 Disparity map for the pumpkin calculated 
from multiple cameras and multiple light sources. 
 

 

 
Figure 13 Normalized singular values for two different 
scene points. Dots indicate the minimum on each 
curve. The metric M has been scaled to fit on the 
same graph together with the singular values. Note 
that M is minimized together with a different singular 
value in each case.  
 


